ND on wireless links and/or with sleeping nodes

Problems

draft-vyncke-6man-mcast-not-efficient draft-yourtchenko-colitti-nd-reduce-multicast draft-chakrabarti-nordmark-6man-efficient-nd

Context

Original assumptions in RFC 1970 [1996]

- Based on shared medium (10BASE5, 10BASE-T with hubs)
 - Multicast as reliable as unicast
 - The network cost of multicast is the same as unicast (total receiver cost is higher unless filtered in NIC)
- Nodes are always on
 - The effort to power on a host was not optimized
 - Simple to multicast DAD probes to find duplicates

Sleeping nodes [RFC 6574 from IAB workshop]

- Small, low-cost, battery-powered nodes often "sleep" to extend battery life
 - Keep just enough of the system on to wake up on schedule
 - Radio receiver and transmitter are off
- Wake up periodically to perform functions
- Before transmitting to the network
 - Detect Network Attachment (DNA) by ucast NS to routers
 - Sometimes also DAD for LLA & global, then MLD reports for all solicited node mcast (hence at least 3 mcast packets if EUI-64, more if RFC 4941)
- Different than battery saving with wakeup on packet reception
 - Suggest using "battery nodes" term for those?

Radio Efficient Nodes [IEEE 802.11 Low Power Wi-Fi clients]

- Even if main processor CPU is sleeping, try to keep radio going
- Radio is shut between AP beacons (100 msec)
- WiFi AP stores:
 - unicast frames destined to LP nodes
 - All multicast frames
- LP clients wake-up to listen to on AP beacons
 - Traffic Indicator Map (TIM) indicates whether to poll the AP to collect the frames
 - 1 bit states whether one or more multicast stored frames follow the beacon frame

History

- Problems raised in IAB Smart Object workshop (Mar 2011)
- ND problems stated with initial solution at IETF 82
 - draft-chakrabarti-nordmark-energy-aware-nd
 - Updated and renamed based on WG feedback since then
 - Most recent update with more details and additions based on WG feedback to handle VRRP and router state loss
- Problem statement for WiFi multicast
 - draft-vyncke-6man-mcast-not-efficient this IETF
- Tuning and minor changes to RFC 4861
 - draft-yourtchenko-colitti-nd-reduce-multicast this IETF
- Email suggestions to reuse and extend DHCP
 - No draft

Problems

Problem areas

- Multicast [on WiFi, battery/sleepy nodes)
 - Wasting bandwidth
 - Waking up hosts unnecessarily
 - Looking at ND (RS, RA, DAD, address resolution)
- Duplicate address detection
 - Currently requires always-on to defend address
 - Requires waiting for 1 second for response (no "OK" response)
- Related DAD issues
 - Not robust against packet loss
 - Has loopback issues (see enhanced-dad draft)
 - Deployment issues for N:1 VLAN model in DSL (see dad-proxy draft)

Wi-Fi Multicast Background

- Radio is a shared media: ucast, mcast and bcast frames require exclusive use of the media during transmission
- Additional 802.11 headers + management overhead
- Only unicast frames are acknowledged and retransmitted:
 - 10% packet loss appears to be common
 - Therefore, 10% of multicast frames are lost
- Depending on radio conditions, each Wi-Fi client has its own radio rate
 - => AP must transmit bcast/mcast frames at the lowest possible rate to ensure good reception
 - Makes bcast/mcast up to 10x more expensive than ucast:
 - IEEE 802.11a mcast: 6 Mbps, ucast up to 54 Mbps
 - IEEE 802.11n mcast: 15 Mbps, ucast up to 150 Mbps

RFC 4541: MLD Snooping is not Enough

- Solicited-node multicast was a good idea:
 - MLD snooping could filter in switches
 - NICs could filter multicasts
 - Works best with EUI-64 based IPv6 addresses (same group)
- RFC 4541 switches
 - Implement MLD snooping for global mcast
 - What if MLD report is lost?
 - Cannot economically/physically implement RFC 4541 for solicited nodes mcast esp after RFC 4941 (privacy addresses)
 - Results in flooding the mcast NS
- (v)NIC filters help with battery lifetime
 - Do not help with multicast bandwidth use
 - How many layer-2 mcast addresses can a (v)NIC support before interrupting the CPU?

Some data from IETF-hotel Wi-Fi

 Collected by a mostly silent node in promiscuous mode, 75% of IPv6 traffic was multicast

IPv6 Multicast Traffic

Factors to consider

- Looking for general applicability
- Looking for incremental deployability
 - work on links with existing hosts and routers
- Different scope and time frames:
 - Operational advise (setting timers etc)
 - Implementation advise
 - Small protocol changes what can we gain?
 - Implicit or explicit registrations?

Other problems in the neighborhood

- Need to be aware of relationship with e.g.,
 - SAVI [RFC 6620] nodes/routers/APs being deployed
 - ND DoS (scan all of /64 to use up memory for incomplete NCEs)
 - Hosts that frequently pick new addresses e.g., on each wakeup – no "leave/unregister" to remove from neighbor cache

802.11

- AP informs the cell in each beacon about Basic (mandatory), supported and disabled rates.
- Unicast:
 - Host tells the AP when it is sleeping/awake
 - AP buffers packet until host is awake
 - Frames retransmitted if not received (ACK system)
 - Highest rate the AP/host supports
- Multicast
 - Sleeping hosts synchronized to DTIM beacons
 - AP includes DTIM in beacon, which triggers all hosts on the link to stay awake for a period waiting for the multicast/broadcast frame
 - No retransmits / no delivery confirmation system
 - Transmitted at one of the common rates (Basic). E.g. unicast might be transmitted at 1.3Gbps while multicast is transmitted at say 24Mbps.
 - A consequence of sending multicast slow, is that it stays longer in the air, and is more susceptible for RF interference. E.g. a frame spends 3 ms in the air transmitted at 12Mbps, while only 120us sent at 300MBps.
- Host sourced multicast:
 - Sent L2 unicast to AP
 - AP multicasts the frame back out on the link

Problematic ND behavior

- Any multicast message requires all hosts on the link to stay awake for 1-10ms (that's a long time).
 Even when the message is not for them.
- Multicast transmitted at a low rate, eats up a lot of time on the link
- Multicast being unreliable (8-10% packet loss or more), means you cannot trust DAD to detect collisions. (a collision requires two multicast packets to make it through. With 10% packet loss there is a 20% chance of not detecting a collision)
- Uses multicast for host to host communication