
Network Working Group B. Black
Internet-Draft Microsoft
Intended status: Informational J. Bos
Expires: January 4, 2015 NXP Semiconductors
 C. Costello
 P. Longa
 M. Naehrig
 Microsoft Research
 July 3, 2014

Elliptic Curve Cryptography (ECC) Nothing Up My Sleeve (NUMS) Curves and
 Curve Generation
 draft-black-numscurves-01

Abstract

 This memo describes a family of deterministically generated Nothing
 Up My Sleeve (NUMS) elliptic curves over prime fields offering high
 practical security in cryptographic applications, including Transport
 Layer Security (TLS) and X.509 certificates. The domain parameters
 are defined for both classical Weierstrass curves, for compatibility
 with existing applications, and modern twisted Edwards curves,
 allowing further efficiency improvements for a given security level.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Black, et al. Expires January 4, 2015 [Page 1]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. Scope and Relation to Other Specifications 3
 3. Requirements . 4
 3.1. Technical Requirements 4
 3.2. Security Requirements 4
 4. Notation . 5
 5. Curve Parameters . 5
 5.1. Parameters for 256-bit Curves 5
 5.2. Parameters for 384-bit Curves 6
 5.3. Parameters for 512-bit Curves 7
 6. Object Identifiers and ASN.1 Syntax for X.509 Certificates . 8
 6.1. Object Identifiers 8
 6.2. ASN.1 Syntax for X.509 Certificates 8
 7. Acknowledgements . 9
 8. Security Considerations 9
 9. Intellectual Property Rights 9
 10. IANA Considerations . 10
 11. References . 10
 11.1. Normative References 10
 11.2. Informative References 10
 Appendix A. Parameter Generation 12
 A.1. Prime Generation . 12
 A.2. Deterministic Curve Parameter Generation 12
 A.2.1. Weierstrass Curves 12
 A.2.2. Twisted Edwards Curves 13
 Appendix B. Generators . 13
 Authors’ Addresses . 14

1. Introduction

 Since the initial standardization of elliptic curve cryptography
 (ECC) in [SEC1] there has been significant progress related to both
 efficiency and security of curves and implementations. Notable
 examples are algorithms protected against certain side-channel
 attacks, different ’special’ prime shapes which allow faster modular

Black, et al. Expires January 4, 2015 [Page 2]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 arithmetic, and a larger set of curve models from which to choose.
 There is also concern in the community regarding the generation and
 potential weaknesses of the curves defined in [NIST].

 This memo describes a set of elliptic curves for cryptography,
 defined in [MSR] which have been specifically chosen to support
 constant-time, exception-free scalar multiplications that are
 resistant to a wide range of side-channel attacks including timing
 and cache attacks, thereby offering high practical security in
 cryptographic applications. These curves are deterministically
 generated based on algorithms defined in this document and without
 any hidden parameters or reliance on randomness, hence they are
 called Nothing Up My Sleeve (NUMS) curves. The domain parameters are
 defined for both classical Weierstrass curves, for compatibility with
 existing applications while delivering better performance and
 stronger security, and modern twisted Edwards curves, allowing even
 further efficiency improvements for a given security level.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Scope and Relation to Other Specifications

 This RFC specifies elliptic curve domain parameters over prime fields
 GF(p) with p having a length of 256, 384, and 512 bits, in both
 Weierstrass and twisted Edwards form. These parameters were
 generated in a transparent and deterministic way and have been shown
 to resist current cryptanalytic approaches. Furthermore, this
 document identifies the security and implementation requirements for
 the parameters, and describes the methods used for the deterministic
 generation of the parameters.

 This document also describes use of the specified parameters in X.509
 certificates, in accordance with [RFC3279] and [RFC5480]. It does
 not address the cryptographic algorithms to be used with the
 specified parameters nor their application in other standards.
 However, it is consistent with the following RFCs that specify the
 usage of ECC in protocols and applications:

 o [RFC4050] for XML signatures

 o [RFC4492] for TLS

 o [RFC4754] for IKE

Black, et al. Expires January 4, 2015 [Page 3]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 o [RFC5753] for cryptographic message syntax (CMS)

3. Requirements

3.1. Technical Requirements

 1. Applicability to multiple cryptographic algorithms without
 transformation, in particular key exchange, e.g. Elliptic Curve
 Diffie-Hellman (ECDH), and digital signature algorithms, e.g.,
 (ECDSA), Schnorr.

 2. Multiple security levels using the same curve generation
 algorithm with only a security parameter change. The curve
 generation algorithm must be extensible to any security level.

 3. Ability to use pre-computation for increased performance. In
 particular, speed-up in key generation is important when a curve
 is used with ephemeral key exchange algorithm, such as ECDHE.

 4. The bit length of prime and order of curves for a given security
 level MUST be divisible by 8. Specifically, constructions such
 as NIST P-521 are to be avoided as they introduce
 interoperability and implementation problems.

3.2. Security Requirements

 For each curve type (twisted Edwards or Weierstrass) at a specific
 specific security level:

 1. The domain parameters SHALL be generated in a simple,
 deterministic manner, without any secret or random inputs. The
 derivation of the curve parameters is defined in Appendix A.

 2. The curve SHALL NOT restrict the scalars to a small subset.
 Using full-set scalars prevents implementation pitfalls that
 might otherwise go unnoticed.

 3. The curve selection SHALL include prime order curves with
 cofactor 1 only. Composite order curves require changes in
 protocols and in implementations. Additionally, implementations
 for composite order curves must thwart subgroup attacks.

 4. The trace of Frobenius MUST NOT be in {0, 1} in order to rule out
 the attacks described in [Smart], [AS], and [S], as in [EBP].

 5. MOV Degree: the embedding degree k MUST be greater than (r - 1) /
 100, as in [EBP].

Black, et al. Expires January 4, 2015 [Page 4]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 6. CM Discriminant: discriminant D MUST be greater than 2^100, as in
 [SC].

4. Notation

 Throughout this document, the following notation is used:

 s: Denotes the bit length, here s in {256,384,512}.
 p: Denotes the prime number defining the base field.
 c: A positive integer used in the representation of the prime
 p = 2^s - c.
 GF(p): The finite field with p elements.
 b: An element in the finite field GF(p), different from -2,2.
 Eb: The elliptic curve Eb/GF(p):
 y^2 = x^3 - 3x + b
 in short Weierstrass form, defined over GF(p) by the
 parameter b.
 rb: The order rb = #Eb(GF(p)) of the group of GF(p)-rational
 points on Eb.
 tb: The trace of Frobenius tb = p + 1 - rb of Eb.
 rb’: The order rb’ = #E’b(GF(p)) = p + 1 + tb of the group of
 GF(p)-rational points on the quadratic twist Eb’:
 y^2 = x^3 - 3x - b.
 d: An element in the finite field GF(p), different from -1,0.
 Ed: The elliptic curve Ed/GF(p): -x^2 + y^2 = 1 + dx^2y^2 in
 twisted Edwards form, defined over GF(p) by the parameter d.
 rd: The subgroup order such that 4 * rd = #Ed(GF(p)) is the
 order of the group of GF(p)-rational points on Ed.
 td: The trace of Frobenius td = p + 1 - 4 * rd of Ed.
 rd’: The subgroup order such that 4 * rd’ = #Ed’(GF(p)) = p + 1 + tb
 is the order of the group of GF(p)-rational points on the
 quadratic twist Ed’:
 -x^2 = y^2 = 1 + (1 / d) * x^2 * y^2.
 P: A generator point defined over GF(p) either of prime order
 rb in the Weierstrass curve Eb, or of prime order rd on the
 twisted Edwards curve Ed.
 X(P): The x-coordinate of the elliptic curve point P.
 Y(P): The y-coordinate of the elliptic curve point P.

5. Curve Parameters

5.1. Parameters for 256-bit Curves

Black, et al. Expires January 4, 2015 [Page 5]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 p = 0xFFF
 FFFFF43
 a = 0xFFF
 FFFFF40
 b = 0x25581
 r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE43C8275EA265C60E43C8275E
 A265C60
 X(P) = 0x01
 Y(P) = 0x696F1853C1E466D7FC82C96CCEEEDD6BD02C2F9375894EC10BF46306C
 2B56C77
 h = 0x01

 Curve-Id: numsp256d1

 p = 0xFFF
 FFFFF43
 a = 0xFFF
 FFFFF42
 d = 0x3BEE
 r = 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBE6AA55AD0A6BC64E5B84E6F1
 122B4AD
 X(P) = 0x0D
 Y(P) = 0x7D0AB41E2A1276DBA3D330B39FA046BFBE2A6D63824D303F707F6FB53
 31CADBA
 h = 0x04

 Curve-Id: numsp256t1

5.2. Parameters for 384-bit Curves

 p = 0xFFF
 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC3
 a = 0xFFF
 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC0
 b = 0xFFF
 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF77BB
 r = 0xFFD61EAF1EE
 B5D6881BEDA9D3D4C37E27A604D81F67B0E61B9
 X(P) = 0x02
 Y(P) = 0x3C9F82CB4B87B4DC71E763E0663E5DBD8034ED422F04F82673330DC58
 D15FFA2B4A3D0BAD5D30F865BCBBF503EA66F43
 h = 0x01

 Curve-Id: numsp384d1

Black, et al. Expires January 4, 2015 [Page 6]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 p = 0xFFF
 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC3
 a = 0xFFF
 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC2
 d = 0x5158A
 r = 0x3FFFECD7D11ED
 5A259A25A13A0458E39F4E451D6D71F70426E25
 X(P) = 0x08
 Y(P) = 0x749CDABA136CE9B65BD4471794AA619DAA5C7B4C930BFF8EBD798A8AE
 753C6D72F003860FEBABAD534A4ACF5FA7F5BEE
 h = 0x04

 Curve-Id: numsp384t1

5.3. Parameters for 512-bit Curves

 p = 0xFFF
 FFF
 FFFFFFFFFFFDC7
 a = 0xFFF
 FFF
 FFFFFFFFFFFDC4
 b = 0x1D99B
 r = 0xFFF
 FFFFFFF5B3CA4FB94E7831B4FC258ED97D0BDC63B568B36607CD243CE
 153F390433555D
 X(P) = 0x02
 Y(P) = 0x1C282EB23327F9711952C250EA61AD53FCC13031CF6DD336E0B932843
 3AFBDD8CC5A1C1F0C716FDC724DDE537C2B0ADB00BB3D08DC83755B20
 5CC30D7F83CF28
 h = 0x01

 Curve-Id: numsp512d1

Black, et al. Expires January 4, 2015 [Page 7]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 p = 0xFFF
 FFF
 FFFFFFFFFFFDC7
 a = 0xFFF
 FFF
 FFFFFFFFFFFDC6
 d = 0x9BAA8
 r = 0x3FF
 FFFFFFFA7E50809EFDABBB9A624784F449545F0DCEA5FF0CB800F894E
 78D1CB0B5F0189
 X(P) = 0x20
 Y(P) = 0x7D67E841DC4C467B605091D80869212F9CEB124BF726973F9FF048779
 E1D614E62AE2ECE5057B5DAD96B7A897C1D72799261134638750F4F0C
 B91027543B1C5E
 h = 0x04

 Curve-Id: numsp512t1

6. Object Identifiers and ASN.1 Syntax for X.509 Certificates

6.1. Object Identifiers

 The root of the tree for the object identifiers defined in this
 specification is given by:

 [TBDOID]

 The following object identifiers represent the domain parameters for
 the curves defined in this draft:

 numsp256d1 OBJECT IDENTIFIER ::= {versionOne 1}

 numsp256t1 OBJECT IDENTIFIER ::= {versionOne 2}

 numsp384d1 OBJECT IDENTIFIER ::= {versionOne 3}

 numsp384t1 OBJECT IDENTIFIER ::= {versionOne 4}

 numsp512d1 OBJECT IDENTIFIER ::= {versionOne 5}

 numsp512t1 OBJECT IDENTIFIER ::= {versionOne 6}

6.2. ASN.1 Syntax for X.509 Certificates

 The domain parameters for the curves specified in this RFC SHALL be
 used with X.509 certificates according to [RFC5480]. Specifically,
 the algorithm field of subjectPublicKeyInfo MUST be one of:

Black, et al. Expires January 4, 2015 [Page 8]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 o id-ecPublicKey to indicate that the algorithms that can be used
 with the subject public key are unrestricted, as required for
 ECDSA, or

 o id-ecDH to indicate that the algorithm that can be used with the
 subject public key is restricted to the ECDH key agreement
 algorithm, or

 o id-ecMQV indicates that the algorithm that can be used with the
 subject public key is restricted to the Elliptic Curve Menezes-Qu-
 Vanstone (ECMQV) key agreement algorithm, and

 The field algorithm.parameter of subjectPublicKeyInfo MUST be of type
 namedCurve. No other values for this field are acceptable.

7. Acknowledgements

 The authors would like to thank Brian Lamacchia and Tolga Acar for
 their help in the development of this draft.

8. Security Considerations

 In addition to the discussion in the requirements, [MSR], [SC], and
 the other reference documents on EC security, users SHOULD match
 curves with cryptographic functions of similar strength. Specific
 recommendations for algorithms, per [RFC5480] are as follows:

 +-------------------+-----------+-------------------+---------------+
 | Minimum Bits of | EC Key | Message Digest | Curves |
 | Security | Size | Algorithm | |
 +-------------------+-----------+-------------------+---------------+
128	256	SHA-256	numsp256d1/t1
192	384	SHA-384	numsp384d1/t1
256	512	SHA-512	numsp512d1/t1
 +-------------------+-----------+-------------------+---------------+

 Table 1

9. Intellectual Property Rights

 The authors have no knowledge about any intellectual property rights
 that cover the usage of the domain parameters defined herein.
 However, readers should be aware that implementations based on these
 domain parameters may require use of inventions covered by patent
 rights.

Black, et al. Expires January 4, 2015 [Page 9]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

10. IANA Considerations

 IANA is requested to allocate an object identifier for elliptic
 curves under the PKIX root declared in [RFC5480]:

 PKIX1Algorithms2008 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) 45 }

 IANA is further requested to allocate object identifiers under this
 new elliptic curve root for the named curves in Section 6.1.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

11.2. Informative References

 [AS] Satoh, T. and K. Araki, "Fermat quotients and the
 polynomial time discrete log algorithm for anomalous
 elliptic curves", 1998.

 [EBP] ECC Brainpool, "ECC Brainpool Standard Curves and Curve
 Generation", October 2005, <http://www.ecc-
 brainpool.org/download/Domain-parameters.pdf>.

 [ECCP] Bos, J., Halderman, J., Heninger, N., Moore, J., Naehrig,
 M., and E. Wustrow, "Elliptic Curve Cryptography in
 Practice", December 2013,
 <https://eprint.iacr.org/2013/734>.

 [FPPR] Faugere, J., Perret, L., Petit, C., and G. Renault, 2012,
 <http://dx.doi.org/10.1007/978-3-642-29011-4_4>.

 [MSR] Bos, J., Costello, C., Longa, P., and M. Naehrig,
 "Selecting Elliptic Curves for Cryptography: An Efficiency
 and Security Analysis", February 2014,
 <http://eprint.iacr.org/2014/130.pdf>.

 [NIST] National Institute of Standards, "Recommended Elliptic
 Curves for Federal Government Use", July 1999,
 <http://csrc.nist.gov/groups/ST/toolkit/documents/dss/
 NISTReCur.pdf>.

Black, et al. Expires January 4, 2015 [Page 10]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 3279, April 2002.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552, July
 2003.

 [RFC4050] Blake-Wilson, S., Karlinger, G., Kobayashi, T., and Y.
 Wang, "Using the Elliptic Curve Signature Algorithm
 (ECDSA) for XML Digital Signatures", RFC 4050, April 2005.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC4754] Fu, D. and J. Solinas, "IKE and IKEv2 Authentication Using
 the Elliptic Curve Digital Signature Algorithm (ECDSA)",
 RFC 4754, January 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

 [RFC5753] Turner, S. and D. Brown, "Use of Elliptic Curve
 Cryptography (ECC) Algorithms in Cryptographic Message
 Syntax (CMS)", RFC 5753, January 2010.

 [S] Semaev, I., "Evaluation of discrete logarithms on some
 elliptic curves", 1998.

 [SC] Bernstein, D. and T. Lange, "SafeCurves: choosing safe
 curves for elliptic-curve cryptography", June 2014,
 <http://safecurves.cr.yp.to/>.

 [SEC1] Certicom Research, "SEC 1: Elliptic Curve Cryptography",
 September 2000,
 <http://www.secg.org/collateral/sec1_final.pdf>.

 [Smart] Smart, N., "The discrete logarithm problem on elliptic
 curves of trace one", 1999.

Black, et al. Expires January 4, 2015 [Page 11]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

Appendix A. Parameter Generation

 This section describes the generation of the curve parameters, namely
 the base field prime p, the curve parameters b and d for the
 Weierstrass and twisted Edwards curves, respectively, and a generator
 point P of the prime order subgroup of the elliptic curve.

A.1. Prime Generation

 For a given bitlength s in {256, 384, 512}, a prime p is selected as
 a pseudo-Mersenne prime of the form p = 2^s - c for a positive
 integer c. Each prime is determined by the smallest positive integer
 c such that p = 2^s - c is prime and p = 3 mod 4.

 Input: a bit length s in {256, 384, 512}
 Output: a prime p = 2^s - c with p = 3 mod 4
 1. Set c = 1
 2. while (p = 2^s - c is not prime) do
 c = c + 4
 end while
 3. Output p

 GenerateP

A.2. Deterministic Curve Parameter Generation

A.2.1. Weierstrass Curves

 For a given bitlength s in {256, 384, 512} and a corresponding prime
 p = 2^s - c selected according to Section A.1, the elliptic curve Eb
 in short Weierstrass form is determined by the element b from GF(p),
 different from -2,2 with smallest absolute value (when represented as
 an integer in the interval [-(p - 1) / 2, (p - 1) / 2]) such that
 both group orders rb and rb’ are prime, and the group order rb < p,
 i.e. tb > 1. In addition, care must be taken to ensure the MOV
 degree and CM discriminant requirements from Section 3.2 are met.

Black, et al. Expires January 4, 2015 [Page 12]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 Input: a prime p = 2^s - c with p = 3 mod 4
 Output: the parameter b defining the curve Eb
 1. Set b = 1
 2. while (rb is not prime or rb’ is not prime) do
 b = b + 1
 end while
 3. if p + 1 < rb then
 b = -b
 end if
 4. Output b

 GenerateCurveWeierstrass

A.2.2. Twisted Edwards Curves

 For a given bitlength s in {256, 384, 512} and a corresponding prime
 p = 2^s - c selected according to Section A.1, the elliptic curve Ed
 in twisted Edwards form is determined by the element d from GF(p),
 different from -1,0 with smallest value (when represented as a
 positive integer) such that both subgroup orders rd and rd’ are
 prime, and the group order 4 * rd < p, i.e. td > 1. In addition,
 care must be taken to ensure the MOV degree and CM discriminant
 requirements from Section 3.2 are met.

 Input: a prime p = 2^s - c with p = 3 mod 4
 Output: the parameter d defining the curve Ed
 1. Set d = 1
 2. while (rd is not prime or rd’ is not prime or 4*rd > p) do
 d = d + 1;
 end while
 3. Output d

 GenerateCurveTEdwards

Appendix B. Generators

 The generator points on all six curves are selected as the points of
 order rb and rd, respectively, with the smallest value for x(P) when
 represented as a positive integer.

Black, et al. Expires January 4, 2015 [Page 13]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 Input: a prime p, and a Weierstrass curve parameter b
 Output: a generator point P = (x(P), y(P)) of order rb
 1. Set x = 1
 2. while ((x^3 - 3 * x + b) is not a quadratic residue modulo p) do
 x = x + 1
 end while
 3. Compute an integer s, 0 < s < p, such that
 s^2 = x^3 - 3 * x + b mod p
 4. Set y = min(s, p - s)
 5. Output P = (x, y)

 GenerateGenWeierstrass

 Input: a prime p and a twisted Edwards curve parameter d
 Output: a generator point P = (x(P), y(P)) of order rd
 1. Set x = 1
 2. while ((d * x^2 = 1 mod p)
 or ((1 + x^2) * (1 - d * x^2) is not a quadratic residue
 modulo p)) do x = x + 1
 end while
 3. Compute an integer s, 0 < s < p, such that
 s^2 * (1 - d * x^2) = 1 + x^2 mod p
 4. Set y = min(s, p - s)
 5. Output P = (x, y)

 GenerateGenTEdwards

Authors’ Addresses

 Benjamin Black
 Microsoft
 One Microsoft Way
 Redmond, WA 98115
 US

 Email: benblack@microsoft.com

 Joppe W. Bos
 NXP Semiconductors
 Interleuvenlaan 80
 3001 Leuven
 Belgium

 Email: joppe.bos@nxp.com

Black, et al. Expires January 4, 2015 [Page 14]

Internet-Draft ECC NUMS Curves and Curve Generation July 2014

 Craig Costello
 Microsoft Research
 One Microsoft Way
 Redmond, WA 98115
 US

 Email: craigco@microsoft.com

 Patrick Longa
 Microsoft Research
 One Microsoft Way
 Redmond, WA 98115
 US

 Email: plonga@microsoft.com

 Michael Naehrig
 Microsoft Research
 One Microsoft Way
 Redmond, WA 98115
 US

 Email: mnaehrig@microsoft.com

Black, et al. Expires January 4, 2015 [Page 15]

Network Working Group D. McGrew
Internet-Draft Cisco Systems
Obsoletes: 6090 (if approved) K. Igoe
Intended status: Informational M. Salter
Expires: December 31, 2015 National Security Agency
 P. Hoffman
 VPN Consortium
 June 29, 2015

 Fundamental Elliptic Curve Cryptography Algorithms
 draft-hoffman-rfc6090bis-02

Abstract

 This note describes the fundamental algorithms of Elliptic Curve
 Cryptography (ECC) as they were defined in some seminal references
 from 1994 and earlier. These descriptions may be useful for
 implementing the fundamental algorithms without using any of the
 specialized methods that were developed in following years. Only
 elliptic curves defined over fields of characteristic greater than
 three are in scope; these curves are those used in Suite B.

 This version of the note incorporates errata that were reported on
 RFC 6090 [RFC6090].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 31, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

McGrew, et al. Expires December 31, 2015 [Page 1]

Internet-Draft Fundamental ECC June 2015

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Conventions Used in This Document 4
 2. Mathematical Background 4
 2.1. Modular Arithmetic 4
 2.2. Group Operations . 5
 2.3. The Finite Field Fp 6
 3. Elliptic Curve Groups . 7
 3.1. Homogeneous Coordinates 8
 3.2. Other Coordinates . 9
 3.3. ECC Parameters . 9
 3.3.1. Discriminant . 10
 3.3.2. Security . 10
 4. Elliptic Curve Diffie-Hellman (ECDH) 10
 4.1. Data Types . 11
 4.2. Compact Representation 11
 5. Elliptic Curve ElGamal Signatures 11
 5.1. Background . 11
 5.2. Hash Functions . 12
 5.3. KT-IV Signatures . 12
 5.3.1. Keypair Generation 13
 5.3.2. Signature Creation 13
 5.3.3. Signature Verification 13
 5.4. KT-I Signatures . 14
 5.4.1. Keypair Generation 14
 5.4.2. Signature Creation 14
 5.4.3. Signature Verification 14
 5.5. Converting KT-IV Signatures to KT-I Signatures 15
 5.6. Rationale . 15
 6. Converting between Integers and Octet Strings 16
 6.1. Octet-String-to-Integer Conversion 17
 6.2. Integer-to-Octet-String Conversion 17
 7. Interoperability . 17
 7.1. ECDH . 17
 7.2. KT-I and ECDSA . 18
 8. Validating an Implementation 18
 8.1. ECDH . 19

McGrew, et al. Expires December 31, 2015 [Page 2]

Internet-Draft Fundamental ECC June 2015

 8.2. KT-I . 20
 9. Intellectual Property . 20
 9.1. Disclaimer . 21
 10. Security Considerations 21
 10.1. Subgroups . 22
 10.2. Diffie-Hellman . 22
 10.3. Group Representation and Security 22
 10.4. Signatures . 23
 11. Acknowledgements . 24
 12. References . 24
 12.1. Normative References 24
 12.2. Informative References 25
 Appendix A. Key Words . 29
 Appendix B. Random Integer Generation 29
 Appendix C. Why Compact Representation Works 30
 Appendix D. Example ECC Parameter Set 31
 Appendix E. Additive and Multiplicative Notation 31
 Appendix F. Algorithms . 32
 F.1. Affine Coordinates 32
 F.2. Homogeneous Coordinates 33
 Authors’ Addresses . 34

1. Introduction

 ECC is a public-key technology that offers performance advantages at
 higher security levels. It includes an elliptic curve version of the
 Diffie-Hellman key exchange protocol [DH1976] and elliptic curve
 versions of the ElGamal Signature Algorithm [E1985]. The adoption of
 ECC has been slower than had been anticipated, perhaps due to the
 lack of freely available normative documents and uncertainty over
 intellectual property rights.

 This note contains a description of the fundamental algorithms of ECC
 over finite fields with characteristic greater than three, based
 directly on original references. Its intent is to provide the
 Internet community with a summary of the basic algorithms that
 predate any specialized or optimized algorithms. The summary is
 detailed enough for use as a normative reference. The original
 descriptions and notations were followed as closely as possible.

 This version of the note incorporates verified errata that were
 reported against RFC 6090. Paragraphs or artwork that has errata
 applied are marked with "%%%". Thise markings will be removed when
 this document is published as an RFC.

 There are several standards that specify or incorporate ECC
 algorithms, including the Internet Key Exchange (IKE), ANSI X9.62,
 and IEEE P1363. The algorithms in this note can interoperate with

McGrew, et al. Expires December 31, 2015 [Page 3]

Internet-Draft Fundamental ECC June 2015

 some of the algorithms in these standards, with a suitable choice of
 parameters and options. The specifics are itemized in Section 7.

 The rest of the note is organized as follows. Sections 2.1, 2.2, and
 2.3 furnish the necessary terminology and notation from modular
 arithmetic, group theory, and the theory of finite fields,
 respectively. Section 3 defines the groups based on elliptic curves
 over finite fields of characteristic greater than three. Section 4
 presents the fundamental Elliptic Curve Diffie-Hellman (ECDH)
 algorithm. Section 5 presents elliptic curve versions of the ElGamal
 signature method. The representation of integers as octet strings is
 specified in Section 6. Sections 2 through 6, inclusive, contain all
 of the normative text (the text that defines the norm for
 implementations conforming to this specification), and all of the
 following sections are purely informative. Interoperability is
 discussed in Section 7. Validation testing is described in
 Section 8. Section 9 reviews intellectual property issues.
 Section 10 summarizes security considerations. Appendix B describes
 random number generation, and other appendices provide clarifying
 details.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in Appendix A.

2. Mathematical Background

 This section reviews mathematical preliminaries and establishes
 terminology and notation that are used below.

2.1. Modular Arithmetic

 This section reviews modular arithmetic. Two integers x and y are
 said to be congruent modulo n if x - y is an integer multiple of n.

 Two integers x and y are coprime when their greatest common divisor
 is 1; in this case, there is no third number z > 1 such that z
 divides x and z divides y.

 The set Zq = { 0, 1, 2, ..., q-1 } is closed under the operations of
 modular addition, modular subtraction, modular multiplication, and
 modular inverse. These operations are as follows.

 For each pair of integers a and b in Zq, a + b mod q is equal to
 a + b if a + b < q, and is equal to a + b - q otherwise.

McGrew, et al. Expires December 31, 2015 [Page 4]

Internet-Draft Fundamental ECC June 2015

 For each pair of integers a and b in Zq, a - b mod q is equal to
 a - b if a - b >= 0, and is equal to a - b + q otherwise.

 For each pair of integers a and b in Zq, a * b mod q is equal to
 the remainder of a * b divided by q.

 For each integer x in Zq that is coprime with q, the inverse of x
 modulo q is denoted as 1/x mod q, and can be computed using the
 extended Euclidean algorithm (see Section 4.5.2 of [K1981v2], for
 example).

 Algorithms for these operations are well known; for instance, see
 Chapter 4 of [K1981v2].

2.2. Group Operations

 This section establishes some terminology and notation for
 mathematical groups, which are needed later on. Background
 references abound; see [D1966], for example.

 A group is a set of elements G together with an operation that
 combines any two elements in G and returns a third element in G. The
 operation is denoted as * and its application is denoted as a * b,
 for any two elements a and b in G. The operation is associative,
 that is, for all a, b, and c in G, a * (b * c) is identical to (a *
 b) * c. Repeated application of the group operation N-1 times to the
 element a is denoted as a^N, for any element a in G and any positive
 integer N. That is, a^2 = a * a, a^3 = a * a * a, and so on. The
 associativity of the group operation ensures that the computation of
 a^n is unambiguous; any grouping of the terms gives the same result.

 %%% The above definition of a group operation uses multiplicative
 notation. Sometimes an alternative called additive notation is used,
 in which a * b is denoted as a + b, and a^N is denoted as Na. In
 multiplicative notation, a^N is called exponentiation, while the
 equivalent operation in additive notation is called scalar
 multiplication. In this document, multiplicative notation is used
 throughout for consistency. Appendix E elucidates the correspondence
 between the two notations.

 %%% Every group has a special element called the identity element,
 which we denote as e. For each element a in G, e * a = a * e = a.
 By convention, a^0 is equal to the identity element and a^1 is equal
 to a itself for any a in G.

 Every group element a has a unique inverse element b such that

McGrew, et al. Expires December 31, 2015 [Page 5]

Internet-Draft Fundamental ECC June 2015

 a * b = b * a = e. The inverse of a is denoted as a^-1 in
 multiplicative notation. (In additive notation, the inverse of a is
 denoted as -a.)

 For any positive integer X, a^(-X) is defined to be (a^-1)^(X).
 Using this convention, exponentiation behaves as one would expect,
 namely for any integers X and Y:

 a^(X+Y) = (a^X)*(a^Y)

 (a^X)^Y = a^(XY) = (a^Y)^X.

 In cryptographic applications, one typically deals with finite groups
 (groups with a finite number of elements), and for such groups, the
 number of elements of the group is also called the order of the
 group. A group element a is said to have finite order if a^X = e for
 some positive integer X, and the order of a is the smallest such X.
 If no such X exists, a is said to have infinite order. All elements
 of a finite group have a finite order, and the order of an element is
 always a divisor of the group order.

 If a group element a has order R, then for any integers X and Y,

 a^X = a^(X mod R),

 a^X = a^Y if and only if X is congruent to Y mod R,

 the set H = { a, a^2, a^3, ... , a^R=e } forms a subgroup of G,
 called the cyclic subgroup generated by a, and a is said to be a
 generator of H.

 %%% Typically, there are several group elements that generate H. Any
 group element of the form a^M, with M relatively prime to R, also
 generates H. Note that a^M is equal to a^(M mod R) for any non-
 negative integer M.

 Given the element a of order R, and an integer i between 1 and R-1,
 inclusive, the element a^i can be computed by the "square and
 multiply" method outlined in Section 2.1 of [M1983] (see also Knuth,
 Vol. 2, Section 4.6.3), or other methods.

2.3. The Finite Field Fp

 This section establishes terminology and notation for finite fields
 with prime characteristic.

 When p is a prime number, then the set Zp, with the addition,
 subtraction, multiplication, and division operations, is a finite

McGrew, et al. Expires December 31, 2015 [Page 6]

Internet-Draft Fundamental ECC June 2015

 field with characteristic p. Each nonzero element x in Zp has an
 inverse 1/x. There is a one-to-one correspondence between the
 integers between zero and p-1, inclusive, and the elements of the
 field. The field Zp is sometimes denoted as Fp or GF(p).

 Equations involving field elements do not explicitly denote the "mod
 p" operation, but it is understood to be implicit. For example, the
 statement that x, y, and z are in Fp and

 z = x + y

 is equivalent to the statement that x, y, and z are in the set
 { 0, 1, ..., p-1 } and

 z = x + y mod p.

3. Elliptic Curve Groups

 This note only covers elliptic curves over fields with characteristic
 greater than three; these are the curves used in Suite B [SuiteB].
 For other fields, the definition of the elliptic curve group would be
 different.

 An elliptic curve over a field Fp is defined by the curve equation

 y^2 = x^3 + a*x + b,

 where x, y, a, and b are elements of the field Fp [M1985], and the
 discriminant is nonzero (as described in Section 3.3.1). A point on
 an elliptic curve is a pair (x,y) of values in Fp that satisfies the
 curve equation, or it is a special point (@,@) that represents the
 identity element (which is called the "point at infinity"). The
 order of an elliptic curve group is the number of distinct points.

 Two elliptic curve points (x1,y1) and (x2,y2) are equal whenever
 x1=x2 and y1=y2, or when both points are the point at infinity. The
 inverse of the point (x1,y1) is the point (x1,-y1). The point at
 infinity is its own inverse.

 The group operation associated with the elliptic curve group is as
 follows [BC1989]. To an arbitrary pair of points P and Q specified
 by their coordinates (x1,y1) and (x2,y2), respectively, the group
 operation assigns a third point P*Q with the coordinates (x3,y3).
 These coordinates are computed as follows:

 (x3,y3) = (@,@) when P is not equal to Q and x1 is equal to x2.

 x3 = ((y2-y1)/(x2-x1))^2 - x1 - x2 and

McGrew, et al. Expires December 31, 2015 [Page 7]

Internet-Draft Fundamental ECC June 2015

 y3 = (x1-x3)*(y2-y1)/(x2-x1) - y1 when P is not equal to Q and
 x1 is not equal to x2.

 (x3,y3) = (@,@) when P is equal to Q and y1 is equal to 0.

 x3 = ((3*x1^2 + a)/(2*y1))^2 - 2*x1 and
 y3 = (x1-x3)*(3*x1^2 + a)/(2*y1) - y1 if P is equal to Q and y1 is
 not equal to 0.

 In the above equations, a, x1, x2, x3, y1, y2, and y3 are elements of
 the field Fp; thus, computation of x3 and y3 in practice must reduce
 the right-hand-side modulo p. Pseudocode for the group operation is
 provided in Appendix F.1.

 The representation of elliptic curve points as a pair of integers in
 Zp is known as the affine coordinate representation. This
 representation is suitable as an external data representation for
 communicating or storing group elements, though the point at infinity
 must be treated as a special case.

 Some pairs of integers are not valid elliptic curve points. A valid
 pair will satisfy the curve equation, while an invalid pair will not.

3.1. Homogeneous Coordinates

 An alternative way to implement the group operation is to use
 homogeneous coordinates [K1987] (see also [KMOV1991]). This method
 is typically more efficient because it does not require a modular
 inversion operation.

 An elliptic curve point (x,y) (other than the point at infinity
 (@,@)) is equivalent to a point (X,Y,Z) in homogeneous coordinates
 whenever x=X/Z mod p and y=Y/Z mod p.

 Let P1=(X1,Y1,Z1) and P2=(X2,Y2,Z2) be points on an elliptic curve,
 and suppose that the points P1 and P2 are not equal to (@,@), P1 is
 not equal to P2, and P1 is not equal to P2^-1. Then the product
 P3=(X3,Y3,Z3) = P1 * P2 is given by

 X3 = v * (Z2 * (Z1 * u^2 - 2 * X1 * v^2) - v^3) mod p

 Y3 = Z2 * (3 * X1 * u * v^2 - Y1 * v^3 - Z1 * u^3) + u * v^3 mod p

 Z3 = v^3 * Z1 * Z2 mod p

 where u = Y2 * Z1 - Y1 * Z2 mod p and v = X2 * Z1 - X1 * Z2 mod p.

McGrew, et al. Expires December 31, 2015 [Page 8]

Internet-Draft Fundamental ECC June 2015

 When the points P1 and P2 are equal, then (X1/Z1, Y1/Z1) is equal to
 (X2/Z2, Y2/Z2), which is true if and only if u and v are both equal
 to zero.

 The product P3=(X3,Y3,Z3) = P1 * P1 is given by

 X3 = 2 * Y1 * Z1 * (w^2 - 8 * X1 * Y1^2 * Z1) mod p

 Y3 = 4 * Y1^2 * Z1 * (3 * w * X1 - 2 * Y1^2 * Z1) - w^3 mod p

 Z3 = 8 * (Y1 * Z1)^3 mod p

 where w = 3 * X1^2 + a * Z1^2 mod p. In the above equations, a, u,
 v, w, X1, X2, X3, Y1, Y2, Y3, Z1, Z2, and Z3 are integers in the set
 Fp. Pseudocode for the group operation in homogeneous coordinates is
 provided in Appendix F.2.

 When converting from affine coordinates to homogeneous coordinates,
 it is convenient to set Z to 1. When converting from homogeneous
 coordinates to affine coordinates, it is necessary to perform a
 modular inverse to find 1/Z mod p.

3.2. Other Coordinates

 Some other coordinate systems have been described; several are
 documented in [CC1986], including Jacobi coordinates.

3.3. ECC Parameters

 In cryptographic contexts, an elliptic curve parameter set consists
 of a cyclic subgroup of an elliptic curve together with a preferred
 generator of that subgroup. When working over a prime order finite
 field with characteristic greater than three, an elliptic curve group
 is completely specified by the following parameters:

 The prime number p that indicates the order of the field Fp.

 The value a used in the curve equation.

 The value b used in the curve equation.

 The generator g of the subgroup.

 The order n of the subgroup generated by g.

 An example of an ECC parameter set is provided in Appendix D.

 Parameter generation is out of scope for this note.

McGrew, et al. Expires December 31, 2015 [Page 9]

Internet-Draft Fundamental ECC June 2015

 Each elliptic curve point is associated with a particular parameter
 set. The elliptic curve group operation is only defined between two
 points in the same group. It is an error to apply the group
 operation to two elements that are from different groups, or to apply
 the group operation to a pair of coordinates that is not a valid
 point. (A pair (x,y) of coordinates in Fp is a valid point only when
 it satisfies the curve equation.) See Section 10.3 for further
 information.

3.3.1. Discriminant

 For each elliptic curve group, the discriminant -16*(4*a^3 + 27*b^2)
 must be nonzero modulo p [S1986]; this requires that

 4*a^3 + 27*b^2 != 0 mod p.

3.3.2. Security

 Security is highly dependent on the choice of these parameters. This
 section gives normative guidance on acceptable choices. See also
 Section 10 for informative guidance.

 The order of the group generated by g MUST be divisible by a large
 prime, in order to preclude easy solutions of the discrete logarithm
 problem [K1987].

 With some parameter choices, the discrete log problem is
 significantly easier to solve. This includes parameter sets in which
 b = 0 and p = 3 (mod 4), and parameter sets in which a = 0 and
 p = 2 (mod 3) [MOV1993]. These parameter choices are inferior for
 cryptographic purposes and SHOULD NOT be used.

4. Elliptic Curve Diffie-Hellman (ECDH)

 The Diffie-Hellman (DH) key exchange protocol [DH1976] allows two
 parties communicating over an insecure channel to agree on a secret
 key. It was originally defined in terms of operations in the
 multiplicative group of a field with a large prime characteristic.
 Massey [M1983] observed that it can be easily generalized so that it
 is defined in terms of an arbitrary cyclic group. Miller [M1985] and
 Koblitz [K1987] analyzed the DH protocol over an elliptic curve
 group. We describe DH following the former reference.

 Let G be a group, and g be a generator for that group, and let t
 denote the order of G. The DH protocol runs as follows. Party A
 chooses an exponent j between 1 and t-1, inclusive, uniformly at
 random, computes g^j, and sends that element to B. Party B chooses
 an exponent k between 1 and t-1, inclusive, uniformly at random,

McGrew, et al. Expires December 31, 2015 [Page 10]

Internet-Draft Fundamental ECC June 2015

 computes g^k, and sends that element to A. Each party can compute
 g^(j*k); party A computes (g^k)^j, and party B computes (g^j)^k.

 See Appendix B regarding generation of random integers.

4.1. Data Types

 Each run of the ECDH protocol is associated with a particular
 parameter set (as defined in Section 3.3), and the public keys g^j
 and g^k and the shared secret g^(j*k) are elements of the cyclic
 subgroup associated with the parameter set.

 An ECDH private key z is an integer in Zt, where t is the order of
 the subgroup.

4.2. Compact Representation

 As described in the final paragraph of [M1985], the x-coordinate of
 the shared secret value g^(j*k) is a suitable representative for the
 entire point whenever exponentiation is used as a one-way function.
 In the ECDH key exchange protocol, after the element g^(j*k) has been
 computed, the x-coordinate of that value can be used as the shared
 secret. We call this compact output.

 Following [M1985] again, when compact output is used in ECDH, only
 the x-coordinate of an elliptic curve point needs to be transmitted,
 instead of both coordinates as in the typical affine coordinate
 representation. We call this the compact representation. Its
 mathematical background is explained in Appendix C.

 ECDH can be used with or without compact output. Both parties in a
 particular run of the ECDH protocol MUST use the same method. ECDH
 can be used with or without compact representation. If compact
 representation is used in a particular run of the ECDH protocol, then
 compact output MUST be used as well.

5. Elliptic Curve ElGamal Signatures

5.1. Background

 The ElGamal signature algorithm was introduced in 1984 [E1984a]
 [E1984b] [E1985]. It is based on the discrete logarithm problem, and
 was originally defined for the multiplicative group of the integers
 modulo a large prime number. It is straightforward to extend it to
 use other finite groups, such as the multiplicative group of the
 finite field GF(2^w) [AMV1990] or an elliptic curve group [A1992].

McGrew, et al. Expires December 31, 2015 [Page 11]

Internet-Draft Fundamental ECC June 2015

 An ElGamal signature consists of a pair of components. There are
 many possible generalizations of ElGamal signature methods that have
 been obtained by different rearrangements of the equation for the
 second component; see [HMP1994], [HP1994], [NR1994], [A1992], and
 [AMV1990]. These generalizations are independent of the mathematical
 group used, and have been described for the multiplicative group
 modulo a prime number, the multiplicative group of GF(2^w), and
 elliptic curve groups [HMP1994] [NR1994] [AMV1990] [A1992].

 The Digital Signature Algorithm (DSA) [FIPS186] is an important
 ElGamal signature variant.

5.2. Hash Functions

 ElGamal signatures must use a collision-resistant hash function, so
 that it can sign messages of arbitrary length and can avoid
 existential forgery attacks; see Section 10.4. (This is true for all
 ElGamal variants [HMP1994].) We denote the hash function as h().
 Its input is a bit string of arbitrary length, and its output is a
 non-negative integer.

 Let H() denote a hash function whose output is a fixed-length bit
 string. To use H in an ElGamal signature method, we define the
 mapping between that output and the non-negative integers; this
 realizes the function h() described above. Given a bit string m, the
 function h(m) is computed as follows:

 1. H(m) is evaluated; the result is a fixed-length bit string.

 2. Convert the resulting bit string to an integer i by treating its
 leftmost (initial) bit as the most significant bit of i, and
 treating its rightmost (final) bit as the least significant bit
 of i.

5.3. KT-IV Signatures

 Koyama and Tsuruoka described a signature method based on Elliptic
 Curve ElGamal, in which the first signature component is the
 x-coordinate of an elliptic curve point reduced modulo q [KT1994].
 In this section, we recall that method, which we refer to as KT-IV.

 The algorithm uses an elliptic curve group, as described in
 Section 3.3, with prime field order p and curve equation parameters a
 and b. We denote the generator as alpha, and the order of the
 generator as q. We follow [FIPS186] in checking for exceptional
 cases.

McGrew, et al. Expires December 31, 2015 [Page 12]

Internet-Draft Fundamental ECC June 2015

5.3.1. Keypair Generation

 The private key z is an integer between 1 and q-1, inclusive,
 generated uniformly at random. (See Appendix B regarding random
 integers.) The public key is the group element
 Y = alpha^z. Each public key is associated with a particular
 parameter set as per Section 3.3.

5.3.2. Signature Creation

 To compute a KT-IV signature for a message m using the private key z:

 1. Choose an integer k uniformly at random from the set of all
 integers between 1 and q-1, inclusive. (See Appendix B regarding
 random integers.)

 2. Calculate R = (r_x, r_y) = alpha^k.

 3. Calculate s1 = r_x mod q.

 4. Check if h(m) + z * s1 = 0 mod q; if so, a new value of k MUST be
 generated and the signature MUST be recalculated. As an option,
 one MAY check if s1 = 0; if so, a new value of k SHOULD be
 generated and the signature SHOULD be recalculated. (It is
 extremely unlikely that s1 = 0 or h(m) + z * s1 = 0 mod q if
 signatures are generated properly.)

 5. Calculate s2 = k/(h(m) + z*s1) mod q.

 The signature is the ordered pair (s1, s2). Both signature
 components are non-negative integers.

5.3.3. Signature Verification

 Given the message m, the generator g, the group order q, the public
 key Y, and the signature (s1, s2), verification is as follows:

 1. Check to see that 0 < s1 < q and 0 < s2 < q; if either condition
 is violated, the signature SHALL be rejected.

 2. Compute the non-negative integers u1 and u2, where

 u1 = h(m) * s2 mod q, and

 u2 = s1 * s2 mod q.

 3. Compute the elliptic curve point R’ = alpha^u1 * Y^u2.

McGrew, et al. Expires December 31, 2015 [Page 13]

Internet-Draft Fundamental ECC June 2015

 4. If the x-coordinate of R’ mod q is equal to s1, then the
 signature and message pass the verification; otherwise, they
 fail.

5.4. KT-I Signatures

 Horster, Michels, and Petersen categorized many different ElGamal
 signature methods, demonstrated their equivalence, and showed how to
 convert signatures of one type to another type [HMP1994]. In their
 terminology, the signature method of Section 5.3 and [KT1994] is a
 Type IV method, which is why it is denoted as KT-IV.

 A Type I KT signature method has a second component that is computed
 in the same manner as that of the Digital Signature Algorithm. In
 this section, we describe this method, which we refer to as KT-I.

5.4.1. Keypair Generation

 Keypairs and keypair generation are exactly as in Section 5.3.1.

5.4.2. Signature Creation

 To compute a KT-I signature for a message m using the private key z:

 1. Choose an integer k uniformly at random from the set of all
 integers between 1 and q-1, inclusive. (See Appendix B regarding
 random integers.)

 2. Calculate R = (r_x, r_y) = alpha^k.

 3. Calculate s1 = r_x mod q.

 4. Calculate s2 = (h(m) + z*s1)/k mod q.

 5. As an option, one MAY check if s1 = 0 or s2 = 0. If either
 s1 = 0 or s2 = 0, a new value of k SHOULD be generated and the
 signature SHOULD be recalculated. (It is extremely unlikely that
 s1 = 0 or s2 = 0 if signatures are generated properly.)

 The signature is the ordered pair (s1, s2). Both signature
 components are non-negative integers.

5.4.3. Signature Verification

 Given the message m, the public key Y, and the signature (s1, s2),
 verification is as follows:

McGrew, et al. Expires December 31, 2015 [Page 14]

Internet-Draft Fundamental ECC June 2015

 1. Check to see that 0 < s1 < q and 0 < s2 < q; if either condition
 is violated, the signature SHALL be rejected.

 2. Compute s2_inv = 1/s2 mod q.

 3. Compute the non-negative integers u1 and u2, where

 u1 = h(m) * s2_inv mod q, and

 u2 = s1 * s2_inv mod q.

 4. Compute the elliptic curve point R’ = alpha^u1 * Y^u2.

 5. If the x-coordinate of R’ mod q is equal to s1, then the
 signature and message pass the verification; otherwise, they
 fail.

5.5. Converting KT-IV Signatures to KT-I Signatures

 A KT-IV signature for a message m and a public key Y can easily be
 converted into a KT-I signature for the same message and public key.
 If (s1, s2) is a KT-IV signature for a message m, then
 (s1, 1/s2 mod q) is a KT-I signature for the same message [HMP1994].

 The conversion operation uses only public information, and it can be
 performed by the creator of the pre-conversion KT-IV signature, the
 verifier of the post-conversion KT-I signature, or by any other
 entity.

 An implementation MAY use this method to compute KT-I signatures.

5.6. Rationale

 This subsection is not normative for this specification and is
 provided only as background information.

 [HMP1994] presents many generalizations of ElGamal signatures.
 Equation (5) of that reference shows the general signature equation

 A = x_A * B + k * C (mod q)

 where x_A is the private key, k is the secret value, and A, B, and C
 are determined by the Type of the equation, as shown in Table 1 of
 [HMP1994]. DSA [FIPS186] is an EG-I.1 signature method (as is KT-I),
 with A = m, B = -r, and C = s. (Here we use the notation of
 [HMP1994] in which the first signature component is r and the second
 signature component is s; in KT-I and KT-IV these components are

McGrew, et al. Expires December 31, 2015 [Page 15]

Internet-Draft Fundamental ECC June 2015

 denoted as s1 and s2, respectively. The private key x_A corresponds
 to the private key z.) Its signature equation is

 m = -r * z + s * k (mod q).

 The signature method of [KT1994] and Section 5.3 is an EG-IV.1
 method, with A = m * s, B = -r * s, C = 1. Its signature equation is

 m * s = -r * s * z + k (mod q)

 The functions f and g mentioned in Table 1 of [HMP1994] are merely
 multiplication, as described under the heading "Fifth
 generalization".

 In the above equations, we rely on the implicit conversion of the
 message m from a bit string to an integer. No hash function is shown
 in these equations, but, as described in Section 10.4, a hash
 function should be applied to the message prior to signing in order
 to prevent existential forgery attacks.

 Nyberg and Rueppel [NR1994] studied many different ElGamal signature
 methods and defined "strong equivalence" as follows:

 Two signature methods are called strongly equivalent if the
 signature of the first scheme can be transformed efficiently into
 signatures of the second scheme and vice versa, without knowledge
 of the private key.

 KT-I and KT-IV signatures are obviously strongly equivalent.

 A valid signature with s2=0 leaks the secret key, since in that case
 z = -h(m) / s1 mod q. We follow [FIPS186] in checking for this
 exceptional case and the case that s1=0. The s2=0 check was
 suggested by Rivest [R1992] and is discussed in [BS1992].

 [KT1994] uses "a positive integer q’ that does not exceed q" when
 computing the signature component s1 from the x-coordinate r_x of the
 elliptic curve point R = (r_x, r_y). The value q’ is also used
 during signature validation when comparing the x-coordinate of a
 computed elliptic curve point to the value to s1. In this note, we
 use the simplifying convention that q’ = q.

6. Converting between Integers and Octet Strings

 A method for the conversion between integers and octet strings is
 specified in this section, following the established conventions of
 public key cryptography [R1993]. This method allows integers to be
 represented as octet strings that are suitable for transmission or

McGrew, et al. Expires December 31, 2015 [Page 16]

Internet-Draft Fundamental ECC June 2015

 storage. This method SHOULD be used when representing an elliptic
 curve point or an elliptic curve coordinate as they are defined in
 this note.

6.1. Octet-String-to-Integer Conversion

 The octet string S shall be converted to an integer x as follows.
 Let S1, ..., Sk be the octets of S from first to last. Then the
 integer x shall satisfy

 k
 x = SUM 2^(8(k-i)) Si .
 i = 1

 In other words, the first octet of S has the most significance in the
 integer and the last octet of S has the least significance.

 Note: the integer x satisfies 0 <= x < 2^(8*k).

6.2. Integer-to-Octet-String Conversion

 %%% The integer x shall be converted to an octet string S of length k
 as follows. The string S shall satisfy

 k
 y = SUM 2^(8(k-i)) Si ,
 i = 1

 where S1, ..., Sk are the octets of S from first to last. Note that
 the conversion fails if y >= 2^(8*k).

 In other words, the first octet of S has the most significance in the
 integer, and the last octet of S has the least significance.

7. Interoperability

 The algorithms in this note can be used to interoperate with some
 other ECC specifications. This section provides details for each
 algorithm.

7.1. ECDH

 Section 4 can be used with the Internet Key Exchange (IKE) versions
 one [RFC2409] or two [RFC5996]. These algorithms are compatible with
 the ECP groups defined by [RFC5903], [RFC5114], [RFC2409], and
 [RFC2412]. The group definition in this protocol uses an affine
 coordinate representation of the public key. [RFC5903] uses the
 compact output of Section 4.2, while [RFC4753] (which was obsoleted

McGrew, et al. Expires December 31, 2015 [Page 17]

Internet-Draft Fundamental ECC June 2015

 by RFC 5903) does not. Neither of those RFCs use compact
 representation. Note that some groups indicate that the curve
 parameter "a" is negative; these values are to be interpreted modulo
 the order of the field. For example, a parameter of a = -3 is equal
 to p - 3, where p is the order of the field. The test cases in
 Section 8 of [RFC5903] can be used to test an implementation; these
 cases use the multiplicative notation, as does this note. The KEi
 and KEr payloads are equal to g^j and g^k, respectively, with 64 bits
 of encoding data prepended to them.

 The algorithms in Section 4 can be used to interoperate with the IEEE
 [P1363] and ANSI [X9.62] standards for ECDH based on fields of
 characteristic greater than three. IEEE P1363 ECDH can be used in a
 manner that will interoperate with this note, with the following
 options and parameter choices from that specification:

 prime curves with a cofactor of 1,

 the ECSVDP-DH (Elliptic Curve Secret Value Derivation Primitive,
 Diffie-Hellman version),

 the Key Derivation Function (KDF) must be the "identity" function
 (equivalently, the KDF step should be omitted and the shared
 secret value should be output directly).

7.2. KT-I and ECDSA

 The Digital Signature Algorithm (DSA) is based on the discrete
 logarithm problem over the multiplicative subgroup of the finite
 field with large prime order [DSA1991] [FIPS186]. The Elliptic Curve
 Digital Signature Algorithm (ECDSA) [P1363] [X9.62] is an elliptic
 curve version of DSA.

 %%% For many hash functions KT-I is mathematically and functionally
 equivalent to ECDSA, and can interoperate with the IEEE [P1363] and
 ANSI [X9.62] standards for Elliptic Curve DSA (ECDSA) based on fields
 of characteristic greater than three. KT-I signatures can be
 verified using the ECDSA verification algorithm, and ECDSA signatures
 can be verified using the KT-I verification algorithm (refer to
 Section 10.4).

8. Validating an Implementation

 It is essential to validate the implementation of a cryptographic
 algorithm. This section outlines tests that should be performed on
 the algorithms defined in this note.

McGrew, et al. Expires December 31, 2015 [Page 18]

Internet-Draft Fundamental ECC June 2015

 A known answer test, or KAT, uses a fixed set of inputs to test an
 algorithm; the output of the algorithm is compared with the expected
 output, which is also a fixed value. KATs for ECDH and KT-I are set
 out in the following subsections.

 A consistency test generates inputs for one algorithm being tested
 using a second algorithm that is also being tested, then checks the
 output of the first algorithm. A signature creation algorithm can be
 tested for consistency against a signature verification algorithm.
 Implementations of KT-I should be tested in this way. Their
 signature generation processes are non-deterministic, and thus cannot
 be tested using a KAT. Signature verification algorithms, on the
 other hand, are deterministic and should be tested via a KAT. This
 combination of tests provides coverage for all of the operations,
 including keypair generation. Consistency testing should also be
 applied to ECDH.

8.1. ECDH

 An ECDH implementation can be validated using the known answer test
 cases from [RFC5903] or [RFC5114]. The correspondence between the
 notation in RFC 5903 and the notation in this note is summarized in
 the following table. (Refer to Sections 3.3 and 4; the generator g
 is expressed in affine coordinate representation as (gx, gy)).

 +------------------------+--+
 | ECDH | RFC 5903 |
 +------------------------+--+
 | order p of field Fp | p |
 | curve coefficient a | -3 |
 | curve coefficient b | b |
 | generator g | g=(gx, gy) |
 | private keys j and k | i and r |
 | public keys g^j, g^k | g^i = (gix, giy) and g^r = (grx, gry) |
 +------------------------+--+

 The correspondence between the notation in RFC 5114 and the notation
 in this note is summarized in the following table.

McGrew, et al. Expires December 31, 2015 [Page 19]

Internet-Draft Fundamental ECC June 2015

 +--------------------------+-----------------------------+
 | ECDH | RFC 5114 |
 +--------------------------+-----------------------------+
 | order p of field Fp | p |
 | curve coefficient a | a |
 | curve coefficient b | b |
 | generator g | g=(gx, gy) |
 | group order n | n |
 | private keys j and k | dA and dB |
 | public keys g^j, g^k | g^(dA) = (x_qA, y_qA) and |
 | | g^(dB) = (x_qB, y_qB) |
 | shared secret g^(j*k) | g^(dA*dB) = (x_Z, y_Z) |
 +--------------------------+-----------------------------+

8.2. KT-I

 A KT-I implementation can be validated using the known answer test
 cases from [RFC4754]. The correspondence between the notation in
 that RFC and the notation in this note is summarized in the following
 table.

 +-----------------------+-------------------+
 | KT-I | RFC 4754 |
 +-----------------------+-------------------+
 | order p of field Fp | p |
 | curve coefficient a | -3 |
 | curve coefficient b | b |
 | generator alpha | g |
 | group order q | q |
 | private key z | w |
 | public key Y | g^w = (gwx,gwy) |
 | random k | ephem priv k |
 | s1 | r |
 | s2 | s |
 | s2_inv | sinv |
 | u1 | u = h*sinv mod q |
 | u2 | v = r*sinv mod q |
 +-----------------------+-------------------+

9. Intellectual Property

 Concerns about intellectual property have slowed the adoption of ECC
 because a number of optimizations and specialized algorithms have
 been patented in recent years.

 All of the normative references for ECDH (as defined in Section 4)
 were published during or before 1989, and those for KT-I were

McGrew, et al. Expires December 31, 2015 [Page 20]

Internet-Draft Fundamental ECC June 2015

 published during or before May 1994. All of the normative text for
 these algorithms is based solely on their respective references.

9.1. Disclaimer

 This document is not intended as legal advice. Readers are advised
 to consult their own legal advisers if they would like a legal
 interpretation of their rights.

 The IETF policies and processes regarding intellectual property and
 patents are outlined in [RFC3979] and [RFC4879] and at
 https://datatracker.ietf.org/ipr/about/.

10. Security Considerations

 The security level of an elliptic curve cryptosystem is determined by
 the cryptanalytic algorithm that is the least expensive for an
 attacker to implement. There are several algorithms to consider.

 The Pohlig-Hellman method is a divide-and-conquer technique [PH1978].
 If the group order n can be factored as

 n = q1 * q2 * ... * qz,

 then the discrete log problem over the group can be solved by
 independently solving a discrete log problem in groups of order q1,
 q2, ..., qz, then combining the results using the Chinese remainder
 theorem. The overall computational cost is dominated by that of the
 discrete log problem in the subgroup with the largest order.

 Shanks’ algorithm [K1981v3] computes a discrete logarithm in a group
 of order n using O(sqrt(n)) operations and O(sqrt(n)) storage. The
 Pollard rho algorithm [P1978] computes a discrete logarithm in a
 group of order n using O(sqrt(n)) operations, with a negligible
 amount of storage, and can be efficiently parallelized [VW1994].

 The Pollard lambda algorithm [P1978] can solve the discrete logarithm
 problem using O(sqrt(w)) operations and O(log(w)) storage, when the
 exponent is known to lie in an interval of width w.

 The algorithms described above work in any group. There are
 specialized algorithms that specifically target elliptic curve
 groups. There are no known subexponential algorithms against general
 elliptic curve groups, though there are methods that target certain
 special elliptic curve groups; see [MOV1993] and [FR1994].

McGrew, et al. Expires December 31, 2015 [Page 21]

Internet-Draft Fundamental ECC June 2015

10.1. Subgroups

 A group consisting of a nonempty set of elements S with associated
 group operation * is a subgroup of the group with the set of elements
 G, if the latter group uses the same group operation and S is a
 subset of G. For each elliptic curve equation, there is an elliptic
 curve group whose group order is equal to the order of the elliptic
 curve; that is, there is a group that contains every point on the
 curve.

 The order m of the elliptic curve is divisible by the order n of the
 group associated with the generator; that is, for each elliptic curve
 group, m = n * c for some number c. The number c is called the
 "cofactor" [P1363]. Each ECC parameter set as in Section 3.3 is
 associated with a particular cofactor.

 It is possible and desirable to use a cofactor equal to 1.

10.2. Diffie-Hellman

 Note that the key exchange protocol as defined in Section 4 does not
 protect against active attacks; Party A must use some method to
 ensure that (g^k) originated with the intended communicant B, rather
 than an attacker, and Party B must do the same with (g^j).

 It is not sufficient to authenticate the shared secret g^(j*k), since
 this leaves the protocol open to attacks that manipulate the public
 keys. Instead, the values of the public keys g^x and g^y that are
 exchanged should be directly authenticated. This is the strategy
 used by protocols that build on Diffie-Hellman and that use end-
 entity authentication to protect against active attacks, such as
 OAKLEY [RFC2412] and the Internet Key Exchange [RFC2409] [RFC4306]
 [RFC5996].

 When the cofactor of a group is not equal to 1, there are a number of
 attacks that are possible against ECDH. See [VW1996], [AV1996], and
 [LL1997].

10.3. Group Representation and Security

 The elliptic curve group operation does not explicitly incorporate
 the parameter b from the curve equation. This opens the possibility
 that a malicious attacker could learn information about an ECDH
 private key by submitting a bogus public key [BMM2000]. An attacker
 can craft an elliptic curve group G’ that has identical parameters to
 a group G that is being used in an ECDH protocol, except that b is
 different. An attacker can submit a point on G’ into a run of the
 ECDH protocol that is using group G, and gain information from the

McGrew, et al. Expires December 31, 2015 [Page 22]

Internet-Draft Fundamental ECC June 2015

 fact that the group operations using the private key of the device
 under attack are effectively taking place in G’ instead of G.

 This attack can gain useful information about an ECDH private key
 that is associated with a static public key, i.e., a public key that
 is used in more than one run of the protocol. However, it does not
 gain any useful information against ephemeral keys.

 This sort of attack is thwarted if an ECDH implementation does not
 assume that each pair of coordinates in Zp is actually a point on the
 appropriate elliptic curve.

 These considerations also apply when ECDH is used with compact
 representation (see Appendix C).

10.4. Signatures

 Elliptic curve parameters should only be used if they come from a
 trusted source; otherwise, some attacks are possible [AV1996]
 [V1996].

 If no hash function is used in an ElGamal signature system, then the
 system is vulnerable to existential forgeries, in which an attacker
 who does not know a private key can generate valid signatures for the
 associated public key, but cannot generate a signature for a message
 of its own choosing. (See [E1985] for instance.) The use of a
 collision-resistant hash function eliminates this vulnerability.

 In principle, any collision-resistant hash function is suitable for
 use in KT signatures. To facilitate interoperability, we recognize
 the following hashes as suitable for use as the function H defined in
 Section 5.2:

 SHA-256, which has a 256-bit output.

 SHA-384, which has a 384-bit output.

 SHA-512, which has a 512-bit output.

 All of these hash functions are defined in [FIPS180-2].

 The number of bits in the output of the hash used in KT signatures
 should be equal or close to the number of bits needed to represent
 the group order.

McGrew, et al. Expires December 31, 2015 [Page 23]

Internet-Draft Fundamental ECC June 2015

11. Acknowledgements

 This update to RFC 6090 includes errata that were reported against
 that RFC. The authors gratefully acknowledge Annie Yousar and Watson
 Ladd for those reports.

 The authors also expresses their thanks to the originators of
 elliptic curve cryptography, whose work made this note possible, and
 all of the reviewers, who provided valuable constructive feedback.
 Thanks for RFC 6090 are especially due to Howard Pinder, Andrey
 Jivsov, Alfred Hoenes (who contributed the algorithms in Appendix F),
 Dan Harkins, and Tina Tsou.

12. References

12.1. Normative References

 [AMV1990] Agnew, G., Mullin, R., and S. Vanstone, "Improved Digital
 Signature Scheme based on Discrete Exponentiation",
 Electronics Letters Vol. 26, No. 14, July, 1990.

 [BC1989] Bender, A. and G. Castagnoli, "On the Implementation of
 Elliptic Curve Cryptosystems", Advances in Cryptology -
 CRYPTO ’89 Proceedings, Springer Lecture Notes in Computer
 Science (LNCS), volume 435, 1989.

 [CC1986] Chudnovsky, D. and G. Chudnovsky, "Sequences of numbers
 generated by addition in formal groups and new primality
 and factorization tests", Advances in Applied Mathematics,
 Volume 7, Issue 4, December 1986.

 [D1966] Deskins, W., "Abstract Algebra", MacMillan Company New
 York, 1966.

 [DH1976] Diffie, W. and M. Hellman, "New Directions in
 Cryptography", IEEE Transactions in Information Theory IT-
 22, pp. 644-654, 1976.

 [FR1994] Frey, G. and H. Ruck, "A remark concerning m-divisibility
 and the discrete logarithm in the divisor class group of
 curves.", Mathematics of Computation Vol. 62, No. 206, pp.
 865-874, 1994.

 [HMP1994] Horster, P., Michels, M., and H. Petersen, "Meta-ElGamal
 signature schemes", University of Technology Chemnitz-
 Zwickau Department of Computer Science, Technical Report
 TR-94-5, May 1994.

McGrew, et al. Expires December 31, 2015 [Page 24]

Internet-Draft Fundamental ECC June 2015

 [K1981v2] Knuth, D., "The Art of Computer Programming, Vol. 2:
 Seminumerical Algorithms", Addison Wesley , 1981.

 [K1987] Koblitz, N., "Elliptic Curve Cryptosystems", Mathematics
 of Computation, Vol. 48, 1987, pp. 203-209, 1987.

 [KT1994] Koyama, K. and Y. Tsuruoka, "Digital signature system
 based on elliptic curve and signer device and verifier
 device for said system", Japanese Unexamined Patent
 Application Publication H6-43809, February 18, 1994.

 [M1983] Massey, J., "Logarithms in finite cyclic groups -
 cryptographic issues", Proceedings of the 4th Symposium on
 Information Theory, 1983.

 [M1985] Miller, V., "Use of elliptic curves in cryptography",
 Advances in Cryptology - CRYPTO ’85 Proceedings, Springer
 Lecture Notes in Computer Science (LNCS), volume 218,
 1985.

 [MOV1993] Menezes, A., Vanstone, S., and T. Okamoto, "Reducing
 Elliptic Curve Logarithms to Logarithms in a Finite
 Field", IEEE Transactions on Information Theory Vol. 39,
 No. 5, pp. 1639-1646, September, 1993.

 [R1993] RSA Laboratories, , "PKCS#1: RSA Encryption Standard",
 Technical Note version 1.5, 1993.

 [S1986] Silverman, J., "The Arithmetic of Elliptic Curves",
 Springer-Verlag, New York, 1986.

12.2. Informative References

 [A1992] Anderson, J., "Response to the proposed DSS",
 Communications of the ACM, v. 35, n. 7, p. 50-52, July
 1992.

 [AV1996] Anderson, R. and S. Vaudenay, "Minding Your P’s and Q’s",
 Advances in Cryptology - ASIACRYPT ’96 Proceedings,
 Springer Lecture Notes in Computer Science (LNCS), volume
 1163, 1996.

 [BMM2000] Biehl, I., Meyer, B., and V. Muller, "Differential fault
 analysis on elliptic curve cryptosystems", Advances in
 Cryptology - CRYPTO 2000 Proceedings, Springer Lecture
 Notes in Computer Science (LNCS), volume 1880, 2000.

McGrew, et al. Expires December 31, 2015 [Page 25]

Internet-Draft Fundamental ECC June 2015

 [BS1992] Branstad, D. and M. Smid, "Response to Comments on the
 NIST Proposed Digital Signature Standard", Advances in
 Cryptology - CRYPTO ’92 Proceedings, Springer Lecture
 Notes in Computer Science (LNCS), volume 740, August 1992.

 [DSA1991] U.S. National Institute of Standards and Technology, ,
 "DIGITAL SIGNATURE STANDARD", Federal Register, Vol. 56,
 August 1991.

 [E1984a] ElGamal, T., "Cryptography and logarithms over finite
 fields", Stanford University, UMI Order No. DA 8420519,
 1984.

 [E1984b] ElGamal, T., "Cryptography and logarithms over finite
 fields", Advances in Cryptology - CRYPTO ’84 Proceedings,
 Springer Lecture Notes in Computer Science (LNCS), volume
 196, 1984.

 [E1985] ElGamal, T., "A public key cryptosystem and a signature
 scheme based on discrete logarithms", IEEE Transactions on
 Information Theory, Vol. 30, No. 4, pp. 469-472, 1985.

 [FIPS180-2]
 U.S. National Institute of Standards and Technology, ,
 "SECURE HASH STANDARD", Federal Information Processing
 Standard (FIPS) 180-2, August 2002.

 [FIPS186] U.S. National Institute of Standards and Technology, ,
 "DIGITAL SIGNATURE STANDARD", Federal Information
 Processing Standard FIPS-186, May 1994.

 [HP1994] Horster, P. and H. Petersen, "Verallgemeinerte ElGamal-
 Signaturen", Proceedings der Fachtagung SIS ’94, Verlag
 der Fachvereine, Zurich, 1994.

 [K1981v3] Knuth, D., "The Art of Computer Programming, Vol. 3:
 Sorting and Searching", Addison Wesley, 1981.

 [KMOV1991]
 Koyama, K., Maurer, U., Vanstone, S., and T. Okamoto, "New
 Public-Key Schemes Based on Elliptic Curves over the Ring
 Zn", Advances in Cryptology - CRYPTO ’91 Proceedings,
 Springer Lecture Notes in Computer Science (LNCS), volume
 576, 1991.

 [L1969] Lehmer, D., "Computer technology applied to the theory of
 numbers", M.A.A. Studies in Mathematics, 180-2, 1969.

McGrew, et al. Expires December 31, 2015 [Page 26]

Internet-Draft Fundamental ECC June 2015

 [LL1997] Lim, C. and P. Lee, "A Key Recovery Attack on Discrete
 Log-based Schemes Using a Prime Order Subgroup", Advances
 in Cryptology - CRYPTO ’97 Proceedings, Springer Lecture
 Notes in Computer Science (LNCS), volume 1294, 1997.

 [NR1994] Nyberg, K. and R. Rueppel, "Message Recovery for Signature
 Schemes Based on the Discrete Logarithm Problem", Advances
 in Cryptology - EUROCRYPT ’94 Proceedings, Springer
 Lecture Notes in Computer Science (LNCS), volume 950, May
 1994.

 [P1363] "Standard Specifications for Public Key Cryptography",
 Institute of Electric and Electronic Engineers (IEEE),
 P1363, 2000.

 [P1978] Pollard, J., "Monte Carlo methods for index computation
 mod p", Mathematics of Computation, Vol. 32, 1978.

 [PH1978] Pohlig, S. and M. Hellman, "An Improved Algorithm for
 Computing Logarithms over GF(p) and its Cryptographic
 Significance", IEEE Transactions on Information Theory,
 Vol. 24, pp. 106-110, 1978.

 [R1988] Rose, H., "A Course in Number Theory", Oxford University
 Press, 1988.

 [R1992] Rivest, R., "Response to the proposed DSS", Communications
 of the ACM, v. 35, n. 7, p. 41-47, July 1992.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
 (IKE)", RFC 2409, November 1998.

 [RFC2412] Orman, H., "The OAKLEY Key Determination Protocol", RFC
 2412, November 1998.

 [RFC3979] Bradner, S., "Intellectual Property Rights in IETF
 Technology", BCP 79, RFC 3979, March 2005.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC
 4306, December 2005.

McGrew, et al. Expires December 31, 2015 [Page 27]

Internet-Draft Fundamental ECC June 2015

 [RFC4753] Fu, D. and J. Solinas, "ECP Groups For IKE and IKEv2", RFC
 4753, January 2007.

 [RFC4754] Fu, D. and J. Solinas, "IKE and IKEv2 Authentication Using
 the Elliptic Curve Digital Signature Algorithm (ECDSA)",
 RFC 4754, January 2007.

 [RFC4879] Narten, T., "Clarification of the Third Party Disclosure
 Procedure in RFC 3979", BCP 79, RFC 4879, April 2007.

 [RFC5114] Lepinski, M. and S. Kent, "Additional Diffie-Hellman
 Groups for Use with IETF Standards", RFC 5114, January
 2008.

 [RFC5903] Fu, D. and J. Solinas, "Elliptic Curve Groups modulo a
 Prime (ECP Groups) for IKE and IKEv2", RFC 5903, June
 2010.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC
 5996, September 2010.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

 [SuiteB] U. S. National Security Agency (NSA), , "NSA Suite B
 Cryptography", 2014,
 <http://www.nsa.gov/ia/programs/suiteb_cryptography/
 index.shtml>.

 [V1996] Vaudenay, S., "Hidden Collisions on DSS", Advances in
 Cryptology - CRYPTO ’96 Proceedings, Springer Lecture
 Notes in Computer Science (LNCS), volume 1109, 1996.

 [VW1994] van Oorschot, P. and M. Wiener, "Parallel Collision Search
 with Application to Hash Functions and Discrete
 Logarithms", Proceedings of the 2nd ACM Conference on
 Computer and communications security, pp. 210-218, 1994.

 [VW1996] van Oorschot, P. and M. Wiener, "On Diffie-Hellman key
 agreement with short exponents", Advances in Cryptology -
 EUROCRYPT ’96 Proceedings, Springer Lecture Notes in
 Computer Science (LNCS), volume 1070, 1996.

 [X9.62] "Public Key Cryptography for the Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", American National Standards Institute (ANSI)
 X9.62, 2005.

McGrew, et al. Expires December 31, 2015 [Page 28]

Internet-Draft Fundamental ECC June 2015

Appendix A. Key Words

 The definitions of these key words are quoted from [RFC2119] and are
 commonly used in Internet standards. They are reproduced in this
 note in order to avoid a normative reference from after 1994.

 1. MUST - This word, or the terms "REQUIRED" or "SHALL", means that
 the definition is an absolute requirement of the specification.

 2. MUST NOT - This phrase, or the phrase "SHALL NOT", means that the
 definition is an absolute prohibition of the specification.

 3. SHOULD - This word, or the adjective "RECOMMENDED", means that
 there may exist valid reasons in particular circumstances to
 ignore a particular item, but the full implications must be
 understood and carefully weighed before choosing a different
 course.

 4. SHOULD NOT - This phrase, or the phrase "NOT RECOMMENDED", means
 that there may exist valid reasons in particular circumstances
 when the particular behavior is acceptable or even useful, but
 the full implications should be understood and the case carefully
 weighed before implementing any behavior described with this
 label.

 5. MAY - This word, or the adjective "OPTIONAL", means that an item
 is truly optional. One vendor may choose to include the item
 because a particular marketplace requires it or because the
 vendor feels that it enhances the product while another vendor
 may omit the same item. An implementation which does not include
 a particular option MUST be prepared to interoperate with another
 implementation which does include the option, though perhaps with
 reduced functionality. In the same vein an implementation which
 does include a particular option MUST be prepared to interoperate
 with another implementation which does not include the option
 (except, of course, for the feature the option provides.)

Appendix B. Random Integer Generation

 It is easy to generate an integer uniformly at random between zero
 and (2^t)-1, inclusive, for some positive integer t. Generate a
 random bit string that contains exactly t bits, and then convert the
 bit string to a non-negative integer by treating the bits as the
 coefficients in a base-2 expansion of an integer.

 It is sometimes necessary to generate an integer r uniformly at
 random so that r satisfies a certain property P, for example, lying

McGrew, et al. Expires December 31, 2015 [Page 29]

Internet-Draft Fundamental ECC June 2015

 within a certain interval. A simple way to do this is with the
 rejection method:

 1. Generate a candidate number c uniformly at random from a set that
 includes all numbers that satisfy property P (plus some other
 numbers, preferably not too many)

 2. If c satisfies property P, then return c. Otherwise, return to
 Step 1.

 For example, to generate a number between 1 and n-1, inclusive,
 repeatedly generate integers between zero and (2^t)-1, inclusive,
 stopping at the first integer that falls within that interval.

 Recommendations on how to generate random bit strings are provided in
 [RFC4086].

Appendix C. Why Compact Representation Works

 In the affine representation, the x-coordinate of the point P^i does
 not depend on the y-coordinate of the point P, for any non-negative
 exponent i and any point P. This fact can be seen as follows. When
 given only the x-coordinate of a point P, it is not possible to
 determine exactly what the y-coordinate is, but the y value will be a
 solution to the curve equation

 y^2 = x^3 + a*x + b (mod p).

 There are at most two distinct solutions y = w and y = -w mod p, and
 the point P must be either Q=(x,w) or Q^-1=(x,-w). Thus P^n is equal
 to either Q^n or (Q^-1)^n = (Q^n)^-1. These values have the same
 x-coordinate. Thus, the x-coordinate of a point P^i can be computed
 from the x-coordinate of a point P by computing one of the possible
 values of the y coordinate of P, then computing the ith power of P,
 and then ignoring the y-coordinate of that result.

 In general, it is possible to compute a square root modulo p by using
 Shanks’ method [K1981v2]; simple methods exist for some values of p.
 When p = 3 (mod 4), the square roots of z mod p are w and -w mod p,
 where

 w = z ^ ((p+1)/4) (mod p);

 this observation is due to Lehmer [L1969]. When p satisfies this
 property, y can be computed from the curve equation, and either y = w
 or y = -w mod p, where

 w = (x^3 + a*x + b)^((p+1)/4) (mod p).

McGrew, et al. Expires December 31, 2015 [Page 30]

Internet-Draft Fundamental ECC June 2015

 Square roots modulo p only exist for a quadratic residue modulo p,
 [R1988]; if z is not a quadratic residue, then there is no number w
 such that w^2 = z (mod p). A simple way to verify that z is a
 quadratic residue after computing w is to verify that
 w * w = z (mod p). If this relation does not hold for the above
 equation, then the value x is not a valid x-coordinate for a valid
 elliptic curve point. This is an important consideration when ECDH
 is used with compact output; see Section 10.3.

 The primes used in the P-256, P-384, and P-521 curves described in
 [RFC5903] all have the property that p = 3 (mod 4).

Appendix D. Example ECC Parameter Set

 For concreteness, we recall an elliptic curve defined by Solinas and
 Fu in [RFC5903] and referred to as P-256, which is believed to
 provide a 128-bit security level. We use the notation of
 Section 3.3, and express the generator in the affine coordinate
 representation g=(gx,gy), where the values gx and gy are in Fp.

 p: FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF

 a: - 3

 b: 5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B

 n: FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551

 gx: 6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296

 gy: 4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5

 Note that p can also be expressed as

 p = 2^(256)-2^(224)+2^(192)+2^(96)-1.

Appendix E. Additive and Multiplicative Notation

 The early publications on elliptic curve cryptography used
 multiplicative notation, but most modern publications use additive
 notation. This section includes a table mapping between those two
 conventions. In this section, a and b are elements of an elliptic
 curve group, and N is an integer.

McGrew, et al. Expires December 31, 2015 [Page 31]

Internet-Draft Fundamental ECC June 2015

 +--------------------------+-------------------------+
 | Multiplicative Notation | Additive Notation |
 +--------------------------+-------------------------+
 | multiplication | addition |
 | a * b | a + b |
 | squaring | doubling |
 | a * a = a^2 | a + a = 2a |
 | exponentiation | scalar multiplication |
 | a^N = a * a * ... * a | Na = a + a + ... + a |
 | inverse | inverse |
 | a^-1 | -a |
 +--------------------------+-------------------------+

Appendix F. Algorithms

 This section contains a pseudocode description of the elliptic curve
 group operation. Text that follows the symbol "//" is to be
 interpreted as comments rather than instructions.

F.1. Affine Coordinates

 To an arbitrary pair of elliptic curve points P and Q specified by
 their affine coordinates P=(x1,y1) and Q=(x2,y2), the group operation
 assigns a third point R = P*Q with the coordinates (x3,y3). These
 coordinates are computed as follows:

 if P is (@,@),
 R = Q
 else if Q is (@,@),
 R = P
 else if P is not equal to Q and x1 is equal to x2,
 R = (@,@)
 else if P is not equal to Q and x1 is not equal to x2,
 x3 = ((y2-y1)/(x2-x1))^2 - x1 - x2 mod p and
 y3 = (x1-x3)*(y2-y1)/(x2-x1) - y1 mod p
 else if P is equal to Q and y1 is equal to 0,
 R = (@,@)
 else // P is equal to Q and y1 is not equal to 0
 x3 = ((3*x1^2 + a)/(2*y1))^2 - 2*x1 mod p and
 y3 = (x1-x3)*(3*x1^2 + a)/(2*y1) - y mod p.

 From the first and second case, it follows that the point at infinity
 is the neutral element of this operation, which is its own inverse.

 From the curve equation, it follows that for a given curve point P =
 (x,y) distinct from the point at infinity, (x,-y) also is a curve
 point, and from the third and the fifth case it follows that this is
 the inverse of P, P^-1.

McGrew, et al. Expires December 31, 2015 [Page 32]

Internet-Draft Fundamental ECC June 2015

 Note: The fifth and sixth case are known as "point squaring".

F.2. Homogeneous Coordinates

 An elliptic curve point (x,y) (other than the point at infinity
 (@,@)) is equivalent to a point (X,Y,Z) in homogeneous coordinates
 (with X, Y, and Z in Fp and not all three being zero at once)
 whenever x=X/Z and y=Y/Z. "Homogenous coordinates" means that two
 triples (X,Y,Z) and (X’,Y’,Z’) are regarded as "equal" (i.e.,
 representing the same point) if there is some nonzero s in Fp such
 that X’=s*X, Y’=s*Y, and Z’=s*Z. The point at infinity (@,@) is
 regarded as equivalent to the homogenous coordinates (0,1,0), i.e.,
 it can be represented by any triple (0,Y,0) with nonzero Y in Fp.

 Let P1=(X1,Y1,Z1) and P2=(X2,Y2,Z2) be points on the elliptic curve,
 and let u = Y2 * Z1 - Y1 * Z2 and v = X2 * Z1 - X1 * Z2.

 We observe that the points P1 and P2 are equal if and only if u and v
 are both equal to zero. Otherwise, if either P1 or P2 are equal to
 the point at infinity, v is zero and u is nonzero (but the converse
 implication does not hold).

 Then, the product P3=(X3,Y3,Z3) = P1 * P2 is given by:

 if P1 is the point at infinity,
 P3 = P2
 else if P2 is the point at infinity,
 P3 = P1

 %%%
 else if P1=-P2 as projective points
 P3 = (0,1,0)
 else if P1 does not equal P2
 X3 = v * (Z2 * (Z1 * u^2 - 2 * X1 * v^2) - v^3)
 Y3 = Z2 * (3 * X1 * u * v^2 - Y1 * v^3 - Z1 * u^3) + u * v^3
 Z3 = v^3 * Z1 * Z2
 else // P2 equals P1, P3 = P1 * P1
 w = 3 * X1^2 + a * Z1^2
 X3 = 2 * Y1 * Z1 * (w^2 - 8 * X1 * Y1^2 * Z1)
 Y3 = 4 * Y1^2 * Z1 * (3 * w * X1 - 2 * Y1^2 * Z1) - w^3
 Z3 = 8 * (Y1 * Z1)^3

 It thus turns out that the point at infinity is the identity element
 and for P1=(X,Y,Z) not equal to this point at infinity, P2=(X,-Y,Z)
 represents P1^-1.

McGrew, et al. Expires December 31, 2015 [Page 33]

Internet-Draft Fundamental ECC June 2015

Authors’ Addresses

 David A. McGrew
 Cisco Systems
 510 McCarthy Blvd.
 Milpitas, CA 95035
 USA

 Phone: (408) 525 8651
 Email: mcgrew@cisco.com
 URI: http://www.mindspring.com/˜dmcgrew/dam.htm

 Kevin M. Igoe
 National Security Agency
 Commercial Solutions Center
 United States of America

 Email: kmigoe@nsa.gov

 Margaret Salter
 National Security Agency
 9800 Savage Rd.
 Fort Meade, MD 20755-6709
 USA

 Email: misalte@nsa.gov

 Paul Hoffman
 VPN Consortium

 Email: paul.hoffman@vpnc.org

McGrew, et al. Expires December 31, 2015 [Page 34]

Crypto Forum Research Group D. McGrew
Internet-Draft M. Curcio
Intended status: Informational Cisco Systems
Expires: January 5, 2015 July 4, 2014

 Hash-Based Signatures
 draft-mcgrew-hash-sigs-02

Abstract

 This note describes a digital signature system based on cryptographic
 hash functions, following the seminal work in this area. It
 specifies a one-time signature scheme based on the work of Lamport,
 Diffie, Winternitz, and Merkle (LDWM), and a general signature
 scheme, Merkle Tree Signatures (MTS). These systems provide
 asymmetric authentication without using large integer mathematics and
 can achieve a high security level. They are suitable for compact
 implementations, are relatively simple to implement, and naturally
 resist side-channel attacks. Unlike most other signature systems,
 hash-based signatures would still be secure even if it proves
 feasible for an attacker to build a quantum computer.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

McGrew & Curcio Expires January 5, 2015 [Page 1]

Internet-Draft Hash-Based Signatures July 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

McGrew & Curcio Expires January 5, 2015 [Page 2]

Internet-Draft Hash-Based Signatures July 2014

Table of Contents

 1. Introduction . 5
 1.1. Conventions Used In This Document 5

 2. Notation . 6
 2.1. Data Types . 6
 2.1.1. Operators . 6
 2.1.2. Strings of w-bit elements 6
 2.2. Functions . 7

 3. LDWM One-Time Signatures 9
 3.1. Parameters . 9
 3.2. Hashing Functions . 9
 3.3. Signature Methods . 10
 3.4. Private Key . 10
 3.5. Public Key . 11
 3.6. Checksum . 11
 3.7. Signature Generation 12
 3.8. Signature Verification 13
 3.9. Notes . 13
 3.10. Formats . 13

 4. Merkle Tree Signatures . 17
 4.1. Private Key . 17
 4.2. MTS Public Key . 17
 4.3. MTS Signature . 18
 4.3.1. MTS Signature Generation 19
 4.4. MTS Signature Verification 19
 4.5. MTS Formats . 20

 5. Rationale . 23

 6. History . 24

 7. IANA Considerations . 25

 8. Security Considerations 28
 8.1. Security of LDWM Checksum 29
 8.2. Security Conjectures 29
 8.3. Post-Quantum Security 30

 9. Acknowledgements . 31

 10. References . 32
 10.1. Normative References 32
 10.2. Informative References 32

McGrew & Curcio Expires January 5, 2015 [Page 3]

Internet-Draft Hash-Based Signatures July 2014

 Appendix A. LDWM Parameter Options 33

 Appendix B. Example Data for Testing 35
 B.1. Parameters . 35
 B.2. Key Generation . 35
 B.3. Signature Generation 41
 B.4. Signature Verification 45
 B.5. Intermediate Calculation Values 45

 Authors’ Addresses . 51

McGrew & Curcio Expires January 5, 2015 [Page 4]

Internet-Draft Hash-Based Signatures July 2014

1. Introduction

 One-time signature systems, and general purpose signature systems
 built out of one-time signature systems, have been known since 1979
 [Merkle79], were well studied in the 1990s, and have benefited from
 renewed development in the last decade. The characteristics of these
 signature systems are small private and public keys and fast
 signature generation and verification, but large signatures and
 relatively slow key generation. In recent years there has been
 interest in these systems because of their post-quantum security (see
 Section 8.3) and their suitability for compact implementations.

 This note describes the original Lamport-Diffie-Winternitz-Merkle
 (LDWM) one-time signature system (following Merkle 1979 but also
 using a technique from Merkle’s later work [C:Merkle87][C:
 Merkle89a][C:Merkle89b]) and Merkle tree signature system (following
 Merkle 1979) with enough specificity to ensure interoperability
 between implementations.

 A signature system provides asymmetric message authentication. The
 key generation algorithm produces a public/private key pair. A
 message is signed by a private key, producing a signature, and a
 message/signature pair can be verified by a public key. A One-Time
 Signature (OTS) system can be used to sign exactly one message
 securely. A general signature system can be used to sign multiple
 messages. The Merkle Tree Signatures (MTS) is a general signature
 system that uses an OTS system as a component. In principle the MTS
 can be used with any OTS system, but in this note we describe its use
 with the LDWM system.

 This note is structured as follows. Notation is introduced in
 Section 2. The LDWM signature system is described in Section 3, and
 the Merkle tree signature system is described in Section 4.
 Sufficient detail is provided to ensure interoperability. Appendix B
 describes test considerations and contains test cases that can be
 used to validate an implementation. The IANA registry for these
 signature systems is described in Section 7. Security considerations
 are presented in Section 8.

1.1. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

McGrew & Curcio Expires January 5, 2015 [Page 5]

Internet-Draft Hash-Based Signatures July 2014

2. Notation

2.1. Data Types

 Bytes and byte strings are the fundamental data types. A single byte
 is denoted as a pair of hexadecimal digits with a leading "0x". A
 byte string is an ordered sequence of zero or more bytes and is
 denoted as an ordered sequence of hexadecimal characters with a
 leading "0x". For example, 0xe534f0 is a byte string with a length
 of three. An array of byte strings is an ordered set, indexed
 starting at zero, in which all strings have the same length.

2.1.1. Operators

 When a and b are real numbers, mathematical operators are defined as
 follows:

 ^ : a ^ b denotes the result of a raised to the power of b

 * : a * b denotes the product of a multiplied by b

 / : a / b denotes the quotient of a divided by b

 % : a % b denotes the remainder of the integer division of a by b

 + : a + b denotes the sum of a and b

 - : a - b denotes the difference of a and b

 The standard order of operations is used when evaluating arithmetic
 expressions.

 If A and B are bytes, then A AND B denotes the bitwise logical and
 operation.

 When B is a byte and i is an integer, then B >> i denotes the logical
 right-shift operation. Similarly, B << i denotes the logical left-
 shift operation.

 If S and T are byte strings, then S || T denotes the concatenation of
 S and T.

 The i^th byte string in an array A is denoted as A[i].

2.1.2. Strings of w-bit elements

 If S is a byte string, then byte(S, i) denotes its i^th byte, where
 byte(S, 0) is the leftmost byte. In addition, bytes(S, i, j) denotes

McGrew & Curcio Expires January 5, 2015 [Page 6]

Internet-Draft Hash-Based Signatures July 2014

 the range of bytes from the i^th to the j^th byte, inclusive. For
 example, if S = 0x02040608, then byte(S, 0) is 0x02 and bytes(S, 1,
 2) is 0x0406.

 A byte string can be considered to be a string of w-bit unsigned
 integers; the correspondence is defined by the function coef(S, i, w)
 as follows:

 If S is a string, i is a positive integer, and w is a member of the
 set { 1, 2, 4, 8 }, then coef(S, i, w) is the i^th, w-bit value, if S
 is interpreted as a sequence of w-bit values. That is,

 coef(S, i, w) = (2^w - 1) AND
 (byte(S, floor(i * w / 8)) >>
 (8 - (w * (i % (8 / w)) + w)))

 For example, if S is the string 0x1234, then coef(S, 7, 1) is 0 and
 coef(S, 0, 4) is 1.

 S (represented as bits)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 0| 0| 0| 1| 0| 0| 1| 0| 0| 0| 1| 1| 0| 1| 0| 0|
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 ^
 |
 coef(S, 7, 1)

 S (represented as four-bit values)
 +-----------+-----------+-----------+-----------+
 | 1 | 2 | 3 | 4 |
 +-----------+-----------+-----------+-----------+
 ^
 |
 coef(S, 0, 4)

 The return value of coef is an unsigned integer. If i is larger than
 the number of w-bit values in S, then coef(S, i, w) is undefined, and
 an attempt to compute that value should raise an error.

2.2. Functions

 If r is a non-negative real number, then we define the following
 functions:

 ceil(r) : returns the smallest integer larger than r

McGrew & Curcio Expires January 5, 2015 [Page 7]

Internet-Draft Hash-Based Signatures July 2014

 floor(r) : returns the largest integer smaller than r

 lg(r) : returns the base-2 logarithm of r

 When F is a function that takes r-byte strings as input and returns
 r-byte strings as output, we denote the repeated applications of F
 with itself a non-negative, integral number of times i as F^i.

 Thus for any m-byte string x ,

 F^i(x) = / F(F^(i-1)(x)) for i > 0
 \ x for i = 0.

 For example, F^2(x) = F(F(x)).

McGrew & Curcio Expires January 5, 2015 [Page 8]

Internet-Draft Hash-Based Signatures July 2014

3. LDWM One-Time Signatures

 This section defines LDWM signatures. The signature is used to
 validate the authenticity of a message by associating a secret
 private key with a shared public key. These are one-time signatures;
 each private key MUST be used only one time to sign any given
 message.

 As part of the signing process, a digest of the original message is
 computed using the collision-resistant hash function H (see
 Section 3.2), and the resulting digest is signed.

3.1. Parameters

 The signature system uses the parameters m, n, and w; they are all
 positive integers. The algorithm description also uses the values p
 and ls. These parameters are summarized as follows:

 m : the length in bytes of each element of an LDWM signature

 n : the length in bytes of the result of the hash function

 w : the Winternitz parameter; it is a member of the set
 { 1, 2, 4, 8 }

 p : the number of m-byte string elements that make up the LDWM
 signature

 ls : the number of left-shift bits used in the checksum function C
 (defined in Section 3.6).

 The values of m and n are determined by the functions selected for
 use as part of the LDWM algorithm. They are chosen to ensure an
 appropriate level of security. The parameter w can be chosen to set
 the number of bytes in the signature; it has little effect on
 security. Note however, that there is a larger computational cost to
 generate and verify a shorter signature. The values of p and ls are
 dependent on the choices of the parameters n and w, as described in
 Appendix A. A table illustrating various combinations of n, w, p,
 and ls is provided in Table 4.

3.2. Hashing Functions

 The LDWM algorithm uses a collision-resistant hash function H and a
 one way (preimage resistant) function F. H accepts byte strings of
 any length, and returns an n-byte string. F has m-byte inputs and
 m-byte outputs.

McGrew & Curcio Expires January 5, 2015 [Page 9]

Internet-Draft Hash-Based Signatures July 2014

3.3. Signature Methods

 To fully describe a LDWM signature method, the parameters m, n, and
 w, as well as the functions H and F MUST be specified. This section
 defines several LDWM signature systems, each of which is identified
 by a name. Values for p and ls are provided as a convenience.

 +--------------------+--------+-----------+----+----+---+-----+----+
 | Name | H | F | m | n | w | p | ls |
 +--------------------+--------+-----------+----+----+---+-----+----+
LDWM_SHA512_M64_W1	SHA512	SHA512	32	32	1	265	7
LDWM_SHA512_M64_W2	SHA512	SHA512	32	32	2	133	6
LDWM_SHA512_M64_W4	SHA512	SHA512	32	32	4	67	4
LDWM_SHA512_M64_W8	SHA512	SHA512	32	32	8	34	0
LDWM_SHA256_M32_W1	SHA256	SHA256	32	32	1	265	7
LDWM_SHA256_M32_W2	SHA256	SHA256	32	32	2	133	6
LDWM_SHA256_M32_W4	SHA256	SHA256	32	32	4	67	4
LDWM_SHA256_M32_W8	SHA256	SHA256	32	32	8	34	0
LDWM_SHA256_M20_W1	SHA256	SHA256-20	20	32	1	265	7
LDWM_SHA256_M20_W2	SHA256	SHA256-20	20	32	2	133	6
LDWM_SHA256_M20_W4	SHA256	SHA256-20	20	32	4	67	4
LDWM_SHA256_M20_W8	SHA256	SHA256-20	20	32	8	34	0
 +--------------------+--------+-----------+----+----+---+-----+----+

 Table 1

 Here SHA512 and SHA256 denotes the NIST standard hash functions
 [FIPS180]. SHA256-20 denotes the SHA256 hash function with its final
 output truncated to return the leftmost 20 bytes.

3.4. Private Key

 The LDWM private key is an array of size p containing m-byte strings.
 Let x denote the private key. This private key must be used to sign
 one and only one message. It must therefore be unique from all other
 private keys. The following algorithm shows pseudocode for
 generating x.

McGrew & Curcio Expires January 5, 2015 [Page 10]

Internet-Draft Hash-Based Signatures July 2014

 Algorithm 0: Generating a Private Key

 for (i = 0; i < p; i = i + 1) {
 set x[i] to a uniformly random m-byte string
 }
 return x

 An implementation MAY use a pseudorandom method to compute x[i], as
 suggested in [Merkle79], page 46. The details of the pseudorandom
 method do not affect interoperability, but the cryptographic strength
 MUST match that of the LDWM algorithm.

3.5. Public Key

 The LDWM public key is generated from the private key by applying the
 function F^(2^w - 1) to each individual element of x, then hashing
 all of the resulting values. The following algorithm shows
 pseudocode for generating the public key, where the array x is the
 private key.

 Algorithm 1: Generating a Public Key From a Private Key

 e = 2^w - 1
 for (i = 0; i < p; i = i + 1) {
 y[i] = F^e(x[i])
 }
 return H(y[0] || y[1] || ... || y[p-1])

3.6. Checksum

 A checksum is used to ensure that any forgery attempt that
 manipulates the elements of an existing signature will be detected.
 The security property that it provides is detailed in Section 8.

 The checksum value is calculated using a non-negative integer, sum,
 whose width is sized an integer number of w-bit fields such that it
 is capable of holding the difference of the total possible number of
 applications of the function F as defined in the signing algorithm of
 Section 3.7 and the total actual number. In the worst case (i.e. the
 actual number of times F is iteratively applied is 0), the sum is
 (2^w - 1) * ceil(8*n/w). Thus for the purposes of this document,
 which describes signature methods based on H = SHA256 (n = 32 bytes)
 and w = { 1, 2, 4, 8 }, let sum be a 16-bit non-negative integer for
 all combinations of n and w. The calculation uses the parameter ls
 defined in Section 3.1 and calculated in Appendix A, which indicates
 the number of bits used in the left-shift operation. The checksum
 function C is defined as follows, where S denotes the byte string
 that is input to that function.

McGrew & Curcio Expires January 5, 2015 [Page 11]

Internet-Draft Hash-Based Signatures July 2014

 Algorithm 2: Checksum Calculation

 sum = 0
 for (i = 0; i < u; i = i + 1) {
 sum = sum + (2^w - 1) - coef(S, i, w)
 }
 return (sum << ls)

 Because of the left-shift operation, the rightmost bits of the result
 of C will often be zeros. Due to the value of p, these bits will not
 be used during signature generation or verification.

 Implementation Note: Based on the previous fact, an implementation
 MAY choose to optimize the width of sum to (v * w) bits and set ls
 to 0. The rationale for this is given that (2^w - 1) *
 ceil(8*n/w) is the maximum value of sum and the value of (2^w - 1)
 is represented by w bits, the result of adding u w-bit numbers,
 where u = ceil(8*n/w), requires at most (ceil(lg(u)) + w) bits.
 Dividing by w and taking the next largest integer gives the total
 required number of w-bit fields and gives (ceil(lg(u)) / w) + 1,
 or v. Thus sum requires a minimum width of (v * w) bits and no
 left-shift operation is performed.

3.7. Signature Generation

 The LDWM signature is generated by using H to compute the hash of the
 message, concatenating the checksum of the hash to the hash itself,
 then considering the resulting value as a sequence of w-bit values,
 and using using each of the the w-bit values to determine the number
 of times to apply the function F to the corresponding element of the
 private key. The outputs of the function F are concatenated together
 and returned as the signature. The pseudocode for this procedure is
 shown below.

 Algorithm 3: Generating a Signature From a Private Key and a Message

 V = (H(message) || C(H(message)))
 for (i = 0; i < p; i = i + 1) {
 a = coef(V, i, w)
 y[i] = F^a(x[i])
 }
 return (y[0] || y[1] || ... || y[p-1])

 Note that this algorithm results in a signature whose elements are
 intermediate values of the elements computed by the public key
 algorithm in Section 3.5.

 The signature should be provided by the signer to the verifier, along

McGrew & Curcio Expires January 5, 2015 [Page 12]

Internet-Draft Hash-Based Signatures July 2014

 with the message and the public key.

3.8. Signature Verification

 In order to verify a message with its signature (an array of m-byte
 strings, denoted as y), the receiver must "complete" the series of
 applications of F, using the w-bit values of the message hash and its
 checksum. This computation should result in a value that matches the
 provided public key.

 Algorithm 4: Verifying a Signature and Message Using a Public Key

 V = (H(message) || C(H(message)))
 for (i = 0; i < p; i = i + 1) {
 a = (2^w - 1) - coef(V, i, w)
 z[i] = F^a(y’[i])
 }
 if public key is equal to H(z[0] || z[1] || ... || z[p-1])
 return 1 (message signature is valid)
 else
 return 0 (message signature is invalid)

3.9. Notes

 A future version of this specification may define a method for
 computing the signature of a very short message in which the hash is
 not applied to the message during the signature computation. That
 would allow the signatures to have reduced size.

3.10. Formats

 The signature and public key formats are formally defined using XDR
 [RFC4506] in order to provide an unambiguous, machine readable
 definition. For clarity, we also include a private key format as
 well, though consistency is not needed for interoperability and an
 implementation MAY use any private key format. Though XDR is used,
 these formats are simple and easy to parse without any special tools.
 To avoid the need to convert to and from network / host byte order,
 the enumeration values are all palindromes. The definitions are as
 follows:

 /*
 * ots_algorithm_type identifies a particular signature algorithm
 */
 enum ots_algorithm_type {
 ots_reserved = 0,
 ldwm_sha256_m20_w1 = 0x01000001,

McGrew & Curcio Expires January 5, 2015 [Page 13]

Internet-Draft Hash-Based Signatures July 2014

 ldwm_sha256_m20_w2 = 0x02000002,
 ldwm_sha256_m20_w4 = 0x03000003,
 ldwm_sha256_m20_w8 = 0x04000004,
 ldwm_sha256_m32_w1 = 0x05000005,
 ldwm_sha256_m32_w2 = 0x06000006,
 ldwm_sha256_m32_w4 = 0x07000007,
 ldwm_sha256_m32_w8 = 0x08000008,
 ldwm_sha512_m64_w1 = 0x09000009,
 ldwm_sha512_m64_w2 = 0x0a00000a,
 ldwm_sha512_m64_w4 = 0x0b00000b,
 ldwm_sha512_m64_w8 = 0x0c00000c
 };

 /*
 * byte string
 */
 typedef opaque bytestring20[20];
 typedef opaque bytestring32[32];
 typedef opaque bytestring64[64];

 union ots_signature switch (ots_algorithm_type type) {
 case ldwm_sha256_m20_w1:
 bytestring20 y_m20_p265[265];
 case ldwm_sha256_m20_w2:
 bytestring20 y_m20_p133[133];
 case ldwm_sha256_m20_w4:
 bytestring20 y_m20_p67[67];
 case ldwm_sha256_m20_w8:
 bytestring20 y_m20_p34[34];
 case ldwm_sha256_m32_w1:
 bytestring32 y_m32_p265[265];
 case ldwm_sha256_m32_w2:
 bytestring32 y_m3_p133[133];
 case ldwm_sha256_m32_w4:
 bytestring32 y_m32_y_p67[67];
 case ldwm_sha256_m32_w8:
 bytestring32 y_m32_p34[34];
 case ldwm_sha512_m64_w1:
 bytestring64 y_m64_p265[265];
 case ldwm_sha512_m64_w2:
 bytestring64 y_m64_p133[133];
 case ldwm_sha512_m64_w4:
 bytestring64 y_m64_y_p67[67];
 case ldwm_sha512_m64_w8:
 bytestring64 y_m64_p34[34];
 default:
 void; /* error condition */
 };

McGrew & Curcio Expires January 5, 2015 [Page 14]

Internet-Draft Hash-Based Signatures July 2014

 union ots_public_key switch (ots_algorithm_type type) {
 case ldwm_sha256_m20_w1:
 case ldwm_sha256_m20_w2:
 case ldwm_sha256_m20_w4:
 case ldwm_sha256_m20_w8:
 case ldwm_sha256_m32_w1:
 case ldwm_sha256_m32_w2:
 case ldwm_sha256_m32_w4:
 case ldwm_sha256_m32_w8:
 bytestring32 y32;
 case ldwm_sha512_m64_w1:
 case ldwm_sha512_m64_w2:
 case ldwm_sha512_m64_w4:
 case ldwm_sha512_m64_w8:
 bytestring64 y64;
 default:
 void; /* error condition */
 };

 union ots_private_key switch (ots_algorithm_type type) {
 case ldwm_sha256_m20_w1:
 case ldwm_sha256_m20_w2:
 case ldwm_sha256_m20_w4:
 case ldwm_sha256_m20_w8:
 bytestring20 x20;
 case ldwm_sha256_m32_w1:
 case ldwm_sha256_m32_w2:
 case ldwm_sha256_m32_w4:
 case ldwm_sha256_m32_w8:
 bytestring32 x32;
 case ldwm_sha512_m64_w1:
 case ldwm_sha512_m64_w2:
 case ldwm_sha512_m64_w4:
 case ldwm_sha512_m64_w8:
 bytestring64 y64;
 default:
 void; /* error condition */
 };

 Though the data formats are formally defined by XDR, we diagram the
 format as well as a convenience to the reader. An example of the
 format of an ldwm_signature is illustrated below, for
 ldwm_sha256_m32_w1. An ots_signature consists of a 32-bit unsigned
 integer that indicates the ots_algorithm_type, followed by other
 data, whose format depends only on the ots_algorithm_type. In the
 case of LDWM, the data is an array of equal-length byte strings. The
 number of bytes in each byte string, and the number of elements in
 the array, are determined by the ots_algorithm_type field. In the

McGrew & Curcio Expires January 5, 2015 [Page 15]

Internet-Draft Hash-Based Signatures July 2014

 case of ldwm_sha256_m32_w1, the array has 265 elements, each of which
 is a 32-byte string. The XDR array y_m32_p265 denotes the array y as
 used in the algorithm descriptions above, using the parameters of
 m=32 and p=265 for ldwm_sha256_m32_w1.

 A verifier MUST check the ots_algorithm_type field, and a
 verification operation on a signature with an unknown
 ldwm_algorithm_type MUST return FAIL.

 +---------------------------------+
 | ots_algorithm_type |
 +---------------------------------+
 | |
 | y_m32_p265[0] |
 | |
 +---------------------------------+
 | |
 | y_m32_p265[1] |
 | |
 +---------------------------------+
 | |
 ˜ ˜
 | |
 +---------------------------------+
 | |
 | y_m32_p265[264] |
 | |
 +---------------------------------+

McGrew & Curcio Expires January 5, 2015 [Page 16]

Internet-Draft Hash-Based Signatures July 2014

4. Merkle Tree Signatures

 Merkle Tree Signatures (MTS) are a method for signing a potentially
 large but fixed number of messages. An MTS system uses two
 cryptographic components: a one-time signature method and a
 collision-resistant hash function. Each MTS public/private key pair
 is associated with a perfect k-ary tree, each node of which contains
 an n-byte value. Each leaf of the tree contains the value of the
 public key of an LDWM public/private key pair. The value contained
 by the root of the tree is the MTS public key. Each interior node is
 computed by applying the hash function to the concatenation of the
 values of its children nodes.

 An MTS system has the following parameters:

 k : the number of children nodes of an interior node,

 h : the height (number of levels - 1) in the tree, and

 n : the number of bytes associated with each node.

 There are k^h leaves in the tree.

4.1. Private Key

 An MTS private key consists of k^h one-time signature private keys
 and the leaf number of the next LDWM private key that has not yet
 been used. The leaf number is initialized to zero when the MTS
 private key is created.

 An MTS private key MAY be generated pseudorandomly from a secret
 value, in which case the secret value MUST be at least n bytes long,
 be uniformly random, and MUST NOT be used for any other purpose than
 the generation of the MTS private key. The details of how this
 process is done do not affect interoperability; that is, the public
 key verification operation is independent of these details.

4.2. MTS Public Key

 An MTS public key is defined as follows, where we denote the public
 key associated with the i^th LDWM private key as ldwm_public_key(i).

 The MTS public key can be computed using the following algorithm or
 any equivalent method. The algorithm uses a stack of hashes for data
 and a separate stack of integers to keep track of the level of the
 Merkle tree.

McGrew & Curcio Expires January 5, 2015 [Page 17]

Internet-Draft Hash-Based Signatures July 2014

 Algorithm 5: Generating an MTS Public Key From an MTS Private Key

 for (i = 0; i < num_ldwm_keys; i = i + k) {
 level = 0;
 for (j = 0; j < k; j = j + 1) {
 push ldwm_public_key(i+j) onto the data stack
 push level onto the integer stack
 }
 while (height of the integer stack >= k) {
 if level of the top k elements on the integer stack are equal {
 hash_init()
 siblings = ""
 repeat (k) {
 siblings = (pop(data stack) || siblings)
 level = pop(integer stack)
 }
 hash_update(siblings)
 push hash_final() onto the data stack
 push (level + 1) onto the integer stack
 }
 }
 }
 public_key = pop(data stack)

 Note that this pseudocode expects, as was defined earlier, the Merkle
 Tree to be perfect. That is, all h^k leaves of the tree have equal
 depth. Also, neither stack ever contains more than h*(k-1)+1
 elements. For typical parameters, it will hold roughly 20 32-byte
 values.

4.3. MTS Signature

 An MTS signature consists of

 an LDWM signature,

 a node number that identifies the leaf node associated with the
 signature, and

 an array of values that is associated with the path through the
 tree from the leaf associated with the LDWM signature to the root.

 The array of values contains contains the siblings of the nodes on
 the path from the leaf to the root but does not contain the nodes on
 the path itself. The array for a tree with branching number k and
 height h will have (k-1)*h values. The first (k-1) values are the
 siblings of the leaf, the next (k-1) values are the siblings of the
 parent of the leaf, and so on.

McGrew & Curcio Expires January 5, 2015 [Page 18]

Internet-Draft Hash-Based Signatures July 2014

4.3.1. MTS Signature Generation

 To compute the MTS signature of a message with an MTS private key,
 the signer first computes the LDWM signature of the message using the
 leaf number of the next unused LDWM private key. Before releasing
 the signature, the leaf number in the MTS private key MUST be
 incremented to prevent the LDWM private key from being used again.
 The node number in the signature is set to the leaf number of the MTS
 private key that was used in the signature.

 The array of node values MAY be computed in any way. There are many
 potential time/storage tradeoffs. The fastest alternative is to
 store all of the nodes of the tree and set the array in the signature
 by copying them. The least storage intensive alternative is to
 recompute all of the nodes for each signature. Note that the details
 of this procedure are not important for interoperability; it is not
 necessary to know any of these details in order to perform the
 signature verification operation.

4.4. MTS Signature Verification

 An MTS signature is verified by first using the LDWM signature
 verification algorithm to compute the LDWM public key from the LDWM
 signature and the message. The value of the leaf associated with the
 LDWM signature is assigned to the public key. Then the root of the
 tree is computed from the leaf value and the node array (path[]) as
 described below. If the root value matches the public key, then the
 signature is valid; otherwise, the signature fails.

McGrew & Curcio Expires January 5, 2015 [Page 19]

Internet-Draft Hash-Based Signatures July 2014

 Algorithm 6: Computing the MTS Root Value

 n = node number
 v = leaf
 step = 0
 for (i = 0; i < h; i = i + 1) {
 position = n % k
 hash_init()
 for (j = 0; j < position; j = j + 1) {
 hash_update(path[step + j])
 }
 hash_update(v)
 for (j = position; j < (k-1); j = j + 1) {
 hash_update(path[step + j])
 }
 v = hash_final()
 n = floor(n/k)
 step = step + (k-1)
 }

 Upon completion, v contains the value of the root of the Merkle Tree
 for comparison.

 This algorithm uses the typical init/update/final interface to hash
 functions; the result of the invocations hash_init(),
 hash_update(N[1]), hash_update(N[2]), ... , hash_update(N[n]), v =
 hash_final(), in that order, is identical to that of the invocation
 of H(N[1] || N[2] || ... || N[n]).

 This algorithm works because the leaves of the MTS tree are numbered
 starting at zero. Therefore leaf n is in the position (n % k) in the
 highest level of the tree.

 The verifier MAY cache interior node values that have been computed
 during a successful signature verification for use in subsequent
 signature verifications. However, any implementation that does so
 MUST make sure any nodes that are cached during a signature
 verification process are deleted if that process does not result in a
 successful match between the root of the tree and the MTS public key.

 A full test example that combines the LDWM OTS and MTS algorithms is
 given in Appendix B.

4.5. MTS Formats

 MTS signatures and public keys are defined using XDR syntax as
 follows:

McGrew & Curcio Expires January 5, 2015 [Page 20]

Internet-Draft Hash-Based Signatures July 2014

 enum mts_algorithm_type {
 mts_reserved = 0x00000000,
 mts_sha256_k2_h20 = 0x01000001,
 mts_sha256_k4_h10 = 0x02000002,
 mts_sha256_k8_h7 = 0x03000003,
 mts_sha256_k16_h5 = 0x04000004,
 mts_sha512_k2_h20 = 0x05000005,
 mts_sha512_k4_h10 = 0x06000006,
 mts_sha512_k8_h7 = 0x07000007,
 mts_sha512_k16_h5 = 0x08000008
 };

 union mts_path switch (mts_algorithm_type type) {
 case mts_sha256_k2_h20:
 bytestring32 path_n32_t20[20];
 case mts_sha256_k4_h10:
 bytestring32 path_n32_t30[30];
 case mts_sha256_k8_h7:
 bytestring32 path_n32_t49[49];
 case mts_sha256_k16_h5:
 bytestring32 path_n32_t75[75];
 case mts_sha512_k2_h20:
 bytestring64 path_n64_t20[20];
 case mts_sha512_k4_h10:
 bytestring64 path_n64_t30[30];
 case mts_sha512_k8_h7:
 bytestring64 path_n64_t49[49];
 case mts_sha512_k16_h5:
 bytestring64 path_n64_t75[75];
 default:
 void; /* error condition */
 };

 struct mts_signature {
 ots_signature ots_sig;
 unsigned int signature_leaf_number;
 mts_path nodes;
 };

 struct mts_public_key_n32 {
 ots_algorithm_type ots_alg_type;
 opaque value[32]; /* public key */
 };

 struct mts_public_key_n64 {
 ots_algorithm_type ots_alg_type;
 opaque value[64]; /* public key */
 };

McGrew & Curcio Expires January 5, 2015 [Page 21]

Internet-Draft Hash-Based Signatures July 2014

 union mts_public_key switch (mts_algorithm_type type) {
 case mts_sha256_k2_h20:
 case mts_sha256_k4_h10:
 case mts_sha256_k8_h7:
 case mts_sha256_k16_h5:
 mts_public_key_n32 z_n32;
 case mts_sha512_k2_h20:
 case mts_sha512_k4_h10:
 case mts_sha512_k8_h7:
 case mts_sha512_k16_h5:
 mts_public_key_n64 z_n64;
 default:
 void; /* error condition */
 };

 struct mts_private_key_n32 {
 ots_algorithm_type ots_alg_type;
 unsigned int next_ldwm_leaf_number; /* leaf # for next signature */
 opaque value[32]; /* private key */
 };

 struct mts_private_key_n64 {
 ots_algorithm_type ots_alg_type;
 unsigned int next_ldwm_leaf_number; /* leaf # for next signature */
 opaque value[64]; /* private key */
 };

 union mts_private_key switch (mts_algorithm_type mts_alg_type) {
 case mts_sha256_k2_h20:
 case mts_sha256_k4_h10:
 case mts_sha256_k8_h7:
 case mts_sha256_k16_h5:
 mts_private_key_n32 body_n32;
 case mts_sha512_k2_h20:
 case mts_sha512_k4_h10:
 case mts_sha512_k8_h7:
 case mts_sha512_k16_h5:
 mts_private_key_n64 body_n64;
 default:
 void; /* error condition */
 };

McGrew & Curcio Expires January 5, 2015 [Page 22]

Internet-Draft Hash-Based Signatures July 2014

5. Rationale

 The goal of this note is to describe the LDWM and MTS algorithms
 following the original references and present the modern security
 analysis of those algorithms. Other signature methods are out of
 scope and may be interesting follow-on work.

 The signature and public key formats are designed so that they are
 easy to parse. Each format starts with a 32-bit enumeration value
 that indicates all of the details of the signature algorithm and
 hence defines all of the information that is needed in order to parse
 the format.

 The enumeration values used in this note are palindromes, which have
 the same byte representation in either host order or network order.
 This fact allows an implementation to omit the conversion between
 byte order for those enumerations. Note however that the leaf number
 field used in the MTS signature and keys must be properly converted
 to and from network byte order; this is the only field that requires
 such conversion. There are 2^32 XDR enumeration values, 2^16 of
 which are palindromes, which is more than enough for the foreseeable
 future. If there is a need for more assignments, non-palindromes can
 be assigned.

McGrew & Curcio Expires January 5, 2015 [Page 23]

Internet-Draft Hash-Based Signatures July 2014

6. History

 This is the initial version of this draft.

 This section is to be removed by the RFC editor upon publication.

McGrew & Curcio Expires January 5, 2015 [Page 24]

Internet-Draft Hash-Based Signatures July 2014

7. IANA Considerations

 The Internet Assigned Numbers Authority (IANA) is requested to create
 two registries: one for OTS signatures, which includes all of the
 LDWM signatures as defined in Section 3, and one for Merkle Tree
 Signatures, as defined in Section 4. Additions to these registries
 require that a specification be documented in an RFC or another
 permanent and readily available reference in sufficient detail that
 interoperability between independent implementations is possible.
 Each entry in the registry contains the following elements:

 a short name, such as "MTS_SHA256_K16_H5",

 a positive number, and

 a reference to a specification that completely defines the
 signature method test cases that can be used to verify the
 correctness of an implementation.

 Requests to add an entry to the registry MUST include the name and
 the reference. The number is assigned by IANA. These number
 assignments SHOULD use the smallest available palindromic number.
 Submitters SHOULD have their requests reviewed by the IRTF Crypto
 Forum Research Group (CFRG) at cfrg@ietf.org. Interested applicants
 that are unfamiliar with IANA processes should visit
 http://www.iana.org.

 The numbers between 0xDDDDDDDD (decimal 3,722,304,989) and 0xFFFFFFFF
 (decimal 4,294,967,295) inclusive, will not be assigned by IANA, and
 are reserved for private use; no attempt will be made to prevent
 multiple sites from using the same value in different (and
 incompatible) ways [RFC2434].

 The LDWM registry is as follows.

McGrew & Curcio Expires January 5, 2015 [Page 25]

Internet-Draft Hash-Based Signatures July 2014

 +--------------------+-----------+--------------------+
 | Name | Reference | Numeric Identifier |
 +--------------------+-----------+--------------------+
 | LDWM_SHA256_M20_W1 | Section 3 | 0x01000001 |
 | | | |
 | LDWM_SHA256_M20_W2 | Section 3 | 0x02000002 |
 | | | |
 | LDWM_SHA256_M20_W4 | Section 3 | 0x03000003 |
 | | | |
 | LDWM_SHA256_M20_W8 | Section 3 | 0x04000004 |
 | | | |
 | LDWM_SHA256_M32_W1 | Section 3 | 0x05000005 |
 | | | |
 | LDWM_SHA256_M32_W2 | Section 3 | 0x06000006 |
 | | | |
 | LDWM_SHA256_M32_W4 | Section 3 | 0x07000007 |
 | | | |
 | LDWM_SHA256_M32_W8 | Section 3 | 0x08000008 |
 | | | |
 | LDWM_SHA512_M64_W1 | Section 3 | 0x09000009 |
 | | | |
 | LDWM_SHA512_M64_W2 | Section 3 | 0x0a00000a |
 | | | |
 | LDWM_SHA512_M64_W4 | Section 3 | 0x0b00000b |
 | | | |
 | LDWM_SHA512_M64_W8 | Section 3 | 0x0c00000c |
 +--------------------+-----------+--------------------+

 Table 2

 The MTS registry is as follows.

McGrew & Curcio Expires January 5, 2015 [Page 26]

Internet-Draft Hash-Based Signatures July 2014

 +-------------------+-----------+--------------------+
 | Name | Reference | Numeric Identifier |
 +-------------------+-----------+--------------------+
 | MTS_SHA256_K2_H20 | Section 4 | 0x01000001 |
 | | | |
 | MTS_SHA256_K4_H10 | Section 4 | 0x02000002 |
 | | | |
 | MTS_SHA256_K8_H7 | Section 4 | 0x03000003 |
 | | | |
 | MTS_SHA256_K16_H5 | Section 4 | 0x04000004 |
 | | | |
 | MTS_SHA512_K2_H20 | Section 4 | 0x05000005 |
 | | | |
 | MTS_SHA512_K4_H10 | Section 4 | 0x06000006 |
 | | | |
 | MTS_SHA512_K8_H7 | Section 4 | 0x07000007 |
 | | | |
 | MTS_SHA512_K16_H5 | Section 4 | 0x08000008 |
 +-------------------+-----------+--------------------+

 Table 3

 An IANA registration of a signature system does not constitute an
 endorsement of that system or its security.

McGrew & Curcio Expires January 5, 2015 [Page 27]

Internet-Draft Hash-Based Signatures July 2014

8. Security Considerations

 The security goal of a signature system is to prevent forgeries. A
 successful forgery occurs when an attacker who does not know the
 private key associated with a public key can find a message and
 signature that are valid with that public key (that is, the Signature
 Verification algorithm applied to that signature and message and
 public key will return "valid"). Such an attacker, in the strongest
 case, may have the ability to forge valid signatures for an arbitrary
 number of other messages.

 The security of the algorithms defined in this note can be roughly
 described as follows. For a security level of roughly 128 bits,
 assuming that there are no quantum computers, use the LDWM algorithms
 with m=32 and MTS with n=32. For a security level of roughly 128
 bits, assuming that there are quantum computers, use the LDWM
 algorithms with m=64 and the MTS algorithms with n=64. For the
 smallest possible signatures that provide a currently adequate
 security level, use the LDWM algorithms with m=20 and MTS algorithms
 with n=32. We emphasize that this is a rough estimate, and not a
 security proof.

 LDWM signatures rely on the fact that, given an m-byte string y, it
 is prohibitively expensive to compute a value x such that F^i(x) = y
 for any i. Informally, F is said to be a "one-way" function, or a
 preimage-resistant function. Both LDWM and MTS signatures rely on
 the fact that H is collision-resistant, that is, it is prohibitively
 expensive for an attacker to find two byte strings a and b such that
 H(a) = H(b).

 There are several formal security proofs for one time signatures and
 Merkle tree signatures in the cryptographic literature. Several of
 these analyze variants of those algorithms, and are not directly
 applicable to the original algorithms; thus caution is needed when
 applying these analyses. The MTS scheme has been shown to provide
 roughly b bits of security when used with a hash function with an
 output size of 2*b bits [BDM08]. (A cryptographic scheme has b bits
 of security when an attacker must perform O(2^b) computations to
 defeat it.) More precisely, that analysis shows that MTS is
 existentially unforgeable under an adaptive chosen message attack.
 However, the analysis assumes that the hash function is chosen
 uniformly at random from a family of hash functions, and thus is not
 completely applicable. Similarly, LDWM with w=1 has been shown to be
 existentially unforgeable under an adaptive chosen message attack,
 when F is a one-way function [BDM08], when F is chosen uniformly at
 random from a family of one-way functions; when F has c-bit inputs
 and outputs, it provides roughly b bits of security. LDWM
 signatures, as specified in this note, have been shown to be secure

McGrew & Curcio Expires January 5, 2015 [Page 28]

Internet-Draft Hash-Based Signatures July 2014

 based on the collision resistance of F [C:Dods05]; that analysis
 provides a lower bound on security (and it appears to be pessimistic,
 especially in the case of the m=20 signatures).

 It may be desirable to adapt this specification in a way that better
 aligns with the security proofs. In particular, a random "salt"
 value could be generated along with the key, used as an additional
 input to F and H, and then provided as part of the public key. This
 change appears to make the analysis of [BDM08] applicable, and it
 would improve the resistance of these signature schemes against key
 collision attacks, that is, scenarios in which an attacker
 concurrently attacks many signatures made with many private keys.

8.1. Security of LDWM Checksum

 To show the security of LDWM checksum, we consider the signature y of
 a message with a private key x and let h = H(message) and
 c = C(H(message)) (see Section 3.7). To attempt a forgery, an
 attacker may try to change the values of h and c. Let h’ and c’
 denote the values used in the forgery attempt. If for some integer j
 in the range 0 to (u-1), inclusive,

 a’ = coef(h’, j, w),

 a = coef(h, j, w), and

 a’ > a

 then the attacker can compute F^a’(x[j]) from F^a(x[j]) = y[j] by
 iteratively applying function F to the j^th term of the signature an
 additional (a’ - a) times. However, as a result of the increased
 number of hashing iterations, the checksum value c’ will decrease
 from its original value of c. Thus a valid signature’s checksum will
 have, for some number k in the range u to (p-1), inclusive,

 b’ = coef(c’, k, w),

 b = coef(c, k, w), and

 b’ < b

 Due to the one-way property of F, the attacker cannot easily compute
 F^b’(x[k]) from F^b(x[k]) = y[k].

8.2. Security Conjectures

 LDWM and MTS signatures rely on a minimum of security conjectures.
 In particular, their security does not rely on the computational

McGrew & Curcio Expires January 5, 2015 [Page 29]

Internet-Draft Hash-Based Signatures July 2014

 difficulty of factoring composites with large prime factors (as does
 RSA) or the difficulty of computing the discrete logarithm in a
 finite field (as does DSA) or an elliptic curve group (as does
 ECDSA). All of these signature schemes also rely on the security of
 the hash function that they use, but with LDWM and MTS, the security
 of the hash function is sufficient.

8.3. Post-Quantum Security

 A post-quantum cryptosystem is a system that is secure against
 quantum computers that have more than a trivial number of quantum
 bits. It is open to conjecture whether or not it is feasible to
 build such a machine.

 The LDWM and Merkle signature systems are post-quantum secure if they
 are used with an appropriate underlying hash function, in which the
 size of m and n are double what they would be otherwise, in order to
 protect against quantum square root attacks due to Grover’s
 algorithm. In contrast, the signature systems in wide use (RSA, DSA,
 and ECDSA) are not post-quantum secure.

McGrew & Curcio Expires January 5, 2015 [Page 30]

Internet-Draft Hash-Based Signatures July 2014

9. Acknowledgements

 Thanks are due to Chirag Shroff for constructive feedback, and to
 Andreas Hulsing, Burt Kaliski, Eric Osterweil, Ahmed Kosba, and Russ
 Housley for valuable detailed review.

McGrew & Curcio Expires January 5, 2015 [Page 31]

Internet-Draft Hash-Based Signatures July 2014

10. References

10.1. Normative References

 [FIPS180] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS 180-4, March 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

10.2. Informative References

 [BDM08] Buchmann, J., Dahmen, E., and M. Szydlo, "Hash-based
 Digital Signature Schemes", Technische Universitat
 Darmstadt Technical Report https://
 www.cdc.informatik.tu-darmstadt.de/˜dahmen/papers/
 hashbasedcrypto.pdf, 2008.

 [C:Dods05]
 Dods, C., Smart, N., and M. Stam, "Hash Based Digital
 Signature Schemes", Lecture Notes in Computer Science vol.
 3796 Cryptography and Coding, 2005.

 [C:Merkle87]
 Merkle, R., "A Digital Signature Based on a Conventional
 Encryption Function", Lecture Notes in Computer
 Science crypto87vol, 1988.

 [C:Merkle89a]
 Merkle, R., "A Certified Digital Signature", Lecture Notes
 in Computer Science crypto89vol, 1990.

 [C:Merkle89b]
 Merkle, R., "One Way Hash Functions and DES", Lecture
 Notes in Computer Science crypto89vol, 1990.

 [Merkle79]
 Merkle, R., "Secrecy, Authentication, and Public Key
 Systems", Stanford University Information Systems
 Laboratory Technical Report 1979-1, 1979.

McGrew & Curcio Expires January 5, 2015 [Page 32]

Internet-Draft Hash-Based Signatures July 2014

Appendix A. LDWM Parameter Options

 A table illustrating various combinations of n and w with the
 associated values of u, v, ls, and p is provided in Table 4.

 The parameters u, v, ls, and p are computed as follows:

 u = ceil(8*n/w)
 v = ceil((floor(lg((2^w - 1) * u)) + 1) / w)
 ls = (number of bits in sum) - (v * w)
 p = u + v

 Here u and v represent the number of w-bit fields required to contain
 the hash of the message and the checksum byte strings, respectively.
 The "number of bits in sum" is defined according to Section 3.6. And
 as the value of p is the number of w-bit elements of (H(message) ||
 C(H(message))), it is also equivalently the number of byte strings
 that form the private key and the number of byte strings in the
 signature.

McGrew & Curcio Expires January 5, 2015 [Page 33]

Internet-Draft Hash-Based Signatures July 2014

 +---------+------------+-----------+-----------+-------+------------+
Hash	Winternitz	w-bit	w-bit	Left	Total
Length	Parameter	Elements	Elements	Shift	Number of
in	(w)	in Hash	in	(ls)	w-bit
Bytes		(u)	Checksum		Elements
(n)			(v)		(p)
+---------+------------+-----------+-----------+-------+------------+					
20	1	160	8	8	168
20	2	80	4	8	84
20	4	40	3	4	43
20	8	20	2	0	22
32	1	256	9	7	265
32	2	128	5	6	133
32	4	64	3	4	67
32	8	32	2	0	34
48	1	384	9	7	393
48	2	192	5	6	197
48	4	96	3	4	99
48	8	48	2	0	50
64	1	512	10	6	522
64	2	256	5	6	261
64	4	128	3	4	131
64	8	64	2	0	66
 +---------+------------+-----------+-----------+-------+------------+

 Table 4

McGrew & Curcio Expires January 5, 2015 [Page 34]

Internet-Draft Hash-Based Signatures July 2014

Appendix B. Example Data for Testing

 As with all cryptosystems, implementations of LDWM signatures and
 Merkle signatures need to be tested before they are used. This
 section contains sample data generated from the signing and
 verification operations of software that implements the algorithms
 described in this document.

B.1. Parameters

 The example contained in this section demonstrates the calculations
 of LDWM_SHA256_M20_W4 using a Merkle Tree Signature of degree 4 and
 height 2. This corresponds to the following parameter values:

 +----+----+---+----+----+---+---+
 | m | n | w | p | ls | k | h |
 +----+----+---+----+----+---+---+
 | 20 | 32 | 4 | 67 | 4 | 4 | 2 |
 +----+----+---+----+----+---+---+

 Table 5

 The non-standard size of the Merkle tree (h = 2) has been selected
 specifically for this example to reduce the amount of data presented.

B.2. Key Generation

 The LDWM algorithm does not define a required method of key
 generation. This is left to the implementer. The selected method,
 however, must satisfy the requirement that the private keys of the
 one-time signatures are uniformly random, independent, and
 unpredicable. In addition, all LDWM key pairs must be generated in
 advance in order to calculate the value of the Merkle public key.

 For the test data presented here, a summary of the key generation
 method is as follows:

 1. MTS Private Key - Set mts_private_key to a pseudorandomly
 generated n-byte value.

 2. OTS Private Keys - Use the mts_private_key as a key derivation
 key input to some key derivation function, thereby producing n^k
 derived keys. Then use each derived key as an input to the same
 function again to further derive p elements of n-bytes each.
 This accomplishes the result of Algorithm 0 of Section 3.4 for
 each leaf of the Merkle tree.

McGrew & Curcio Expires January 5, 2015 [Page 35]

Internet-Draft Hash-Based Signatures July 2014

 3. OTS Public Keys - For each OTS private key, calculate the
 corresponding OTS public key as in Algorithm 1 of Section 3.5.

 4. MTS Public Key - Each OTS public key is the value of a leaf on
 the Merkle tree. Calculate the MTS public key using the
 pseudocode algorithm of Section 4.2 or some equivalent
 implementation.

 The above steps result in the following data values associated with
 the first leaf of the Merkle tree, leaf 0.

 +---+
 | MTS Private Key |
 +---+
 | 0x0f677ff1b4cbf10baec89959f051f203 |
 | 3371492da02f62dd61d6fbd1cee1bd14 |
 +---+

 Table 6

 +-----------------+---+
 | Key Element | OTS Private Key 0 Element (x[i]) |
 | Index (i) | |
 +-----------------+---+
0	0xbfb757383fb08d324629115a84daf00b
	188d5695303c83c184e1ec7a501c431f
1	0x7ce628fb82003a2829aab708432787d0
	fc735a29d671c7d790068b453dc8c913
2	0x8174929461329d15068a4645a34412bd
	446d4c9e757463a7d5164efd50e05c93
3	0xf283f3480df668de4daa74bb0e4c5531
	5bc00f7d008bb6311e59a5bbca910fd7
4	0xe62708eaf9c13801622563780302a068
	0ba9d39c078daa5ebc3160e1d80a1ea7
5	0x1f002efad2bfb4275e376af7138129e3
	3e88cf7512ec1dcdc7df8d5270bc0fd7
6	0x8ed5a703e9200658d18bc4c05dd0ca8a
	356448a26f3f4fe4e0418b52bd6750a2
7	0xc74e56d61450c5387e86ddad5a8121c8
	8b1bc463e64f248a1f1d91d950957726

McGrew & Curcio Expires January 5, 2015 [Page 36]

Internet-Draft Hash-Based Signatures July 2014

8	0x629f18b6a2a4ea65fff4cf758b57333f
	e1d34af05b1cd7763696899c9869595f
9	0x1741c31fdbb4864712f6b17fadc05d45
	926c831c7a755b7d7af57ac316ba6c2a
10	0xe59a7b81490c5d1333a9cdd48b9cb364
	56821517a3a13cb7a8ed381d4d5f3545
11	0x3ba97fe8b2967dd74c8b10f31fc5f527
	a23b89c1266202a4d7c281e1f41fa020
12	0xa262a9287cc979aaa59225d75df51b82
	57b92e780d1ab14c4ac3ecdac58f1280
13	0x9dfe0af1a3d9064338d96cb8eae88baa
	6a69265538873b4c17265fa9d573bcff
14	0xde9c5c6a5c6a274eabe90ed2a8e6148c
	720196d237a839aaf5868af8da4d0829
15	0x5de81ec17090a82cb722f616362d3808
	30f04841191e44f1f81b9880164b14cd
16	0xc0d047000604105bad657d9fa2f9ef10
	1cfd9490f4668b700d738f2fa9e1d11a
17	0xf45297ef310941e1e855f97968129bb1
	73379193919f7b0fee9c037ae507c2d2
18	0x46ef43a877f023e5e66bbcd4f06b839f
	3bfb2b64de25cd67d1946b0711989129
19	0x46e2a599861bd9e8722ad1b55b8f0139
	305fcf8b6077d545d4488c4bcb652f29
20	0xe1ad4d2d296971e4b0b7a57de305779e
	82319587b58d3ef4daeb08f630bd5684
21	0x7a07fa7aed97cb54ae420a0e6a58a153
	38110f7743cab8353371f8ca710a4409
22	0x40601f6c4b35362dd4948d5687b5cb6b
	5ec8b2ec59c2f06fd50f8919ebeaae92
23	0xa061b0ba9f493c4991be5cd3a9d15360
	a9eb94f6f7adc28dddf174074f3df3c4

McGrew & Curcio Expires January 5, 2015 [Page 37]

Internet-Draft Hash-Based Signatures July 2014

24	0xcf1546a814ff16099cebf1fe0db1ace5
	1c272fda9846fbb535815924b0077fa4
25	0xcbb06f13155ce4e56c85a32661c90142
	8b630a4c37ea5c7062156f07f6b3efff
26	0x1181ee7fc03342415094e36191eb450a
	11cdea9c6f6cdc34de79cee0ba5bf230
27	0xe9f1d429b343bb897881d2a19ef363cd
	1ab4117cbaad54dc292b74b8af9f5cf2
28	0x87f34b2551ef542f579fa65535c5036f
	80eb83be4c898266ffc531da2e1a9122
29	0x9b4b467852fe33a03a872572707342fd
	ddeae64841225186babf353fa2a0cd09
30	0x19d58cd240ab5c80be6ddf5f60d18159
	2dca2be40118c1fdd46e0f14dffbcc7d
31	0x5c9ad386547ba82939e49c9c74a8eccf
	1cea60aa327b5d2d0a66b1ca48912d6d
32	0xf49083e502400ffae9273c6de92a301e
	7bda1537cab085e5adfa9eb746e8eca9
33	0x4074e1812d69543ce3c1ce706f6e0b45
	f5f26f4ef39b34caa709335fd71e8fc0
34	0x1256612b0ca8398e97b247ae564b74b1
	3839b3b1cf0a0dd8ba629a2c58355f84
35	0xbab3989f00fd2c327bbfb35a218cc3ce
	49d6b34cbf8b6e8919e90c4eff400ca9
36	0x96b52a5d395a5615b73dae65586ac5c8
	7f9dd3b9b3f82dbf509b5881f0643fa8
37	0x5d05ca4c644e1c41ccdaedbd2415d4f0
	9b4a1b940b51fe823dff7617b8ee8304
38	0xd96aab95ef6248e235d91d0f23b64727
	a6675adfc64efea72f6f8b4a47996c0d
39	0xfd9c384d52d3ac27c4f4898fcc15e83a
	c182f97ea63f7d489283e2cc7e6ed180

McGrew & Curcio Expires January 5, 2015 [Page 38]

Internet-Draft Hash-Based Signatures July 2014

40	0xc86eaed6a9e3fbe5b262c1fa1f099f7c
	35ece71d9e467fab7a371dbcf400b544
41	0xf462b3719a2ed8778155638ff814dbf4
	2b107bb5246ee3dd82abf97787e6a69e
42	0x014670912e3eb74936ebb64168b447e4
	2522b57c2540ac4b49b9ae356c01eca6
43	0x2b411096e0ca16587830d3acd673e858
	863fedc4cea046587cba0556d2bf9884
44	0xa73917c74730582e8e1815b8a07b1896
	2ac05e500e045676be3f1495fcfa18ca
45	0xa4ab61e6962fe39a255dbf8a46d25110
	0d127fab08db59512653607bda24302c
46	0x9b910ca516413f376b9eba4b0d571b22
	253c2a9646131ac9a2af5f615f7322b8
47	0xfc1b4ce627c77ad35a21ea9ded2cce91
	b3758a758224e35cf2918153a513d64c
48	0xc1902d8e8c02d9442581d7e053a2798a
	a84d77a74b6e7f2cc5096d50646c890f
49	0xb3f47e2e8e2dcdd890ea00934b9d8234
	830dbc4a30ac996b144f12b3e463c77f
50	0x8188d1ecfc6ae6118911f2b9b3a6c7a1
	e5f909aa8b5c0aab8c69f1a7d436c307
51	0xca42d985974c7b870bc76494604eff49
	2676c942c6cb7c75d4938805885dd054
52	0xbe58851ebe566057e1ee16b8c604a473
	4c373af622660b2a82357ac6effb4566
53	0xc22d493f7a5642fceba2404dbefa8f95
	6323fac87fac425f6de8d23c9e8b20ca
54	0x1a76c1ffa467906173fd0245b0cd6639
	e6013ca79c4ed92426ee69ff5beeac0b
55	0xbc6c0cb7808f379af1b7b7327436ad65
	c05458f2d0a6923c333e5129c4c99671

McGrew & Curcio Expires January 5, 2015 [Page 39]

Internet-Draft Hash-Based Signatures July 2014

56	0xfbb04488c3c088dc5e63d13e6a701036
	6109ca4c5f4b0a8d37780187e2e9930e
57	0xaec10811569d4d72e3a1baf71a886b75
	eba6dc07ed027af0b2beffa71f9b43c8
58	0xf5529be3b7a19212e8baa970d2420bf4
	123f678267f96c1c3ef26ab610cb0061
59	0x172ba1ba0b701eeafe00692d1eb90181
	8ccaefaeb8f799395da81711766d1f43
60	0xfe1f8c15825208f3a21346b894b3d94e
	4f3aa29cbc194a7b2c8a810c4c509042
61	0x2e81c66cc914ea1b0fa5942fe9780d54
	8c0b330e3bf73f0cb0bda4bc9c9e6ff4
62	0xfc3453aec5cc19a6a4bda4bc25931604
	704bf4386cd65780c6e73214c1da85ba
63	0x4e8000c587dc917888e7e3d817672c0a
	ef812788cc8579afa7e9b2e566309003
64	0xba667ca0e44a8601a0fde825d4d2cf1b
	b9cf467041e04af84c9d0cd9fd8dc784
65	0x4965db75f81c8a596680753ce70a94c6
	156253bb426947de1d7662dd7e05e9a8
66	0x2c23cc3e5ca37dec279c506101a3d8d9
	f1e4f99b2a33741b59f8bddba7455419
 +-----------------+---+

 Table 7

 Using the value of the OTS private key above, the corresponding
 public key is given below. Intermediate values of the SHA256-20
 function F^(2^w - 1)(x[i]) are provided in Table 13.

 +---+
 | OTS Public Key 0 |
 +---+
 | 0x2db55a72075fcfab5aedbef77bf6b371 |
 | dfb489d6e61ad2884a248345e6910618 |
 +---+

 Table 8

McGrew & Curcio Expires January 5, 2015 [Page 40]

Internet-Draft Hash-Based Signatures July 2014

 Following the creation of all OTS public/private key pairs, the OTS
 public keys in Table 14 are used to determine the MTS public key
 below. Intermediate values of the interior nodes of the Merkle tree
 are provided in Table 15.

 +---+
 | MTS Public Key |
 +---+
 | 0x6610803d9a3546fb0a7895f6a4a0cfed |
 | 3a07d45e51d096e204b018e677453235 |
 +---+

 Table 9

B.3. Signature Generation

 In order to test signature generation, a text file containing the
 content "Hello world!\n", where ’\n’ represents the ASCII line feed
 character, was created and signed. A raw hex dump of the file
 contents is shown in the table below.

 +-------------------------------+-----------------------------------+
Hexadecimal Byte Values	ASCII Representation
	(’.’ is substituted for
	non-printing characters)
+-------------------------------+-----------------------------------+	
0x48 0x65 0x6c 0x6c 0x6f 0x20	Hello world!.
0x77 0x6f 0x72 0x6c 0x64 0x21	
0x0a	
 +-------------------------------+-----------------------------------+

 Table 10

 The SHA256 hash of the text file is provided below.

 +---+
 | SHA256 Hash of Signed File (H("Hello world!\n")) |
 +---+
 | 0x0ba904eae8773b70c75333db4de2f3ac |
 | 45a8ad4ddba1b242f0b3cfc199391dd8 |
 +---+

 Table 11

 This value was subsequently used in Algorithm 3 of Section 3.7 to
 create the one-time signature of the message. Algorithm 2 of
 Section 3.6 was applied to calculate a checksum of 0x1cc. The
 resulting signature is shown in the following table.

McGrew & Curcio Expires January 5, 2015 [Page 41]

Internet-Draft Hash-Based Signatures July 2014

 +---------+------------+--+
OTS	Function	OTS Element (y[i] = F^a(x[i]))		
Element	Iteration			
Index	Count			
(i)	(a = coef(
	H(msg)			
	C(H(msg)),			
	i, w))			
+---------+------------+--+				
0	0	0xbfb757383fb08d324629115a84daf00b188d5695		
1	11	0x4af079e885ddfd3245f29778d265e868a3bfeaa4		
2	10	0xfbad1928bfc57b22bcd949192452293d07d6b9ad		
3	9	0xb98063e184b4cb949a51e1bb76d99d4249c0b448		
4	0	0xe62708eaf9c13801622563780302a0680ba9d39c		
5	4	0x39343cba3ffa6d75074ce89831b3f3436108318c		
6	14	0xfe08aa73607aec5664188a9dacdc34a295588c9a		
7	10	0xd3346382119552d1ceb92a78597a00c956372bf0		
8	14	0xf1dd245ec587c0a7a1b754cc327b27c839a6e46a		
9	8	0xa5f158adc1decaf0c1edc1a3a5d8958d726627b5		
10	7	0x06d2990f62f22f0c943a418473678e3ffdbff482		
11	7	0xf3390b8d6e5229ae9c5d4c3f45e10455d8241a49		
12	3	0x22dd5f9d3c89180caa0f695203d8cf90f3c359be		
13	11	0x67999c4043f95de5f07d82b741347a3eb6ac0c25		
14	7	0xc4ffe472d48adeb37c7360da70711462013b7a4e		
15	0	0x5de81ec17090a82cb722f616362d380830f04841		
16	12	0x2f892c824af65cc749f912a36dfa8ade2e4c3fd1		
17	7	0xb644393e8030924403b594fb5cacd8b2d28862e2		
18	5	0x31b8d2908911dbbf5ba1f479a854808945d9e948		
19	3	0xa9a02269d24eb8fed6fb86101cbd0d8977219fb1		

McGrew & Curcio Expires January 5, 2015 [Page 42]

Internet-Draft Hash-Based Signatures July 2014

20	3	0xe4aae6e6a9fe1b0d5099513f170c111dee95714d
21	3	0xd79c16e7f2d4dd790e28bab0d562298c864e31e9
22	13	0xc29678f0bb4744597e04156f532646c98a0b42e8
23	11	0x57b31d75743ff0f9bcf2db39d9b6224110b8d27b
24	4	0x0a336d93aac081a2d849c612368b8cbb2fa9563a
25	13	0x917be0c94770a7bb12713a4bae801fb3c1c43002
26	14	0x91586feaadcf691b6cb07c16c8a2ed0884666e84
27	2	0xdd4e4b720fb2517c4bc6f91ccb8725118e5770c6
28	15	0x491f6ec665f54c4b3cffaa02ec594d31e6e26c0e
29	3	0x4f5a082c9d9c9714701de0bf426e9f893484618c
30	10	0x11f7017313f0c9549c5d415a8abc25243028514d
31	12	0x6839a994fccb9cb76241d809146906a3d13f89f1
32	4	0x71cd1d9163d7cd563936837c61d97bb1a5337cc0
33	5	0x77c9034ffc0f9219841aa8e1edbfb62017ef9fd1
34	10	0xad9f6034017d35c338ac35778dd6c4c1abe4472a
35	8	0x4a1c396b22e4f5cc2428045b36d13737c4007515
36	10	0x98cb57b779c5fd3f361cd5debc243303ae5baefd
37	13	0x29857298f274d6bf595eadc89e5464ccf9608a6c
38	4	0x95e35a26815a3ae9ad84a24464b174a29364da18
39	13	0x4afeb3b95b5b333759c0acdd96ce3f26314bb22b
40	13	0x325a37ee5e349b22b13b54b24be5145344e7b8f3
41	11	0x4f772c93f56fd6958ce135f02847996c67e1f2ef
42	10	0xd4f6d91c577594060be328b013c9e9b0e8a2e5d8
43	1	0x717e1a81c325cdccacb6e9fd9e92dd3e1bb84ae8

McGrew & Curcio Expires January 5, 2015 [Page 43]

Internet-Draft Hash-Based Signatures July 2014

44	11	0x1dd363724ec66c090a1228dfa1cd3d9cc806f346
45	2	0x64b4110476dd0beea78714c5ab71278818792cfa
46	4	0xe22290e740056a144af50f0b10962b5bcc18fc82
47	2	0x34fd87046a183f4732a52bb7805ce207eebdafc5
48	15	0xbd2fdc5e4e8d0ed7c48c1bad9c2f7793fc2c9303
49	0	0xb3f47e2e8e2dcdd890ea00934b9d8234830dbc4a
50	11	0xcd29719c56cdb507030e6132132179e5807e1d3b
51	3	0xf9edb9b301916217de0d746a0542316bebe9e806
52	12	0x7a3801cbfe0cafed863d81210c1ec721eede49e5
53	15	0x5caba3ec960efa210f5f3e1c22c567ca475ef3ec
54	12	0xf911b5d148e1b03fe6983c53411f76ea78772379
55	1	0x06da2baa75c6ef752bf59f3812fa042ff8181209
56	9	0x2b29f5aa2f34af51a78a5fac586004f749c6e6dc
57	9	0x55e033ababac0845cc9142e24f9ef0a641c51cbe
58	3	0xb62d207bb700071fba8a68312ca204ce4d994c33
59	9	0x551d5c00fad905bdb99c4f70ec7590a10d3ff8ca
60	1	0x0d03b1845b5f8838d735142f185f9cf8f8d2db6c
61	13	0x3b5d9e49e7ede41cd9aa5a09f72a0384fd4ff511
62	13	0xa766b0278d14a9b7d32bf0307c0737a8ecf82ab1
63	8	0xca85296f354e6e3d2a96ab497c01e5ccd4530cf1
64	1	0x7bb29db7dd8aaaf1cd11487cea0d13730edb1df3
65	12	0x547ef341b3cf3208753bb1b62d85a4e3fc2cffe0
66	12	0xb890e1a99da4b2e0a9dde42f82f92d0946327cee
 +---------+------------+--+

 Table 12

McGrew & Curcio Expires January 5, 2015 [Page 44]

Internet-Draft Hash-Based Signatures July 2014

 Finally, based on the fact that the message is the first to be signed
 by the Merkle tree (i.e. using leaf node 0), the values of the leaf
 and interior nodes that compose the authentication path from leaf to
 root are determined as described in Section 4.3. These values are
 marked with an asterisk (’*’) in Table 14 and Table 15.

B.4. Signature Verification

 The signature verification step was provided the following items:

 1. OTS = (y[0] || y[1] || ... || y[p-1]) - from Table 12.

 2. Authentication Path = concatenation of (k-1)*h Merkle tree node
 values - from Table 14 and Table 15.

 3. Message Number = leaf number of Merkle tree.

 4. Merkle Public Key = root of Merkle tree - from Table 9.

 Using Algorithm 4 of Section 3.8 as a start, the potential OTS public
 key was calculated from the value of the OTS. Since the actual OTS
 public key was not provided to the verifier, the calculated key was
 checked for validity using the pseudocode algorithm of Section 4.4
 and the provided values of the Authentication Path and Message
 Number. Since the message was valid, the calculated value of the
 root matched the Merkle public key. Otherwise, verification would
 have failed.

B.5. Intermediate Calculation Values

 +----------------------+--+
 | Key Element Index | SHA256-20 Result for w = 4 (F^15(x[i])) |
 | (i) | |
 +----------------------+--+
0	0x6eff4b0c224874ecc4e4f4500da53dbe2a030e45
1	0x58ac2c6c451c7779d67efefdb12e5c3d85475a94
2	0xb1f3e42e29c710d69268eed1bbdb7f5a500b7937
3	0x51d28e573aac2b84d659abb961c32c465e911b55
4	0xa0ed62bccac5888f5000ca6a01e5ffefd442a1c6
5	0x44da9e145666322422c1e2b5e21627e05aeb4367
6	0x04e7ff9213c2655f28364f659c35d3086d7414e1

McGrew & Curcio Expires January 5, 2015 [Page 45]

Internet-Draft Hash-Based Signatures July 2014

7	0x414cdb3215408b9722a02577eeb71f9e016e4251
8	0xa3ab06b90a2b20f631175daa9454365a4f408e9e
9	0xe38acfd3c0a03faa82a0f4aeac1a7c04983fad25
10	0xd95a289094ccce8ad9ff1d5f9e38297f9bb306ff
11	0x593d148b22e33c32f18b66340bdaffceb3ad1a55
12	0x16b53fbea11dc7ab70c8336ec3c23881ae5d51bf
13	0xa639ca0cf871188cadd0020832c4f06e6ebd5f98
14	0xe3ab3e0c5ad79d6c8c2a7e9a79856d4380941fe0
15	0x8368c2933dabcde69c373867a9bf2dc78df97bea
16	0xe3609fca11545da156a7779ae565b1e3c87902c0
17	0xab029e62c7011772dc0589d79fad01aacf8d2177
18	0xa8310f1c27c1aa481192de07d4397b8c4716e25f
19	0xdbdbb14dbd9a5f03c1849af24b69b9e3f80faca2
20	0x1a17399d555dec07d3d4f6d54b2b87d2bcaa398b
21	0xf81c66cc522bfb203232e44d0003ed65d2462867
22	0x202a625b8c5f22de6ea081af6da077cf5c63202f
23	0x2e080f3591f5ff3d5de39c2698846cc107a09816
24	0xa1d9c78c22f9810e3b7db2d59ad9f5fdd259f4d4
25	0x658eeb85ebe0f4542c4d32dced2d7226929266b2
26	0x67fae1a784f919577afc091504d82d31b4ba9fc7
27	0xfc39fb43677fb2d433a6292f19c6e7320279655a
28	0x491f6ec665f54c4b3cffaa02ec594d31e6e26c0e
29	0x17cec813a5781409b11d2e4a85f62301c2fd8873
30	0xc578eb105454d900c053eb55833db607aa5757e0

McGrew & Curcio Expires January 5, 2015 [Page 46]

Internet-Draft Hash-Based Signatures July 2014

31	0xaed094323290a41fd4b546919620e2f6b23916c8
32	0x192b5a87b5124dc287e06cdd4ec7c0c11f67dda6
33	0x4e9e2bdc1b0204d1ceeb68fb4159e752c40b9608
34	0xf34c57ad9ce45d67fd32dc2737e6263bcc5cc61f
35	0xf73bd27d376186310f83cc66e72060aeaccde371
36	0xeea482511acd8be783e9be42b48799653b222db4
37	0xa2e53196fec8676065b8f32b3e8498e66a4af3cf
38	0x670c98185157e1b28d38f7dafb00796b434c8316
39	0x441afbb265b93595389aaa66325de792f343f209
40	0x7b6c50d20b5edc0bc90eb4b289770514cbc8d547
41	0xfde6e862a7ba3534893a3e630e209a24be590b1e
42	0xc59611200c20b2e73dfb24c84cedf4792d6daf10
43	0x66e3527bee88373d18f91b230b53b569361f0a15
44	0xd0fd79c7116198e689275fec9b4c46f4aac73293
45	0x65f07406ad4241e7cf4174c5f284267292cdbc32
46	0x7b1b5535d45f46542e2b876245b66ea83cde3d8f
47	0x7a11620934eb0eb17e10e4a8bbd52aa4b020da0e
48	0xbd2fdc5e4e8d0ed7c48c1bad9c2f7793fc2c9303
49	0x00432602437252a0622a30676dbaaef3023328b9
50	0x09a9c4b25034466a5acd7ff681af1c27e8f97577
51	0x4b31481d52aa5e1a261064bbd87ea46479a6be23
52	0xaca2ad4aa1264618ab633bf11cbca3cc8fa43091
53	0x5caba3ec960efa210f5f3e1c22c567ca475ef3ec
54	0x353e3ffcedfd9500141921cf2aebc2e111364dad

McGrew & Curcio Expires January 5, 2015 [Page 47]

Internet-Draft Hash-Based Signatures July 2014

55	0xe1c498c32169c869174ccf2f1e71e7202f45fba7
56	0x5b8519a40d4305813936c7c00a96f5b4ceb603f1
57	0x3b942ae6a6bd328d08804ade771a0775bb3ff8f8
58	0x6f3be60ee1c34372599b8d634be72e168453bf10
59	0xf700c70bac24db0aab1257940661f5b57da6e817
60	0x85ccf60624b13663a290fa808c6bbecaf89523cd
61	0xd049be55ab703c44f42167d5d9e939c830df960f
62	0xd27a178ccc3b364c7e03d2266093a0d1dfdd9d51
63	0xd73c53fdddbe196b9ab56fcc5c9a4a57ad868cd1
64	0xb59a70a7372f0c121fa71727baaf6588eccec400
65	0x9b5bf379f989f9a499799c12a3202db58b084eed
66	0xccabf40f3c1dacf114b5e5f98a73103b4c1f9b55
 +----------------------+--+

 Table 13

McGrew & Curcio Expires January 5, 2015 [Page 48]

Internet-Draft Hash-Based Signatures July 2014

 +-----------+------------------------------------+------------------+
MTS Leaf	OTS Public Key	Member of						
(Level 3)	(H(x[0]		x[1]		...		x[p-1]))	Authentication
Node		Path of						
Number		Message 0						
+-----------+------------------------------------+------------------+								
0	0x2db55a72075fcfab5aedbef77bf6b371							
	dfb489d6e61ad2884a248345e6910618							
1	0x8c6c6a1215bfe7fda10b7754e73cd984	*						
	a64823b1ab9d5f50feda6b151c0fee6d							
2	0xc1fb91de68b3059c273e53596108ec7c	*						
	f39923757597fe86439e91ce1c25fc84							
3	0x1b511189baee50251335695b74d67c40	*						
	5a04eddaa79158a9090cc7c3eb204cbf							
4	0xf3bcf088ccf9d00338b6c87e8f822da6							
	8ec471f88d1561193b3c017d20b3c971							
5	0x40584c059e6cc72fb61f7bd1b9c28e73							
	c689551e6e7de6b0b9b730fab9237531							
6	0x1b1d09de1ca16ca890036e018d7e73de							
	b39b07de80c19dcc5e55a699f021d880							
7	0x83a82632acaac5418716f4f357f5007f							
	719d604525dbe1831c09a2ead9400a52							
8	0xccb8b2a1d60f731b5f51910eb427e211							
	96090d5cd2a077f33968b425301e3fbd							
9	0x616767ebf3c1f3ec662d8c57c630c6ae							
	b31853fd40a18c3d831f5490610c1f16							
10	0x5a4b3e157b66327c75d7f01304d188e2							
	cecd1b6168240c11a01775d581b01fb6							
11	0xf25744b8a1c2184ba38521801bf4727c							
	407b85eb5aef8884d8fbb1c12e2f6108							
12	0xaf8189f51874999162890f72e0ef25e6							
	f76b4ab94dc53569bdd66507f5ab0d8e							
13	0x96251e396756686645f35cd059da329f							
	7083838d56c9ccacebbaf8486af18844							

McGrew & Curcio Expires January 5, 2015 [Page 49]

Internet-Draft Hash-Based Signatures July 2014

14	0x773d5206e40065d3553c3c2ed2500122	
	e3ee6fd2c91f35a57f084dc839aab1fc	
15	0xcda7fae67ce2c3ed29ce426fdcd3f2a8	
	eb699e47a67a52f1c94e89726ffe97fa	
 +-----------+------------------------------------+------------------+

 Table 14

 +------------+------------------------------------+-----------------+
MTS	Node Value	Member of						
Interior	(H(child_0		child_1		...			Authentication
(Level 2)	child_k-1))	Path of						
Node		Message 0						
Number								
+------------+------------------------------------+-----------------+								
0	0xb6a310deb55ed48004133ece2aebb25e							
	d74defb77ebd8d63c79a42b5b4191b0c							
1	0x71a0c8b767ade2c97ebac069383e4dfb	*						
	a1c06d5fd3f69a775711ea6470747664							
2	0x91109fa97662dc88ae63037391ac2650	*						
	f6c664ac2448b54800a1df748953af31							
3	0xd277fb8c89689525f90de567068d6c93	*						
	565df3588b97223276ef8e9495468996							
 +------------+------------------------------------+-----------------+

 Table 15

McGrew & Curcio Expires January 5, 2015 [Page 50]

Internet-Draft Hash-Based Signatures July 2014

Authors’ Addresses

 David McGrew
 Cisco Systems
 13600 Dulles Technology Drive
 Herndon, VA 20171
 USA

 Email: mcgrew@cisco.com

 Michael Curcio
 Cisco Systems
 7025-2 Kit Creek Road
 Research Triangle Park, NC 27709-4987
 USA

 Email: micurcio@cisco.com

McGrew & Curcio Expires January 5, 2015 [Page 51]

Network Working Group Y. Nir
Internet-Draft Check Point
Intended status: Informational A. Langley
Expires: January 5, 2015 Google Inc
 July 4, 2014

 ChaCha20 and Poly1305 for IETF protocols
 draft-nir-cfrg-chacha20-poly1305-06

Abstract

 This document defines the ChaCha20 stream cipher, as well as the use
 of the Poly1305 authenticator, both as stand-alone algorithms, and as
 a "combined mode", or Authenticated Encryption with Additional Data
 (AEAD) algorithm.

 This document does not introduce any new crypto, but is meant to
 serve as a stable reference and an implementation guide.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Nir & Langley Expires January 5, 2015 [Page 1]

Internet-Draft ChaCha20 & Poly1305 July 2014

Table of Contents

 1. Introduction . 3
 1.1. Conventions Used in This Document 3
 2. The Algorithms . 4
 2.1. The ChaCha Quarter Round 4
 2.1.1. Test Vector for the ChaCha Quarter Round 4
 2.2. A Quarter Round on the ChaCha State 5
 2.2.1. Test Vector for the Quarter Round on the ChaCha
 state . 5
 2.3. The ChaCha20 block Function 6
 2.3.1. Test Vector for the ChaCha20 Block Function 7
 2.4. The ChaCha20 encryption algorithm 8
 2.4.1. Example and Test Vector for the ChaCha20 Cipher . . . 9
 2.5. The Poly1305 algorithm 11
 2.5.1. Poly1305 Example and Test Vector 13
 2.6. Generating the Poly1305 key using ChaCha20 14
 2.6.1. Poly1305 Key Generation Test Vector 15
 2.7. A Pseudo-Random Function for ChaCha/Poly-1305 based
 Crypto Suites . 16
 2.8. AEAD Construction . 16
 2.8.1. Example and Test Vector for AEAD_CHACHA20-POLY1305 . . 17
 3. Implementation Advice . 19
 4. Security Considerations 20
 5. IANA Considerations . 21
 6. Acknowledgements . 21
 7. References . 21
 7.1. Normative References 21
 7.2. Informative References 22
 Appendix A. Additional Test Vectors 23
 A.1. The ChaCha20 Block Functions 23
 A.2. ChaCha20 Encryption 26
 A.3. Poly1305 Message Authentication Code 28
 A.4. Poly1305 Key Generation Using ChaCha20 34
 A.5. ChaCha20-Poly1305 AEAD Decryption 35
 Authors’ Addresses . 38

Nir & Langley Expires January 5, 2015 [Page 2]

Internet-Draft ChaCha20 & Poly1305 July 2014

1. Introduction

 The Advanced Encryption Standard (AES - [FIPS-197]) has become the
 gold standard in encryption. Its efficient design, wide
 implementation, and hardware support allow for high performance in
 many areas. On most modern platforms, AES is anywhere from 4x to 10x
 as fast as the previous most-used cipher, 3-key Data Encryption
 Standard (3DES - [FIPS-46]), which makes it not only the best choice,
 but the only practical choice.

 The problem is that if future advances in cryptanalysis reveal a
 weakness in AES, users will be in an unenviable position. With the
 only other widely supported cipher being the much slower 3DES, it is
 not feasible to re-configure implementations to use 3DES.
 [standby-cipher] describes this issue and the need for a standby
 cipher in greater detail.

 This document defines such a standby cipher. We use ChaCha20
 ([chacha]) with or without the Poly1305 ([poly1305]) authenticator.
 These algorithms are not just fast. They are fast even in software-
 only C-language implementations, allowing for much quicker deployment
 when compared with algorithms such as AES that are significantly
 accelerated by hardware implementations.

 This document does not introduce these new algorithms. They have
 been defined in scientific papers by D. J. Bernstein, which are
 referenced by this document. The purpose of this document is to
 serve as a stable reference for IETF documents making use of these
 algorithms.

 These algorithms have undergone rigorous analysis. Several papers
 discuss the security of Salsa and ChaCha ([LatinDances],
 [Zhenqing2012]).

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The description of the ChaCha algorithm will at various time refer to
 the ChaCha state as a "vector" or as a "matrix". This follows the
 use of these terms in DJB’s paper. The matrix notation is more
 visually convenient, and gives a better notion as to why some rounds
 are called "column rounds" while others are called "diagonal rounds".
 Here’s a diagram of how to matrices relate to vectors (using the C
 language convention of zero being the index origin).

Nir & Langley Expires January 5, 2015 [Page 3]

Internet-Draft ChaCha20 & Poly1305 July 2014

 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15

 The elements in this vector or matrix are 32-bit unsigned integers.

 The algorithm name is "ChaCha". "ChaCha20" is a specific instance
 where 20 "rounds" (or 80 quarter rounds - see Section 2.1) are used.
 Other variations are defined, with 8 or 12 rounds, but in this
 document we only describe the 20-round ChaCha, so the names "ChaCha"
 and "ChaCha20" will be used interchangeably.

2. The Algorithms

 The subsections below describe the algorithms used and the AEAD
 construction.

2.1. The ChaCha Quarter Round

 The basic operation of the ChaCha algorithm is the quarter round. It
 operates on four 32-bit unsigned integers, denoted a, b, c, and d.
 The operation is as follows (in C-like notation):
 o a += b; d ^= a; d <<<= 16;
 o c += d; b ^= c; b <<<= 12;
 o a += b; d ^= a; d <<<= 8;
 o c += d; b ^= c; b <<<= 7;
 Where "+" denotes integer addition modulo 2^32, "^" denotes a bitwise
 XOR, and "<<< n" denotes an n-bit left rotation (towards the high
 bits).

 For example, let’s see the add, XOR and roll operations from the
 first line with sample numbers:
 o b = 0x01020304
 o a = 0x11111111
 o d = 0x01234567
 o a = a + b = 0x11111111 + 0x01020304 = 0x12131415
 o d = d ^ a = 0x01234567 ^ 0x12131415 = 0x13305172
 o d = d<<<16 = 0x51721330

2.1.1. Test Vector for the ChaCha Quarter Round

 For a test vector, we will use the same numbers as in the example,
 adding something random for c.
 o a = 0x11111111

Nir & Langley Expires January 5, 2015 [Page 4]

Internet-Draft ChaCha20 & Poly1305 July 2014

 o b = 0x01020304
 o c = 0x9b8d6f43
 o d = 0x01234567

 After running a Quarter Round on these 4 numbers, we get these:
 o a = 0xea2a92f4
 o b = 0xcb1cf8ce
 o c = 0x4581472e
 o d = 0x5881c4bb

2.2. A Quarter Round on the ChaCha State

 The ChaCha state does not have 4 integer numbers, but 16. So the
 quarter round operation works on only 4 of them - hence the name.
 Each quarter round operates on 4 pre-determined numbers in the ChaCha
 state. We will denote by QUATERROUND(x,y,z,w) a quarter-round
 operation on the numbers at indexes x, y, z, and w of the ChaCha
 state when viewed as a vector. For example, if we apply
 QUARTERROUND(1,5,9,13) to a state, this means running the quarter
 round operation on the elements marked with an asterisk, while
 leaving the others alone:

 0 *a 2 3
 4 *b 6 7
 8 *c 10 11
 12 *d 14 15

 Note that this run of quarter round is part of what is called a
 "column round".

2.2.1. Test Vector for the Quarter Round on the ChaCha state

 For a test vector, we will use a ChaCha state that was generated
 randomly:

 Sample ChaCha State

 879531e0 c5ecf37d 516461b1 c9a62f8a
 44c20ef3 3390af7f d9fc690b 2a5f714c
 53372767 b00a5631 974c541a 359e9963
 5c971061 3d631689 2098d9d6 91dbd320

 We will apply the QUARTERROUND(2,7,8,13) operation to this state.
 For obvious reasons, this one is part of what is called a "diagonal
 round":

Nir & Langley Expires January 5, 2015 [Page 5]

Internet-Draft ChaCha20 & Poly1305 July 2014

 After applying QUARTERROUND(2,7,8,13)

 879531e0 c5ecf37d bdb886dc c9a62f8a
 44c20ef3 3390af7f d9fc690b cfacafd2
 e46bea80 b00a5631 974c541a 359e9963
 5c971061 ccc07c79 2098d9d6 91dbd320

 Note that only the numbers in positions 2, 7, 8, and 13 changed.

2.3. The ChaCha20 block Function

 The ChaCha block function transforms a ChaCha state by running
 multiple quarter rounds.

 The inputs to ChaCha20 are:
 o A 256-bit key, treated as a concatenation of 8 32-bit little-
 endian integers.
 o A 96-bit nonce, treated as a concatenation of 3 32-bit little-
 endian integers.
 o A 32-bit block count parameter, treated as a 32-bit little-endian
 integer.

 The output is 64 random-looking bytes.

 The ChaCha algorithm described here uses a 256-bit key. The original
 algorithm also specified 128-bit keys and 8- and 12-round variants,
 but these are out of scope for this document. In this section we
 describe the ChaCha block function.

 Note also that the original ChaCha had a 64-bit nonce and 64-bit
 block count. We have modified this here to be more consistent with
 recommendations in section 3.2 of [RFC5116]. This limits the use of
 a single (key,nonce) combination to 2^32 blocks, or 256 GB, but that
 is enough for most uses. In cases where a single key is used by
 multiple senders, it is important to make sure that they don’t use
 the same nonces. This can be assured by partitioning the nonce space
 so that the first 32 bits are unique per sender, while the other 64
 bits come from a counter.

 The ChaCha20 state is initialized as follows:
 o The first 4 words (0-3) are constants: 0x61707865, 0x3320646e,
 0x79622d32, 0x6b206574.
 o The next 8 words (4-11) are taken from the 256-bit key by reading
 the bytes in little-endian order, in 4-byte chunks.
 o Word 12 is a block counter. Since each block is 64-byte, a 32-bit
 word is enough for 256 Gigabytes of data.

Nir & Langley Expires January 5, 2015 [Page 6]

Internet-Draft ChaCha20 & Poly1305 July 2014

 o Words 13-15 are a nonce, which should not be repeated for the same
 key. The 13th word is the first 32 bits of the input nonce taken
 as a little-endian integer, while the 15th word is the last 32
 bits.

 cccccccc cccccccc cccccccc cccccccc
 kkkkkkkk kkkkkkkk kkkkkkkk kkkkkkkk
 kkkkkkkk kkkkkkkk kkkkkkkk kkkkkkkk
 bbbbbbbb nnnnnnnn nnnnnnnn nnnnnnnn

 c=constant k=key b=blockcount n=nonce

 ChaCha20 runs 20 rounds, alternating between "column" and "diagonal"
 rounds. Each round is 4 quarter-rounds, and they are run as follows.
 Quarter-rounds 1-4 are part of a "column" round, while 5-8 are part
 of a "diagonal" round:
 1. QUARTERROUND (0, 4, 8,12)
 2. QUARTERROUND (1, 5, 9,13)
 3. QUARTERROUND (2, 6,10,14)
 4. QUARTERROUND (3, 7,11,15)
 5. QUARTERROUND (0, 5,10,15)
 6. QUARTERROUND (1, 6,11,12)
 7. QUARTERROUND (2, 7, 8,13)
 8. QUARTERROUND (3, 4, 9,14)

 At the end of 20 rounds, we add the original input words to the
 output words, and serialize the result by sequencing the words one-
 by-one in little-endian order.

 Note: "addition" in the above paragraph is done modulo 2^32. In some
 machine languages this is called carryless addition on a 32-bit word.

2.3.1. Test Vector for the ChaCha20 Block Function

 For a test vector, we will use the following inputs to the ChaCha20
 block function:
 o Key = 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10:11:12:13:
 14:15:16:17:18:19:1a:1b:1c:1d:1e:1f. The key is a sequence of
 octets with no particular structure before we copy it into the
 ChaCha state.
 o Nonce = (00:00:00:09:00:00:00:4a:00:00:00:00)
 o Block Count = 1.

 After setting up the ChaCha state, it looks like this:

Nir & Langley Expires January 5, 2015 [Page 7]

Internet-Draft ChaCha20 & Poly1305 July 2014

 ChaCha State with the key set up.

 61707865 3320646e 79622d32 6b206574
 03020100 07060504 0b0a0908 0f0e0d0c
 13121110 17161514 1b1a1918 1f1e1d1c
 00000001 09000000 4a000000 00000000

 After running 20 rounds (10 column rounds interleaved with 10
 diagonal rounds), the ChaCha state looks like this:

 ChaCha State after 20 rounds

 837778ab e238d763 a67ae21e 5950bb2f
 c4f2d0c7 fc62bb2f 8fa018fc 3f5ec7b7
 335271c2 f29489f3 eabda8fc 82e46ebd
 d19c12b4 b04e16de 9e83d0cb 4e3c50a2

 Finally we add the original state to the result (simple vector or
 matrix addition), giving this:

 ChaCha State at the end of the ChaCha20 operation

 e4e7f110 15593bd1 1fdd0f50 c47120a3
 c7f4d1c7 0368c033 9aaa2204 4e6cd4c3
 466482d2 09aa9f07 05d7c214 a2028bd9
 d19c12b5 b94e16de e883d0cb 4e3c50a2

 After we serialize the state, we get this:

 Serialized Block:
 000 10 f1 e7 e4 d1 3b 59 15 50 0f dd 1f a3 20 71 c4 ;Y.P.... q.
 016 c7 d1 f4 c7 33 c0 68 03 04 22 aa 9a c3 d4 6c 4e 3.h.."....lN
 032 d2 82 64 46 07 9f aa 09 14 c2 d7 05 d9 8b 02 a2 ..dF............
 048 b5 12 9c d1 de 16 4e b9 cb d0 83 e8 a2 50 3c 4e N......P<N

2.4. The ChaCha20 encryption algorithm

 ChaCha20 is a stream cipher designed by D. J. Bernstein. It is a
 refinement of the Salsa20 algorithm, and uses a 256-bit key.

 ChaCha20 successively calls the ChaCha20 block function, with the
 same key and nonce, and with successively increasing block counter
 parameters. ChaCha20 then serializes the resulting state by writing
 the numbers in little-endian order, creating a key-stream block.
 Concatenating the key-stream blocks from the successive blocks forms
 a key stream, which is then XOR-ed with the plaintext.
 Alternatively, each key-stream block can be XOR-ed with a plaintext
 block before proceeding to create the next block, saving some memory.

Nir & Langley Expires January 5, 2015 [Page 8]

Internet-Draft ChaCha20 & Poly1305 July 2014

 There is no requirement for the plaintext to be an integral multiple
 of 512-bits. If there is extra keystream from the last block, it is
 discarded. Specific protocols MAY require that the plaintext and
 ciphertext have certain length. Such protocols need to specify how
 the plaintext is padded, and how much padding it receives.

 The inputs to ChaCha20 are:
 o A 256-bit key
 o A 32-bit initial counter. This can be set to any number, but will
 usually be zero or one. It makes sense to use 1 if we use the
 zero block for something else, such as generating a one-time
 authenticator key as part of an AEAD algorithm.
 o A 96-bit nonce. In some protocols, this is known as the
 Initialization Vector.
 o An arbitrary-length plaintext

 The output is an encrypted message of the same length.

 Decryption is done in the same way. The ChaCha20 block function is
 used to expand the key into a key stream, which is XOR-ed with the
 ciphertext giving back the plaintext.

2.4.1. Example and Test Vector for the ChaCha20 Cipher

 For a test vector, we will use the following inputs to the ChaCha20
 block function:
 o Key = 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10:11:12:13:
 14:15:16:17:18:19:1a:1b:1c:1d:1e:1f.
 o Nonce = (00:00:00:00:00:00:00:4a:00:00:00:00).
 o Initial Counter = 1.

 We use the following for the plaintext. It was chosen to be long
 enough to require more than one block, but not so long that it would
 make this example cumbersome (so, less than 3 blocks):

 Plaintext Sunscreen:
 000 4c 61 64 69 65 73 20 61 6e 64 20 47 65 6e 74 6c Ladies and Gentl
 016 65 6d 65 6e 20 6f 66 20 74 68 65 20 63 6c 61 73 emen of the clas
 032 73 20 6f 66 20 27 39 39 3a 20 49 66 20 49 20 63 s of ’99: If I c
 048 6f 75 6c 64 20 6f 66 66 65 72 20 79 6f 75 20 6f ould offer you o
 064 6e 6c 79 20 6f 6e 65 20 74 69 70 20 66 6f 72 20 nly one tip for
 080 74 68 65 20 66 75 74 75 72 65 2c 20 73 75 6e 73 the future, suns
 096 63 72 65 65 6e 20 77 6f 75 6c 64 20 62 65 20 69 creen would be i
 112 74 2e t.

 The following figure shows 4 ChaCha state matrices:

Nir & Langley Expires January 5, 2015 [Page 9]

Internet-Draft ChaCha20 & Poly1305 July 2014

 1. First block as it is set up.
 2. Second block as it is set up. Note that these blocks are only
 two bits apart - only the counter in position 12 is different.
 3. Third block is the first block after the ChaCha20 block
 operation.
 4. Final block is the second block after the ChaCha20 block
 operation was applied.
 After that, we show the keystream.

 First block setup:
 61707865 3320646e 79622d32 6b206574
 03020100 07060504 0b0a0908 0f0e0d0c
 13121110 17161514 1b1a1918 1f1e1d1c
 00000001 00000000 4a000000 00000000

 Second block setup:
 61707865 3320646e 79622d32 6b206574
 03020100 07060504 0b0a0908 0f0e0d0c
 13121110 17161514 1b1a1918 1f1e1d1c
 00000002 00000000 4a000000 00000000

 First block after block operation:
 f3514f22 e1d91b40 6f27de2f ed1d63b8
 821f138c e2062c3d ecca4f7e 78cff39e
 a30a3b8a 920a6072 cd7479b5 34932bed
 40ba4c79 cd343ec6 4c2c21ea b7417df0

 Second block after block operation:
 9f74a669 410f633f 28feca22 7ec44dec
 6d34d426 738cb970 3ac5e9f3 45590cc4
 da6e8b39 892c831a cdea67c1 2b7e1d90
 037463f3 a11a2073 e8bcfb88 edc49139

 Keystream:
 22:4f:51:f3:40:1b:d9:e1:2f:de:27:6f:b8:63:1d:ed:8c:13:1f:82:3d:2c:06
 e2:7e:4f:ca:ec:9e:f3:cf:78:8a:3b:0a:a3:72:60:0a:92:b5:79:74:cd:ed:2b
 93:34:79:4c:ba:40:c6:3e:34:cd:ea:21:2c:4c:f0:7d:41:b7:69:a6:74:9f:3f
 63:0f:41:22:ca:fe:28:ec:4d:c4:7e:26:d4:34:6d:70:b9:8c:73:f3:e9:c5:3a
 c4:0c:59:45:39:8b:6e:da:1a:83:2c:89:c1:67:ea:cd:90:1d:7e:2b:f3:63

 Finally, we XOR the Keystream with the plaintext, yielding the
 Ciphertext:

Nir & Langley Expires January 5, 2015 [Page 10]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Ciphertext Sunscreen:
 000 6e 2e 35 9a 25 68 f9 80 41 ba 07 28 dd 0d 69 81 n.5.%h..A..(..i.
 016 e9 7e 7a ec 1d 43 60 c2 0a 27 af cc fd 9f ae 0b .˜z..C‘..’......
 032 f9 1b 65 c5 52 47 33 ab 8f 59 3d ab cd 62 b3 57 ..e.RG3..Y=..b.W
 048 16 39 d6 24 e6 51 52 ab 8f 53 0c 35 9f 08 61 d8 .9.$.QR..S.5..a.
 064 07 ca 0d bf 50 0d 6a 61 56 a3 8e 08 8a 22 b6 5e P.jaV....".^
 080 52 bc 51 4d 16 cc f8 06 81 8c e9 1a b7 79 37 36 R.QM.........y76
 096 5a f9 0b bf 74 a3 5b e6 b4 0b 8e ed f2 78 5e 42 Z...t.[......x^B
 112 87 4d .M

2.5. The Poly1305 algorithm

 Poly1305 is a one-time authenticator designed by D. J. Bernstein.
 Poly1305 takes a 32-byte one-time key and a message and produces a
 16-byte tag.

 The original article ([poly1305]) is entitled "The Poly1305-AES
 message-authentication code", and the MAC function there requires a
 128-bit AES key, a 128-bit "additional key", and a 128-bit (non-
 secret) nonce. AES is used there for encrypting the nonce, so as to
 get a unique (and secret) 128-bit string, but as the paper states,
 "There is nothing special about AES here. One can replace AES with
 an arbitrary keyed function from an arbitrary set of nonces to 16-
 byte strings."

 Regardless of how the key is generated, the key is partitioned into
 two parts, called "r" and "s". The pair (r,s) should be unique, and
 MUST be unpredictable for each invocation (that is why it was
 originally obtained by encrypting a nonce), while "r" MAY be
 constant, but needs to be modified as follows before being used: ("r"
 is treated as a 16-octet little-endian number):
 o r[3], r[7], r[11], and r[15] are required to have their top four
 bits clear (be smaller than 16)
 o r[4], r[8], and r[12] are required to have their bottom two bits
 clear (be divisible by 4)

 The following sample code clamps "r" to be appropriate:

Nir & Langley Expires January 5, 2015 [Page 11]

Internet-Draft ChaCha20 & Poly1305 July 2014

 /*
 Adapted from poly1305aes_test_clamp.c version 20050207
 D. J. Bernstein
 Public domain.
 */

 #include "poly1305aes_test.h"

 void poly1305aes_test_clamp(unsigned char r[16])
 {
 r[3] &= 15;
 r[7] &= 15;
 r[11] &= 15;
 r[15] &= 15;
 r[4] &= 252;
 r[8] &= 252;
 r[12] &= 252;
 }

 The "s" should be unpredictable, but it is perfectly acceptable to
 generate both "r" and "s" uniquely each time. Because each of them
 is 128-bit, pseudo-randomly generating them (see Section 2.6) is also
 acceptable.

 The inputs to Poly1305 are:
 o A 256-bit one-time key
 o An arbitrary length message

 The output is a 128-bit tag.

 First, the "r" value should be clamped.

 Next, set the constant prime "P" be 2^130-5:
 3fffffffffffffffffffffffffffffffb. Also set a variable "accumulator"
 to zero.

 Next, divide the message into 16-byte blocks. The last one might be
 shorter:
 o Read the block as a little-endian number.
 o Add one bit beyond the number of octets. For a 16-byte block this
 is equivalent to adding 2^128 to the number. For the shorter
 block it can be 2^120, 2^112, or any power of two that is evenly
 divisible by 8, all the way down to 2^8.
 o If the block is not 17 bytes long (the last block), pad it with
 zeros. This is meaningless if you’re treating it them as numbers.
 o Add this number to the accumulator.

Nir & Langley Expires January 5, 2015 [Page 12]

Internet-Draft ChaCha20 & Poly1305 July 2014

 o Multiply by "r"
 o Set the accumulator to the result modulo p. To summarize: Acc =
 ((Acc+block)*r) % p.

 Finally, the value of the secret key "s" is added to the accumulator,
 and the 128 least significant bits are serialized in little-endian
 order to form the tag.

2.5.1. Poly1305 Example and Test Vector

 For our example, we will dispense with generating the one-time key
 using AES, and assume that we got the following keying material:
 o Key Material: 85:d6:be:78:57:55:6d:33:7f:44:52:fe:42:d5:06:a8:01:
 03:80:8a:fb:0d:b2:fd:4a:bf:f6:af:41:49:f5:1b
 o s as an octet string: 01:03:80:8a:fb:0d:b2:fd:4a:bf:f6:af:41:49:
 f5:1b
 o s as a 128-bit number: 1bf54941aff6bf4afdb20dfb8a800301
 o r before clamping: 85:d6:be:78:57:55:6d:33:7f:44:52:fe:42:d5:06:a8
 o Clamped r as a number: 806d5400e52447c036d555408bed685.

 For our message, we’ll use a short text:

 Message to be Authenticated:
 000 43 72 79 70 74 6f 67 72 61 70 68 69 63 20 46 6f Cryptographic Fo
 016 72 75 6d 20 52 65 73 65 61 72 63 68 20 47 72 6f rum Research Gro
 032 75 70 up

 Since Poly1305 works in 16-byte chunks, the 34-byte message divides
 into 3 blocks. In the following calculation, "Acc" denotes the
 accumulator and "Block" the current block:

 Block #1

 Acc = 00
 Block = 6f4620636968706172676f7470797243
 Block with 0x01 byte = 016f4620636968706172676f7470797243
 Acc + block = 016f4620636968706172676f7470797243
 (Acc+Block) * r =
 b83fe991ca66800489155dcd69e8426ba2779453994ac90ed284034da565ecf
 Acc = ((Acc+Block)*r) % P = 2c88c77849d64ae9147ddeb88e69c83fc

Nir & Langley Expires January 5, 2015 [Page 13]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Block #2

 Acc = 2c88c77849d64ae9147ddeb88e69c83fc
 Block = 6f7247206863726165736552206d7572
 Block with 0x01 byte = 016f7247206863726165736552206d7572
 Acc + block = 437febea505c820f2ad5150db0709f96e
 (Acc+Block) * r =
 21dcc992d0c659ba4036f65bb7f88562ae59b32c2b3b8f7efc8b00f78e548a26
 Acc = ((Acc+Block)*r) % P = 2d8adaf23b0337fa7cccfb4ea344b30de

 Last Block

 Acc = 2d8adaf23b0337fa7cccfb4ea344b30de
 Block = 7075
 Block with 0x01 byte = 017075
 Acc + block = 2d8adaf23b0337fa7cccfb4ea344ca153
 (Acc + Block) * r =
 16d8e08a0f3fe1de4fe4a15486aca7a270a29f1e6c849221e4a6798b8e45321f
 ((Acc + Block) * r) % P = 28d31b7caff946c77c8844335369d03a7

 Adding s we get this number, and serialize if to get the tag:

 Acc + s = 2a927010caf8b2bc2c6365130c11d06a8

 Tag: a8:06:1d:c1:30:51:36:c6:c2:2b:8b:af:0c:01:27:a9

2.6. Generating the Poly1305 key using ChaCha20

 As said in Section 2.5, it is acceptable to generate the one-time
 Poly1305 pseudo-randomly. This section proposes such a method.

 To generate such a key pair (r,s), we will use the ChaCha20 block
 function described in Section 2.3. This assumes that we have a 256-
 bit session key for the MAC function, such as SK_ai and SK_ar in
 IKEv2 ([RFC5996]), the integrity key in ESP and AH, or the
 client_write_MAC_key and server_write_MAC_key in TLS. Any document
 that specifies the use of Poly1305 as a MAC algorithm for some
 protocol must specify that 256 bits are allocated for the integrity
 key.

 The method is to call the block function with the following
 parameters:
 o The 256-bit session integrity key is used as the ChaCha20 key.
 o The block counter is set to zero.
 o The protocol will specify a 96-bit or 64-bit nonce. This MUST be
 unique per invocation with the same key, so it MUST NOT be
 randomly generated. A counter is a good way to implement this,
 but other methods, such as an LFSR are also acceptable. ChaCha20

Nir & Langley Expires January 5, 2015 [Page 14]

Internet-Draft ChaCha20 & Poly1305 July 2014

 as specified here requires a 96-bit nonce. So if the provided
 nonce is only 64-bit, then the first 32 bits of the nonce will be
 set to a constant number. This will usually be zero, but for
 protocols with multiple senders it may be different for each
 sender, but should be the same for all invocations of the function
 with the same key by a particular sender.

 After running the block function, we have a 512-bit state. We take
 the first 256 bits or the serialized state, and use those as the one-
 time Poly1305 key: The first 128 bits are clamped, and form "r",
 while the next 128 bits become "s". The other 256 bits are
 discarded.

 Note that while many protocols have provisions for a nonce for
 encryption algorithms (often called Initialization Vectors, or IVs),
 they usually don’t have such a provision for the MAC function. In
 that case the per-invocation nonce will have to come from somewhere
 else, such as a message counter.

2.6.1. Poly1305 Key Generation Test Vector

 For this example, we’ll set:

 Key:
 000 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
 016 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f

 Nonce:
 000 00 00 00 00 00 01 02 03 04 05 06 07

 The ChaCha state set up with key, nonce, and block counter zero:
 61707865 3320646e 79622d32 6b206574
 83828180 87868584 8b8a8988 8f8e8d8c
 93929190 97969594 9b9a9998 9f9e9d9c
 00000000 00000000 03020100 07060504

 The ChaCha state after 20 rounds:
 8ba0d58a cc815f90 27405081 7194b24a
 37b633a8 a50dfde3 e2b8db08 46a6d1fd
 7da03782 9183a233 148ad271 b46773d1
 3cc1875a 8607def1 ca5c3086 7085eb87

 Output bytes:
 000 8a d5 a0 8b 90 5f 81 cc 81 50 40 27 4a b2 94 71 _...P@’J..q

Nir & Langley Expires January 5, 2015 [Page 15]

Internet-Draft ChaCha20 & Poly1305 July 2014

 016 a8 33 b6 37 e3 fd 0d a5 08 db b8 e2 fd d1 a6 46 .3.7...........F

 And that output is also the 32-byte one-time key used for Poly1305.

2.7. A Pseudo-Random Function for ChaCha/Poly-1305 based Crypto Suites

 Some protocols such as IKEv2([RFC5996]) require a Pseudo-Random
 Function (PRF), mostly for key derivation. In the IKEv2 definition,
 a PRF is a function that accepts a variable-length key and a
 variable-length input, and returns a fixed-length output. This
 section does not specify such a function.

 Poly-1305 is an obvious choice, because MAC functions are often used
 as PRFs. However, Poly-1305 prohibits using the same key twice,
 whereas the PRF in IKEv2 is used multiple times with the same key.
 Adding a nonce or a counter to Poly-1305 can solve this issue, much
 as we do when using this function as a MAC, but that would require
 changing the interface for the PRF function.

 Chacha20 could be used as a key-derivation function, by generating an
 arbitrarily long keystream. However, that is not what protocols such
 as IKEv2 require.

 For this reason, this document does not specify a PRF, and recommends
 that crypto suites use some other PRF such as PRF_HMAC_SHA2_256
 (section 2.1.2 of [RFC4868])

2.8. AEAD Construction

 AEAD_CHACHA20-POLY1305 is an authenticated encryption with additional
 data algorithm. The inputs to AEAD_CHACHA20-POLY1305 are:
 o A 256-bit key
 o A 96-bit nonce - different for each invocation with the same key.
 o An arbitrary length plaintext
 o Arbitrary length additional authenticated data (AAD)

 The ChaCha20 and Poly1305 primitives are combined into an AEAD that
 takes a 256-bit key and 64-bit IV as follows:
 o First the 96-bit nonce is constructed by prepending a 32-bit
 constant value to the IV. This could be set to zero, or could be
 derived from keying material, or could be assigned to a sender.
 It is up to the specific protocol to define the source for that
 32-bit value.
 o Next, a Poly1305 one-time key is generated from the 256-bit key
 and nonce using the procedure described in Section 2.6.
 o The ChaCha20 encryption function is called to encrypt the
 plaintext, using the same key and nonce, and with the initial
 counter set to 1.

Nir & Langley Expires January 5, 2015 [Page 16]

Internet-Draft ChaCha20 & Poly1305 July 2014

 o The Poly1305 function is called with the Poly1305 key calculated
 above, and a message constructed as a concatenation of the
 following:
 * The AAD
 * padding1 - the padding is up to 15 zero bytes, and it brings
 the total length so far to an integral multiple of 16. If the
 length of the AAD was already an integral multiple of 16 bytes,
 this field is zero-length.
 * The ciphertext
 * padding2 - the padding is up to 15 zero bytes, and it brings
 the total length so far to an integral multiple of 16. If the
 length of the ciphertext was already an integral multiple of 16
 bytes, this field is zero-length.
 * The length of the additional data in octets (as a 64-bit
 little-endian integer).
 * The length of the ciphertext in octets (as a 64-bit little-
 endian integer).

 Decryption is pretty much the same thing.

 The output from the AEAD is twofold:
 o A ciphertext of the same length as the plaintext.
 o A 128-bit tag, which is the output of the Poly1305 function.

 A few notes about this design:
 1. The amount of encrypted data possible in a single invocation is
 2^32-1 blocks of 64 bytes each, because of the size of the block
 counter field in the ChaCha20 block function. This gives a total
 of 247,877,906,880 bytes, or nearly 256 GB. This should be
 enough for traffic protocols such as IPsec and TLS, but may be
 too small for file and/or disk encryption. For such uses, we can
 return to the original design, reduce the nonce to 64 bits, and
 use the integer at position 13 as the top 32 bits of a 64-bit
 block counter, increasing the total message size to over a
 million petabytes (1,180,591,620,717,411,303,360 bytes to be
 exact).
 2. Despite the previous item, the ciphertext length field in the
 construction of the buffer on which Poly1305 runs limits the
 ciphertext (and hence, the plaintext) size to 2^64 bytes, or
 sixteen thousand petabytes (18,446,744,073,709,551,616 bytes to
 be exact).

2.8.1. Example and Test Vector for AEAD_CHACHA20-POLY1305

 For a test vector, we will use the following inputs to the
 AEAD_CHACHA20-POLY1305 function:

Nir & Langley Expires January 5, 2015 [Page 17]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Plaintext:
 000 4c 61 64 69 65 73 20 61 6e 64 20 47 65 6e 74 6c Ladies and Gentl
 016 65 6d 65 6e 20 6f 66 20 74 68 65 20 63 6c 61 73 emen of the clas
 032 73 20 6f 66 20 27 39 39 3a 20 49 66 20 49 20 63 s of ’99: If I c
 048 6f 75 6c 64 20 6f 66 66 65 72 20 79 6f 75 20 6f ould offer you o
 064 6e 6c 79 20 6f 6e 65 20 74 69 70 20 66 6f 72 20 nly one tip for
 080 74 68 65 20 66 75 74 75 72 65 2c 20 73 75 6e 73 the future, suns
 096 63 72 65 65 6e 20 77 6f 75 6c 64 20 62 65 20 69 creen would be i
 112 74 2e t.

 AAD:
 000 50 51 52 53 c0 c1 c2 c3 c4 c5 c6 c7 PQRS........

 Key:
 000 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
 016 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f

 IV:
 000 40 41 42 43 44 45 46 47 @ABCDEFG

 32-bit fixed-common part:
 000 07 00 00 00

 Set up for generating poly1305 one-time key (sender id=7):
 61707865 3320646e 79622d32 6b206574
 83828180 87868584 8b8a8988 8f8e8d8c
 93929190 97969594 9b9a9998 9f9e9d9c
 00000000 00000007 43424140 47464544

 After generating Poly1305 one-time key:
 252bac7b af47b42d 557ab609 8455e9a4
 73d6e10a ebd97510 7875932a ff53d53e
 decc7ea2 b44ddbad e49c17d1 d8430bc9
 8c94b7bc 8b7d4b4b 3927f67d 1669a432

 Poly1305 Key:
 000 7b ac 2b 25 2d b4 47 af 09 b6 7a 55 a4 e9 55 84 {.+%-.G...zU..U.
 016 0a e1 d6 73 10 75 d9 eb 2a 93 75 78 3e d5 53 ff ...s.u..*.ux>.S.

 Poly1305 r = 455e9a4057ab6080f47b42c052bac7b
 Poly1305 s = ff53d53e7875932aebd9751073d6e10a

Nir & Langley Expires January 5, 2015 [Page 18]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Keystream bytes:
 9f:7b:e9:5d:01:fd:40:ba:15:e2:8f:fb:36:81:0a:ae:
 c1:c0:88:3f:09:01:6e:de:dd:8a:d0:87:55:82:03:a5:
 4e:9e:cb:38:ac:8e:5e:2b:b8:da:b2:0f:fa:db:52:e8:
 75:04:b2:6e:be:69:6d:4f:60:a4:85:cf:11:b8:1b:59:
 fc:b1:c4:5f:42:19:ee:ac:ec:6a:de:c3:4e:66:69:78:
 8e:db:41:c4:9c:a3:01:e1:27:e0:ac:ab:3b:44:b9:cf:
 5c:86:bb:95:e0:6b:0d:f2:90:1a:b6:45:e4:ab:e6:22:
 15:38

 Ciphertext:
 000 d3 1a 8d 34 64 8e 60 db 7b 86 af bc 53 ef 7e c2 ...4d.‘.{...S.˜.
 016 a4 ad ed 51 29 6e 08 fe a9 e2 b5 a7 36 ee 62 d6 ...Q)n......6.b.
 032 3d be a4 5e 8c a9 67 12 82 fa fb 69 da 92 72 8b =..^..g....i..r.
 048 1a 71 de 0a 9e 06 0b 29 05 d6 a5 b6 7e cd 3b 36 .q.....)....˜.;6
 064 92 dd bd 7f 2d 77 8b 8c 98 03 ae e3 28 09 1b 58 -w......(..X
 080 fa b3 24 e4 fa d6 75 94 55 85 80 8b 48 31 d7 bc ..$...u.U...H1..
 096 3f f4 de f0 8e 4b 7a 9d e5 76 d2 65 86 ce c6 4b ?....Kz..v.e...K
 112 61 16 a.

 AEAD Construction for Poly1305:
 000 50 51 52 53 c0 c1 c2 c3 c4 c5 c6 c7 00 00 00 00 PQRS............
 016 d3 1a 8d 34 64 8e 60 db 7b 86 af bc 53 ef 7e c2 ...4d.‘.{...S.˜.
 032 a4 ad ed 51 29 6e 08 fe a9 e2 b5 a7 36 ee 62 d6 ...Q)n......6.b.
 048 3d be a4 5e 8c a9 67 12 82 fa fb 69 da 92 72 8b =..^..g....i..r.
 064 1a 71 de 0a 9e 06 0b 29 05 d6 a5 b6 7e cd 3b 36 .q.....)....˜.;6
 080 92 dd bd 7f 2d 77 8b 8c 98 03 ae e3 28 09 1b 58 -w......(..X
 096 fa b3 24 e4 fa d6 75 94 55 85 80 8b 48 31 d7 bc ..$...u.U...H1..
 112 3f f4 de f0 8e 4b 7a 9d e5 76 d2 65 86 ce c6 4b ?....Kz..v.e...K
 128 61 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a...............
 144 0c 00 00 00 00 00 00 00 72 00 00 00 00 00 00 00 r.......

 Note the 4 zero bytes in line 000 and the 14 zero bytes in line 128

 Tag:
 1a:e1:0b:59:4f:09:e2:6a:7e:90:2e:cb:d0:60:06:91

3. Implementation Advice

 Each block of ChaCha20 involves 16 move operations and one increment
 operation for loading the state, 80 each of XOR, addition and Roll
 operations for the rounds, 16 more add operations and 16 XOR
 operations for protecting the plaintext. Section 2.3 describes the
 ChaCha block function as "adding the original input words". This
 implies that before starting the rounds on the ChaCha state, we copy

Nir & Langley Expires January 5, 2015 [Page 19]

Internet-Draft ChaCha20 & Poly1305 July 2014

 it aside, only to add it in later. This is correct, but we can save
 a few operations if we instead copy the state and do the work on the
 copy. This way, for the next block you don’t need to recreate the
 state, but only to increment the block counter. This saves
 approximately 5.5% of the cycles.

 It is not recommended to use a generic big number library such as the
 one in OpenSSL for the arithmetic operations in Poly1305. Such
 libraries use dynamic allocation to be able to handle any-sized
 integer, but that flexibility comes at the expense of performance as
 well as side-channel security. More efficient implementations that
 run in constant time are available, one of them in DJB’s own library,
 NaCl ([NaCl]). A constant-time but not optimal approach would be to
 naively implement the arithmetic operations for a 288-bit integers,
 because even a naive implementation will not exceed 2^288 in the
 multiplication of (acc+block) and r. An efficient constant-time
 implementation can be found in the public domain library poly1305-
 donna ([poly1305_donna]).

4. Security Considerations

 The ChaCha20 cipher is designed to provide 256-bit security.

 The Poly1305 authenticator is designed to ensure that forged messages
 are rejected with a probability of 1-(n/(2^102)) for a 16n-byte
 message, even after sending 2^64 legitimate messages, so it is SUF-
 CMA in the terminology of [AE].

 Proving the security of either of these is beyond the scope of this
 document. Such proofs are available in the referenced academic
 papers.

 The most important security consideration in implementing this draft
 is the uniqueness of the nonce used in ChaCha20. Counters and LFSRs
 are both acceptable ways of generating unique nonces, as is
 encrypting a counter using a 64-bit cipher such as DES. Note that it
 is not acceptable to use a truncation of a counter encrypted with a
 128-bit or 256-bit cipher, because such a truncation may repeat after
 a short time.

 The Poly1305 key MUST be unpredictable to an attacker. Randomly
 generating the key would fulfill this requirement, except that
 Poly1305 is often used in communications protocols, so the receiver
 should know the key. Pseudo-random number generation such as by
 encrypting a counter is acceptable. Using ChaCha with a secret key
 and a nonce is also acceptable.

Nir & Langley Expires January 5, 2015 [Page 20]

Internet-Draft ChaCha20 & Poly1305 July 2014

 The algorithms presented here were designed to be easy to implement
 in constant time to avoid side-channel vulnerabilities. The
 operations used in ChaCha20 are all additions, XORs, and fixed
 rotations. All of these can and should be implemented in constant
 time. Access to offsets into the ChaCha state and the number of
 operations do not depend on any property of the key, eliminating the
 chance of information about the key leaking through the timing of
 cache misses.

 For Poly1305, the operations are addition, multiplication and
 modulus, all on >128-bit numbers. This can be done in constant time,
 but a naive implementation (such as using some generic big number
 library) will not be constant time. For example, if the
 multiplication is performed as a separate operation from the modulus,
 the result will some times be under 2^256 and some times be above
 2^256. Implementers should be careful about timing side-channels for
 Poly1305 by using the appropriate implementation of these operations.

5. IANA Considerations

 There are no IANA considerations for this document.

6. Acknowledgements

 ChaCha20 and Poly1305 were invented by Daniel J. Bernstein. The AEAD
 construction and the method of creating the one-time poly1305 key
 were invented by Adam Langley.

 Thanks to Robert Ransom, Watson Ladd, Stefan Buhler, and kenny
 patterson for their helpful comments and explanations. Thanks to
 Niels Moeller for suggesting the more efficient AEAD construction in
 this document. Special thanks to Ilari Liusvaara for providing extra
 test vectors, helpful comments, and for being the first to attempt an
 implementation from this draft.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [chacha] Bernstein, D., "ChaCha, a variant of Salsa20", Jan 2008.

 [poly1305]

Nir & Langley Expires January 5, 2015 [Page 21]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Bernstein, D., "The Poly1305-AES message-authentication
 code", Mar 2005.

7.2. Informative References

 [AE] Bellare, M. and C. Namprempre, "Authenticated Encryption:
 Relations among notions and analysis of the generic
 composition paradigm",
 <http://cseweb.ucsd.edu/˜mihir/papers/oem.html>.

 [FIPS-197]
 National Institute of Standards and Technology, "Advanced
 Encryption Standard (AES)", FIPS PUB 197, November 2001.

 [FIPS-46] National Institute of Standards and Technology, "Data
 Encryption Standard", FIPS PUB 46-2, December 1993,
 <http://www.itl.nist.gov/fipspubs/fip46-2.htm>.

 [LatinDances]
 Aumasson, J., Fischer, S., Khazaei, S., Meier, W., and C.
 Rechberger, "New Features of Latin Dances: Analysis of
 Salsa, ChaCha, and Rumba", Dec 2007.

 [NaCl] Bernstein, D., Lange, T., and P. Schwabe, "NaCl:
 Networking and Cryptography library",
 <http://nacl.cace-project.eu/index.html>.

 [RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
 384, and HMAC-SHA-512 with IPsec", RFC 4868, May 2007.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",
 RFC 5996, September 2010.

 [Zhenqing2012]
 Zhenqing, S., Bin, Z., Dengguo, F., and W. Wenling,
 "Improved key recovery attacks on reduced-round salsa20
 and chacha", 2012.

 [poly1305_donna]
 Floodyberry, A., "Poly1305-donna",
 <https://github.com/floodyberry/poly1305-donna>.

 [standby-cipher]
 McGrew, D., Grieco, A., and Y. Sheffer, "Selection of

Nir & Langley Expires January 5, 2015 [Page 22]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Future Cryptographic Standards",
 draft-mcgrew-standby-cipher (work in progress).

Appendix A. Additional Test Vectors

 The sub-sections of this appendix contain more test vectors for the
 algorithms in the sub-sections of Section 2.

A.1. The ChaCha20 Block Functions

 Test Vector #1:
 ==============

 Key:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 00

 Block Counter = 0

 ChaCha State at the end
 ade0b876 903df1a0 e56a5d40 28bd8653
 b819d2bd 1aed8da0 ccef36a8 c70d778b
 7c5941da 8d485751 3fe02477 374ad8b8
 f4b8436a 1ca11815 69b687c3 8665eeb2

 Keystream:
 000 76 b8 e0 ad a0 f1 3d 90 40 5d 6a e5 53 86 bd 28 v.....=.@]j.S..(
 016 bd d2 19 b8 a0 8d ed 1a a8 36 ef cc 8b 77 0d c7 6...w..
 032 da 41 59 7c 51 57 48 8d 77 24 e0 3f b8 d8 4a 37 .AY|QWH.w$.?..J7
 048 6a 43 b8 f4 15 18 a1 1c c3 87 b6 69 b2 ee 65 86 jC.........i..e.

Nir & Langley Expires January 5, 2015 [Page 23]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Test Vector #2:
 ==============

 Key:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 00

 Block Counter = 1

 ChaCha State at the end
 bee7079f 7a385155 7c97ba98 0d082d73
 a0290fcb 6965e348 3e53c612 ed7aee32
 7621b729 434ee69c b03371d5 d539d874
 281fed31 45fb0a51 1f0ae1ac 6f4d794b

 Keystream:
 000 9f 07 e7 be 55 51 38 7a 98 ba 97 7c 73 2d 08 0d UQ8z...|s-..
 016 cb 0f 29 a0 48 e3 65 69 12 c6 53 3e 32 ee 7a ed ..).H.ei..S>2.z.
 032 29 b7 21 76 9c e6 4e 43 d5 71 33 b0 74 d8 39 d5).!v..NC.q3.t.9.
 048 31 ed 1f 28 51 0a fb 45 ac e1 0a 1f 4b 79 4d 6f 1..(Q..E....KyMo

 Test Vector #3:
 ==============

 Key:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

 Nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 00

 Block Counter = 1

 ChaCha State at the end
 2452eb3a 9249f8ec 8d829d9b ddd4ceb1
 e8252083 60818b01 f38422b8 5aaa49c9
 bb00ca8e da3ba7b4 c4b592d1 fdf2732f
 4436274e 2561b3c8 ebdd4aa6 a0136c00

 Keystream:
 000 3a eb 52 24 ec f8 49 92 9b 9d 82 8d b1 ce d4 dd :.R$..I.........
 016 83 20 25 e8 01 8b 81 60 b8 22 84 f3 c9 49 aa 5a . %....‘."...I.Z
 032 8e ca 00 bb b4 a7 3b da d1 92 b5 c4 2f 73 f2 fd ;...../s..
 048 4e 27 36 44 c8 b3 61 25 a6 4a dd eb 00 6c 13 a0 N’6D..a%.J...l..

Nir & Langley Expires January 5, 2015 [Page 24]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Test Vector #4:
 ==============

 Key:
 000 00 ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 00

 Block Counter = 2

 ChaCha State at the end
 fb4dd572 4bc42ef1 df922636 327f1394
 a78dea8f 5e269039 a1bebbc1 caf09aae
 a25ab213 48a6b46c 1b9d9bcb 092c5be6
 546ca624 1bec45d5 87f47473 96f0992e

 Keystream:
 000 72 d5 4d fb f1 2e c4 4b 36 26 92 df 94 13 7f 32 r.M....K6&.....2
 016 8f ea 8d a7 39 90 26 5e c1 bb be a1 ae 9a f0 ca 9.&^........
 032 13 b2 5a a2 6c b4 a6 48 cb 9b 9d 1b e6 5b 2c 09 ..Z.l..H.....[,.
 048 24 a6 6c 54 d5 45 ec 1b 73 74 f4 87 2e 99 f0 96 $.lT.E..st......

 Test Vector #5:
 ==============

 Key:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 02

 Block Counter = 0

 ChaCha State at the end
 374dc6c2 3736d58c b904e24a cd3f93ef
 88228b1a 96a4dfb3 5b76ab72 c727ee54
 0e0e978a f3145c95 1b748ea8 f786c297
 99c28f5f 628314e8 398a19fa 6ded1b53

 Keystream:
 000 c2 c6 4d 37 8c d5 36 37 4a e2 04 b9 ef 93 3f cd ..M7..67J.....?.
 016 1a 8b 22 88 b3 df a4 96 72 ab 76 5b 54 ee 27 c7 ..".....r.v[T.’.
 032 8a 97 0e 0e 95 5c 14 f3 a8 8e 74 1b 97 c2 86 f7 \....t.....
 048 5f 8f c2 99 e8 14 83 62 fa 19 8a 39 53 1b ed 6d _......b...9S..m

Nir & Langley Expires January 5, 2015 [Page 25]

Internet-Draft ChaCha20 & Poly1305 July 2014

A.2. ChaCha20 Encryption

 Test Vector #1:
 ==============

 Key:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 00

 Initial Block Counter = 0

 Plaintext:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 032 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 048 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Ciphertext:
 000 76 b8 e0 ad a0 f1 3d 90 40 5d 6a e5 53 86 bd 28 v.....=.@]j.S..(
 016 bd d2 19 b8 a0 8d ed 1a a8 36 ef cc 8b 77 0d c7 6...w..
 032 da 41 59 7c 51 57 48 8d 77 24 e0 3f b8 d8 4a 37 .AY|QWH.w$.?..J7
 048 6a 43 b8 f4 15 18 a1 1c c3 87 b6 69 b2 ee 65 86 jC.........i..e.

 Test Vector #2:
 ==============

 Key:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

 Nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 02

 Initial Block Counter = 1

 Plaintext:
 000 41 6e 79 20 73 75 62 6d 69 73 73 69 6f 6e 20 74 Any submission t
 016 6f 20 74 68 65 20 49 45 54 46 20 69 6e 74 65 6e o the IETF inten
 032 64 65 64 20 62 79 20 74 68 65 20 43 6f 6e 74 72 ded by the Contr
 048 69 62 75 74 6f 72 20 66 6f 72 20 70 75 62 6c 69 ibutor for publi
 064 63 61 74 69 6f 6e 20 61 73 20 61 6c 6c 20 6f 72 cation as all or
 080 20 70 61 72 74 20 6f 66 20 61 6e 20 49 45 54 46 part of an IETF
 096 20 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 20 Internet-Draft

Nir & Langley Expires January 5, 2015 [Page 26]

Internet-Draft ChaCha20 & Poly1305 July 2014

 112 6f 72 20 52 46 43 20 61 6e 64 20 61 6e 79 20 73 or RFC and any s
 128 74 61 74 65 6d 65 6e 74 20 6d 61 64 65 20 77 69 tatement made wi
 144 74 68 69 6e 20 74 68 65 20 63 6f 6e 74 65 78 74 thin the context
 160 20 6f 66 20 61 6e 20 49 45 54 46 20 61 63 74 69 of an IETF acti
 176 76 69 74 79 20 69 73 20 63 6f 6e 73 69 64 65 72 vity is consider
 192 65 64 20 61 6e 20 22 49 45 54 46 20 43 6f 6e 74 ed an "IETF Cont
 208 72 69 62 75 74 69 6f 6e 22 2e 20 53 75 63 68 20 ribution". Such
 224 73 74 61 74 65 6d 65 6e 74 73 20 69 6e 63 6c 75 statements inclu
 240 64 65 20 6f 72 61 6c 20 73 74 61 74 65 6d 65 6e de oral statemen
 256 74 73 20 69 6e 20 49 45 54 46 20 73 65 73 73 69 ts in IETF sessi
 272 6f 6e 73 2c 20 61 73 20 77 65 6c 6c 20 61 73 20 ons, as well as
 288 77 72 69 74 74 65 6e 20 61 6e 64 20 65 6c 65 63 written and elec
 304 74 72 6f 6e 69 63 20 63 6f 6d 6d 75 6e 69 63 61 tronic communica
 320 74 69 6f 6e 73 20 6d 61 64 65 20 61 74 20 61 6e tions made at an
 336 79 20 74 69 6d 65 20 6f 72 20 70 6c 61 63 65 2c y time or place,
 352 20 77 68 69 63 68 20 61 72 65 20 61 64 64 72 65 which are addre
 368 73 73 65 64 20 74 6f ssed to

 Ciphertext:
 000 a3 fb f0 7d f3 fa 2f de 4f 37 6c a2 3e 82 73 70 ...}../.O7l.>.sp
 016 41 60 5d 9f 4f 4f 57 bd 8c ff 2c 1d 4b 79 55 ec A‘].OOW...,.KyU.
 032 2a 97 94 8b d3 72 29 15 c8 f3 d3 37 f7 d3 70 05 *....r)....7..p.
 048 0e 9e 96 d6 47 b7 c3 9f 56 e0 31 ca 5e b6 25 0d G...V.1.^.%.
 064 40 42 e0 27 85 ec ec fa 4b 4b b5 e8 ea d0 44 0e @B.’....KK....D.
 080 20 b6 e8 db 09 d8 81 a7 c6 13 2f 42 0e 52 79 50 /B.RyP
 096 42 bd fa 77 73 d8 a9 05 14 47 b3 29 1c e1 41 1c B..ws....G.)..A.
 112 68 04 65 55 2a a6 c4 05 b7 76 4d 5e 87 be a8 5a h.eU*....vM^...Z
 128 d0 0f 84 49 ed 8f 72 d0 d6 62 ab 05 26 91 ca 66 ...I..r..b..&..f
 144 42 4b c8 6d 2d f8 0e a4 1f 43 ab f9 37 d3 25 9d BK.m-....C..7.%.
 160 c4 b2 d0 df b4 8a 6c 91 39 dd d7 f7 69 66 e9 28 l.9...if.(
 176 e6 35 55 3b a7 6c 5c 87 9d 7b 35 d4 9e b2 e6 2b .5U;.l\..{5....+
 192 08 71 cd ac 63 89 39 e2 5e 8a 1e 0e f9 d5 28 0f .q..c.9.^.....(.
 208 a8 ca 32 8b 35 1c 3c 76 59 89 cb cf 3d aa 8b 6c ..2.5.<vY...=..l
 224 cc 3a af 9f 39 79 c9 2b 37 20 fc 88 dc 95 ed 84 .:..9y.+7
 240 a1 be 05 9c 64 99 b9 fd a2 36 e7 e8 18 b0 4b 0b d....6....K.
 256 c3 9c 1e 87 6b 19 3b fe 55 69 75 3f 88 12 8c c0 k.;.Uiu?....
 272 8a aa 9b 63 d1 a1 6f 80 ef 25 54 d7 18 9c 41 1f ...c..o..%T...A.
 288 58 69 ca 52 c5 b8 3f a3 6f f2 16 b9 c1 d3 00 62 Xi.R..?.o......b
 304 be bc fd 2d c5 bc e0 91 19 34 fd a7 9a 86 f6 e6 ...-.....4......
 320 98 ce d7 59 c3 ff 9b 64 77 33 8f 3d a4 f9 cd 85 ...Y...dw3.=....
 336 14 ea 99 82 cc af b3 41 b2 38 4d d9 02 f3 d1 ab A.8M.....
 352 7a c6 1d d2 9c 6f 21 ba 5b 86 2f 37 30 e3 7c fd z....o!.[./70.|.
 368 c4 fd 80 6c 22 f2 21 ...l".!

Nir & Langley Expires January 5, 2015 [Page 27]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Test Vector #3:
 ==============

 Key:
 000 1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0 ..@..U...3......
 016 47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0 G9..@+....\. pu.

 Nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 02

 Initial Block Counter = 42

 Plaintext:
 000 27 54 77 61 73 20 62 72 69 6c 6c 69 67 2c 20 61 ’Twas brillig, a
 016 6e 64 20 74 68 65 20 73 6c 69 74 68 79 20 74 6f nd the slithy to
 032 76 65 73 0a 44 69 64 20 67 79 72 65 20 61 6e 64 ves.Did gyre and
 048 20 67 69 6d 62 6c 65 20 69 6e 20 74 68 65 20 77 gimble in the w
 064 61 62 65 3a 0a 41 6c 6c 20 6d 69 6d 73 79 20 77 abe:.All mimsy w
 080 65 72 65 20 74 68 65 20 62 6f 72 6f 67 6f 76 65 ere the borogove
 096 73 2c 0a 41 6e 64 20 74 68 65 20 6d 6f 6d 65 20 s,.And the mome
 112 72 61 74 68 73 20 6f 75 74 67 72 61 62 65 2e raths outgrabe.

 Ciphertext:
 000 62 e6 34 7f 95 ed 87 a4 5f fa e7 42 6f 27 a1 df b.4....._..Bo’..
 016 5f b6 91 10 04 4c 0d 73 11 8e ff a9 5b 01 e5 cf _....L.s....[...
 032 16 6d 3d f2 d7 21 ca f9 b2 1e 5f b1 4c 61 68 71 .m=..!...._.Lahq
 048 fd 84 c5 4f 9d 65 b2 83 19 6c 7f e4 f6 05 53 eb ...O.e...l....S.
 064 f3 9c 64 02 c4 22 34 e3 2a 35 6b 3e 76 43 12 a6 ..d.."4.*5k>vC..
 080 1a 55 32 05 57 16 ea d6 96 25 68 f8 7d 3f 3f 77 .U2.W....%h.}??w
 096 04 c6 a8 d1 bc d1 bf 4d 50 d6 15 4b 6d a7 31 b1 MP..Km.1.
 112 87 b5 8d fd 72 8a fa 36 75 7a 79 7a c1 88 d1 r..6uzyz...

A.3. Poly1305 Message Authentication Code

 Notice how in test vector #2 r is equal to zero. The part of the
 Poly1305 algorithm where the accumulator is multiplied by r means
 that with r equal zero, the tag will be equal to s regardless of the
 content of the Text. Fortunately, all the proposed methods of
 generating r are such that getting this particular weak key is very
 unlikely.

Nir & Langley Expires January 5, 2015 [Page 28]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Test Vector #1:
 ==============

 One-time Poly1305 Key:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Text to MAC:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 032 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 048 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Tag:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Nir & Langley Expires January 5, 2015 [Page 29]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Test Vector #2:
 ==============

 One-time Poly1305 Key:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 36 e5 f6 b5 c5 e0 60 70 f0 ef ca 96 22 7a 86 3e 6.....‘p...."z.>

 Text to MAC:
 000 41 6e 79 20 73 75 62 6d 69 73 73 69 6f 6e 20 74 Any submission t
 016 6f 20 74 68 65 20 49 45 54 46 20 69 6e 74 65 6e o the IETF inten
 032 64 65 64 20 62 79 20 74 68 65 20 43 6f 6e 74 72 ded by the Contr
 048 69 62 75 74 6f 72 20 66 6f 72 20 70 75 62 6c 69 ibutor for publi
 064 63 61 74 69 6f 6e 20 61 73 20 61 6c 6c 20 6f 72 cation as all or
 080 20 70 61 72 74 20 6f 66 20 61 6e 20 49 45 54 46 part of an IETF
 096 20 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 20 Internet-Draft
 112 6f 72 20 52 46 43 20 61 6e 64 20 61 6e 79 20 73 or RFC and any s
 128 74 61 74 65 6d 65 6e 74 20 6d 61 64 65 20 77 69 tatement made wi
 144 74 68 69 6e 20 74 68 65 20 63 6f 6e 74 65 78 74 thin the context
 160 20 6f 66 20 61 6e 20 49 45 54 46 20 61 63 74 69 of an IETF acti
 176 76 69 74 79 20 69 73 20 63 6f 6e 73 69 64 65 72 vity is consider
 192 65 64 20 61 6e 20 22 49 45 54 46 20 43 6f 6e 74 ed an "IETF Cont
 208 72 69 62 75 74 69 6f 6e 22 2e 20 53 75 63 68 20 ribution". Such
 224 73 74 61 74 65 6d 65 6e 74 73 20 69 6e 63 6c 75 statements inclu
 240 64 65 20 6f 72 61 6c 20 73 74 61 74 65 6d 65 6e de oral statemen
 256 74 73 20 69 6e 20 49 45 54 46 20 73 65 73 73 69 ts in IETF sessi
 272 6f 6e 73 2c 20 61 73 20 77 65 6c 6c 20 61 73 20 ons, as well as
 288 77 72 69 74 74 65 6e 20 61 6e 64 20 65 6c 65 63 written and elec
 304 74 72 6f 6e 69 63 20 63 6f 6d 6d 75 6e 69 63 61 tronic communica
 320 74 69 6f 6e 73 20 6d 61 64 65 20 61 74 20 61 6e tions made at an
 336 79 20 74 69 6d 65 20 6f 72 20 70 6c 61 63 65 2c y time or place,
 352 20 77 68 69 63 68 20 61 72 65 20 61 64 64 72 65 which are addre
 368 73 73 65 64 20 74 6f ssed to

 Tag:
 000 36 e5 f6 b5 c5 e0 60 70 f0 ef ca 96 22 7a 86 3e 6.....‘p...."z.>

Nir & Langley Expires January 5, 2015 [Page 30]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Test Vector #3:
 ==============

 One-time Poly1305 Key:
 000 36 e5 f6 b5 c5 e0 60 70 f0 ef ca 96 22 7a 86 3e 6.....‘p...."z.>
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Text to MAC:
 000 41 6e 79 20 73 75 62 6d 69 73 73 69 6f 6e 20 74 Any submission t
 016 6f 20 74 68 65 20 49 45 54 46 20 69 6e 74 65 6e o the IETF inten
 032 64 65 64 20 62 79 20 74 68 65 20 43 6f 6e 74 72 ded by the Contr
 048 69 62 75 74 6f 72 20 66 6f 72 20 70 75 62 6c 69 ibutor for publi
 064 63 61 74 69 6f 6e 20 61 73 20 61 6c 6c 20 6f 72 cation as all or
 080 20 70 61 72 74 20 6f 66 20 61 6e 20 49 45 54 46 part of an IETF
 096 20 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 20 Internet-Draft
 112 6f 72 20 52 46 43 20 61 6e 64 20 61 6e 79 20 73 or RFC and any s
 128 74 61 74 65 6d 65 6e 74 20 6d 61 64 65 20 77 69 tatement made wi
 144 74 68 69 6e 20 74 68 65 20 63 6f 6e 74 65 78 74 thin the context
 160 20 6f 66 20 61 6e 20 49 45 54 46 20 61 63 74 69 of an IETF acti
 176 76 69 74 79 20 69 73 20 63 6f 6e 73 69 64 65 72 vity is consider
 192 65 64 20 61 6e 20 22 49 45 54 46 20 43 6f 6e 74 ed an "IETF Cont
 208 72 69 62 75 74 69 6f 6e 22 2e 20 53 75 63 68 20 ribution". Such
 224 73 74 61 74 65 6d 65 6e 74 73 20 69 6e 63 6c 75 statements inclu
 240 64 65 20 6f 72 61 6c 20 73 74 61 74 65 6d 65 6e de oral statemen
 256 74 73 20 69 6e 20 49 45 54 46 20 73 65 73 73 69 ts in IETF sessi
 272 6f 6e 73 2c 20 61 73 20 77 65 6c 6c 20 61 73 20 ons, as well as
 288 77 72 69 74 74 65 6e 20 61 6e 64 20 65 6c 65 63 written and elec
 304 74 72 6f 6e 69 63 20 63 6f 6d 6d 75 6e 69 63 61 tronic communica
 320 74 69 6f 6e 73 20 6d 61 64 65 20 61 74 20 61 6e tions made at an
 336 79 20 74 69 6d 65 20 6f 72 20 70 6c 61 63 65 2c y time or place,
 352 20 77 68 69 63 68 20 61 72 65 20 61 64 64 72 65 which are addre
 368 73 73 65 64 20 74 6f ssed to

 Tag:
 000 f3 47 7e 7c d9 54 17 af 89 a6 b8 79 4c 31 0c f0 .G˜|.T.....yL1..

Nir & Langley Expires January 5, 2015 [Page 31]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Test Vector #4:
 ==============

 One-time Poly1305 Key:
 000 1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0 ..@..U...3......
 016 47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0 G9..@+....\. pu.

 Text to MAC:
 000 27 54 77 61 73 20 62 72 69 6c 6c 69 67 2c 20 61 ’Twas brillig, a
 016 6e 64 20 74 68 65 20 73 6c 69 74 68 79 20 74 6f nd the slithy to
 032 76 65 73 0a 44 69 64 20 67 79 72 65 20 61 6e 64 ves.Did gyre and
 048 20 67 69 6d 62 6c 65 20 69 6e 20 74 68 65 20 77 gimble in the w
 064 61 62 65 3a 0a 41 6c 6c 20 6d 69 6d 73 79 20 77 abe:.All mimsy w
 080 65 72 65 20 74 68 65 20 62 6f 72 6f 67 6f 76 65 ere the borogove
 096 73 2c 0a 41 6e 64 20 74 68 65 20 6d 6f 6d 65 20 s,.And the mome
 112 72 61 74 68 73 20 6f 75 74 67 72 61 62 65 2e raths outgrabe.

 Tag:
 000 45 41 66 9a 7e aa ee 61 e7 08 dc 7c bc c5 eb 62 EAf.˜..a...|...b

 Test Vector #5: If one uses 130-bit partial reduction, does the code
 handle the case where partially reduced final result is not fully
 reduced?

 R:
 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 S:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 data:
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 tag:
 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Test Vector #6: What happens if addition of s overflows modulo 2^128?

 R:
 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 S:
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 data:
 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 tag:
 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Nir & Langley Expires January 5, 2015 [Page 32]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Test Vector #7: What happens if data limb is all ones and there is
 carry from lower limb?

 R:
 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 S:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 data:
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 F0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 tag:
 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Test Vector #8: What happens if final result from polynomial part is
 exactly 2^130-5?

 R:
 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 S:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 data:
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FB FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
 tag:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Test Vector #9: What happens if final result from polynomial part is
 exactly 2^130-6?

 R:
 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 S:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 data:
 FD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 tag:
 FA FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Nir & Langley Expires January 5, 2015 [Page 33]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Test Vector #10: What happens if 5*H+L-type reduction produces 131-
 bit intermediate result?

 R:
 01 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00
 S:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 data:
 E3 35 94 D7 50 5E 43 B9 00 00 00 00 00 00 00 00
 33 94 D7 50 5E 43 79 CD 01 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 tag:
 14 00 00 00 00 00 00 00 55 00 00 00 00 00 00 00

 Test Vector #11: What happens if 5*H+L-type reduction produces 131-
 bit final result?

 R:
 01 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00
 S:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 data:
 E3 35 94 D7 50 5E 43 B9 00 00 00 00 00 00 00 00
 33 94 D7 50 5E 43 79 CD 01 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 tag:
 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

A.4. Poly1305 Key Generation Using ChaCha20

 Test Vector #1:
 ==============

 The key:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 The nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 00

 Poly1305 one-time key:
 000 76 b8 e0 ad a0 f1 3d 90 40 5d 6a e5 53 86 bd 28 v.....=.@]j.S..(
 016 bd d2 19 b8 a0 8d ed 1a a8 36 ef cc 8b 77 0d c7 6...w..

Nir & Langley Expires January 5, 2015 [Page 34]

Internet-Draft ChaCha20 & Poly1305 July 2014

 Test Vector #2:
 ==============

 The key:
 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

 The nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 02

 Poly1305 one-time key:
 000 ec fa 25 4f 84 5f 64 74 73 d3 cb 14 0d a9 e8 76 ..%O._dts......v
 016 06 cb 33 06 6c 44 7b 87 bc 26 66 dd e3 fb b7 39 ..3.lD{..&f....9

 Test Vector #3:
 ==============

 The key:
 000 1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0 ..@..U...3......
 016 47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0 G9..@+....\. pu.

 The nonce:
 000 00 00 00 00 00 00 00 00 00 00 00 02

 Poly1305 one-time key:
 000 96 5e 3b c6 f9 ec 7e d9 56 08 08 f4 d2 29 f9 4b .^;...˜.V....).K
 016 13 7f f2 75 ca 9b 3f cb dd 59 de aa d2 33 10 ae ...u..?..Y...3..

A.5. ChaCha20-Poly1305 AEAD Decryption

 Below we’ll see decrypting a message. We receive a ciphertext, a
 nonce, and a tag. We know the key. We will check the tag, and then
 (assuming that it validates) decrypt the ciphertext. In this
 particular protocol, we’ll assume that there is no padding of the
 plaintext.

Nir & Langley Expires January 5, 2015 [Page 35]

Internet-Draft ChaCha20 & Poly1305 July 2014

 The key:
 000 1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0 ..@..U...3......
 016 47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0 G9..@+....\. pu.

 Ciphertext:
 000 64 a0 86 15 75 86 1a f4 60 f0 62 c7 9b e6 43 bd d...u...‘.b...C.
 016 5e 80 5c fd 34 5c f3 89 f1 08 67 0a c7 6c 8c b2 ^.\.4\....g..l..
 032 4c 6c fc 18 75 5d 43 ee a0 9e e9 4e 38 2d 26 b0 Ll..u]C....N8-&.
 048 bd b7 b7 3c 32 1b 01 00 d4 f0 3b 7f 35 58 94 cf ...<2.....;.5X..
 064 33 2f 83 0e 71 0b 97 ce 98 c8 a8 4a bd 0b 94 81 3/..q......J....
 080 14 ad 17 6e 00 8d 33 bd 60 f9 82 b1 ff 37 c8 55 ...n..3.‘....7.U
 096 97 97 a0 6e f4 f0 ef 61 c1 86 32 4e 2b 35 06 38 ...n...a..2N+5.8
 112 36 06 90 7b 6a 7c 02 b0 f9 f6 15 7b 53 c8 67 e4 6..{j|.....{S.g.
 128 b9 16 6c 76 7b 80 4d 46 a5 9b 52 16 cd e7 a4 e9 ..lv{.MF..R.....
 144 90 40 c5 a4 04 33 22 5e e2 82 a1 b0 a0 6c 52 3e .@...3"^.....lR>
 160 af 45 34 d7 f8 3f a1 15 5b 00 47 71 8c bc 54 6a .E4..?..[.Gq..Tj
 176 0d 07 2b 04 b3 56 4e ea 1b 42 22 73 f5 48 27 1a ..+..VN..B"s.H’.
 192 0b b2 31 60 53 fa 76 99 19 55 eb d6 31 59 43 4e ..1‘S.v..U..1YCN
 208 ce bb 4e 46 6d ae 5a 10 73 a6 72 76 27 09 7a 10 ..NFm.Z.s.rv’.z.
 224 49 e6 17 d9 1d 36 10 94 fa 68 f0 ff 77 98 71 30 I....6...h..w.q0
 240 30 5b ea ba 2e da 04 df 99 7b 71 4d 6c 6f 2c 29 0[.......{qMlo,)
 256 a6 ad 5c b4 02 2b 02 70 9b ..\..+.p.

 The nonce:
 000 00 00 00 00 01 02 03 04 05 06 07 08

 The AAD:
 000 f3 33 88 86 00 00 00 00 00 00 4e 91 .3........N.

 Received Tag:
 000 ee ad 9d 67 89 0c bb 22 39 23 36 fe a1 85 1f 38 ...g..."9#6....8

Nir & Langley Expires January 5, 2015 [Page 36]

Internet-Draft ChaCha20 & Poly1305 July 2014

 First, we calculate the one-time Poly1305 key

 @@@ ChaCha state with key set up
 61707865 3320646e 79622d32 6b206574
 a540921c 8ad355eb 868833f3 f0b5f604
 c1173947 09802b40 bc5cca9d c0757020
 00000000 00000000 04030201 08070605

 @@@ ChaCha state after 20 rounds
 a94af0bd 89dee45c b64bb195 afec8fa1
 508f4726 63f554c0 1ea2c0db aa721526
 11b1e514 a0bacc0f 828a6015 d7825481
 e8a4a850 d9dcbbd6 4c2de33a f8ccd912

 @@@ out bytes:
 bd:f0:4a:a9:5c:e4:de:89:95:b1:4b:b6:a1:8f:ec:af:
 26:47:8f:50:c0:54:f5:63:db:c0:a2:1e:26:15:72:aa

 Poly1305 one-time key:
 000 bd f0 4a a9 5c e4 de 89 95 b1 4b b6 a1 8f ec af ..J.\.....K.....
 016 26 47 8f 50 c0 54 f5 63 db c0 a2 1e 26 15 72 aa &G.P.T.c....&.r.

 Next, we construct the AEAD buffer

 Poly1305 Input:
 000 f3 33 88 86 00 00 00 00 00 00 4e 91 00 00 00 00 .3........N.....
 016 64 a0 86 15 75 86 1a f4 60 f0 62 c7 9b e6 43 bd d...u...‘.b...C.
 032 5e 80 5c fd 34 5c f3 89 f1 08 67 0a c7 6c 8c b2 ^.\.4\....g..l..
 048 4c 6c fc 18 75 5d 43 ee a0 9e e9 4e 38 2d 26 b0 Ll..u]C....N8-&.
 064 bd b7 b7 3c 32 1b 01 00 d4 f0 3b 7f 35 58 94 cf ...<2.....;.5X..
 080 33 2f 83 0e 71 0b 97 ce 98 c8 a8 4a bd 0b 94 81 3/..q......J....
 096 14 ad 17 6e 00 8d 33 bd 60 f9 82 b1 ff 37 c8 55 ...n..3.‘....7.U
 112 97 97 a0 6e f4 f0 ef 61 c1 86 32 4e 2b 35 06 38 ...n...a..2N+5.8
 128 36 06 90 7b 6a 7c 02 b0 f9 f6 15 7b 53 c8 67 e4 6..{j|.....{S.g.
 144 b9 16 6c 76 7b 80 4d 46 a5 9b 52 16 cd e7 a4 e9 ..lv{.MF..R.....
 160 90 40 c5 a4 04 33 22 5e e2 82 a1 b0 a0 6c 52 3e .@...3"^.....lR>
 176 af 45 34 d7 f8 3f a1 15 5b 00 47 71 8c bc 54 6a .E4..?..[.Gq..Tj
 192 0d 07 2b 04 b3 56 4e ea 1b 42 22 73 f5 48 27 1a ..+..VN..B"s.H’.
 208 0b b2 31 60 53 fa 76 99 19 55 eb d6 31 59 43 4e ..1‘S.v..U..1YCN
 224 ce bb 4e 46 6d ae 5a 10 73 a6 72 76 27 09 7a 10 ..NFm.Z.s.rv’.z.
 240 49 e6 17 d9 1d 36 10 94 fa 68 f0 ff 77 98 71 30 I....6...h..w.q0
 256 30 5b ea ba 2e da 04 df 99 7b 71 4d 6c 6f 2c 29 0[.......{qMlo,)
 272 a6 ad 5c b4 02 2b 02 70 9b 00 00 00 00 00 00 00 ..\..+.p........
 288 0c 00 00 00 00 00 00 00 09 01 00 00 00 00 00 00

Nir & Langley Expires January 5, 2015 [Page 37]

Internet-Draft ChaCha20 & Poly1305 July 2014

 We calculate the Poly1305 tag and find that it matches

 Calculated Tag:
 000 ee ad 9d 67 89 0c bb 22 39 23 36 fe a1 85 1f 38 ...g..."9#6....8

 Finally, we decrypt the ciphertext

 Plaintext::
 000 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 73 20 Internet-Drafts
 016 61 72 65 20 64 72 61 66 74 20 64 6f 63 75 6d 65 are draft docume
 032 6e 74 73 20 76 61 6c 69 64 20 66 6f 72 20 61 20 nts valid for a
 048 6d 61 78 69 6d 75 6d 20 6f 66 20 73 69 78 20 6d maximum of six m
 064 6f 6e 74 68 73 20 61 6e 64 20 6d 61 79 20 62 65 onths and may be
 080 20 75 70 64 61 74 65 64 2c 20 72 65 70 6c 61 63 updated, replac
 096 65 64 2c 20 6f 72 20 6f 62 73 6f 6c 65 74 65 64 ed, or obsoleted
 112 20 62 79 20 6f 74 68 65 72 20 64 6f 63 75 6d 65 by other docume
 128 6e 74 73 20 61 74 20 61 6e 79 20 74 69 6d 65 2e nts at any time.
 144 20 49 74 20 69 73 20 69 6e 61 70 70 72 6f 70 72 It is inappropr
 160 69 61 74 65 20 74 6f 20 75 73 65 20 49 6e 74 65 iate to use Inte
 176 72 6e 65 74 2d 44 72 61 66 74 73 20 61 73 20 72 rnet-Drafts as r
 192 65 66 65 72 65 6e 63 65 20 6d 61 74 65 72 69 61 eference materia
 208 6c 20 6f 72 20 74 6f 20 63 69 74 65 20 74 68 65 l or to cite the
 224 6d 20 6f 74 68 65 72 20 74 68 61 6e 20 61 73 20 m other than as
 240 2f e2 80 9c 77 6f 72 6b 20 69 6e 20 70 72 6f 67 /...work in prog
 256 72 65 73 73 2e 2f e2 80 9d ress./...

Authors’ Addresses

 Yoav Nir
 Check Point Software Technologies Ltd.
 5 Hasolelim st.
 Tel Aviv 6789735
 Israel

 Email: ynir.ietf@gmail.com

 Adam Langley
 Google Inc

 Email: agl@google.com

Nir & Langley Expires January 5, 2015 [Page 38]

	draft-black-numscurves-01
	draft-hoffman-rfc6090bis-02
	draft-mcgrew-hash-sigs-02
	draft-nir-cfrg-chacha20-poly1305-06

