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Abstract

   This memo describes a family of deterministically generated Nothing
   Up My Sleeve (NUMS) elliptic curves over prime fields offering high
   practical security in cryptographic applications, including Transport
   Layer Security (TLS) and X.509 certificates.  The domain parameters
   are defined for both classical Weierstrass curves, for compatibility
   with existing applications, and modern twisted Edwards curves,
   allowing further efficiency improvements for a given security level.
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   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Since the initial standardization of elliptic curve cryptography
   (ECC) in [SEC1] there has been significant progress related to both
   efficiency and security of curves and implementations.  Notable
   examples are algorithms protected against certain side-channel
   attacks, different ’special’ prime shapes which allow faster modular
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   arithmetic, and a larger set of curve models from which to choose.
   There is also concern in the community regarding the generation and
   potential weaknesses of the curves defined in [NIST].

   This memo describes a set of elliptic curves for cryptography,
   defined in [MSR] which have been specifically chosen to support
   constant-time, exception-free scalar multiplications that are
   resistant to a wide range of side-channel attacks including timing
   and cache attacks, thereby offering high practical security in
   cryptographic applications.  These curves are deterministically
   generated based on algorithms defined in this document and without
   any hidden parameters or reliance on randomness, hence they are
   called Nothing Up My Sleeve (NUMS) curves.  The domain parameters are
   defined for both classical Weierstrass curves, for compatibility with
   existing applications while delivering better performance and
   stronger security, and modern twisted Edwards curves, allowing even
   further efficiency improvements for a given security level.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Scope and Relation to Other Specifications

   This RFC specifies elliptic curve domain parameters over prime fields
   GF(p) with p having a length of 256, 384, and 512 bits, in both
   Weierstrass and twisted Edwards form.  These parameters were
   generated in a transparent and deterministic way and have been shown
   to resist current cryptanalytic approaches.  Furthermore, this
   document identifies the security and implementation requirements for
   the parameters, and describes the methods used for the deterministic
   generation of the parameters.

   This document also describes use of the specified parameters in X.509
   certificates, in accordance with [RFC3279] and [RFC5480].  It does
   not address the cryptographic algorithms to be used with the
   specified parameters nor their application in other standards.
   However, it is consistent with the following RFCs that specify the
   usage of ECC in protocols and applications:

   o  [RFC4050] for XML signatures

   o  [RFC4492] for TLS

   o  [RFC4754] for IKE
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   o  [RFC5753] for cryptographic message syntax (CMS)

3.  Requirements

3.1.  Technical Requirements

   1.  Applicability to multiple cryptographic algorithms without
       transformation, in particular key exchange, e.g.  Elliptic Curve
       Diffie-Hellman (ECDH), and digital signature algorithms, e.g.,
       (ECDSA), Schnorr.

   2.  Multiple security levels using the same curve generation
       algorithm with only a security parameter change.  The curve
       generation algorithm must be extensible to any security level.

   3.  Ability to use pre-computation for increased performance.  In
       particular, speed-up in key generation is important when a curve
       is used with ephemeral key exchange algorithm, such as ECDHE.

   4.  The bit length of prime and order of curves for a given security
       level MUST be divisible by 8.  Specifically, constructions such
       as NIST P-521 are to be avoided as they introduce
       interoperability and implementation problems.

3.2.  Security Requirements

   For each curve type (twisted Edwards or Weierstrass) at a specific
   specific security level:

   1.  The domain parameters SHALL be generated in a simple,
       deterministic manner, without any secret or random inputs.  The
       derivation of the curve parameters is defined in Appendix A.

   2.  The curve SHALL NOT restrict the scalars to a small subset.
       Using full-set scalars prevents implementation pitfalls that
       might otherwise go unnoticed.

   3.  The curve selection SHALL include prime order curves with
       cofactor 1 only.  Composite order curves require changes in
       protocols and in implementations.  Additionally, implementations
       for composite order curves must thwart subgroup attacks.

   4.  The trace of Frobenius MUST NOT be in {0, 1} in order to rule out
       the attacks described in [Smart], [AS], and [S], as in [EBP].

   5.  MOV Degree: the embedding degree k MUST be greater than (r - 1) /
       100, as in [EBP].
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   6.  CM Discriminant: discriminant D MUST be greater than 2^100, as in
       [SC].

4.  Notation

   Throughout this document, the following notation is used:

      s: Denotes the bit length, here s in {256,384,512}.
      p: Denotes the prime number defining the base field.
      c: A positive integer used in the representation of the prime
         p = 2^s - c.
  GF(p): The finite field with p elements.
      b: An element in the finite field GF(p), different from -2,2.
     Eb: The elliptic curve Eb/GF(p):
                y^2 = x^3 - 3x + b
         in short Weierstrass form, defined over GF(p) by the
         parameter b.
     rb: The order rb = #Eb(GF(p)) of the group of GF(p)-rational
         points on Eb.
     tb: The trace of Frobenius tb = p + 1 - rb of Eb.
    rb’: The order rb’ = #E’b(GF(p)) = p + 1 + tb of the group of
         GF(p)-rational points on the quadratic twist Eb’:
                y^2 = x^3 - 3x - b.
      d: An element in the finite field GF(p), different from -1,0.
     Ed: The elliptic curve Ed/GF(p): -x^2 + y^2 = 1 + dx^2y^2 in
         twisted Edwards form, defined over GF(p) by the parameter d.
     rd: The subgroup order such that 4 * rd = #Ed(GF(p)) is the
         order of the group of GF(p)-rational points on Ed.
     td: The trace of Frobenius td = p + 1 - 4 * rd of Ed.
    rd’: The subgroup order such that 4 * rd’ = #Ed’(GF(p)) = p + 1 + tb
         is the order of the group of GF(p)-rational points on the
         quadratic twist Ed’:
                -x^2 = y^2 = 1 + (1 / d) * x^2 * y^2.
      P: A generator point defined over GF(p) either of prime order
         rb in the Weierstrass curve Eb, or of prime order rd on the
         twisted Edwards curve Ed.
   X(P): The x-coordinate of the elliptic curve point P.
   Y(P): The y-coordinate of the elliptic curve point P.

5.  Curve Parameters

5.1.  Parameters for 256-bit Curves
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       p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFF43
       a = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFF40
       b = 0x25581
       r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE43C8275EA265C60E43C8275E
             A265C60
    X(P) = 0x01
    Y(P) = 0x696F1853C1E466D7FC82C96CCEEEDD6BD02C2F9375894EC10BF46306C
             2B56C77
       h = 0x01

                           Curve-Id: numsp256d1

       p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFF43
       a = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFF42
       d = 0x3BEE
       r = 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBE6AA55AD0A6BC64E5B84E6F1
             122B4AD
    X(P) = 0x0D
    Y(P) = 0x7D0AB41E2A1276DBA3D330B39FA046BFBE2A6D63824D303F707F6FB53
             31CADBA
       h = 0x04

                           Curve-Id: numsp256t1

5.2.  Parameters for 384-bit Curves

       p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC3
       a = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC0
       b = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF77BB
       r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD61EAF1EE
             B5D6881BEDA9D3D4C37E27A604D81F67B0E61B9
    X(P) = 0x02
    Y(P) = 0x3C9F82CB4B87B4DC71E763E0663E5DBD8034ED422F04F82673330DC58
             D15FFA2B4A3D0BAD5D30F865BCBBF503EA66F43
       h = 0x01

                           Curve-Id: numsp384d1
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       p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC3
       a = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC2
       d = 0x5158A
       r = 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFECD7D11ED
             5A259A25A13A0458E39F4E451D6D71F70426E25
    X(P) = 0x08
    Y(P) = 0x749CDABA136CE9B65BD4471794AA619DAA5C7B4C930BFF8EBD798A8AE
             753C6D72F003860FEBABAD534A4ACF5FA7F5BEE
       h = 0x04

                           Curve-Id: numsp384t1

5.3.  Parameters for 512-bit Curves

       p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFDC7
       a = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFDC4
       b = 0x1D99B
       r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFF5B3CA4FB94E7831B4FC258ED97D0BDC63B568B36607CD243CE
             153F390433555D
    X(P) = 0x02
    Y(P) = 0x1C282EB23327F9711952C250EA61AD53FCC13031CF6DD336E0B932843
             3AFBDD8CC5A1C1F0C716FDC724DDE537C2B0ADB00BB3D08DC83755B20
             5CC30D7F83CF28
       h = 0x01

                           Curve-Id: numsp512d1
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       p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFDC7
       a = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFFFFFDC6
       d = 0x9BAA8
       r = 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
             FFFFFFFA7E50809EFDABBB9A624784F449545F0DCEA5FF0CB800F894E
             78D1CB0B5F0189
    X(P) = 0x20
    Y(P) = 0x7D67E841DC4C467B605091D80869212F9CEB124BF726973F9FF048779
             E1D614E62AE2ECE5057B5DAD96B7A897C1D72799261134638750F4F0C
             B91027543B1C5E
       h = 0x04

                           Curve-Id: numsp512t1

6.  Object Identifiers and ASN.1 Syntax for X.509 Certificates

6.1.  Object Identifiers

   The root of the tree for the object identifiers defined in this
   specification is given by:

         [TBDOID]

   The following object identifiers represent the domain parameters for
   the curves defined in this draft:

         numsp256d1 OBJECT IDENTIFIER ::= {versionOne 1}

         numsp256t1 OBJECT IDENTIFIER ::= {versionOne 2}

         numsp384d1 OBJECT IDENTIFIER ::= {versionOne 3}

         numsp384t1 OBJECT IDENTIFIER ::= {versionOne 4}

         numsp512d1 OBJECT IDENTIFIER ::= {versionOne 5}

         numsp512t1 OBJECT IDENTIFIER ::= {versionOne 6}

6.2.  ASN.1 Syntax for X.509 Certificates

   The domain parameters for the curves specified in this RFC SHALL be
   used with X.509 certificates according to [RFC5480].  Specifically,
   the algorithm field of subjectPublicKeyInfo MUST be one of:
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   o  id-ecPublicKey to indicate that the algorithms that can be used
      with the subject public key are unrestricted, as required for
      ECDSA, or

   o  id-ecDH to indicate that the algorithm that can be used with the
      subject public key is restricted to the ECDH key agreement
      algorithm, or

   o  id-ecMQV indicates that the algorithm that can be used with the
      subject public key is restricted to the Elliptic Curve Menezes-Qu-
      Vanstone (ECMQV) key agreement algorithm, and

   The field algorithm.parameter of subjectPublicKeyInfo MUST be of type
   namedCurve.  No other values for this field are acceptable.

7.  Acknowledgements

   The authors would like to thank Brian Lamacchia and Tolga Acar for
   their help in the development of this draft.

8.  Security Considerations

   In addition to the discussion in the requirements, [MSR], [SC], and
   the other reference documents on EC security, users SHOULD match
   curves with cryptographic functions of similar strength.  Specific
   recommendations for algorithms, per [RFC5480] are as follows:

   +-------------------+-----------+-------------------+---------------+
   |  Minimum Bits of  |   EC Key  |   Message Digest  |     Curves    |
   |      Security     |    Size   |     Algorithm     |               |
   +-------------------+-----------+-------------------+---------------+
   |        128        |    256    |      SHA-256      | numsp256d1/t1 |
   |        192        |    384    |      SHA-384      | numsp384d1/t1 |
   |        256        |    512    |      SHA-512      | numsp512d1/t1 |
   +-------------------+-----------+-------------------+---------------+

                                  Table 1

9.  Intellectual Property Rights

   The authors have no knowledge about any intellectual property rights
   that cover the usage of the domain parameters defined herein.
   However, readers should be aware that implementations based on these
   domain parameters may require use of inventions covered by patent
   rights.

Black, et al.            Expires January 4, 2015                [Page 9]



Internet-Draft    ECC NUMS Curves and Curve Generation         July 2014

10.  IANA Considerations

   IANA is requested to allocate an object identifier for elliptic
   curves under the PKIX root declared in [RFC5480]:

     PKIX1Algorithms2008 { iso(1) identified-organization(3) dod(6)
       internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) 45 }

   IANA is further requested to allocate object identifiers under this
   new elliptic curve root for the named curves in Section 6.1.
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Appendix A.  Parameter Generation

   This section describes the generation of the curve parameters, namely
   the base field prime p, the curve parameters b and d for the
   Weierstrass and twisted Edwards curves, respectively, and a generator
   point P of the prime order subgroup of the elliptic curve.

A.1.  Prime Generation

   For a given bitlength s in {256, 384, 512}, a prime p is selected as
   a pseudo-Mersenne prime of the form p = 2^s - c for a positive
   integer c.  Each prime is determined by the smallest positive integer
   c such that p = 2^s - c is prime and p = 3 mod 4.

   Input: a bit length s in {256, 384, 512}
   Output: a prime p = 2^s - c with p = 3 mod 4
     1. Set c = 1
     2. while (p = 2^s - c is not prime) do
          c = c + 4
        end while
     3. Output p

                                 GenerateP

A.2.  Deterministic Curve Parameter Generation

A.2.1.  Weierstrass Curves

   For a given bitlength s in {256, 384, 512} and a corresponding prime
   p = 2^s - c selected according to Section A.1, the elliptic curve Eb
   in short Weierstrass form is determined by the element b from GF(p),
   different from -2,2 with smallest absolute value (when represented as
   an integer in the interval [-(p - 1) / 2, (p - 1) / 2]) such that
   both group orders rb and rb’ are prime, and the group order rb < p,
   i.e. tb > 1.  In addition, care must be taken to ensure the MOV
   degree and CM discriminant requirements from Section 3.2 are met.
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   Input: a prime p = 2^s - c with p = 3 mod 4
   Output: the parameter b defining the curve Eb
     1. Set b = 1
     2. while (rb is not prime or rb’ is not prime) do
          b = b + 1
        end while
     3. if p + 1 < rb then
          b = -b
        end if
     4. Output b

                         GenerateCurveWeierstrass

A.2.2.  Twisted Edwards Curves

   For a given bitlength s in {256, 384, 512} and a corresponding prime
   p = 2^s - c selected according to Section A.1, the elliptic curve Ed
   in twisted Edwards form is determined by the element d from GF(p),
   different from -1,0 with smallest value (when represented as a
   positive integer) such that both subgroup orders rd and rd’ are
   prime, and the group order 4 * rd < p, i.e. td > 1.  In addition,
   care must be taken to ensure the MOV degree and CM discriminant
   requirements from Section 3.2 are met.

   Input: a prime p = 2^s - c with p = 3 mod 4
   Output: the parameter d defining the curve Ed
     1. Set d = 1
     2. while (rd is not prime or rd’ is not prime or 4*rd > p) do
          d = d + 1;
        end while
     3. Output d

                           GenerateCurveTEdwards

Appendix B.  Generators

   The generator points on all six curves are selected as the points of
   order rb and rd, respectively, with the smallest value for x(P) when
   represented as a positive integer.
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   Input: a prime p, and a Weierstrass curve parameter b
   Output: a generator point P = (x(P), y(P)) of order rb
   1. Set x = 1
   2. while ((x^3 - 3 * x + b) is not a quadratic residue modulo p) do
        x = x + 1
      end while
   3. Compute an integer s, 0 < s < p, such that
           s^2 = x^3 - 3 * x + b mod p
   4. Set y = min(s, p - s)
   5. Output P = (x, y)

                          GenerateGenWeierstrass

   Input: a prime p and a twisted Edwards curve parameter d
   Output: a generator point P = (x(P), y(P)) of order rd
   1. Set x = 1
   2. while ((d * x^2 = 1 mod p)
             or ((1 + x^2) * (1 - d * x^2) is not a quadratic residue
             modulo p)) do x = x + 1
      end while
   3. Compute an integer s, 0 < s < p, such that
           s^2 * (1 - d * x^2) = 1 + x^2 mod p
   4. Set y = min(s, p - s)
   5. Output P = (x, y)

                            GenerateGenTEdwards
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1.  Introduction

   ECC is a public-key technology that offers performance advantages at
   higher security levels.  It includes an elliptic curve version of the
   Diffie-Hellman key exchange protocol [DH1976] and elliptic curve
   versions of the ElGamal Signature Algorithm [E1985].  The adoption of
   ECC has been slower than had been anticipated, perhaps due to the
   lack of freely available normative documents and uncertainty over
   intellectual property rights.

   This note contains a description of the fundamental algorithms of ECC
   over finite fields with characteristic greater than three, based
   directly on original references.  Its intent is to provide the
   Internet community with a summary of the basic algorithms that
   predate any specialized or optimized algorithms.  The summary is
   detailed enough for use as a normative reference.  The original
   descriptions and notations were followed as closely as possible.

   This version of the note incorporates verified errata that were
   reported against RFC 6090.  Paragraphs or artwork that has errata
   applied are marked with "%%%".  Thise markings will be removed when
   this document is published as an RFC.

   There are several standards that specify or incorporate ECC
   algorithms, including the Internet Key Exchange (IKE), ANSI X9.62,
   and IEEE P1363.  The algorithms in this note can interoperate with
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   some of the algorithms in these standards, with a suitable choice of
   parameters and options.  The specifics are itemized in Section 7.

   The rest of the note is organized as follows.  Sections 2.1, 2.2, and
   2.3 furnish the necessary terminology and notation from modular
   arithmetic, group theory, and the theory of finite fields,
   respectively.  Section 3 defines the groups based on elliptic curves
   over finite fields of characteristic greater than three.  Section 4
   presents the fundamental Elliptic Curve Diffie-Hellman (ECDH)
   algorithm.  Section 5 presents elliptic curve versions of the ElGamal
   signature method.  The representation of integers as octet strings is
   specified in Section 6.  Sections 2 through 6, inclusive, contain all
   of the normative text (the text that defines the norm for
   implementations conforming to this specification), and all of the
   following sections are purely informative.  Interoperability is
   discussed in Section 7.  Validation testing is described in
   Section 8.  Section 9 reviews intellectual property issues.
   Section 10 summarizes security considerations.  Appendix B describes
   random number generation, and other appendices provide clarifying
   details.

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in Appendix A.

2.  Mathematical Background

   This section reviews mathematical preliminaries and establishes
   terminology and notation that are used below.

2.1.  Modular Arithmetic

   This section reviews modular arithmetic.  Two integers x and y are
   said to be congruent modulo n if x - y is an integer multiple of n.

   Two integers x and y are coprime when their greatest common divisor
   is 1; in this case, there is no third number z > 1 such that z
   divides x and z divides y.

   The set Zq = { 0, 1, 2, ..., q-1 } is closed under the operations of
   modular addition, modular subtraction, modular multiplication, and
   modular inverse.  These operations are as follows.

      For each pair of integers a and b in Zq, a + b mod q is equal to
      a + b if a + b < q, and is equal to a + b - q otherwise.
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      For each pair of integers a and b in Zq, a - b mod q is equal to
      a - b if a - b >= 0, and is equal to a - b + q otherwise.

      For each pair of integers a and b in Zq, a * b mod q is equal to
      the remainder of a * b divided by q.

      For each integer x in Zq that is coprime with q, the inverse of x
      modulo q is denoted as 1/x mod q, and can be computed using the
      extended Euclidean algorithm (see Section 4.5.2 of [K1981v2], for
      example).

   Algorithms for these operations are well known; for instance, see
   Chapter 4 of [K1981v2].

2.2.  Group Operations

   This section establishes some terminology and notation for
   mathematical groups, which are needed later on.  Background
   references abound; see [D1966], for example.

   A group is a set of elements G together with an operation that
   combines any two elements in G and returns a third element in G.  The
   operation is denoted as * and its application is denoted as a * b,
   for any two elements a and b in G.  The operation is associative,
   that is, for all a, b, and c in G, a * (b * c) is identical to (a *
   b) * c.  Repeated application of the group operation N-1 times to the
   element a is denoted as a^N, for any element a in G and any positive
   integer N.  That is, a^2 = a * a, a^3 = a * a * a, and so on.  The
   associativity of the group operation ensures that the computation of
   a^n is unambiguous; any grouping of the terms gives the same result.

   %%% The above definition of a group operation uses multiplicative
   notation.  Sometimes an alternative called additive notation is used,
   in which a * b is denoted as a + b, and a^N is denoted as Na.  In
   multiplicative notation, a^N is called exponentiation, while the
   equivalent operation in additive notation is called scalar
   multiplication.  In this document, multiplicative notation is used
   throughout for consistency.  Appendix E elucidates the correspondence
   between the two notations.

   %%% Every group has a special element called the identity element,
   which we denote as e.  For each element a in G, e * a = a * e = a.
   By convention, a^0 is equal to the identity element and a^1 is equal
   to a itself for any a in G.

   Every group element a has a unique inverse element b such that
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   a * b = b * a = e.  The inverse of a is denoted as a^-1 in
   multiplicative notation.  (In additive notation, the inverse of a is
   denoted as -a.)

   For any positive integer X, a^(-X) is defined to be (a^-1)^(X).
   Using this convention, exponentiation behaves as one would expect,
   namely for any integers X and Y:

      a^(X+Y) = (a^X)*(a^Y)

      (a^X)^Y = a^(XY) = (a^Y)^X.

   In cryptographic applications, one typically deals with finite groups
   (groups with a finite number of elements), and for such groups, the
   number of elements of the group is also called the order of the
   group.  A group element a is said to have finite order if a^X = e for
   some positive integer X, and the order of a is the smallest such X.
   If no such X exists, a is said to have infinite order.  All elements
   of a finite group have a finite order, and the order of an element is
   always a divisor of the group order.

   If a group element a has order R, then for any integers X and Y,

      a^X = a^(X mod R),

      a^X = a^Y if and only if X is congruent to Y mod R,

      the set H = { a, a^2, a^3, ... , a^R=e } forms a subgroup of G,
      called the cyclic subgroup generated by a, and a is said to be a
      generator of H.

   %%% Typically, there are several group elements that generate H.  Any
   group element of the form a^M, with M relatively prime to R, also
   generates H.  Note that a^M is equal to a^(M mod R) for any non-
   negative integer M.

   Given the element a of order R, and an integer i between 1 and R-1,
   inclusive, the element a^i can be computed by the "square and
   multiply" method outlined in Section 2.1 of [M1983] (see also Knuth,
   Vol. 2, Section 4.6.3), or other methods.

2.3.  The Finite Field Fp

   This section establishes terminology and notation for finite fields
   with prime characteristic.

   When p is a prime number, then the set Zp, with the addition,
   subtraction, multiplication, and division operations, is a finite
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   field with characteristic p.  Each nonzero element x in Zp has an
   inverse 1/x.  There is a one-to-one correspondence between the
   integers between zero and p-1, inclusive, and the elements of the
   field.  The field Zp is sometimes denoted as Fp or GF(p).

   Equations involving field elements do not explicitly denote the "mod
   p" operation, but it is understood to be implicit.  For example, the
   statement that x, y, and z are in Fp and

      z = x + y

   is equivalent to the statement that x, y, and z are in the set
   { 0, 1, ..., p-1 } and

      z = x + y mod p.

3.  Elliptic Curve Groups

   This note only covers elliptic curves over fields with characteristic
   greater than three; these are the curves used in Suite B [SuiteB].
   For other fields, the definition of the elliptic curve group would be
   different.

   An elliptic curve over a field Fp is defined by the curve equation

      y^2 = x^3 + a*x + b,

   where x, y, a, and b are elements of the field Fp [M1985], and the
   discriminant is nonzero (as described in Section 3.3.1).  A point on
   an elliptic curve is a pair (x,y) of values in Fp that satisfies the
   curve equation, or it is a special point (@,@) that represents the
   identity element (which is called the "point at infinity").  The
   order of an elliptic curve group is the number of distinct points.

   Two elliptic curve points (x1,y1) and (x2,y2) are equal whenever
   x1=x2 and y1=y2, or when both points are the point at infinity.  The
   inverse of the point (x1,y1) is the point (x1,-y1).  The point at
   infinity is its own inverse.

   The group operation associated with the elliptic curve group is as
   follows [BC1989].  To an arbitrary pair of points P and Q specified
   by their coordinates (x1,y1) and (x2,y2), respectively, the group
   operation assigns a third point P*Q with the coordinates (x3,y3).
   These coordinates are computed as follows:

      (x3,y3) = (@,@) when P is not equal to Q and x1 is equal to x2.

      x3 = ((y2-y1)/(x2-x1))^2 - x1 - x2 and
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      y3 = (x1-x3)*(y2-y1)/(x2-x1) - y1 when P is not equal to Q and
      x1 is not equal to x2.

      (x3,y3) = (@,@) when P is equal to Q and y1 is equal to 0.

      x3 = ((3*x1^2 + a)/(2*y1))^2 - 2*x1 and
      y3 = (x1-x3)*(3*x1^2 + a)/(2*y1) - y1 if P is equal to Q and y1 is
      not equal to 0.

   In the above equations, a, x1, x2, x3, y1, y2, and y3 are elements of
   the field Fp; thus, computation of x3 and y3 in practice must reduce
   the right-hand-side modulo p.  Pseudocode for the group operation is
   provided in Appendix F.1.

   The representation of elliptic curve points as a pair of integers in
   Zp is known as the affine coordinate representation.  This
   representation is suitable as an external data representation for
   communicating or storing group elements, though the point at infinity
   must be treated as a special case.

   Some pairs of integers are not valid elliptic curve points.  A valid
   pair will satisfy the curve equation, while an invalid pair will not.

3.1.  Homogeneous Coordinates

   An alternative way to implement the group operation is to use
   homogeneous coordinates [K1987] (see also [KMOV1991]).  This method
   is typically more efficient because it does not require a modular
   inversion operation.

   An elliptic curve point (x,y) (other than the point at infinity
   (@,@)) is equivalent to a point (X,Y,Z) in homogeneous coordinates
   whenever x=X/Z mod p and y=Y/Z mod p.

   Let P1=(X1,Y1,Z1) and P2=(X2,Y2,Z2) be points on an elliptic curve,
   and suppose that the points P1 and P2 are not equal to (@,@), P1 is
   not equal to P2, and P1 is not equal to P2^-1.  Then the product
   P3=(X3,Y3,Z3) = P1 * P2 is given by

      X3 = v * (Z2 * (Z1 * u^2 - 2 * X1 * v^2) - v^3) mod p

      Y3 = Z2 * (3 * X1 * u * v^2 - Y1 * v^3 - Z1 * u^3) + u * v^3 mod p

      Z3 = v^3 * Z1 * Z2 mod p

   where u = Y2 * Z1 - Y1 * Z2 mod p and v = X2 * Z1 - X1 * Z2 mod p.
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   When the points P1 and P2 are equal, then (X1/Z1, Y1/Z1) is equal to
   (X2/Z2, Y2/Z2), which is true if and only if u and v are both equal
   to zero.

   The product P3=(X3,Y3,Z3) = P1 * P1 is given by

      X3 = 2 * Y1 * Z1 * (w^2 - 8 * X1 * Y1^2 * Z1) mod p

      Y3 = 4 * Y1^2 * Z1 * (3 * w * X1 - 2 * Y1^2 * Z1) - w^3 mod p

      Z3 = 8 * (Y1 * Z1)^3 mod p

   where w = 3 * X1^2 + a * Z1^2 mod p.  In the above equations, a, u,
   v, w, X1, X2, X3, Y1, Y2, Y3, Z1, Z2, and Z3 are integers in the set
   Fp.  Pseudocode for the group operation in homogeneous coordinates is
   provided in Appendix F.2.

   When converting from affine coordinates to homogeneous coordinates,
   it is convenient to set Z to 1.  When converting from homogeneous
   coordinates to affine coordinates, it is necessary to perform a
   modular inverse to find 1/Z mod p.

3.2.  Other Coordinates

   Some other coordinate systems have been described; several are
   documented in [CC1986], including Jacobi coordinates.

3.3.  ECC Parameters

   In cryptographic contexts, an elliptic curve parameter set consists
   of a cyclic subgroup of an elliptic curve together with a preferred
   generator of that subgroup.  When working over a prime order finite
   field with characteristic greater than three, an elliptic curve group
   is completely specified by the following parameters:

      The prime number p that indicates the order of the field Fp.

      The value a used in the curve equation.

      The value b used in the curve equation.

      The generator g of the subgroup.

      The order n of the subgroup generated by g.

   An example of an ECC parameter set is provided in Appendix D.

   Parameter generation is out of scope for this note.
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   Each elliptic curve point is associated with a particular parameter
   set.  The elliptic curve group operation is only defined between two
   points in the same group.  It is an error to apply the group
   operation to two elements that are from different groups, or to apply
   the group operation to a pair of coordinates that is not a valid
   point.  (A pair (x,y) of coordinates in Fp is a valid point only when
   it satisfies the curve equation.)  See Section 10.3 for further
   information.

3.3.1.  Discriminant

   For each elliptic curve group, the discriminant -16*(4*a^3 + 27*b^2)
   must be nonzero modulo p [S1986]; this requires that

      4*a^3 + 27*b^2 != 0 mod p.

3.3.2.  Security

   Security is highly dependent on the choice of these parameters.  This
   section gives normative guidance on acceptable choices.  See also
   Section 10 for informative guidance.

   The order of the group generated by g MUST be divisible by a large
   prime, in order to preclude easy solutions of the discrete logarithm
   problem [K1987].

   With some parameter choices, the discrete log problem is
   significantly easier to solve.  This includes parameter sets in which
   b = 0 and p = 3 (mod 4), and parameter sets in which a = 0 and
   p = 2 (mod 3) [MOV1993].  These parameter choices are inferior for
   cryptographic purposes and SHOULD NOT be used.

4.  Elliptic Curve Diffie-Hellman (ECDH)

   The Diffie-Hellman (DH) key exchange protocol [DH1976] allows two
   parties communicating over an insecure channel to agree on a secret
   key.  It was originally defined in terms of operations in the
   multiplicative group of a field with a large prime characteristic.
   Massey [M1983] observed that it can be easily generalized so that it
   is defined in terms of an arbitrary cyclic group.  Miller [M1985] and
   Koblitz [K1987] analyzed the DH protocol over an elliptic curve
   group.  We describe DH following the former reference.

   Let G be a group, and g be a generator for that group, and let t
   denote the order of G.  The DH protocol runs as follows.  Party A
   chooses an exponent j between 1 and t-1, inclusive, uniformly at
   random, computes g^j, and sends that element to B.  Party B chooses
   an exponent k between 1 and t-1, inclusive, uniformly at random,
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   computes g^k, and sends that element to A.  Each party can compute
   g^(j*k); party A computes (g^k)^j, and party B computes (g^j)^k.

   See Appendix B regarding generation of random integers.

4.1.  Data Types

   Each run of the ECDH protocol is associated with a particular
   parameter set (as defined in Section 3.3), and the public keys g^j
   and g^k and the shared secret g^(j*k) are elements of the cyclic
   subgroup associated with the parameter set.

   An ECDH private key z is an integer in Zt, where t is the order of
   the subgroup.

4.2.  Compact Representation

   As described in the final paragraph of [M1985], the x-coordinate of
   the shared secret value g^(j*k) is a suitable representative for the
   entire point whenever exponentiation is used as a one-way function.
   In the ECDH key exchange protocol, after the element g^(j*k) has been
   computed, the x-coordinate of that value can be used as the shared
   secret.  We call this compact output.

   Following [M1985] again, when compact output is used in ECDH, only
   the x-coordinate of an elliptic curve point needs to be transmitted,
   instead of both coordinates as in the typical affine coordinate
   representation.  We call this the compact representation.  Its
   mathematical background is explained in Appendix C.

   ECDH can be used with or without compact output.  Both parties in a
   particular run of the ECDH protocol MUST use the same method.  ECDH
   can be used with or without compact representation.  If compact
   representation is used in a particular run of the ECDH protocol, then
   compact output MUST be used as well.

5.  Elliptic Curve ElGamal Signatures

5.1.  Background

   The ElGamal signature algorithm was introduced in 1984 [E1984a]
   [E1984b] [E1985].  It is based on the discrete logarithm problem, and
   was originally defined for the multiplicative group of the integers
   modulo a large prime number.  It is straightforward to extend it to
   use other finite groups, such as the multiplicative group of the
   finite field GF(2^w) [AMV1990] or an elliptic curve group [A1992].
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   An ElGamal signature consists of a pair of components.  There are
   many possible generalizations of ElGamal signature methods that have
   been obtained by different rearrangements of the equation for the
   second component; see [HMP1994], [HP1994], [NR1994], [A1992], and
   [AMV1990].  These generalizations are independent of the mathematical
   group used, and have been described for the multiplicative group
   modulo a prime number, the multiplicative group of GF(2^w), and
   elliptic curve groups [HMP1994] [NR1994] [AMV1990] [A1992].

   The Digital Signature Algorithm (DSA) [FIPS186] is an important
   ElGamal signature variant.

5.2.  Hash Functions

   ElGamal signatures must use a collision-resistant hash function, so
   that it can sign messages of arbitrary length and can avoid
   existential forgery attacks; see Section 10.4.  (This is true for all
   ElGamal variants [HMP1994].)  We denote the hash function as h().
   Its input is a bit string of arbitrary length, and its output is a
   non-negative integer.

   Let H() denote a hash function whose output is a fixed-length bit
   string.  To use H in an ElGamal signature method, we define the
   mapping between that output and the non-negative integers; this
   realizes the function h() described above.  Given a bit string m, the
   function h(m) is computed as follows:

   1.  H(m) is evaluated; the result is a fixed-length bit string.

   2.  Convert the resulting bit string to an integer i by treating its
       leftmost (initial) bit as the most significant bit of i, and
       treating its rightmost (final) bit as the least significant bit
       of i.

5.3.  KT-IV Signatures

   Koyama and Tsuruoka described a signature method based on Elliptic
   Curve ElGamal, in which the first signature component is the
   x-coordinate of an elliptic curve point reduced modulo q [KT1994].
   In this section, we recall that method, which we refer to as KT-IV.

   The algorithm uses an elliptic curve group, as described in
   Section 3.3, with prime field order p and curve equation parameters a
   and b.  We denote the generator as alpha, and the order of the
   generator as q.  We follow [FIPS186] in checking for exceptional
   cases.
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5.3.1.  Keypair Generation

   The private key z is an integer between 1 and q-1, inclusive,
   generated uniformly at random.  (See Appendix B regarding random
   integers.)  The public key is the group element
   Y = alpha^z.  Each public key is associated with a particular
   parameter set as per Section 3.3.

5.3.2.  Signature Creation

   To compute a KT-IV signature for a message m using the private key z:

   1.  Choose an integer k uniformly at random from the set of all
       integers between 1 and q-1, inclusive.  (See Appendix B regarding
       random integers.)

   2.  Calculate R = (r_x, r_y) = alpha^k.

   3.  Calculate s1 = r_x mod q.

   4.  Check if h(m) + z * s1 = 0 mod q; if so, a new value of k MUST be
       generated and the signature MUST be recalculated.  As an option,
       one MAY check if s1 = 0; if so, a new value of k SHOULD be
       generated and the signature SHOULD be recalculated.  (It is
       extremely unlikely that s1 = 0 or h(m) + z * s1 = 0 mod q if
       signatures are generated properly.)

   5.  Calculate s2 = k/(h(m) + z*s1) mod q.

   The signature is the ordered pair (s1, s2).  Both signature
   components are non-negative integers.

5.3.3.  Signature Verification

   Given the message m, the generator g, the group order q, the public
   key Y, and the signature (s1, s2), verification is as follows:

   1.  Check to see that 0 < s1 < q and 0 < s2 < q; if either condition
       is violated, the signature SHALL be rejected.

   2.  Compute the non-negative integers u1 and u2, where

          u1 = h(m) * s2 mod q, and

          u2 = s1 * s2 mod q.

   3.  Compute the elliptic curve point R’ = alpha^u1 * Y^u2.
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   4.  If the x-coordinate of R’ mod q is equal to s1, then the
       signature and message pass the verification; otherwise, they
       fail.

5.4.  KT-I Signatures

   Horster, Michels, and Petersen categorized many different ElGamal
   signature methods, demonstrated their equivalence, and showed how to
   convert signatures of one type to another type [HMP1994].  In their
   terminology, the signature method of Section 5.3 and [KT1994] is a
   Type IV method, which is why it is denoted as KT-IV.

   A Type I KT signature method has a second component that is computed
   in the same manner as that of the Digital Signature Algorithm.  In
   this section, we describe this method, which we refer to as KT-I.

5.4.1.  Keypair Generation

   Keypairs and keypair generation are exactly as in Section 5.3.1.

5.4.2.  Signature Creation

   To compute a KT-I signature for a message m using the private key z:

   1.  Choose an integer k uniformly at random from the set of all
       integers between 1 and q-1, inclusive.  (See Appendix B regarding
       random integers.)

   2.  Calculate R = (r_x, r_y) = alpha^k.

   3.  Calculate s1 = r_x mod q.

   4.  Calculate s2 = (h(m) + z*s1)/k mod q.

   5.  As an option, one MAY check if s1 = 0 or s2 = 0.  If either
       s1 = 0 or s2 = 0, a new value of k SHOULD be generated and the
       signature SHOULD be recalculated.  (It is extremely unlikely that
       s1 = 0 or s2 = 0 if signatures are generated properly.)

   The signature is the ordered pair (s1, s2).  Both signature
   components are non-negative integers.

5.4.3.  Signature Verification

   Given the message m, the public key Y, and the signature (s1, s2),
   verification is as follows:

McGrew, et al.          Expires December 31, 2015              [Page 14]



Internet-Draft               Fundamental ECC                   June 2015

   1.  Check to see that 0 < s1 < q and 0 < s2 < q; if either condition
       is violated, the signature SHALL be rejected.

   2.  Compute s2_inv = 1/s2 mod q.

   3.  Compute the non-negative integers u1 and u2, where

          u1 = h(m) * s2_inv mod q, and

          u2 = s1 * s2_inv mod q.

   4.  Compute the elliptic curve point R’ = alpha^u1 * Y^u2.

   5.  If the x-coordinate of R’ mod q is equal to s1, then the
       signature and message pass the verification; otherwise, they
       fail.

5.5.  Converting KT-IV Signatures to KT-I Signatures

   A KT-IV signature for a message m and a public key Y can easily be
   converted into a KT-I signature for the same message and public key.
   If (s1, s2) is a KT-IV signature for a message m, then
   (s1, 1/s2 mod q) is a KT-I signature for the same message [HMP1994].

   The conversion operation uses only public information, and it can be
   performed by the creator of the pre-conversion KT-IV signature, the
   verifier of the post-conversion KT-I signature, or by any other
   entity.

   An implementation MAY use this method to compute KT-I signatures.

5.6.  Rationale

   This subsection is not normative for this specification and is
   provided only as background information.

   [HMP1994] presents many generalizations of ElGamal signatures.
   Equation (5) of that reference shows the general signature equation

      A = x_A * B + k * C (mod q)

   where x_A is the private key, k is the secret value, and A, B, and C
   are determined by the Type of the equation, as shown in Table 1 of
   [HMP1994].  DSA [FIPS186] is an EG-I.1 signature method (as is KT-I),
   with A = m, B = -r, and C = s.  (Here we use the notation of
   [HMP1994] in which the first signature component is r and the second
   signature component is s; in KT-I and KT-IV these components are
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   denoted as s1 and s2, respectively.  The private key x_A corresponds
   to the private key z.)  Its signature equation is

      m = -r * z + s * k (mod q).

   The signature method of [KT1994] and Section 5.3 is an EG-IV.1
   method, with A = m * s, B = -r * s, C = 1.  Its signature equation is

      m * s = -r * s * z + k (mod q)

   The functions f and g mentioned in Table 1 of [HMP1994] are merely
   multiplication, as described under the heading "Fifth
   generalization".

   In the above equations, we rely on the implicit conversion of the
   message m from a bit string to an integer.  No hash function is shown
   in these equations, but, as described in Section 10.4, a hash
   function should be applied to the message prior to signing in order
   to prevent existential forgery attacks.

   Nyberg and Rueppel [NR1994] studied many different ElGamal signature
   methods and defined "strong equivalence" as follows:

      Two signature methods are called strongly equivalent if the
      signature of the first scheme can be transformed efficiently into
      signatures of the second scheme and vice versa, without knowledge
      of the private key.

   KT-I and KT-IV signatures are obviously strongly equivalent.

   A valid signature with s2=0 leaks the secret key, since in that case
   z = -h(m) / s1 mod q.  We follow [FIPS186] in checking for this
   exceptional case and the case that s1=0.  The s2=0 check was
   suggested by Rivest [R1992] and is discussed in [BS1992].

   [KT1994] uses "a positive integer q’ that does not exceed q" when
   computing the signature component s1 from the x-coordinate r_x of the
   elliptic curve point R = (r_x, r_y).  The value q’ is also used
   during signature validation when comparing the x-coordinate of a
   computed elliptic curve point to the value to s1.  In this note, we
   use the simplifying convention that q’ = q.

6.  Converting between Integers and Octet Strings

   A method for the conversion between integers and octet strings is
   specified in this section, following the established conventions of
   public key cryptography [R1993].  This method allows integers to be
   represented as octet strings that are suitable for transmission or
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   storage.  This method SHOULD be used when representing an elliptic
   curve point or an elliptic curve coordinate as they are defined in
   this note.

6.1.  Octet-String-to-Integer Conversion

   The octet string S shall be converted to an integer x as follows.
   Let S1, ..., Sk be the octets of S from first to last.  Then the
   integer x shall satisfy

                          k
                    x =  SUM  2^(8(k-i)) Si .
                        i = 1

   In other words, the first octet of S has the most significance in the
   integer and the last octet of S has the least significance.

   Note: the integer x satisfies 0 <= x < 2^(8*k).

6.2.  Integer-to-Octet-String Conversion

   %%% The integer x shall be converted to an octet string S of length k
   as follows.  The string S shall satisfy

                          k
                    y =  SUM  2^(8(k-i)) Si ,
                        i = 1

   where S1, ..., Sk are the octets of S from first to last.  Note that
   the conversion fails if y >= 2^(8*k).

   In other words, the first octet of S has the most significance in the
   integer, and the last octet of S has the least significance.

7.  Interoperability

   The algorithms in this note can be used to interoperate with some
   other ECC specifications.  This section provides details for each
   algorithm.

7.1.  ECDH

   Section 4 can be used with the Internet Key Exchange (IKE) versions
   one [RFC2409] or two [RFC5996].  These algorithms are compatible with
   the ECP groups defined by [RFC5903], [RFC5114], [RFC2409], and
   [RFC2412].  The group definition in this protocol uses an affine
   coordinate representation of the public key.  [RFC5903] uses the
   compact output of Section 4.2, while [RFC4753] (which was obsoleted
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   by RFC 5903) does not.  Neither of those RFCs use compact
   representation.  Note that some groups indicate that the curve
   parameter "a" is negative; these values are to be interpreted modulo
   the order of the field.  For example, a parameter of a = -3 is equal
   to p - 3, where p is the order of the field.  The test cases in
   Section 8 of [RFC5903] can be used to test an implementation; these
   cases use the multiplicative notation, as does this note.  The KEi
   and KEr payloads are equal to g^j and g^k, respectively, with 64 bits
   of encoding data prepended to them.

   The algorithms in Section 4 can be used to interoperate with the IEEE
   [P1363] and ANSI [X9.62] standards for ECDH based on fields of
   characteristic greater than three.  IEEE P1363 ECDH can be used in a
   manner that will interoperate with this note, with the following
   options and parameter choices from that specification:

      prime curves with a cofactor of 1,

      the ECSVDP-DH (Elliptic Curve Secret Value Derivation Primitive,
      Diffie-Hellman version),

      the Key Derivation Function (KDF) must be the "identity" function
      (equivalently, the KDF step should be omitted and the shared
      secret value should be output directly).

7.2.  KT-I and ECDSA

   The Digital Signature Algorithm (DSA) is based on the discrete
   logarithm problem over the multiplicative subgroup of the finite
   field with large prime order [DSA1991] [FIPS186].  The Elliptic Curve
   Digital Signature Algorithm (ECDSA) [P1363] [X9.62] is an elliptic
   curve version of DSA.

   %%% For many hash functions KT-I is mathematically and functionally
   equivalent to ECDSA, and can interoperate with the IEEE [P1363] and
   ANSI [X9.62] standards for Elliptic Curve DSA (ECDSA) based on fields
   of characteristic greater than three.  KT-I signatures can be
   verified using the ECDSA verification algorithm, and ECDSA signatures
   can be verified using the KT-I verification algorithm (refer to
   Section 10.4).

8.  Validating an Implementation

   It is essential to validate the implementation of a cryptographic
   algorithm.  This section outlines tests that should be performed on
   the algorithms defined in this note.
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   A known answer test, or KAT, uses a fixed set of inputs to test an
   algorithm; the output of the algorithm is compared with the expected
   output, which is also a fixed value.  KATs for ECDH and KT-I are set
   out in the following subsections.

   A consistency test generates inputs for one algorithm being tested
   using a second algorithm that is also being tested, then checks the
   output of the first algorithm.  A signature creation algorithm can be
   tested for consistency against a signature verification algorithm.
   Implementations of KT-I should be tested in this way.  Their
   signature generation processes are non-deterministic, and thus cannot
   be tested using a KAT.  Signature verification algorithms, on the
   other hand, are deterministic and should be tested via a KAT.  This
   combination of tests provides coverage for all of the operations,
   including keypair generation.  Consistency testing should also be
   applied to ECDH.

8.1.  ECDH

   An ECDH implementation can be validated using the known answer test
   cases from [RFC5903] or [RFC5114].  The correspondence between the
   notation in RFC 5903 and the notation in this note is summarized in
   the following table.  (Refer to Sections 3.3 and 4; the generator g
   is expressed in affine coordinate representation as (gx, gy)).

    +------------------------+----------------------------------------+
    | ECDH                   | RFC 5903                               |
    +------------------------+----------------------------------------+
    | order p of field Fp    | p                                      |
    | curve coefficient a    | -3                                     |
    | curve coefficient b    | b                                      |
    | generator g            | g=(gx, gy)                             |
    | private keys j and k   | i and r                                |
    | public keys g^j, g^k   | g^i = (gix, giy) and g^r = (grx, gry)  |
    +------------------------+----------------------------------------+

   The correspondence between the notation in RFC 5114 and the notation
   in this note is summarized in the following table.
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        +--------------------------+-----------------------------+
        | ECDH                     | RFC 5114                    |
        +--------------------------+-----------------------------+
        | order p of field Fp      | p                           |
        | curve coefficient a      | a                           |
        | curve coefficient b      | b                           |
        | generator g              | g=(gx, gy)                  |
        | group order n            | n                           |
        | private keys j and k     | dA and dB                   |
        | public keys g^j, g^k     | g^(dA) = (x_qA, y_qA) and   |
        |                          | g^(dB) = (x_qB, y_qB)       |
        | shared secret g^(j*k)    | g^(dA*dB) = (x_Z, y_Z)      |
        +--------------------------+-----------------------------+

8.2.  KT-I

   A KT-I implementation can be validated using the known answer test
   cases from [RFC4754].  The correspondence between the notation in
   that RFC and the notation in this note is summarized in the following
   table.

               +-----------------------+-------------------+
               | KT-I                  | RFC 4754          |
               +-----------------------+-------------------+
               | order p of field Fp   | p                 |
               | curve coefficient a   | -3                |
               | curve coefficient b   | b                 |
               | generator alpha       | g                 |
               | group order q         | q                 |
               | private key z         | w                 |
               | public key Y          | g^w = (gwx,gwy)   |
               | random k              | ephem priv k      |
               | s1                    | r                 |
               | s2                    | s                 |
               | s2_inv                | sinv              |
               | u1                    | u = h*sinv mod q  |
               | u2                    | v = r*sinv mod q  |
               +-----------------------+-------------------+

9.  Intellectual Property

   Concerns about intellectual property have slowed the adoption of ECC
   because a number of optimizations and specialized algorithms have
   been patented in recent years.

   All of the normative references for ECDH (as defined in Section 4)
   were published during or before 1989, and those for KT-I were
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   published during or before May 1994.  All of the normative text for
   these algorithms is based solely on their respective references.

9.1.  Disclaimer

   This document is not intended as legal advice.  Readers are advised
   to consult their own legal advisers if they would like a legal
   interpretation of their rights.

   The IETF policies and processes regarding intellectual property and
   patents are outlined in [RFC3979] and [RFC4879] and at
   https://datatracker.ietf.org/ipr/about/.

10.  Security Considerations

   The security level of an elliptic curve cryptosystem is determined by
   the cryptanalytic algorithm that is the least expensive for an
   attacker to implement.  There are several algorithms to consider.

   The Pohlig-Hellman method is a divide-and-conquer technique [PH1978].
   If the group order n can be factored as

      n = q1 * q2 * ... * qz,

   then the discrete log problem over the group can be solved by
   independently solving a discrete log problem in groups of order q1,
   q2, ..., qz, then combining the results using the Chinese remainder
   theorem.  The overall computational cost is dominated by that of the
   discrete log problem in the subgroup with the largest order.

   Shanks’ algorithm [K1981v3] computes a discrete logarithm in a group
   of order n using O(sqrt(n)) operations and O(sqrt(n)) storage.  The
   Pollard rho algorithm [P1978] computes a discrete logarithm in a
   group of order n using O(sqrt(n)) operations, with a negligible
   amount of storage, and can be efficiently parallelized [VW1994].

   The Pollard lambda algorithm [P1978] can solve the discrete logarithm
   problem using O(sqrt(w)) operations and O(log(w)) storage, when the
   exponent is known to lie in an interval of width w.

   The algorithms described above work in any group.  There are
   specialized algorithms that specifically target elliptic curve
   groups.  There are no known subexponential algorithms against general
   elliptic curve groups, though there are methods that target certain
   special elliptic curve groups; see [MOV1993] and [FR1994].
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10.1.  Subgroups

   A group consisting of a nonempty set of elements S with associated
   group operation * is a subgroup of the group with the set of elements
   G, if the latter group uses the same group operation and S is a
   subset of G.  For each elliptic curve equation, there is an elliptic
   curve group whose group order is equal to the order of the elliptic
   curve; that is, there is a group that contains every point on the
   curve.

   The order m of the elliptic curve is divisible by the order n of the
   group associated with the generator; that is, for each elliptic curve
   group, m = n * c for some number c.  The number c is called the
   "cofactor" [P1363].  Each ECC parameter set as in Section 3.3 is
   associated with a particular cofactor.

   It is possible and desirable to use a cofactor equal to 1.

10.2.  Diffie-Hellman

   Note that the key exchange protocol as defined in Section 4 does not
   protect against active attacks; Party A must use some method to
   ensure that (g^k) originated with the intended communicant B, rather
   than an attacker, and Party B must do the same with (g^j).

   It is not sufficient to authenticate the shared secret g^(j*k), since
   this leaves the protocol open to attacks that manipulate the public
   keys.  Instead, the values of the public keys g^x and g^y that are
   exchanged should be directly authenticated.  This is the strategy
   used by protocols that build on Diffie-Hellman and that use end-
   entity authentication to protect against active attacks, such as
   OAKLEY [RFC2412] and the Internet Key Exchange [RFC2409] [RFC4306]
   [RFC5996].

   When the cofactor of a group is not equal to 1, there are a number of
   attacks that are possible against ECDH.  See [VW1996], [AV1996], and
   [LL1997].

10.3.  Group Representation and Security

   The elliptic curve group operation does not explicitly incorporate
   the parameter b from the curve equation.  This opens the possibility
   that a malicious attacker could learn information about an ECDH
   private key by submitting a bogus public key [BMM2000].  An attacker
   can craft an elliptic curve group G’ that has identical parameters to
   a group G that is being used in an ECDH protocol, except that b is
   different.  An attacker can submit a point on G’ into a run of the
   ECDH protocol that is using group G, and gain information from the
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   fact that the group operations using the private key of the device
   under attack are effectively taking place in G’ instead of G.

   This attack can gain useful information about an ECDH private key
   that is associated with a static public key, i.e., a public key that
   is used in more than one run of the protocol.  However, it does not
   gain any useful information against ephemeral keys.

   This sort of attack is thwarted if an ECDH implementation does not
   assume that each pair of coordinates in Zp is actually a point on the
   appropriate elliptic curve.

   These considerations also apply when ECDH is used with compact
   representation (see Appendix C).

10.4.  Signatures

   Elliptic curve parameters should only be used if they come from a
   trusted source; otherwise, some attacks are possible [AV1996]
   [V1996].

   If no hash function is used in an ElGamal signature system, then the
   system is vulnerable to existential forgeries, in which an attacker
   who does not know a private key can generate valid signatures for the
   associated public key, but cannot generate a signature for a message
   of its own choosing.  (See [E1985] for instance.)  The use of a
   collision-resistant hash function eliminates this vulnerability.

   In principle, any collision-resistant hash function is suitable for
   use in KT signatures.  To facilitate interoperability, we recognize
   the following hashes as suitable for use as the function H defined in
   Section 5.2:

      SHA-256, which has a 256-bit output.

      SHA-384, which has a 384-bit output.

      SHA-512, which has a 512-bit output.

   All of these hash functions are defined in [FIPS180-2].

   The number of bits in the output of the hash used in KT signatures
   should be equal or close to the number of bits needed to represent
   the group order.
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Appendix A.  Key Words

   The definitions of these key words are quoted from [RFC2119] and are
   commonly used in Internet standards.  They are reproduced in this
   note in order to avoid a normative reference from after 1994.

   1.  MUST - This word, or the terms "REQUIRED" or "SHALL", means that
       the definition is an absolute requirement of the specification.

   2.  MUST NOT - This phrase, or the phrase "SHALL NOT", means that the
       definition is an absolute prohibition of the specification.

   3.  SHOULD - This word, or the adjective "RECOMMENDED", means that
       there may exist valid reasons in particular circumstances to
       ignore a particular item, but the full implications must be
       understood and carefully weighed before choosing a different
       course.

   4.  SHOULD NOT - This phrase, or the phrase "NOT RECOMMENDED", means
       that there may exist valid reasons in particular circumstances
       when the particular behavior is acceptable or even useful, but
       the full implications should be understood and the case carefully
       weighed before implementing any behavior described with this
       label.

   5.  MAY - This word, or the adjective "OPTIONAL", means that an item
       is truly optional.  One vendor may choose to include the item
       because a particular marketplace requires it or because the
       vendor feels that it enhances the product while another vendor
       may omit the same item.  An implementation which does not include
       a particular option MUST be prepared to interoperate with another
       implementation which does include the option, though perhaps with
       reduced functionality.  In the same vein an implementation which
       does include a particular option MUST be prepared to interoperate
       with another implementation which does not include the option
       (except, of course, for the feature the option provides.)

Appendix B.  Random Integer Generation

   It is easy to generate an integer uniformly at random between zero
   and (2^t)-1, inclusive, for some positive integer t.  Generate a
   random bit string that contains exactly t bits, and then convert the
   bit string to a non-negative integer by treating the bits as the
   coefficients in a base-2 expansion of an integer.

   It is sometimes necessary to generate an integer r uniformly at
   random so that r satisfies a certain property P, for example, lying
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   within a certain interval.  A simple way to do this is with the
   rejection method:

   1.  Generate a candidate number c uniformly at random from a set that
       includes all numbers that satisfy property P (plus some other
       numbers, preferably not too many)

   2.  If c satisfies property P, then return c.  Otherwise, return to
       Step 1.

   For example, to generate a number between 1 and n-1, inclusive,
   repeatedly generate integers between zero and (2^t)-1, inclusive,
   stopping at the first integer that falls within that interval.

   Recommendations on how to generate random bit strings are provided in
   [RFC4086].

Appendix C.  Why Compact Representation Works

   In the affine representation, the x-coordinate of the point P^i does
   not depend on the y-coordinate of the point P, for any non-negative
   exponent i and any point P.  This fact can be seen as follows.  When
   given only the x-coordinate of a point P, it is not possible to
   determine exactly what the y-coordinate is, but the y value will be a
   solution to the curve equation

      y^2 = x^3 + a*x + b (mod p).

   There are at most two distinct solutions y = w and y = -w mod p, and
   the point P must be either Q=(x,w) or Q^-1=(x,-w).  Thus P^n is equal
   to either Q^n or (Q^-1)^n = (Q^n)^-1.  These values have the same
   x-coordinate.  Thus, the x-coordinate of a point P^i can be computed
   from the x-coordinate of a point P by computing one of the possible
   values of the y coordinate of P, then computing the ith power of P,
   and then ignoring the y-coordinate of that result.

   In general, it is possible to compute a square root modulo p by using
   Shanks’ method [K1981v2]; simple methods exist for some values of p.
   When p = 3 (mod 4), the square roots of z mod p are w and -w mod p,
   where

      w = z ^ ((p+1)/4) (mod p);

   this observation is due to Lehmer [L1969].  When p satisfies this
   property, y can be computed from the curve equation, and either y = w
   or y = -w mod p, where

      w = (x^3 + a*x + b)^((p+1)/4) (mod p).
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   Square roots modulo p only exist for a quadratic residue modulo p,
   [R1988]; if z is not a quadratic residue, then there is no number w
   such that w^2 = z (mod p).  A simple way to verify that z is a
   quadratic residue after computing w is to verify that
   w * w = z (mod p).  If this relation does not hold for the above
   equation, then the value x is not a valid x-coordinate for a valid
   elliptic curve point.  This is an important consideration when ECDH
   is used with compact output; see Section 10.3.

   The primes used in the P-256, P-384, and P-521 curves described in
   [RFC5903] all have the property that p = 3 (mod 4).

Appendix D.  Example ECC Parameter Set

   For concreteness, we recall an elliptic curve defined by Solinas and
   Fu in [RFC5903] and referred to as P-256, which is believed to
   provide a 128-bit security level.  We use the notation of
   Section 3.3, and express the generator in the affine coordinate
   representation g=(gx,gy), where the values gx and gy are in Fp.

   p: FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF

   a: - 3

   b: 5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B

   n: FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551

   gx: 6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296

   gy: 4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5

   Note that p can also be expressed as

      p = 2^(256)-2^(224)+2^(192)+2^(96)-1.

Appendix E.  Additive and Multiplicative Notation

   The early publications on elliptic curve cryptography used
   multiplicative notation, but most modern publications use additive
   notation.  This section includes a table mapping between those two
   conventions.  In this section, a and b are elements of an elliptic
   curve group, and N is an integer.
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          +--------------------------+-------------------------+
          | Multiplicative Notation  | Additive Notation       |
          +--------------------------+-------------------------+
          | multiplication           | addition                |
          | a * b                    | a + b                   |
          | squaring                 | doubling                |
          | a * a = a^2              | a + a = 2a              |
          | exponentiation           | scalar multiplication   |
          | a^N = a * a * ... * a    | Na = a + a + ... + a    |
          | inverse                  | inverse                 |
          | a^-1                     | -a                      |
          +--------------------------+-------------------------+

Appendix F.  Algorithms

   This section contains a pseudocode description of the elliptic curve
   group operation.  Text that follows the symbol "//" is to be
   interpreted as comments rather than instructions.

F.1.  Affine Coordinates

   To an arbitrary pair of elliptic curve points P and Q specified by
   their affine coordinates P=(x1,y1) and Q=(x2,y2), the group operation
   assigns a third point R = P*Q with the coordinates (x3,y3).  These
   coordinates are computed as follows:

     if P is (@,@),
        R = Q
     else if Q is (@,@),
        R = P
     else if P is not equal to Q and x1 is equal to x2,
        R = (@,@)
     else if P is not equal to Q and x1 is not equal to x2,
        x3 = ((y2-y1)/(x2-x1))^2 - x1 - x2 mod p and
        y3 = (x1-x3)*(y2-y1)/(x2-x1) - y1 mod p
     else if P is equal to Q and y1 is equal to 0,
        R = (@,@)
     else    // P is equal to Q and y1 is not equal to 0
        x3 = ((3*x1^2 + a)/(2*y1))^2 - 2*x1 mod p and
        y3 = (x1-x3)*(3*x1^2 + a)/(2*y1) - y mod p.

   From the first and second case, it follows that the point at infinity
   is the neutral element of this operation, which is its own inverse.

   From the curve equation, it follows that for a given curve point P =
   (x,y) distinct from the point at infinity, (x,-y) also is a curve
   point, and from the third and the fifth case it follows that this is
   the inverse of P, P^-1.
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   Note: The fifth and sixth case are known as "point squaring".

F.2.  Homogeneous Coordinates

   An elliptic curve point (x,y) (other than the point at infinity
   (@,@)) is equivalent to a point (X,Y,Z) in homogeneous coordinates
   (with X, Y, and Z in Fp and not all three being zero at once)
   whenever x=X/Z and y=Y/Z.  "Homogenous coordinates" means that two
   triples (X,Y,Z) and (X’,Y’,Z’) are regarded as "equal" (i.e.,
   representing the same point) if there is some nonzero s in Fp such
   that X’=s*X, Y’=s*Y, and Z’=s*Z.  The point at infinity (@,@) is
   regarded as equivalent to the homogenous coordinates (0,1,0), i.e.,
   it can be represented by any triple (0,Y,0) with nonzero Y in Fp.

   Let P1=(X1,Y1,Z1) and P2=(X2,Y2,Z2) be points on the elliptic curve,
   and let u = Y2 * Z1 - Y1 * Z2 and v = X2 * Z1 - X1 * Z2.

   We observe that the points P1 and P2 are equal if and only if u and v
   are both equal to zero.  Otherwise, if either P1 or P2 are equal to
   the point at infinity, v is zero and u is nonzero (but the converse
   implication does not hold).

   Then, the product P3=(X3,Y3,Z3) = P1 * P2 is given by:

     if P1 is the point at infinity,
        P3 = P2
     else if P2 is the point at infinity,
        P3 = P1

     %%%
     else if P1=-P2 as projective points
        P3 = (0,1,0)
     else if P1 does not equal P2
        X3 = v * (Z2 * (Z1 * u^2 - 2 * X1 * v^2) - v^3)
        Y3 = Z2 * (3 * X1 * u * v^2 - Y1 * v^3 - Z1 * u^3) + u * v^3
        Z3 = v^3 * Z1 * Z2
     else    // P2 equals P1, P3 = P1 * P1
         w = 3 * X1^2 + a * Z1^2
        X3 = 2 * Y1 * Z1 * (w^2 - 8 * X1 * Y1^2 * Z1)
        Y3 = 4 * Y1^2 * Z1 * (3 * w * X1 - 2 * Y1^2 * Z1) - w^3
        Z3 = 8 * (Y1 * Z1)^3

   It thus turns out that the point at infinity is the identity element
   and for P1=(X,Y,Z) not equal to this point at infinity, P2=(X,-Y,Z)
   represents P1^-1.

McGrew, et al.          Expires December 31, 2015              [Page 33]



Internet-Draft               Fundamental ECC                   June 2015

Authors’ Addresses

   David A. McGrew
   Cisco Systems
   510 McCarthy Blvd.
   Milpitas, CA  95035
   USA

   Phone: (408) 525 8651
   Email: mcgrew@cisco.com
   URI:   http://www.mindspring.com/˜dmcgrew/dam.htm

   Kevin M. Igoe
   National Security Agency
   Commercial Solutions Center
   United States of America

   Email: kmigoe@nsa.gov

   Margaret Salter
   National Security Agency
   9800 Savage Rd.
   Fort Meade, MD  20755-6709
   USA

   Email: misalte@nsa.gov

   Paul Hoffman
   VPN Consortium

   Email: paul.hoffman@vpnc.org

McGrew, et al.          Expires December 31, 2015              [Page 34]



Crypto Forum Research Group                                    D. McGrew
Internet-Draft                                                 M. Curcio
Intended status: Informational                             Cisco Systems
Expires: January 5, 2015                                    July 4, 2014

                         Hash-Based Signatures
                       draft-mcgrew-hash-sigs-02

Abstract

   This note describes a digital signature system based on cryptographic
   hash functions, following the seminal work in this area.  It
   specifies a one-time signature scheme based on the work of Lamport,
   Diffie, Winternitz, and Merkle (LDWM), and a general signature
   scheme, Merkle Tree Signatures (MTS).  These systems provide
   asymmetric authentication without using large integer mathematics and
   can achieve a high security level.  They are suitable for compact
   implementations, are relatively simple to implement, and naturally
   resist side-channel attacks.  Unlike most other signature systems,
   hash-based signatures would still be secure even if it proves
   feasible for an attacker to build a quantum computer.
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1.  Introduction

   One-time signature systems, and general purpose signature systems
   built out of one-time signature systems, have been known since 1979
   [Merkle79], were well studied in the 1990s, and have benefited from
   renewed development in the last decade.  The characteristics of these
   signature systems are small private and public keys and fast
   signature generation and verification, but large signatures and
   relatively slow key generation.  In recent years there has been
   interest in these systems because of their post-quantum security (see
   Section 8.3) and their suitability for compact implementations.

   This note describes the original Lamport-Diffie-Winternitz-Merkle
   (LDWM) one-time signature system (following Merkle 1979 but also
   using a technique from Merkle’s later work [C:Merkle87][C:
   Merkle89a][C:Merkle89b]) and Merkle tree signature system (following
   Merkle 1979) with enough specificity to ensure interoperability
   between implementations.

   A signature system provides asymmetric message authentication.  The
   key generation algorithm produces a public/private key pair.  A
   message is signed by a private key, producing a signature, and a
   message/signature pair can be verified by a public key.  A One-Time
   Signature (OTS) system can be used to sign exactly one message
   securely.  A general signature system can be used to sign multiple
   messages.  The Merkle Tree Signatures (MTS) is a general signature
   system that uses an OTS system as a component.  In principle the MTS
   can be used with any OTS system, but in this note we describe its use
   with the LDWM system.

   This note is structured as follows.  Notation is introduced in
   Section 2.  The LDWM signature system is described in Section 3, and
   the Merkle tree signature system is described in Section 4.
   Sufficient detail is provided to ensure interoperability.  Appendix B
   describes test considerations and contains test cases that can be
   used to validate an implementation.  The IANA registry for these
   signature systems is described in Section 7.  Security considerations
   are presented in Section 8.

1.1.  Conventions Used In This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].
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2.  Notation

2.1.  Data Types

   Bytes and byte strings are the fundamental data types.  A single byte
   is denoted as a pair of hexadecimal digits with a leading "0x".  A
   byte string is an ordered sequence of zero or more bytes and is
   denoted as an ordered sequence of hexadecimal characters with a
   leading "0x".  For example, 0xe534f0 is a byte string with a length
   of three.  An array of byte strings is an ordered set, indexed
   starting at zero, in which all strings have the same length.

2.1.1.  Operators

   When a and b are real numbers, mathematical operators are defined as
   follows:

      ^ : a ^ b denotes the result of a raised to the power of b

      * : a * b denotes the product of a multiplied by b

      / : a / b denotes the quotient of a divided by b

      % : a % b denotes the remainder of the integer division of a by b

      + : a + b denotes the sum of a and b

      - : a - b denotes the difference of a and b

   The standard order of operations is used when evaluating arithmetic
   expressions.

   If A and B are bytes, then A AND B denotes the bitwise logical and
   operation.

   When B is a byte and i is an integer, then B >> i denotes the logical
   right-shift operation.  Similarly, B << i denotes the logical left-
   shift operation.

   If S and T are byte strings, then S || T denotes the concatenation of
   S and T.

   The i^th byte string in an array A is denoted as A[i].

2.1.2.  Strings of w-bit elements

   If S is a byte string, then byte(S, i) denotes its i^th byte, where
   byte(S, 0) is the leftmost byte.  In addition, bytes(S, i, j) denotes
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   the range of bytes from the i^th to the j^th byte, inclusive.  For
   example, if S = 0x02040608, then byte(S, 0) is 0x02 and bytes(S, 1,
   2) is 0x0406.

   A byte string can be considered to be a string of w-bit unsigned
   integers; the correspondence is defined by the function coef(S, i, w)
   as follows:

   If S is a string, i is a positive integer, and w is a member of the
   set { 1, 2, 4, 8 }, then coef(S, i, w) is the i^th, w-bit value, if S
   is interpreted as a sequence of w-bit values.  That is,

       coef(S, i, w) = (2^w - 1) AND
                       ( byte(S, floor(i * w / 8)) >>
                         (8 - (w * (i % (8 / w)) + w)) )

   For example, if S is the string 0x1234, then coef(S, 7, 1) is 0 and
   coef(S, 0, 4) is 1.

                      S (represented as bits)
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         | 0| 0| 0| 1| 0| 0| 1| 0| 0| 0| 1| 1| 0| 1| 0| 0|
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
                                ^
                                |
                          coef(S, 7, 1)

                 S (represented as four-bit values)
         +-----------+-----------+-----------+-----------+
         |     1     |     2     |     3     |     4     |
         +-----------+-----------+-----------+-----------+
               ^
               |
         coef(S, 0, 4)

   The return value of coef is an unsigned integer.  If i is larger than
   the number of w-bit values in S, then coef(S, i, w) is undefined, and
   an attempt to compute that value should raise an error.

2.2.  Functions

   If r is a non-negative real number, then we define the following
   functions:

      ceil(r) : returns the smallest integer larger than r
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      floor(r) : returns the largest integer smaller than r

      lg(r) : returns the base-2 logarithm of r

   When F is a function that takes r-byte strings as input and returns
   r-byte strings as output, we denote the repeated applications of F
   with itself a non-negative, integral number of times i as F^i.

   Thus for any m-byte string x ,

       F^i(x) = / F( F^(i-1)(x) )  for i > 0
                \ x                for i = 0.

   For example, F^2(x) = F(F(x)).
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3.  LDWM One-Time Signatures

   This section defines LDWM signatures.  The signature is used to
   validate the authenticity of a message by associating a secret
   private key with a shared public key.  These are one-time signatures;
   each private key MUST be used only one time to sign any given
   message.

   As part of the signing process, a digest of the original message is
   computed using the collision-resistant hash function H (see
   Section 3.2), and the resulting digest is signed.

3.1.  Parameters

   The signature system uses the parameters m, n, and w; they are all
   positive integers.  The algorithm description also uses the values p
   and ls.  These parameters are summarized as follows:

      m : the length in bytes of each element of an LDWM signature

      n : the length in bytes of the result of the hash function

      w : the Winternitz parameter; it is a member of the set
      { 1, 2, 4, 8 }

      p : the number of m-byte string elements that make up the LDWM
      signature

      ls : the number of left-shift bits used in the checksum function C
      (defined in Section 3.6).

   The values of m and n are determined by the functions selected for
   use as part of the LDWM algorithm.  They are chosen to ensure an
   appropriate level of security.  The parameter w can be chosen to set
   the number of bytes in the signature; it has little effect on
   security.  Note however, that there is a larger computational cost to
   generate and verify a shorter signature.  The values of p and ls are
   dependent on the choices of the parameters n and w, as described in
   Appendix A.  A table illustrating various combinations of n, w, p,
   and ls is provided in Table 4.

3.2.  Hashing Functions

   The LDWM algorithm uses a collision-resistant hash function H and a
   one way (preimage resistant) function F. H accepts byte strings of
   any length, and returns an n-byte string.  F has m-byte inputs and
   m-byte outputs.
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3.3.  Signature Methods

   To fully describe a LDWM signature method, the parameters m, n, and
   w, as well as the functions H and F MUST be specified.  This section
   defines several LDWM signature systems, each of which is identified
   by a name.  Values for p and ls are provided as a convenience.

   +--------------------+--------+-----------+----+----+---+-----+----+
   | Name               | H      | F         | m  | n  | w | p   | ls |
   +--------------------+--------+-----------+----+----+---+-----+----+
   | LDWM_SHA512_M64_W1 | SHA512 | SHA512    | 32 | 32 | 1 | 265 | 7  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA512_M64_W2 | SHA512 | SHA512    | 32 | 32 | 2 | 133 | 6  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA512_M64_W4 | SHA512 | SHA512    | 32 | 32 | 4 | 67  | 4  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA512_M64_W8 | SHA512 | SHA512    | 32 | 32 | 8 | 34  | 0  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA256_M32_W1 | SHA256 | SHA256    | 32 | 32 | 1 | 265 | 7  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA256_M32_W2 | SHA256 | SHA256    | 32 | 32 | 2 | 133 | 6  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA256_M32_W4 | SHA256 | SHA256    | 32 | 32 | 4 | 67  | 4  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA256_M32_W8 | SHA256 | SHA256    | 32 | 32 | 8 | 34  | 0  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA256_M20_W1 | SHA256 | SHA256-20 | 20 | 32 | 1 | 265 | 7  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA256_M20_W2 | SHA256 | SHA256-20 | 20 | 32 | 2 | 133 | 6  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA256_M20_W4 | SHA256 | SHA256-20 | 20 | 32 | 4 | 67  | 4  |
   |                    |        |           |    |    |   |     |    |
   | LDWM_SHA256_M20_W8 | SHA256 | SHA256-20 | 20 | 32 | 8 | 34  | 0  |
   +--------------------+--------+-----------+----+----+---+-----+----+

                                  Table 1

   Here SHA512 and SHA256 denotes the NIST standard hash functions
   [FIPS180].  SHA256-20 denotes the SHA256 hash function with its final
   output truncated to return the leftmost 20 bytes.

3.4.  Private Key

   The LDWM private key is an array of size p containing m-byte strings.
   Let x denote the private key.  This private key must be used to sign
   one and only one message.  It must therefore be unique from all other
   private keys.  The following algorithm shows pseudocode for
   generating x.
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   Algorithm 0: Generating a Private Key

     for ( i = 0; i < p; i = i + 1 ) {
       set x[i] to a uniformly random m-byte string
     }
     return x

   An implementation MAY use a pseudorandom method to compute x[i], as
   suggested in [Merkle79], page 46.  The details of the pseudorandom
   method do not affect interoperability, but the cryptographic strength
   MUST match that of the LDWM algorithm.

3.5.  Public Key

   The LDWM public key is generated from the private key by applying the
   function F^(2^w - 1) to each individual element of x, then hashing
   all of the resulting values.  The following algorithm shows
   pseudocode for generating the public key, where the array x is the
   private key.

   Algorithm 1: Generating a Public Key From a Private Key

     e = 2^w - 1
     for ( i = 0; i < p; i = i + 1 ) {
       y[i] = F^e(x[i])
     }
     return H(y[0] || y[1] || ... || y[p-1])

3.6.  Checksum

   A checksum is used to ensure that any forgery attempt that
   manipulates the elements of an existing signature will be detected.
   The security property that it provides is detailed in Section 8.

   The checksum value is calculated using a non-negative integer, sum,
   whose width is sized an integer number of w-bit fields such that it
   is capable of holding the difference of the total possible number of
   applications of the function F as defined in the signing algorithm of
   Section 3.7 and the total actual number.  In the worst case (i.e. the
   actual number of times F is iteratively applied is 0), the sum is
   (2^w - 1) * ceil(8*n/w).  Thus for the purposes of this document,
   which describes signature methods based on H = SHA256 (n = 32 bytes)
   and w = { 1, 2, 4, 8 }, let sum be a 16-bit non-negative integer for
   all combinations of n and w.  The calculation uses the parameter ls
   defined in Section 3.1 and calculated in Appendix A, which indicates
   the number of bits used in the left-shift operation.  The checksum
   function C is defined as follows, where S denotes the byte string
   that is input to that function.
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   Algorithm 2: Checksum Calculation

     sum = 0
     for ( i = 0; i < u; i = i + 1 ) {
       sum = sum + (2^w - 1) - coef(S, i, w)
     }
     return (sum << ls)

   Because of the left-shift operation, the rightmost bits of the result
   of C will often be zeros.  Due to the value of p, these bits will not
   be used during signature generation or verification.

      Implementation Note: Based on the previous fact, an implementation
      MAY choose to optimize the width of sum to (v * w) bits and set ls
      to 0.  The rationale for this is given that (2^w - 1) *
      ceil(8*n/w) is the maximum value of sum and the value of (2^w - 1)
      is represented by w bits, the result of adding u w-bit numbers,
      where u = ceil(8*n/w), requires at most (ceil(lg(u)) + w) bits.
      Dividing by w and taking the next largest integer gives the total
      required number of w-bit fields and gives (ceil(lg(u)) / w) + 1,
      or v.  Thus sum requires a minimum width of (v * w) bits and no
      left-shift operation is performed.

3.7.  Signature Generation

   The LDWM signature is generated by using H to compute the hash of the
   message, concatenating the checksum of the hash to the hash itself,
   then considering the resulting value as a sequence of w-bit values,
   and using using each of the the w-bit values to determine the number
   of times to apply the function F to the corresponding element of the
   private key.  The outputs of the function F are concatenated together
   and returned as the signature.  The pseudocode for this procedure is
   shown below.

   Algorithm 3: Generating a Signature From a Private Key and a Message

     V = ( H(message) || C(H(message)) )
     for ( i = 0; i < p; i = i + 1 ) {
       a = coef(V, i, w)
       y[i] = F^a(x[i])
     }
     return (y[0] || y[1] || ... || y[p-1])

   Note that this algorithm results in a signature whose elements are
   intermediate values of the elements computed by the public key
   algorithm in Section 3.5.

   The signature should be provided by the signer to the verifier, along
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   with the message and the public key.

3.8.  Signature Verification

   In order to verify a message with its signature (an array of m-byte
   strings, denoted as y), the receiver must "complete" the series of
   applications of F, using the w-bit values of the message hash and its
   checksum.  This computation should result in a value that matches the
   provided public key.

   Algorithm 4: Verifying a Signature and Message Using a Public Key

     V = ( H(message) || C(H(message)) )
     for ( i = 0; i < p; i = i + 1 ) {
       a = (2^w - 1) - coef(V, i, w)
       z[i] = F^a(y’[i])
     }
     if public key is equal to H(z[0] || z[1] || ... || z[p-1])
       return 1 (message signature is valid)
     else
       return 0 (message signature is invalid)

3.9.  Notes

   A future version of this specification may define a method for
   computing the signature of a very short message in which the hash is
   not applied to the message during the signature computation.  That
   would allow the signatures to have reduced size.

3.10.  Formats

   The signature and public key formats are formally defined using XDR
   [RFC4506] in order to provide an unambiguous, machine readable
   definition.  For clarity, we also include a private key format as
   well, though consistency is not needed for interoperability and an
   implementation MAY use any private key format.  Though XDR is used,
   these formats are simple and easy to parse without any special tools.
   To avoid the need to convert to and from network / host byte order,
   the enumeration values are all palindromes.  The definitions are as
   follows:

   /*
    * ots_algorithm_type identifies a particular signature algorithm
    */
   enum ots_algorithm_type {
     ots_reserved        = 0,
     ldwm_sha256_m20_w1  = 0x01000001,
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     ldwm_sha256_m20_w2  = 0x02000002,
     ldwm_sha256_m20_w4  = 0x03000003,
     ldwm_sha256_m20_w8  = 0x04000004,
     ldwm_sha256_m32_w1  = 0x05000005,
     ldwm_sha256_m32_w2  = 0x06000006,
     ldwm_sha256_m32_w4  = 0x07000007,
     ldwm_sha256_m32_w8  = 0x08000008,
     ldwm_sha512_m64_w1  = 0x09000009,
     ldwm_sha512_m64_w2  = 0x0a00000a,
     ldwm_sha512_m64_w4  = 0x0b00000b,
     ldwm_sha512_m64_w8  = 0x0c00000c
   };

   /*
    * byte string
    */
   typedef opaque bytestring20[20];
   typedef opaque bytestring32[32];
   typedef opaque bytestring64[64];

   union ots_signature switch (ots_algorithm_type type) {
    case ldwm_sha256_m20_w1:
         bytestring20 y_m20_p265[265];
    case ldwm_sha256_m20_w2:
         bytestring20 y_m20_p133[133];
    case ldwm_sha256_m20_w4:
         bytestring20 y_m20_p67[67];
    case ldwm_sha256_m20_w8:
         bytestring20 y_m20_p34[34];
    case ldwm_sha256_m32_w1:
         bytestring32 y_m32_p265[265];
    case ldwm_sha256_m32_w2:
         bytestring32 y_m3_p133[133];
    case ldwm_sha256_m32_w4:
         bytestring32 y_m32_y_p67[67];
    case ldwm_sha256_m32_w8:
         bytestring32 y_m32_p34[34];
    case ldwm_sha512_m64_w1:
         bytestring64 y_m64_p265[265];
    case ldwm_sha512_m64_w2:
         bytestring64 y_m64_p133[133];
    case ldwm_sha512_m64_w4:
         bytestring64 y_m64_y_p67[67];
    case ldwm_sha512_m64_w8:
         bytestring64 y_m64_p34[34];
    default:
      void;   /* error condition */
   };
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   union ots_public_key switch (ots_algorithm_type type) {
    case ldwm_sha256_m20_w1:
    case ldwm_sha256_m20_w2:
    case ldwm_sha256_m20_w4:
    case ldwm_sha256_m20_w8:
    case ldwm_sha256_m32_w1:
    case ldwm_sha256_m32_w2:
    case ldwm_sha256_m32_w4:
    case ldwm_sha256_m32_w8:
         bytestring32 y32;
    case ldwm_sha512_m64_w1:
    case ldwm_sha512_m64_w2:
    case ldwm_sha512_m64_w4:
    case ldwm_sha512_m64_w8:
         bytestring64 y64;
    default:
      void;   /* error condition */
    };

   union ots_private_key switch (ots_algorithm_type type) {
    case ldwm_sha256_m20_w1:
    case ldwm_sha256_m20_w2:
    case ldwm_sha256_m20_w4:
    case ldwm_sha256_m20_w8:
         bytestring20 x20;
    case ldwm_sha256_m32_w1:
    case ldwm_sha256_m32_w2:
    case ldwm_sha256_m32_w4:
    case ldwm_sha256_m32_w8:
         bytestring32 x32;
    case ldwm_sha512_m64_w1:
    case ldwm_sha512_m64_w2:
    case ldwm_sha512_m64_w4:
    case ldwm_sha512_m64_w8:
         bytestring64 y64;
    default:
      void;   /* error condition */
    };

   Though the data formats are formally defined by XDR, we diagram the
   format as well as a convenience to the reader.  An example of the
   format of an ldwm_signature is illustrated below, for
   ldwm_sha256_m32_w1.  An ots_signature consists of a 32-bit unsigned
   integer that indicates the ots_algorithm_type, followed by other
   data, whose format depends only on the ots_algorithm_type.  In the
   case of LDWM, the data is an array of equal-length byte strings.  The
   number of bytes in each byte string, and the number of elements in
   the array, are determined by the ots_algorithm_type field.  In the
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   case of ldwm_sha256_m32_w1, the array has 265 elements, each of which
   is a 32-byte string.  The XDR array y_m32_p265 denotes the array y as
   used in the algorithm descriptions above, using the parameters of
   m=32 and p=265 for ldwm_sha256_m32_w1.

   A verifier MUST check the ots_algorithm_type field, and a
   verification operation on a signature with an unknown
   ldwm_algorithm_type MUST return FAIL.

            +---------------------------------+
            |       ots_algorithm_type        |
            +---------------------------------+
            |                                 |
            |         y_m32_p265[0]           |
            |                                 |
            +---------------------------------+
            |                                 |
            |         y_m32_p265[1]           |
            |                                 |
            +---------------------------------+
            |                                 |
            ˜             ....                ˜
            |                                 |
            +---------------------------------+
            |                                 |
            |        y_m32_p265[264]          |
            |                                 |
            +---------------------------------+
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4.  Merkle Tree Signatures

   Merkle Tree Signatures (MTS) are a method for signing a potentially
   large but fixed number of messages.  An MTS system uses two
   cryptographic components: a one-time signature method and a
   collision-resistant hash function.  Each MTS public/private key pair
   is associated with a perfect k-ary tree, each node of which contains
   an n-byte value.  Each leaf of the tree contains the value of the
   public key of an LDWM public/private key pair.  The value contained
   by the root of the tree is the MTS public key.  Each interior node is
   computed by applying the hash function to the concatenation of the
   values of its children nodes.

   An MTS system has the following parameters:

      k : the number of children nodes of an interior node,

      h : the height (number of levels - 1) in the tree, and

      n : the number of bytes associated with each node.

   There are k^h leaves in the tree.

4.1.  Private Key

   An MTS private key consists of k^h one-time signature private keys
   and the leaf number of the next LDWM private key that has not yet
   been used.  The leaf number is initialized to zero when the MTS
   private key is created.

   An MTS private key MAY be generated pseudorandomly from a secret
   value, in which case the secret value MUST be at least n bytes long,
   be uniformly random, and MUST NOT be used for any other purpose than
   the generation of the MTS private key.  The details of how this
   process is done do not affect interoperability; that is, the public
   key verification operation is independent of these details.

4.2.  MTS Public Key

   An MTS public key is defined as follows, where we denote the public
   key associated with the i^th LDWM private key as ldwm_public_key(i).

   The MTS public key can be computed using the following algorithm or
   any equivalent method.  The algorithm uses a stack of hashes for data
   and a separate stack of integers to keep track of the level of the
   Merkle tree.
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   Algorithm 5: Generating an MTS Public Key From an MTS Private Key

     for ( i = 0; i < num_ldwm_keys; i = i + k ) {
       level = 0;
       for ( j = 0; j < k; j = j + 1 ) {
         push ldwm_public_key(i+j) onto the data stack
         push level onto the integer stack
       }
       while ( height of the integer stack >= k ) {
         if level of the top k elements on the integer stack are equal {
           hash_init()
           siblings = ""
           repeat ( k ) {
             siblings = (pop(data stack) || siblings)
             level = pop(integer stack)
           }
           hash_update(siblings)
           push hash_final() onto the data stack
           push (level + 1) onto the integer stack
         }
       }
     }
     public_key = pop(data stack)

   Note that this pseudocode expects, as was defined earlier, the Merkle
   Tree to be perfect.  That is, all h^k leaves of the tree have equal
   depth.  Also, neither stack ever contains more than h*(k-1)+1
   elements.  For typical parameters, it will hold roughly 20 32-byte
   values.

4.3.  MTS Signature

   An MTS signature consists of

      an LDWM signature,

      a node number that identifies the leaf node associated with the
      signature, and

      an array of values that is associated with the path through the
      tree from the leaf associated with the LDWM signature to the root.

   The array of values contains contains the siblings of the nodes on
   the path from the leaf to the root but does not contain the nodes on
   the path itself.  The array for a tree with branching number k and
   height h will have (k-1)*h values.  The first (k-1) values are the
   siblings of the leaf, the next (k-1) values are the siblings of the
   parent of the leaf, and so on.
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4.3.1.  MTS Signature Generation

   To compute the MTS signature of a message with an MTS private key,
   the signer first computes the LDWM signature of the message using the
   leaf number of the next unused LDWM private key.  Before releasing
   the signature, the leaf number in the MTS private key MUST be
   incremented to prevent the LDWM private key from being used again.
   The node number in the signature is set to the leaf number of the MTS
   private key that was used in the signature.

   The array of node values MAY be computed in any way.  There are many
   potential time/storage tradeoffs.  The fastest alternative is to
   store all of the nodes of the tree and set the array in the signature
   by copying them.  The least storage intensive alternative is to
   recompute all of the nodes for each signature.  Note that the details
   of this procedure are not important for interoperability; it is not
   necessary to know any of these details in order to perform the
   signature verification operation.

4.4.  MTS Signature Verification

   An MTS signature is verified by first using the LDWM signature
   verification algorithm to compute the LDWM public key from the LDWM
   signature and the message.  The value of the leaf associated with the
   LDWM signature is assigned to the public key.  Then the root of the
   tree is computed from the leaf value and the node array (path[]) as
   described below.  If the root value matches the public key, then the
   signature is valid; otherwise, the signature fails.
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   Algorithm 6: Computing the MTS Root Value

     n = node number
     v = leaf
     step = 0
     for ( i = 0; i < h; i = i + 1 ) {
       position = n % k
       hash_init()
       for ( j = 0; j < position; j = j + 1 ) {
         hash_update(path[step + j])
       }
       hash_update(v)
       for ( j = position; j < (k-1); j = j + 1 ) {
         hash_update(path[step + j])
       }
       v = hash_final()
       n = floor(n/k)
       step = step + (k-1)
     }

   Upon completion, v contains the value of the root of the Merkle Tree
   for comparison.

   This algorithm uses the typical init/update/final interface to hash
   functions; the result of the invocations hash_init(),
   hash_update(N[1]), hash_update(N[2]), ... , hash_update(N[n]), v =
   hash_final(), in that order, is identical to that of the invocation
   of H(N[1] || N[2] || ... || N[n]).

   This algorithm works because the leaves of the MTS tree are numbered
   starting at zero.  Therefore leaf n is in the position (n % k) in the
   highest level of the tree.

   The verifier MAY cache interior node values that have been computed
   during a successful signature verification for use in subsequent
   signature verifications.  However, any implementation that does so
   MUST make sure any nodes that are cached during a signature
   verification process are deleted if that process does not result in a
   successful match between the root of the tree and the MTS public key.

   A full test example that combines the LDWM OTS and MTS algorithms is
   given in Appendix B.

4.5.  MTS Formats

   MTS signatures and public keys are defined using XDR syntax as
   follows:
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  enum mts_algorithm_type {
    mts_reserved      = 0x00000000,
    mts_sha256_k2_h20 = 0x01000001,
    mts_sha256_k4_h10 = 0x02000002,
    mts_sha256_k8_h7  = 0x03000003,
    mts_sha256_k16_h5 = 0x04000004,
    mts_sha512_k2_h20 = 0x05000005,
    mts_sha512_k4_h10 = 0x06000006,
    mts_sha512_k8_h7  = 0x07000007,
    mts_sha512_k16_h5 = 0x08000008
  };

  union mts_path switch (mts_algorithm_type type) {
   case mts_sha256_k2_h20:
     bytestring32 path_n32_t20[20];
   case mts_sha256_k4_h10:
     bytestring32 path_n32_t30[30];
   case mts_sha256_k8_h7:
     bytestring32 path_n32_t49[49];
   case mts_sha256_k16_h5:
     bytestring32 path_n32_t75[75];
   case mts_sha512_k2_h20:
     bytestring64 path_n64_t20[20];
   case mts_sha512_k4_h10:
     bytestring64 path_n64_t30[30];
   case mts_sha512_k8_h7:
     bytestring64 path_n64_t49[49];
   case mts_sha512_k16_h5:
     bytestring64 path_n64_t75[75];
   default:
     void;     /* error condition */
  };

  struct mts_signature {
    ots_signature ots_sig;
    unsigned int signature_leaf_number;
    mts_path nodes;
  };

  struct mts_public_key_n32 {
    ots_algorithm_type ots_alg_type;
    opaque value[32];                    /* public key */
  };

  struct mts_public_key_n64 {
    ots_algorithm_type ots_alg_type;
    opaque value[64];                    /* public key */
  };
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  union mts_public_key switch (mts_algorithm_type type) {
   case mts_sha256_k2_h20:
   case mts_sha256_k4_h10:
   case mts_sha256_k8_h7:
   case mts_sha256_k16_h5:
        mts_public_key_n32 z_n32;
   case mts_sha512_k2_h20:
   case mts_sha512_k4_h10:
   case mts_sha512_k8_h7:
   case mts_sha512_k16_h5:
        mts_public_key_n64 z_n64;
    default:
     void;     /* error condition */
  };

  struct mts_private_key_n32 {
    ots_algorithm_type ots_alg_type;
    unsigned int next_ldwm_leaf_number;  /* leaf # for next signature */
    opaque value[32];                    /* private key */
  };

  struct mts_private_key_n64 {
    ots_algorithm_type ots_alg_type;
    unsigned int next_ldwm_leaf_number;  /* leaf # for next signature */
    opaque value[64];                    /* private key */
  };

  union mts_private_key switch (mts_algorithm_type mts_alg_type) {
   case mts_sha256_k2_h20:
   case mts_sha256_k4_h10:
   case mts_sha256_k8_h7:
   case mts_sha256_k16_h5:
      mts_private_key_n32 body_n32;
   case mts_sha512_k2_h20:
   case mts_sha512_k4_h10:
   case mts_sha512_k8_h7:
   case mts_sha512_k16_h5:
      mts_private_key_n64 body_n64;
   default:
     void;     /* error condition */
  };
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5.  Rationale

   The goal of this note is to describe the LDWM and MTS algorithms
   following the original references and present the modern security
   analysis of those algorithms.  Other signature methods are out of
   scope and may be interesting follow-on work.

   The signature and public key formats are designed so that they are
   easy to parse.  Each format starts with a 32-bit enumeration value
   that indicates all of the details of the signature algorithm and
   hence defines all of the information that is needed in order to parse
   the format.

   The enumeration values used in this note are palindromes, which have
   the same byte representation in either host order or network order.
   This fact allows an implementation to omit the conversion between
   byte order for those enumerations.  Note however that the leaf number
   field used in the MTS signature and keys must be properly converted
   to and from network byte order; this is the only field that requires
   such conversion.  There are 2^32 XDR enumeration values, 2^16 of
   which are palindromes, which is more than enough for the foreseeable
   future.  If there is a need for more assignments, non-palindromes can
   be assigned.
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6.  History

   This is the initial version of this draft.

   This section is to be removed by the RFC editor upon publication.
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7.  IANA Considerations

   The Internet Assigned Numbers Authority (IANA) is requested to create
   two registries: one for OTS signatures, which includes all of the
   LDWM signatures as defined in Section 3, and one for Merkle Tree
   Signatures, as defined in Section 4.  Additions to these registries
   require that a specification be documented in an RFC or another
   permanent and readily available reference in sufficient detail that
   interoperability between independent implementations is possible.
   Each entry in the registry contains the following elements:

      a short name, such as "MTS_SHA256_K16_H5",

      a positive number, and

      a reference to a specification that completely defines the
      signature method test cases that can be used to verify the
      correctness of an implementation.

   Requests to add an entry to the registry MUST include the name and
   the reference.  The number is assigned by IANA.  These number
   assignments SHOULD use the smallest available palindromic number.
   Submitters SHOULD have their requests reviewed by the IRTF Crypto
   Forum Research Group (CFRG) at cfrg@ietf.org.  Interested applicants
   that are unfamiliar with IANA processes should visit
   http://www.iana.org.

   The numbers between 0xDDDDDDDD (decimal 3,722,304,989) and 0xFFFFFFFF
   (decimal 4,294,967,295) inclusive, will not be assigned by IANA, and
   are reserved for private use; no attempt will be made to prevent
   multiple sites from using the same value in different (and
   incompatible) ways [RFC2434].

   The LDWM registry is as follows.
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          +--------------------+-----------+--------------------+
          | Name               | Reference | Numeric Identifier |
          +--------------------+-----------+--------------------+
          | LDWM_SHA256_M20_W1 | Section 3 |     0x01000001     |
          |                    |           |                    |
          | LDWM_SHA256_M20_W2 | Section 3 |     0x02000002     |
          |                    |           |                    |
          | LDWM_SHA256_M20_W4 | Section 3 |     0x03000003     |
          |                    |           |                    |
          | LDWM_SHA256_M20_W8 | Section 3 |     0x04000004     |
          |                    |           |                    |
          | LDWM_SHA256_M32_W1 | Section 3 |     0x05000005     |
          |                    |           |                    |
          | LDWM_SHA256_M32_W2 | Section 3 |     0x06000006     |
          |                    |           |                    |
          | LDWM_SHA256_M32_W4 | Section 3 |     0x07000007     |
          |                    |           |                    |
          | LDWM_SHA256_M32_W8 | Section 3 |     0x08000008     |
          |                    |           |                    |
          | LDWM_SHA512_M64_W1 | Section 3 |     0x09000009     |
          |                    |           |                    |
          | LDWM_SHA512_M64_W2 | Section 3 |     0x0a00000a     |
          |                    |           |                    |
          | LDWM_SHA512_M64_W4 | Section 3 |     0x0b00000b     |
          |                    |           |                    |
          | LDWM_SHA512_M64_W8 | Section 3 |     0x0c00000c     |
          +--------------------+-----------+--------------------+

                                  Table 2

   The MTS registry is as follows.
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          +-------------------+-----------+--------------------+
          | Name              | Reference | Numeric Identifier |
          +-------------------+-----------+--------------------+
          | MTS_SHA256_K2_H20 | Section 4 |     0x01000001     |
          |                   |           |                    |
          | MTS_SHA256_K4_H10 | Section 4 |     0x02000002     |
          |                   |           |                    |
          | MTS_SHA256_K8_H7  | Section 4 |     0x03000003     |
          |                   |           |                    |
          | MTS_SHA256_K16_H5 | Section 4 |     0x04000004     |
          |                   |           |                    |
          | MTS_SHA512_K2_H20 | Section 4 |     0x05000005     |
          |                   |           |                    |
          | MTS_SHA512_K4_H10 | Section 4 |     0x06000006     |
          |                   |           |                    |
          | MTS_SHA512_K8_H7  | Section 4 |     0x07000007     |
          |                   |           |                    |
          | MTS_SHA512_K16_H5 | Section 4 |     0x08000008     |
          +-------------------+-----------+--------------------+

                                  Table 3

   An IANA registration of a signature system does not constitute an
   endorsement of that system or its security.
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8.  Security Considerations

   The security goal of a signature system is to prevent forgeries.  A
   successful forgery occurs when an attacker who does not know the
   private key associated with a public key can find a message and
   signature that are valid with that public key (that is, the Signature
   Verification algorithm applied to that signature and message and
   public key will return "valid").  Such an attacker, in the strongest
   case, may have the ability to forge valid signatures for an arbitrary
   number of other messages.

   The security of the algorithms defined in this note can be roughly
   described as follows.  For a security level of roughly 128 bits,
   assuming that there are no quantum computers, use the LDWM algorithms
   with m=32 and MTS with n=32.  For a security level of roughly 128
   bits, assuming that there are quantum computers, use the LDWM
   algorithms with m=64 and the MTS algorithms with n=64.  For the
   smallest possible signatures that provide a currently adequate
   security level, use the LDWM algorithms with m=20 and MTS algorithms
   with n=32.  We emphasize that this is a rough estimate, and not a
   security proof.

   LDWM signatures rely on the fact that, given an m-byte string y, it
   is prohibitively expensive to compute a value x such that F^i(x) = y
   for any i.  Informally, F is said to be a "one-way" function, or a
   preimage-resistant function.  Both LDWM and MTS signatures rely on
   the fact that H is collision-resistant, that is, it is prohibitively
   expensive for an attacker to find two byte strings a and b such that
   H(a) = H(b).

   There are several formal security proofs for one time signatures and
   Merkle tree signatures in the cryptographic literature.  Several of
   these analyze variants of those algorithms, and are not directly
   applicable to the original algorithms; thus caution is needed when
   applying these analyses.  The MTS scheme has been shown to provide
   roughly b bits of security when used with a hash function with an
   output size of 2*b bits [BDM08].  (A cryptographic scheme has b bits
   of security when an attacker must perform O(2^b) computations to
   defeat it.)  More precisely, that analysis shows that MTS is
   existentially unforgeable under an adaptive chosen message attack.
   However, the analysis assumes that the hash function is chosen
   uniformly at random from a family of hash functions, and thus is not
   completely applicable.  Similarly, LDWM with w=1 has been shown to be
   existentially unforgeable under an adaptive chosen message attack,
   when F is a one-way function [BDM08], when F is chosen uniformly at
   random from a family of one-way functions; when F has c-bit inputs
   and outputs, it provides roughly b bits of security.  LDWM
   signatures, as specified in this note, have been shown to be secure
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   based on the collision resistance of F [C:Dods05]; that analysis
   provides a lower bound on security (and it appears to be pessimistic,
   especially in the case of the m=20 signatures).

   It may be desirable to adapt this specification in a way that better
   aligns with the security proofs.  In particular, a random "salt"
   value could be generated along with the key, used as an additional
   input to F and H, and then provided as part of the public key.  This
   change appears to make the analysis of [BDM08] applicable, and it
   would improve the resistance of these signature schemes against key
   collision attacks, that is, scenarios in which an attacker
   concurrently attacks many signatures made with many private keys.

8.1.  Security of LDWM Checksum

   To show the security of LDWM checksum, we consider the signature y of
   a message with a private key x and let h = H(message) and
   c = C(H(message)) (see Section 3.7).  To attempt a forgery, an
   attacker may try to change the values of h and c.  Let h’ and c’
   denote the values used in the forgery attempt.  If for some integer j
   in the range 0 to (u-1), inclusive,

      a’ = coef(h’, j, w),

      a = coef(h, j, w), and

      a’ > a

   then the attacker can compute F^a’(x[j]) from F^a(x[j]) = y[j] by
   iteratively applying function F to the j^th term of the signature an
   additional (a’ - a) times.  However, as a result of the increased
   number of hashing iterations, the checksum value c’ will decrease
   from its original value of c.  Thus a valid signature’s checksum will
   have, for some number k in the range u to (p-1), inclusive,

      b’ = coef(c’, k, w),

      b = coef(c, k, w), and

      b’ < b

   Due to the one-way property of F, the attacker cannot easily compute
   F^b’(x[k]) from F^b(x[k]) = y[k].

8.2.  Security Conjectures

   LDWM and MTS signatures rely on a minimum of security conjectures.
   In particular, their security does not rely on the computational
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   difficulty of factoring composites with large prime factors (as does
   RSA) or the difficulty of computing the discrete logarithm in a
   finite field (as does DSA) or an elliptic curve group (as does
   ECDSA).  All of these signature schemes also rely on the security of
   the hash function that they use, but with LDWM and MTS, the security
   of the hash function is sufficient.

8.3.  Post-Quantum Security

   A post-quantum cryptosystem is a system that is secure against
   quantum computers that have more than a trivial number of quantum
   bits.  It is open to conjecture whether or not it is feasible to
   build such a machine.

   The LDWM and Merkle signature systems are post-quantum secure if they
   are used with an appropriate underlying hash function, in which the
   size of m and n are double what they would be otherwise, in order to
   protect against quantum square root attacks due to Grover’s
   algorithm.  In contrast, the signature systems in wide use (RSA, DSA,
   and ECDSA) are not post-quantum secure.
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Appendix A.  LDWM Parameter Options

   A table illustrating various combinations of n and w with the
   associated values of u, v, ls, and p is provided in Table 4.

   The parameters u, v, ls, and p are computed as follows:

     u = ceil(8*n/w)
     v = ceil((floor(lg((2^w - 1) * u)) + 1) / w)
     ls = (number of bits in sum) - (v * w)
     p = u + v

   Here u and v represent the number of w-bit fields required to contain
   the hash of the message and the checksum byte strings, respectively.
   The "number of bits in sum" is defined according to Section 3.6.  And
   as the value of p is the number of w-bit elements of ( H(message) ||
    C(H(message)) ), it is also equivalently the number of byte strings
   that form the private key and the number of byte strings in the
   signature.
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   +---------+------------+-----------+-----------+-------+------------+
   |   Hash  | Winternitz |   w-bit   |   w-bit   |  Left |    Total   |
   |  Length |  Parameter |  Elements |  Elements | Shift |  Number of |
   |    in   |     (w)    |  in Hash  |     in    |  (ls) |    w-bit   |
   |  Bytes  |            |    (u)    |  Checksum |       |  Elements  |
   |   (n)   |            |           |    (v)    |       |     (p)    |
   +---------+------------+-----------+-----------+-------+------------+
   |    20   |      1     |    160    |     8     |   8   |     168    |
   |         |            |           |           |       |            |
   |    20   |      2     |     80    |     4     |   8   |     84     |
   |         |            |           |           |       |            |
   |    20   |      4     |     40    |     3     |   4   |     43     |
   |         |            |           |           |       |            |
   |    20   |      8     |     20    |     2     |   0   |     22     |
   |         |            |           |           |       |            |
   |    32   |      1     |    256    |     9     |   7   |     265    |
   |         |            |           |           |       |            |
   |    32   |      2     |    128    |     5     |   6   |     133    |
   |         |            |           |           |       |            |
   |    32   |      4     |     64    |     3     |   4   |     67     |
   |         |            |           |           |       |            |
   |    32   |      8     |     32    |     2     |   0   |     34     |
   |         |            |           |           |       |            |
   |    48   |      1     |    384    |     9     |   7   |     393    |
   |         |            |           |           |       |            |
   |    48   |      2     |    192    |     5     |   6   |     197    |
   |         |            |           |           |       |            |
   |    48   |      4     |     96    |     3     |   4   |     99     |
   |         |            |           |           |       |            |
   |    48   |      8     |     48    |     2     |   0   |     50     |
   |         |            |           |           |       |            |
   |    64   |      1     |    512    |     10    |   6   |     522    |
   |         |            |           |           |       |            |
   |    64   |      2     |    256    |     5     |   6   |     261    |
   |         |            |           |           |       |            |
   |    64   |      4     |    128    |     3     |   4   |     131    |
   |         |            |           |           |       |            |
   |    64   |      8     |     64    |     2     |   0   |     66     |
   +---------+------------+-----------+-----------+-------+------------+

                                  Table 4
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Appendix B.  Example Data for Testing

   As with all cryptosystems, implementations of LDWM signatures and
   Merkle signatures need to be tested before they are used.  This
   section contains sample data generated from the signing and
   verification operations of software that implements the algorithms
   described in this document.

B.1.  Parameters

   The example contained in this section demonstrates the calculations
   of LDWM_SHA256_M20_W4 using a Merkle Tree Signature of degree 4 and
   height 2.  This corresponds to the following parameter values:

                     +----+----+---+----+----+---+---+
                     |  m |  n | w |  p | ls | k | h |
                     +----+----+---+----+----+---+---+
                     | 20 | 32 | 4 | 67 |  4 | 4 | 2 |
                     +----+----+---+----+----+---+---+

                                  Table 5

   The non-standard size of the Merkle tree (h = 2) has been selected
   specifically for this example to reduce the amount of data presented.

B.2.  Key Generation

   The LDWM algorithm does not define a required method of key
   generation.  This is left to the implementer.  The selected method,
   however, must satisfy the requirement that the private keys of the
   one-time signatures are uniformly random, independent, and
   unpredicable.  In addition, all LDWM key pairs must be generated in
   advance in order to calculate the value of the Merkle public key.

   For the test data presented here, a summary of the key generation
   method is as follows:

   1.  MTS Private Key - Set mts_private_key to a pseudorandomly
       generated n-byte value.

   2.  OTS Private Keys - Use the mts_private_key as a key derivation
       key input to some key derivation function, thereby producing n^k
       derived keys.  Then use each derived key as an input to the same
       function again to further derive p elements of n-bytes each.
       This accomplishes the result of Algorithm 0 of Section 3.4 for
       each leaf of the Merkle tree.
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   3.  OTS Public Keys - For each OTS private key, calculate the
       corresponding OTS public key as in Algorithm 1 of Section 3.5.

   4.  MTS Public Key - Each OTS public key is the value of a leaf on
       the Merkle tree.  Calculate the MTS public key using the
       pseudocode algorithm of Section 4.2 or some equivalent
       implementation.

   The above steps result in the following data values associated with
   the first leaf of the Merkle tree, leaf 0.

   +-------------------------------------------------------------------+
   |                          MTS Private Key                          |
   +-------------------------------------------------------------------+
   |                 0x0f677ff1b4cbf10baec89959f051f203                |
   |                   3371492da02f62dd61d6fbd1cee1bd14                |
   +-------------------------------------------------------------------+

                                  Table 6

   +-----------------+-------------------------------------------------+
   |   Key Element   |         OTS Private Key 0 Element (x[i])        |
   |    Index (i)    |                                                 |
   +-----------------+-------------------------------------------------+
   |        0        |        0xbfb757383fb08d324629115a84daf00b       |
   |                 |          188d5695303c83c184e1ec7a501c431f       |
   |                 |                                                 |
   |        1        |        0x7ce628fb82003a2829aab708432787d0       |
   |                 |          fc735a29d671c7d790068b453dc8c913       |
   |                 |                                                 |
   |        2        |        0x8174929461329d15068a4645a34412bd       |
   |                 |          446d4c9e757463a7d5164efd50e05c93       |
   |                 |                                                 |
   |        3        |        0xf283f3480df668de4daa74bb0e4c5531       |
   |                 |          5bc00f7d008bb6311e59a5bbca910fd7       |
   |                 |                                                 |
   |        4        |        0xe62708eaf9c13801622563780302a068       |
   |                 |          0ba9d39c078daa5ebc3160e1d80a1ea7       |
   |                 |                                                 |
   |        5        |        0x1f002efad2bfb4275e376af7138129e3       |
   |                 |          3e88cf7512ec1dcdc7df8d5270bc0fd7       |
   |                 |                                                 |
   |        6        |        0x8ed5a703e9200658d18bc4c05dd0ca8a       |
   |                 |          356448a26f3f4fe4e0418b52bd6750a2       |
   |                 |                                                 |
   |        7        |        0xc74e56d61450c5387e86ddad5a8121c8       |
   |                 |          8b1bc463e64f248a1f1d91d950957726       |
   |                 |                                                 |
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   |        8        |        0x629f18b6a2a4ea65fff4cf758b57333f       |
   |                 |          e1d34af05b1cd7763696899c9869595f       |
   |                 |                                                 |
   |        9        |        0x1741c31fdbb4864712f6b17fadc05d45       |
   |                 |          926c831c7a755b7d7af57ac316ba6c2a       |
   |                 |                                                 |
   |        10       |        0xe59a7b81490c5d1333a9cdd48b9cb364       |
   |                 |          56821517a3a13cb7a8ed381d4d5f3545       |
   |                 |                                                 |
   |        11       |        0x3ba97fe8b2967dd74c8b10f31fc5f527       |
   |                 |          a23b89c1266202a4d7c281e1f41fa020       |
   |                 |                                                 |
   |        12       |        0xa262a9287cc979aaa59225d75df51b82       |
   |                 |          57b92e780d1ab14c4ac3ecdac58f1280       |
   |                 |                                                 |
   |        13       |        0x9dfe0af1a3d9064338d96cb8eae88baa       |
   |                 |          6a69265538873b4c17265fa9d573bcff       |
   |                 |                                                 |
   |        14       |        0xde9c5c6a5c6a274eabe90ed2a8e6148c       |
   |                 |          720196d237a839aaf5868af8da4d0829       |
   |                 |                                                 |
   |        15       |        0x5de81ec17090a82cb722f616362d3808       |
   |                 |          30f04841191e44f1f81b9880164b14cd       |
   |                 |                                                 |
   |        16       |        0xc0d047000604105bad657d9fa2f9ef10       |
   |                 |          1cfd9490f4668b700d738f2fa9e1d11a       |
   |                 |                                                 |
   |        17       |        0xf45297ef310941e1e855f97968129bb1       |
   |                 |          73379193919f7b0fee9c037ae507c2d2       |
   |                 |                                                 |
   |        18       |        0x46ef43a877f023e5e66bbcd4f06b839f       |
   |                 |          3bfb2b64de25cd67d1946b0711989129       |
   |                 |                                                 |
   |        19       |        0x46e2a599861bd9e8722ad1b55b8f0139       |
   |                 |          305fcf8b6077d545d4488c4bcb652f29       |
   |                 |                                                 |
   |        20       |        0xe1ad4d2d296971e4b0b7a57de305779e       |
   |                 |          82319587b58d3ef4daeb08f630bd5684       |
   |                 |                                                 |
   |        21       |        0x7a07fa7aed97cb54ae420a0e6a58a153       |
   |                 |          38110f7743cab8353371f8ca710a4409       |
   |                 |                                                 |
   |        22       |        0x40601f6c4b35362dd4948d5687b5cb6b       |
   |                 |          5ec8b2ec59c2f06fd50f8919ebeaae92       |
   |                 |                                                 |
   |        23       |        0xa061b0ba9f493c4991be5cd3a9d15360       |
   |                 |          a9eb94f6f7adc28dddf174074f3df3c4       |
   |                 |                                                 |
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   |        24       |        0xcf1546a814ff16099cebf1fe0db1ace5       |
   |                 |          1c272fda9846fbb535815924b0077fa4       |
   |                 |                                                 |
   |        25       |        0xcbb06f13155ce4e56c85a32661c90142       |
   |                 |          8b630a4c37ea5c7062156f07f6b3efff       |
   |                 |                                                 |
   |        26       |        0x1181ee7fc03342415094e36191eb450a       |
   |                 |          11cdea9c6f6cdc34de79cee0ba5bf230       |
   |                 |                                                 |
   |        27       |        0xe9f1d429b343bb897881d2a19ef363cd       |
   |                 |          1ab4117cbaad54dc292b74b8af9f5cf2       |
   |                 |                                                 |
   |        28       |        0x87f34b2551ef542f579fa65535c5036f       |
   |                 |          80eb83be4c898266ffc531da2e1a9122       |
   |                 |                                                 |
   |        29       |        0x9b4b467852fe33a03a872572707342fd       |
   |                 |          ddeae64841225186babf353fa2a0cd09       |
   |                 |                                                 |
   |        30       |        0x19d58cd240ab5c80be6ddf5f60d18159       |
   |                 |          2dca2be40118c1fdd46e0f14dffbcc7d       |
   |                 |                                                 |
   |        31       |        0x5c9ad386547ba82939e49c9c74a8eccf       |
   |                 |          1cea60aa327b5d2d0a66b1ca48912d6d       |
   |                 |                                                 |
   |        32       |        0xf49083e502400ffae9273c6de92a301e       |
   |                 |          7bda1537cab085e5adfa9eb746e8eca9       |
   |                 |                                                 |
   |        33       |        0x4074e1812d69543ce3c1ce706f6e0b45       |
   |                 |          f5f26f4ef39b34caa709335fd71e8fc0       |
   |                 |                                                 |
   |        34       |        0x1256612b0ca8398e97b247ae564b74b1       |
   |                 |          3839b3b1cf0a0dd8ba629a2c58355f84       |
   |                 |                                                 |
   |        35       |        0xbab3989f00fd2c327bbfb35a218cc3ce       |
   |                 |          49d6b34cbf8b6e8919e90c4eff400ca9       |
   |                 |                                                 |
   |        36       |        0x96b52a5d395a5615b73dae65586ac5c8       |
   |                 |          7f9dd3b9b3f82dbf509b5881f0643fa8       |
   |                 |                                                 |
   |        37       |        0x5d05ca4c644e1c41ccdaedbd2415d4f0       |
   |                 |          9b4a1b940b51fe823dff7617b8ee8304       |
   |                 |                                                 |
   |        38       |        0xd96aab95ef6248e235d91d0f23b64727       |
   |                 |          a6675adfc64efea72f6f8b4a47996c0d       |
   |                 |                                                 |
   |        39       |        0xfd9c384d52d3ac27c4f4898fcc15e83a       |
   |                 |          c182f97ea63f7d489283e2cc7e6ed180       |
   |                 |                                                 |
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   |        40       |        0xc86eaed6a9e3fbe5b262c1fa1f099f7c       |
   |                 |          35ece71d9e467fab7a371dbcf400b544       |
   |                 |                                                 |
   |        41       |        0xf462b3719a2ed8778155638ff814dbf4       |
   |                 |          2b107bb5246ee3dd82abf97787e6a69e       |
   |                 |                                                 |
   |        42       |        0x014670912e3eb74936ebb64168b447e4       |
   |                 |          2522b57c2540ac4b49b9ae356c01eca6       |
   |                 |                                                 |
   |        43       |        0x2b411096e0ca16587830d3acd673e858       |
   |                 |          863fedc4cea046587cba0556d2bf9884       |
   |                 |                                                 |
   |        44       |        0xa73917c74730582e8e1815b8a07b1896       |
   |                 |          2ac05e500e045676be3f1495fcfa18ca       |
   |                 |                                                 |
   |        45       |        0xa4ab61e6962fe39a255dbf8a46d25110       |
   |                 |          0d127fab08db59512653607bda24302c       |
   |                 |                                                 |
   |        46       |        0x9b910ca516413f376b9eba4b0d571b22       |
   |                 |          253c2a9646131ac9a2af5f615f7322b8       |
   |                 |                                                 |
   |        47       |        0xfc1b4ce627c77ad35a21ea9ded2cce91       |
   |                 |          b3758a758224e35cf2918153a513d64c       |
   |                 |                                                 |
   |        48       |        0xc1902d8e8c02d9442581d7e053a2798a       |
   |                 |          a84d77a74b6e7f2cc5096d50646c890f       |
   |                 |                                                 |
   |        49       |        0xb3f47e2e8e2dcdd890ea00934b9d8234       |
   |                 |          830dbc4a30ac996b144f12b3e463c77f       |
   |                 |                                                 |
   |        50       |        0x8188d1ecfc6ae6118911f2b9b3a6c7a1       |
   |                 |          e5f909aa8b5c0aab8c69f1a7d436c307       |
   |                 |                                                 |
   |        51       |        0xca42d985974c7b870bc76494604eff49       |
   |                 |          2676c942c6cb7c75d4938805885dd054       |
   |                 |                                                 |
   |        52       |        0xbe58851ebe566057e1ee16b8c604a473       |
   |                 |          4c373af622660b2a82357ac6effb4566       |
   |                 |                                                 |
   |        53       |        0xc22d493f7a5642fceba2404dbefa8f95       |
   |                 |          6323fac87fac425f6de8d23c9e8b20ca       |
   |                 |                                                 |
   |        54       |        0x1a76c1ffa467906173fd0245b0cd6639       |
   |                 |          e6013ca79c4ed92426ee69ff5beeac0b       |
   |                 |                                                 |
   |        55       |        0xbc6c0cb7808f379af1b7b7327436ad65       |
   |                 |          c05458f2d0a6923c333e5129c4c99671       |
   |                 |                                                 |
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   |        56       |        0xfbb04488c3c088dc5e63d13e6a701036       |
   |                 |          6109ca4c5f4b0a8d37780187e2e9930e       |
   |                 |                                                 |
   |        57       |        0xaec10811569d4d72e3a1baf71a886b75       |
   |                 |          eba6dc07ed027af0b2beffa71f9b43c8       |
   |                 |                                                 |
   |        58       |        0xf5529be3b7a19212e8baa970d2420bf4       |
   |                 |          123f678267f96c1c3ef26ab610cb0061       |
   |                 |                                                 |
   |        59       |        0x172ba1ba0b701eeafe00692d1eb90181       |
   |                 |          8ccaefaeb8f799395da81711766d1f43       |
   |                 |                                                 |
   |        60       |        0xfe1f8c15825208f3a21346b894b3d94e       |
   |                 |          4f3aa29cbc194a7b2c8a810c4c509042       |
   |                 |                                                 |
   |        61       |        0x2e81c66cc914ea1b0fa5942fe9780d54       |
   |                 |          8c0b330e3bf73f0cb0bda4bc9c9e6ff4       |
   |                 |                                                 |
   |        62       |        0xfc3453aec5cc19a6a4bda4bc25931604       |
   |                 |          704bf4386cd65780c6e73214c1da85ba       |
   |                 |                                                 |
   |        63       |        0x4e8000c587dc917888e7e3d817672c0a       |
   |                 |          ef812788cc8579afa7e9b2e566309003       |
   |                 |                                                 |
   |        64       |        0xba667ca0e44a8601a0fde825d4d2cf1b       |
   |                 |          b9cf467041e04af84c9d0cd9fd8dc784       |
   |                 |                                                 |
   |        65       |        0x4965db75f81c8a596680753ce70a94c6       |
   |                 |          156253bb426947de1d7662dd7e05e9a8       |
   |                 |                                                 |
   |        66       |        0x2c23cc3e5ca37dec279c506101a3d8d9       |
   |                 |          f1e4f99b2a33741b59f8bddba7455419       |
   +-----------------+-------------------------------------------------+

                                  Table 7

   Using the value of the OTS private key above, the corresponding
   public key is given below.  Intermediate values of the SHA256-20
   function F^(2^w - 1)(x[i]) are provided in Table 13.

   +-------------------------------------------------------------------+
   |                          OTS Public Key 0                         |
   +-------------------------------------------------------------------+
   |                 0x2db55a72075fcfab5aedbef77bf6b371                |
   |                   dfb489d6e61ad2884a248345e6910618                |
   +-------------------------------------------------------------------+

                                  Table 8
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   Following the creation of all OTS public/private key pairs, the OTS
   public keys in Table 14 are used to determine the MTS public key
   below.  Intermediate values of the interior nodes of the Merkle tree
   are provided in Table 15.

   +-------------------------------------------------------------------+
   |                           MTS Public Key                          |
   +-------------------------------------------------------------------+
   |                 0x6610803d9a3546fb0a7895f6a4a0cfed                |
   |                   3a07d45e51d096e204b018e677453235                |
   +-------------------------------------------------------------------+

                                  Table 9

B.3.  Signature Generation

   In order to test signature generation, a text file containing the
   content "Hello world!\n", where ’\n’ represents the ASCII line feed
   character, was created and signed.  A raw hex dump of the file
   contents is shown in the table below.

   +-------------------------------+-----------------------------------+
   |    Hexadecimal Byte Values    |        ASCII Representation       |
   |                               |      (’.’ is substituted for      |
   |                               |      non-printing characters)     |
   +-------------------------------+-----------------------------------+
   | 0x48 0x65 0x6c 0x6c 0x6f 0x20 |           Hello world!.           |
   | 0x77 0x6f 0x72 0x6c 0x64 0x21 |                                   |
   |              0x0a             |                                   |
   +-------------------------------+-----------------------------------+

                                 Table 10

   The SHA256 hash of the text file is provided below.

   +-------------------------------------------------------------------+
   |          SHA256 Hash of Signed File (H("Hello world!\n"))         |
   +-------------------------------------------------------------------+
   |                 0x0ba904eae8773b70c75333db4de2f3ac                |
   |                   45a8ad4ddba1b242f0b3cfc199391dd8                |
   +-------------------------------------------------------------------+

                                 Table 11

   This value was subsequently used in Algorithm 3 of Section 3.7 to
   create the one-time signature of the message.  Algorithm 2 of
   Section 3.6 was applied to calculate a checksum of 0x1cc.  The
   resulting signature is shown in the following table.
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   +---------+------------+--------------------------------------------+
   |   OTS   |  Function  |       OTS Element (y[i] = F^a(x[i]))       |
   | Element |  Iteration |                                            |
   |  Index  |    Count   |                                            |
   |   (i)   | (a = coef( |                                            |
   |         |  H(msg) || |                                            |
   |         | C(H(msg)), |                                            |
   |         |   i, w ))  |                                            |
   +---------+------------+--------------------------------------------+
   |    0    |      0     | 0xbfb757383fb08d324629115a84daf00b188d5695 |
   |         |            |                                            |
   |    1    |     11     | 0x4af079e885ddfd3245f29778d265e868a3bfeaa4 |
   |         |            |                                            |
   |    2    |     10     | 0xfbad1928bfc57b22bcd949192452293d07d6b9ad |
   |         |            |                                            |
   |    3    |      9     | 0xb98063e184b4cb949a51e1bb76d99d4249c0b448 |
   |         |            |                                            |
   |    4    |      0     | 0xe62708eaf9c13801622563780302a0680ba9d39c |
   |         |            |                                            |
   |    5    |      4     | 0x39343cba3ffa6d75074ce89831b3f3436108318c |
   |         |            |                                            |
   |    6    |     14     | 0xfe08aa73607aec5664188a9dacdc34a295588c9a |
   |         |            |                                            |
   |    7    |     10     | 0xd3346382119552d1ceb92a78597a00c956372bf0 |
   |         |            |                                            |
   |    8    |     14     | 0xf1dd245ec587c0a7a1b754cc327b27c839a6e46a |
   |         |            |                                            |
   |    9    |      8     | 0xa5f158adc1decaf0c1edc1a3a5d8958d726627b5 |
   |         |            |                                            |
   |    10   |      7     | 0x06d2990f62f22f0c943a418473678e3ffdbff482 |
   |         |            |                                            |
   |    11   |      7     | 0xf3390b8d6e5229ae9c5d4c3f45e10455d8241a49 |
   |         |            |                                            |
   |    12   |      3     | 0x22dd5f9d3c89180caa0f695203d8cf90f3c359be |
   |         |            |                                            |
   |    13   |     11     | 0x67999c4043f95de5f07d82b741347a3eb6ac0c25 |
   |         |            |                                            |
   |    14   |      7     | 0xc4ffe472d48adeb37c7360da70711462013b7a4e |
   |         |            |                                            |
   |    15   |      0     | 0x5de81ec17090a82cb722f616362d380830f04841 |
   |         |            |                                            |
   |    16   |     12     | 0x2f892c824af65cc749f912a36dfa8ade2e4c3fd1 |
   |         |            |                                            |
   |    17   |      7     | 0xb644393e8030924403b594fb5cacd8b2d28862e2 |
   |         |            |                                            |
   |    18   |      5     | 0x31b8d2908911dbbf5ba1f479a854808945d9e948 |
   |         |            |                                            |
   |    19   |      3     | 0xa9a02269d24eb8fed6fb86101cbd0d8977219fb1 |
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   |    20   |      3     | 0xe4aae6e6a9fe1b0d5099513f170c111dee95714d |
   |         |            |                                            |
   |    21   |      3     | 0xd79c16e7f2d4dd790e28bab0d562298c864e31e9 |
   |         |            |                                            |
   |    22   |     13     | 0xc29678f0bb4744597e04156f532646c98a0b42e8 |
   |         |            |                                            |
   |    23   |     11     | 0x57b31d75743ff0f9bcf2db39d9b6224110b8d27b |
   |         |            |                                            |
   |    24   |      4     | 0x0a336d93aac081a2d849c612368b8cbb2fa9563a |
   |         |            |                                            |
   |    25   |     13     | 0x917be0c94770a7bb12713a4bae801fb3c1c43002 |
   |         |            |                                            |
   |    26   |     14     | 0x91586feaadcf691b6cb07c16c8a2ed0884666e84 |
   |         |            |                                            |
   |    27   |      2     | 0xdd4e4b720fb2517c4bc6f91ccb8725118e5770c6 |
   |         |            |                                            |
   |    28   |     15     | 0x491f6ec665f54c4b3cffaa02ec594d31e6e26c0e |
   |         |            |                                            |
   |    29   |      3     | 0x4f5a082c9d9c9714701de0bf426e9f893484618c |
   |         |            |                                            |
   |    30   |     10     | 0x11f7017313f0c9549c5d415a8abc25243028514d |
   |         |            |                                            |
   |    31   |     12     | 0x6839a994fccb9cb76241d809146906a3d13f89f1 |
   |         |            |                                            |
   |    32   |      4     | 0x71cd1d9163d7cd563936837c61d97bb1a5337cc0 |
   |         |            |                                            |
   |    33   |      5     | 0x77c9034ffc0f9219841aa8e1edbfb62017ef9fd1 |
   |         |            |                                            |
   |    34   |     10     | 0xad9f6034017d35c338ac35778dd6c4c1abe4472a |
   |         |            |                                            |
   |    35   |      8     | 0x4a1c396b22e4f5cc2428045b36d13737c4007515 |
   |         |            |                                            |
   |    36   |     10     | 0x98cb57b779c5fd3f361cd5debc243303ae5baefd |
   |         |            |                                            |
   |    37   |     13     | 0x29857298f274d6bf595eadc89e5464ccf9608a6c |
   |         |            |                                            |
   |    38   |      4     | 0x95e35a26815a3ae9ad84a24464b174a29364da18 |
   |         |            |                                            |
   |    39   |     13     | 0x4afeb3b95b5b333759c0acdd96ce3f26314bb22b |
   |         |            |                                            |
   |    40   |     13     | 0x325a37ee5e349b22b13b54b24be5145344e7b8f3 |
   |         |            |                                            |
   |    41   |     11     | 0x4f772c93f56fd6958ce135f02847996c67e1f2ef |
   |         |            |                                            |
   |    42   |     10     | 0xd4f6d91c577594060be328b013c9e9b0e8a2e5d8 |
   |         |            |                                            |
   |    43   |      1     | 0x717e1a81c325cdccacb6e9fd9e92dd3e1bb84ae8 |
   |         |            |                                            |
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   |    44   |     11     | 0x1dd363724ec66c090a1228dfa1cd3d9cc806f346 |
   |         |            |                                            |
   |    45   |      2     | 0x64b4110476dd0beea78714c5ab71278818792cfa |
   |         |            |                                            |
   |    46   |      4     | 0xe22290e740056a144af50f0b10962b5bcc18fc82 |
   |         |            |                                            |
   |    47   |      2     | 0x34fd87046a183f4732a52bb7805ce207eebdafc5 |
   |         |            |                                            |
   |    48   |     15     | 0xbd2fdc5e4e8d0ed7c48c1bad9c2f7793fc2c9303 |
   |         |            |                                            |
   |    49   |      0     | 0xb3f47e2e8e2dcdd890ea00934b9d8234830dbc4a |
   |         |            |                                            |
   |    50   |     11     | 0xcd29719c56cdb507030e6132132179e5807e1d3b |
   |         |            |                                            |
   |    51   |      3     | 0xf9edb9b301916217de0d746a0542316bebe9e806 |
   |         |            |                                            |
   |    52   |     12     | 0x7a3801cbfe0cafed863d81210c1ec721eede49e5 |
   |         |            |                                            |
   |    53   |     15     | 0x5caba3ec960efa210f5f3e1c22c567ca475ef3ec |
   |         |            |                                            |
   |    54   |     12     | 0xf911b5d148e1b03fe6983c53411f76ea78772379 |
   |         |            |                                            |
   |    55   |      1     | 0x06da2baa75c6ef752bf59f3812fa042ff8181209 |
   |         |            |                                            |
   |    56   |      9     | 0x2b29f5aa2f34af51a78a5fac586004f749c6e6dc |
   |         |            |                                            |
   |    57   |      9     | 0x55e033ababac0845cc9142e24f9ef0a641c51cbe |
   |         |            |                                            |
   |    58   |      3     | 0xb62d207bb700071fba8a68312ca204ce4d994c33 |
   |         |            |                                            |
   |    59   |      9     | 0x551d5c00fad905bdb99c4f70ec7590a10d3ff8ca |
   |         |            |                                            |
   |    60   |      1     | 0x0d03b1845b5f8838d735142f185f9cf8f8d2db6c |
   |         |            |                                            |
   |    61   |     13     | 0x3b5d9e49e7ede41cd9aa5a09f72a0384fd4ff511 |
   |         |            |                                            |
   |    62   |     13     | 0xa766b0278d14a9b7d32bf0307c0737a8ecf82ab1 |
   |         |            |                                            |
   |    63   |      8     | 0xca85296f354e6e3d2a96ab497c01e5ccd4530cf1 |
   |         |            |                                            |
   |    64   |      1     | 0x7bb29db7dd8aaaf1cd11487cea0d13730edb1df3 |
   |         |            |                                            |
   |    65   |     12     | 0x547ef341b3cf3208753bb1b62d85a4e3fc2cffe0 |
   |         |            |                                            |
   |    66   |     12     | 0xb890e1a99da4b2e0a9dde42f82f92d0946327cee |
   +---------+------------+--------------------------------------------+

                                 Table 12
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   Finally, based on the fact that the message is the first to be signed
   by the Merkle tree (i.e. using leaf node 0), the values of the leaf
   and interior nodes that compose the authentication path from leaf to
   root are determined as described in Section 4.3.  These values are
   marked with an asterisk (’*’) in Table 14 and Table 15.

B.4.  Signature Verification

   The signature verification step was provided the following items:

   1.  OTS = (y[0] || y[1] || ... || y[p-1]) - from Table 12.

   2.  Authentication Path = concatenation of (k-1)*h Merkle tree node
       values - from Table 14 and Table 15.

   3.  Message Number = leaf number of Merkle tree.

   4.  Merkle Public Key = root of Merkle tree - from Table 9.

   Using Algorithm 4 of Section 3.8 as a start, the potential OTS public
   key was calculated from the value of the OTS.  Since the actual OTS
   public key was not provided to the verifier, the calculated key was
   checked for validity using the pseudocode algorithm of Section 4.4
   and the provided values of the Authentication Path and Message
   Number.  Since the message was valid, the calculated value of the
   root matched the Merkle public key.  Otherwise, verification would
   have failed.

B.5.  Intermediate Calculation Values

   +----------------------+--------------------------------------------+
   |   Key Element Index  |   SHA256-20 Result for w = 4 (F^15(x[i]))  |
   |          (i)         |                                            |
   +----------------------+--------------------------------------------+
   |           0          | 0x6eff4b0c224874ecc4e4f4500da53dbe2a030e45 |
   |                      |                                            |
   |           1          | 0x58ac2c6c451c7779d67efefdb12e5c3d85475a94 |
   |                      |                                            |
   |           2          | 0xb1f3e42e29c710d69268eed1bbdb7f5a500b7937 |
   |                      |                                            |
   |           3          | 0x51d28e573aac2b84d659abb961c32c465e911b55 |
   |                      |                                            |
   |           4          | 0xa0ed62bccac5888f5000ca6a01e5ffefd442a1c6 |
   |                      |                                            |
   |           5          | 0x44da9e145666322422c1e2b5e21627e05aeb4367 |
   |                      |                                            |
   |           6          | 0x04e7ff9213c2655f28364f659c35d3086d7414e1 |
   |                      |                                            |
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   |           7          | 0x414cdb3215408b9722a02577eeb71f9e016e4251 |
   |                      |                                            |
   |           8          | 0xa3ab06b90a2b20f631175daa9454365a4f408e9e |
   |                      |                                            |
   |           9          | 0xe38acfd3c0a03faa82a0f4aeac1a7c04983fad25 |
   |                      |                                            |
   |          10          | 0xd95a289094ccce8ad9ff1d5f9e38297f9bb306ff |
   |                      |                                            |
   |          11          | 0x593d148b22e33c32f18b66340bdaffceb3ad1a55 |
   |                      |                                            |
   |          12          | 0x16b53fbea11dc7ab70c8336ec3c23881ae5d51bf |
   |                      |                                            |
   |          13          | 0xa639ca0cf871188cadd0020832c4f06e6ebd5f98 |
   |                      |                                            |
   |          14          | 0xe3ab3e0c5ad79d6c8c2a7e9a79856d4380941fe0 |
   |                      |                                            |
   |          15          | 0x8368c2933dabcde69c373867a9bf2dc78df97bea |
   |                      |                                            |
   |          16          | 0xe3609fca11545da156a7779ae565b1e3c87902c0 |
   |                      |                                            |
   |          17          | 0xab029e62c7011772dc0589d79fad01aacf8d2177 |
   |                      |                                            |
   |          18          | 0xa8310f1c27c1aa481192de07d4397b8c4716e25f |
   |                      |                                            |
   |          19          | 0xdbdbb14dbd9a5f03c1849af24b69b9e3f80faca2 |
   |                      |                                            |
   |          20          | 0x1a17399d555dec07d3d4f6d54b2b87d2bcaa398b |
   |                      |                                            |
   |          21          | 0xf81c66cc522bfb203232e44d0003ed65d2462867 |
   |                      |                                            |
   |          22          | 0x202a625b8c5f22de6ea081af6da077cf5c63202f |
   |                      |                                            |
   |          23          | 0x2e080f3591f5ff3d5de39c2698846cc107a09816 |
   |                      |                                            |
   |          24          | 0xa1d9c78c22f9810e3b7db2d59ad9f5fdd259f4d4 |
   |                      |                                            |
   |          25          | 0x658eeb85ebe0f4542c4d32dced2d7226929266b2 |
   |                      |                                            |
   |          26          | 0x67fae1a784f919577afc091504d82d31b4ba9fc7 |
   |                      |                                            |
   |          27          | 0xfc39fb43677fb2d433a6292f19c6e7320279655a |
   |                      |                                            |
   |          28          | 0x491f6ec665f54c4b3cffaa02ec594d31e6e26c0e |
   |                      |                                            |
   |          29          | 0x17cec813a5781409b11d2e4a85f62301c2fd8873 |
   |                      |                                            |
   |          30          | 0xc578eb105454d900c053eb55833db607aa5757e0 |
   |                      |                                            |
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   |          31          | 0xaed094323290a41fd4b546919620e2f6b23916c8 |
   |                      |                                            |
   |          32          | 0x192b5a87b5124dc287e06cdd4ec7c0c11f67dda6 |
   |                      |                                            |
   |          33          | 0x4e9e2bdc1b0204d1ceeb68fb4159e752c40b9608 |
   |                      |                                            |
   |          34          | 0xf34c57ad9ce45d67fd32dc2737e6263bcc5cc61f |
   |                      |                                            |
   |          35          | 0xf73bd27d376186310f83cc66e72060aeaccde371 |
   |                      |                                            |
   |          36          | 0xeea482511acd8be783e9be42b48799653b222db4 |
   |                      |                                            |
   |          37          | 0xa2e53196fec8676065b8f32b3e8498e66a4af3cf |
   |                      |                                            |
   |          38          | 0x670c98185157e1b28d38f7dafb00796b434c8316 |
   |                      |                                            |
   |          39          | 0x441afbb265b93595389aaa66325de792f343f209 |
   |                      |                                            |
   |          40          | 0x7b6c50d20b5edc0bc90eb4b289770514cbc8d547 |
   |                      |                                            |
   |          41          | 0xfde6e862a7ba3534893a3e630e209a24be590b1e |
   |                      |                                            |
   |          42          | 0xc59611200c20b2e73dfb24c84cedf4792d6daf10 |
   |                      |                                            |
   |          43          | 0x66e3527bee88373d18f91b230b53b569361f0a15 |
   |                      |                                            |
   |          44          | 0xd0fd79c7116198e689275fec9b4c46f4aac73293 |
   |                      |                                            |
   |          45          | 0x65f07406ad4241e7cf4174c5f284267292cdbc32 |
   |                      |                                            |
   |          46          | 0x7b1b5535d45f46542e2b876245b66ea83cde3d8f |
   |                      |                                            |
   |          47          | 0x7a11620934eb0eb17e10e4a8bbd52aa4b020da0e |
   |                      |                                            |
   |          48          | 0xbd2fdc5e4e8d0ed7c48c1bad9c2f7793fc2c9303 |
   |                      |                                            |
   |          49          | 0x00432602437252a0622a30676dbaaef3023328b9 |
   |                      |                                            |
   |          50          | 0x09a9c4b25034466a5acd7ff681af1c27e8f97577 |
   |                      |                                            |
   |          51          | 0x4b31481d52aa5e1a261064bbd87ea46479a6be23 |
   |                      |                                            |
   |          52          | 0xaca2ad4aa1264618ab633bf11cbca3cc8fa43091 |
   |                      |                                            |
   |          53          | 0x5caba3ec960efa210f5f3e1c22c567ca475ef3ec |
   |                      |                                            |
   |          54          | 0x353e3ffcedfd9500141921cf2aebc2e111364dad |
   |                      |                                            |
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   |          55          | 0xe1c498c32169c869174ccf2f1e71e7202f45fba7 |
   |                      |                                            |
   |          56          | 0x5b8519a40d4305813936c7c00a96f5b4ceb603f1 |
   |                      |                                            |
   |          57          | 0x3b942ae6a6bd328d08804ade771a0775bb3ff8f8 |
   |                      |                                            |
   |          58          | 0x6f3be60ee1c34372599b8d634be72e168453bf10 |
   |                      |                                            |
   |          59          | 0xf700c70bac24db0aab1257940661f5b57da6e817 |
   |                      |                                            |
   |          60          | 0x85ccf60624b13663a290fa808c6bbecaf89523cd |
   |                      |                                            |
   |          61          | 0xd049be55ab703c44f42167d5d9e939c830df960f |
   |                      |                                            |
   |          62          | 0xd27a178ccc3b364c7e03d2266093a0d1dfdd9d51 |
   |                      |                                            |
   |          63          | 0xd73c53fdddbe196b9ab56fcc5c9a4a57ad868cd1 |
   |                      |                                            |
   |          64          | 0xb59a70a7372f0c121fa71727baaf6588eccec400 |
   |                      |                                            |
   |          65          | 0x9b5bf379f989f9a499799c12a3202db58b084eed |
   |                      |                                            |
   |          66          | 0xccabf40f3c1dacf114b5e5f98a73103b4c1f9b55 |
   +----------------------+--------------------------------------------+

                                 Table 13
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   +-----------+------------------------------------+------------------+
   |  MTS Leaf |           OTS Public Key           |     Member of    |
   | (Level 3) | (H(x[0] || x[1] || ... || x[p-1])) |  Authentication  |
   |    Node   |                                    |      Path of     |
   |   Number  |                                    |     Message 0    |
   +-----------+------------------------------------+------------------+
   |     0     | 0x2db55a72075fcfab5aedbef77bf6b371 |                  |
   |           |   dfb489d6e61ad2884a248345e6910618 |                  |
   |           |                                    |                  |
   |     1     | 0x8c6c6a1215bfe7fda10b7754e73cd984 |         *        |
   |           |   a64823b1ab9d5f50feda6b151c0fee6d |                  |
   |           |                                    |                  |
   |     2     | 0xc1fb91de68b3059c273e53596108ec7c |         *        |
   |           |   f39923757597fe86439e91ce1c25fc84 |                  |
   |           |                                    |                  |
   |     3     | 0x1b511189baee50251335695b74d67c40 |         *        |
   |           |   5a04eddaa79158a9090cc7c3eb204cbf |                  |
   |           |                                    |                  |
   |     4     | 0xf3bcf088ccf9d00338b6c87e8f822da6 |                  |
   |           |   8ec471f88d1561193b3c017d20b3c971 |                  |
   |           |                                    |                  |
   |     5     | 0x40584c059e6cc72fb61f7bd1b9c28e73 |                  |
   |           |   c689551e6e7de6b0b9b730fab9237531 |                  |
   |           |                                    |                  |
   |     6     | 0x1b1d09de1ca16ca890036e018d7e73de |                  |
   |           |   b39b07de80c19dcc5e55a699f021d880 |                  |
   |           |                                    |                  |
   |     7     | 0x83a82632acaac5418716f4f357f5007f |                  |
   |           |   719d604525dbe1831c09a2ead9400a52 |                  |
   |           |                                    |                  |
   |     8     | 0xccb8b2a1d60f731b5f51910eb427e211 |                  |
   |           |   96090d5cd2a077f33968b425301e3fbd |                  |
   |           |                                    |                  |
   |     9     | 0x616767ebf3c1f3ec662d8c57c630c6ae |                  |
   |           |   b31853fd40a18c3d831f5490610c1f16 |                  |
   |           |                                    |                  |
   |     10    | 0x5a4b3e157b66327c75d7f01304d188e2 |                  |
   |           |   cecd1b6168240c11a01775d581b01fb6 |                  |
   |           |                                    |                  |
   |     11    | 0xf25744b8a1c2184ba38521801bf4727c |                  |
   |           |   407b85eb5aef8884d8fbb1c12e2f6108 |                  |
   |           |                                    |                  |
   |     12    | 0xaf8189f51874999162890f72e0ef25e6 |                  |
   |           |   f76b4ab94dc53569bdd66507f5ab0d8e |                  |
   |           |                                    |                  |
   |     13    | 0x96251e396756686645f35cd059da329f |                  |
   |           |   7083838d56c9ccacebbaf8486af18844 |                  |
   |           |                                    |                  |
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   |     14    | 0x773d5206e40065d3553c3c2ed2500122 |                  |
   |           |   e3ee6fd2c91f35a57f084dc839aab1fc |                  |
   |           |                                    |                  |
   |     15    | 0xcda7fae67ce2c3ed29ce426fdcd3f2a8 |                  |
   |           |   eb699e47a67a52f1c94e89726ffe97fa |                  |
   +-----------+------------------------------------+------------------+

                                 Table 14

   +------------+------------------------------------+-----------------+
   |     MTS    |             Node Value             |    Member of    |
   |  Interior  |   (H(child_0 || child_1 || ... ||  |  Authentication |
   |  (Level 2) |             child_k-1))            |     Path of     |
   |    Node    |                                    |    Message 0    |
   |   Number   |                                    |                 |
   +------------+------------------------------------+-----------------+
   |      0     | 0xb6a310deb55ed48004133ece2aebb25e |                 |
   |            |   d74defb77ebd8d63c79a42b5b4191b0c |                 |
   |            |                                    |                 |
   |      1     | 0x71a0c8b767ade2c97ebac069383e4dfb |        *        |
   |            |   a1c06d5fd3f69a775711ea6470747664 |                 |
   |            |                                    |                 |
   |      2     | 0x91109fa97662dc88ae63037391ac2650 |        *        |
   |            |   f6c664ac2448b54800a1df748953af31 |                 |
   |            |                                    |                 |
   |      3     | 0xd277fb8c89689525f90de567068d6c93 |        *        |
   |            |   565df3588b97223276ef8e9495468996 |                 |
   +------------+------------------------------------+-----------------+

                                 Table 15
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1.  Introduction

   The Advanced Encryption Standard (AES - [FIPS-197]) has become the
   gold standard in encryption.  Its efficient design, wide
   implementation, and hardware support allow for high performance in
   many areas.  On most modern platforms, AES is anywhere from 4x to 10x
   as fast as the previous most-used cipher, 3-key Data Encryption
   Standard (3DES - [FIPS-46]), which makes it not only the best choice,
   but the only practical choice.

   The problem is that if future advances in cryptanalysis reveal a
   weakness in AES, users will be in an unenviable position.  With the
   only other widely supported cipher being the much slower 3DES, it is
   not feasible to re-configure implementations to use 3DES.
   [standby-cipher] describes this issue and the need for a standby
   cipher in greater detail.

   This document defines such a standby cipher.  We use ChaCha20
   ([chacha]) with or without the Poly1305 ([poly1305]) authenticator.
   These algorithms are not just fast.  They are fast even in software-
   only C-language implementations, allowing for much quicker deployment
   when compared with algorithms such as AES that are significantly
   accelerated by hardware implementations.

   This document does not introduce these new algorithms.  They have
   been defined in scientific papers by D. J. Bernstein, which are
   referenced by this document.  The purpose of this document is to
   serve as a stable reference for IETF documents making use of these
   algorithms.

   These algorithms have undergone rigorous analysis.  Several papers
   discuss the security of Salsa and ChaCha ([LatinDances],
   [Zhenqing2012]).

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   The description of the ChaCha algorithm will at various time refer to
   the ChaCha state as a "vector" or as a "matrix".  This follows the
   use of these terms in DJB’s paper.  The matrix notation is more
   visually convenient, and gives a better notion as to why some rounds
   are called "column rounds" while others are called "diagonal rounds".
   Here’s a diagram of how to matrices relate to vectors (using the C
   language convention of zero being the index origin).

Nir & Langley            Expires January 5, 2015                [Page 3]



Internet-Draft             ChaCha20 & Poly1305                 July 2014

      0   1   2   3
      4   5   6   7
      8   9  10  11
     12  13  14  15

   The elements in this vector or matrix are 32-bit unsigned integers.

   The algorithm name is "ChaCha".  "ChaCha20" is a specific instance
   where 20 "rounds" (or 80 quarter rounds - see Section 2.1) are used.
   Other variations are defined, with 8 or 12 rounds, but in this
   document we only describe the 20-round ChaCha, so the names "ChaCha"
   and "ChaCha20" will be used interchangeably.

2.  The Algorithms

   The subsections below describe the algorithms used and the AEAD
   construction.

2.1.  The ChaCha Quarter Round

   The basic operation of the ChaCha algorithm is the quarter round.  It
   operates on four 32-bit unsigned integers, denoted a, b, c, and d.
   The operation is as follows (in C-like notation):
   o  a += b; d ^= a; d <<<= 16;
   o  c += d; b ^= c; b <<<= 12;
   o  a += b; d ^= a; d <<<= 8;
   o  c += d; b ^= c; b <<<= 7;
   Where "+" denotes integer addition modulo 2^32, "^" denotes a bitwise
   XOR, and "<<< n" denotes an n-bit left rotation (towards the high
   bits).

   For example, let’s see the add, XOR and roll operations from the
   first line with sample numbers:
   o  b = 0x01020304
   o  a = 0x11111111
   o  d = 0x01234567
   o  a = a + b = 0x11111111 + 0x01020304 = 0x12131415
   o  d = d ^ a = 0x01234567 ^ 0x12131415 = 0x13305172
   o  d = d<<<16 = 0x51721330

2.1.1.  Test Vector for the ChaCha Quarter Round

   For a test vector, we will use the same numbers as in the example,
   adding something random for c.
   o  a = 0x11111111

Nir & Langley            Expires January 5, 2015                [Page 4]



Internet-Draft             ChaCha20 & Poly1305                 July 2014

   o  b = 0x01020304
   o  c = 0x9b8d6f43
   o  d = 0x01234567

   After running a Quarter Round on these 4 numbers, we get these:
   o  a = 0xea2a92f4
   o  b = 0xcb1cf8ce
   o  c = 0x4581472e
   o  d = 0x5881c4bb

2.2.  A Quarter Round on the ChaCha State

   The ChaCha state does not have 4 integer numbers, but 16.  So the
   quarter round operation works on only 4 of them - hence the name.
   Each quarter round operates on 4 pre-determined numbers in the ChaCha
   state.  We will denote by QUATERROUND(x,y,z,w) a quarter-round
   operation on the numbers at indexes x, y, z, and w of the ChaCha
   state when viewed as a vector.  For example, if we apply
   QUARTERROUND(1,5,9,13) to a state, this means running the quarter
   round operation on the elements marked with an asterisk, while
   leaving the others alone:

      0  *a   2   3
      4  *b   6   7
      8  *c  10  11
     12  *d  14  15

   Note that this run of quarter round is part of what is called a
   "column round".

2.2.1.  Test Vector for the Quarter Round on the ChaCha state

   For a test vector, we will use a ChaCha state that was generated
   randomly:

   Sample ChaCha State

       879531e0  c5ecf37d  516461b1  c9a62f8a
       44c20ef3  3390af7f  d9fc690b  2a5f714c
       53372767  b00a5631  974c541a  359e9963
       5c971061  3d631689  2098d9d6  91dbd320

   We will apply the QUARTERROUND(2,7,8,13) operation to this state.
   For obvious reasons, this one is part of what is called a "diagonal
   round":
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   After applying QUARTERROUND(2,7,8,13)

       879531e0  c5ecf37d  bdb886dc  c9a62f8a
       44c20ef3  3390af7f  d9fc690b  cfacafd2
       e46bea80  b00a5631  974c541a  359e9963
       5c971061  ccc07c79  2098d9d6  91dbd320

   Note that only the numbers in positions 2, 7, 8, and 13 changed.

2.3.  The ChaCha20 block Function

   The ChaCha block function transforms a ChaCha state by running
   multiple quarter rounds.

   The inputs to ChaCha20 are:
   o  A 256-bit key, treated as a concatenation of 8 32-bit little-
      endian integers.
   o  A 96-bit nonce, treated as a concatenation of 3 32-bit little-
      endian integers.
   o  A 32-bit block count parameter, treated as a 32-bit little-endian
      integer.

   The output is 64 random-looking bytes.

   The ChaCha algorithm described here uses a 256-bit key.  The original
   algorithm also specified 128-bit keys and 8- and 12-round variants,
   but these are out of scope for this document.  In this section we
   describe the ChaCha block function.

   Note also that the original ChaCha had a 64-bit nonce and 64-bit
   block count.  We have modified this here to be more consistent with
   recommendations in section 3.2 of [RFC5116].  This limits the use of
   a single (key,nonce) combination to 2^32 blocks, or 256 GB, but that
   is enough for most uses.  In cases where a single key is used by
   multiple senders, it is important to make sure that they don’t use
   the same nonces.  This can be assured by partitioning the nonce space
   so that the first 32 bits are unique per sender, while the other 64
   bits come from a counter.

   The ChaCha20 state is initialized as follows:
   o  The first 4 words (0-3) are constants: 0x61707865, 0x3320646e,
      0x79622d32, 0x6b206574.
   o  The next 8 words (4-11) are taken from the 256-bit key by reading
      the bytes in little-endian order, in 4-byte chunks.
   o  Word 12 is a block counter.  Since each block is 64-byte, a 32-bit
      word is enough for 256 Gigabytes of data.
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   o  Words 13-15 are a nonce, which should not be repeated for the same
      key.  The 13th word is the first 32 bits of the input nonce taken
      as a little-endian integer, while the 15th word is the last 32
      bits.

       cccccccc  cccccccc  cccccccc  cccccccc
       kkkkkkkk  kkkkkkkk  kkkkkkkk  kkkkkkkk
       kkkkkkkk  kkkkkkkk  kkkkkkkk  kkkkkkkk
       bbbbbbbb  nnnnnnnn  nnnnnnnn  nnnnnnnn

   c=constant k=key b=blockcount n=nonce

   ChaCha20 runs 20 rounds, alternating between "column" and "diagonal"
   rounds.  Each round is 4 quarter-rounds, and they are run as follows.
   Quarter-rounds 1-4 are part of a "column" round, while 5-8 are part
   of a "diagonal" round:
   1.  QUARTERROUND ( 0, 4, 8,12)
   2.  QUARTERROUND ( 1, 5, 9,13)
   3.  QUARTERROUND ( 2, 6,10,14)
   4.  QUARTERROUND ( 3, 7,11,15)
   5.  QUARTERROUND ( 0, 5,10,15)
   6.  QUARTERROUND ( 1, 6,11,12)
   7.  QUARTERROUND ( 2, 7, 8,13)
   8.  QUARTERROUND ( 3, 4, 9,14)

   At the end of 20 rounds, we add the original input words to the
   output words, and serialize the result by sequencing the words one-
   by-one in little-endian order.

   Note: "addition" in the above paragraph is done modulo 2^32.  In some
   machine languages this is called carryless addition on a 32-bit word.

2.3.1.  Test Vector for the ChaCha20 Block Function

   For a test vector, we will use the following inputs to the ChaCha20
   block function:
   o  Key = 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10:11:12:13:
      14:15:16:17:18:19:1a:1b:1c:1d:1e:1f.  The key is a sequence of
      octets with no particular structure before we copy it into the
      ChaCha state.
   o  Nonce = (00:00:00:09:00:00:00:4a:00:00:00:00)
   o  Block Count = 1.

   After setting up the ChaCha state, it looks like this:
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   ChaCha State with the key set up.

       61707865  3320646e  79622d32  6b206574
       03020100  07060504  0b0a0908  0f0e0d0c
       13121110  17161514  1b1a1918  1f1e1d1c
       00000001  09000000  4a000000  00000000

   After running 20 rounds (10 column rounds interleaved with 10
   diagonal rounds), the ChaCha state looks like this:

   ChaCha State after 20 rounds

       837778ab  e238d763  a67ae21e  5950bb2f
       c4f2d0c7  fc62bb2f  8fa018fc  3f5ec7b7
       335271c2  f29489f3  eabda8fc  82e46ebd
       d19c12b4  b04e16de  9e83d0cb  4e3c50a2

   Finally we add the original state to the result (simple vector or
   matrix addition), giving this:

   ChaCha State at the end of the ChaCha20 operation

       e4e7f110  15593bd1  1fdd0f50  c47120a3
       c7f4d1c7  0368c033  9aaa2204  4e6cd4c3
       466482d2  09aa9f07  05d7c214  a2028bd9
       d19c12b5  b94e16de  e883d0cb  4e3c50a2

   After we serialize the state, we get this:

  Serialized Block:
  000  10 f1 e7 e4 d1 3b 59 15 50 0f dd 1f a3 20 71 c4  .....;Y.P.... q.
  016  c7 d1 f4 c7 33 c0 68 03 04 22 aa 9a c3 d4 6c 4e  ....3.h.."....lN
  032  d2 82 64 46 07 9f aa 09 14 c2 d7 05 d9 8b 02 a2  ..dF............
  048  b5 12 9c d1 de 16 4e b9 cb d0 83 e8 a2 50 3c 4e  ......N......P<N

2.4.  The ChaCha20 encryption algorithm

   ChaCha20 is a stream cipher designed by D. J. Bernstein.  It is a
   refinement of the Salsa20 algorithm, and uses a 256-bit key.

   ChaCha20 successively calls the ChaCha20 block function, with the
   same key and nonce, and with successively increasing block counter
   parameters.  ChaCha20 then serializes the resulting state by writing
   the numbers in little-endian order, creating a key-stream block.
   Concatenating the key-stream blocks from the successive blocks forms
   a key stream, which is then XOR-ed with the plaintext.
   Alternatively, each key-stream block can be XOR-ed with a plaintext
   block before proceeding to create the next block, saving some memory.
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   There is no requirement for the plaintext to be an integral multiple
   of 512-bits.  If there is extra keystream from the last block, it is
   discarded.  Specific protocols MAY require that the plaintext and
   ciphertext have certain length.  Such protocols need to specify how
   the plaintext is padded, and how much padding it receives.

   The inputs to ChaCha20 are:
   o  A 256-bit key
   o  A 32-bit initial counter.  This can be set to any number, but will
      usually be zero or one.  It makes sense to use 1 if we use the
      zero block for something else, such as generating a one-time
      authenticator key as part of an AEAD algorithm.
   o  A 96-bit nonce.  In some protocols, this is known as the
      Initialization Vector.
   o  An arbitrary-length plaintext

   The output is an encrypted message of the same length.

   Decryption is done in the same way.  The ChaCha20 block function is
   used to expand the key into a key stream, which is XOR-ed with the
   ciphertext giving back the plaintext.

2.4.1.  Example and Test Vector for the ChaCha20 Cipher

   For a test vector, we will use the following inputs to the ChaCha20
   block function:
   o  Key = 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10:11:12:13:
      14:15:16:17:18:19:1a:1b:1c:1d:1e:1f.
   o  Nonce = (00:00:00:00:00:00:00:4a:00:00:00:00).
   o  Initial Counter = 1.

   We use the following for the plaintext.  It was chosen to be long
   enough to require more than one block, but not so long that it would
   make this example cumbersome (so, less than 3 blocks):

  Plaintext Sunscreen:
  000  4c 61 64 69 65 73 20 61 6e 64 20 47 65 6e 74 6c  Ladies and Gentl
  016  65 6d 65 6e 20 6f 66 20 74 68 65 20 63 6c 61 73  emen of the clas
  032  73 20 6f 66 20 27 39 39 3a 20 49 66 20 49 20 63  s of ’99: If I c
  048  6f 75 6c 64 20 6f 66 66 65 72 20 79 6f 75 20 6f  ould offer you o
  064  6e 6c 79 20 6f 6e 65 20 74 69 70 20 66 6f 72 20  nly one tip for
  080  74 68 65 20 66 75 74 75 72 65 2c 20 73 75 6e 73  the future, suns
  096  63 72 65 65 6e 20 77 6f 75 6c 64 20 62 65 20 69  creen would be i
  112  74 2e                                            t.

   The following figure shows 4 ChaCha state matrices:
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   1.  First block as it is set up.
   2.  Second block as it is set up.  Note that these blocks are only
       two bits apart - only the counter in position 12 is different.
   3.  Third block is the first block after the ChaCha20 block
       operation.
   4.  Final block is the second block after the ChaCha20 block
       operation was applied.
   After that, we show the keystream.

   First block setup:
       61707865  3320646e  79622d32  6b206574
       03020100  07060504  0b0a0908  0f0e0d0c
       13121110  17161514  1b1a1918  1f1e1d1c
       00000001  00000000  4a000000  00000000

   Second block setup:
       61707865  3320646e  79622d32  6b206574
       03020100  07060504  0b0a0908  0f0e0d0c
       13121110  17161514  1b1a1918  1f1e1d1c
       00000002  00000000  4a000000  00000000

   First block after block operation:
       f3514f22  e1d91b40  6f27de2f  ed1d63b8
       821f138c  e2062c3d  ecca4f7e  78cff39e
       a30a3b8a  920a6072  cd7479b5  34932bed
       40ba4c79  cd343ec6  4c2c21ea  b7417df0

   Second block after block operation:
       9f74a669  410f633f  28feca22  7ec44dec
       6d34d426  738cb970  3ac5e9f3  45590cc4
       da6e8b39  892c831a  cdea67c1  2b7e1d90
       037463f3  a11a2073  e8bcfb88  edc49139

   Keystream:
   22:4f:51:f3:40:1b:d9:e1:2f:de:27:6f:b8:63:1d:ed:8c:13:1f:82:3d:2c:06
   e2:7e:4f:ca:ec:9e:f3:cf:78:8a:3b:0a:a3:72:60:0a:92:b5:79:74:cd:ed:2b
   93:34:79:4c:ba:40:c6:3e:34:cd:ea:21:2c:4c:f0:7d:41:b7:69:a6:74:9f:3f
   63:0f:41:22:ca:fe:28:ec:4d:c4:7e:26:d4:34:6d:70:b9:8c:73:f3:e9:c5:3a
   c4:0c:59:45:39:8b:6e:da:1a:83:2c:89:c1:67:ea:cd:90:1d:7e:2b:f3:63

   Finally, we XOR the Keystream with the plaintext, yielding the
   Ciphertext:
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  Ciphertext Sunscreen:
  000  6e 2e 35 9a 25 68 f9 80 41 ba 07 28 dd 0d 69 81  n.5.%h..A..(..i.
  016  e9 7e 7a ec 1d 43 60 c2 0a 27 af cc fd 9f ae 0b  .˜z..C‘..’......
  032  f9 1b 65 c5 52 47 33 ab 8f 59 3d ab cd 62 b3 57  ..e.RG3..Y=..b.W
  048  16 39 d6 24 e6 51 52 ab 8f 53 0c 35 9f 08 61 d8  .9.$.QR..S.5..a.
  064  07 ca 0d bf 50 0d 6a 61 56 a3 8e 08 8a 22 b6 5e  ....P.jaV....".^
  080  52 bc 51 4d 16 cc f8 06 81 8c e9 1a b7 79 37 36  R.QM.........y76
  096  5a f9 0b bf 74 a3 5b e6 b4 0b 8e ed f2 78 5e 42  Z...t.[......x^B
  112  87 4d                                            .M

2.5.  The Poly1305 algorithm

   Poly1305 is a one-time authenticator designed by D. J. Bernstein.
   Poly1305 takes a 32-byte one-time key and a message and produces a
   16-byte tag.

   The original article ([poly1305]) is entitled "The Poly1305-AES
   message-authentication code", and the MAC function there requires a
   128-bit AES key, a 128-bit "additional key", and a 128-bit (non-
   secret) nonce.  AES is used there for encrypting the nonce, so as to
   get a unique (and secret) 128-bit string, but as the paper states,
   "There is nothing special about AES here.  One can replace AES with
   an arbitrary keyed function from an arbitrary set of nonces to 16-
   byte strings."

   Regardless of how the key is generated, the key is partitioned into
   two parts, called "r" and "s".  The pair (r,s) should be unique, and
   MUST be unpredictable for each invocation (that is why it was
   originally obtained by encrypting a nonce), while "r" MAY be
   constant, but needs to be modified as follows before being used: ("r"
   is treated as a 16-octet little-endian number):
   o  r[3], r[7], r[11], and r[15] are required to have their top four
      bits clear (be smaller than 16)
   o  r[4], r[8], and r[12] are required to have their bottom two bits
      clear (be divisible by 4)

   The following sample code clamps "r" to be appropriate:
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   /*
   Adapted from poly1305aes_test_clamp.c version 20050207
   D. J. Bernstein
   Public domain.
   */

   #include "poly1305aes_test.h"

   void poly1305aes_test_clamp(unsigned char r[16])
   {
     r[3] &= 15;
     r[7] &= 15;
     r[11] &= 15;
     r[15] &= 15;
     r[4] &= 252;
     r[8] &= 252;
     r[12] &= 252;
   }

   The "s" should be unpredictable, but it is perfectly acceptable to
   generate both "r" and "s" uniquely each time.  Because each of them
   is 128-bit, pseudo-randomly generating them (see Section 2.6) is also
   acceptable.

   The inputs to Poly1305 are:
   o  A 256-bit one-time key
   o  An arbitrary length message

   The output is a 128-bit tag.

   First, the "r" value should be clamped.

   Next, set the constant prime "P" be 2^130-5:
   3fffffffffffffffffffffffffffffffb.  Also set a variable "accumulator"
   to zero.

   Next, divide the message into 16-byte blocks.  The last one might be
   shorter:
   o  Read the block as a little-endian number.
   o  Add one bit beyond the number of octets.  For a 16-byte block this
      is equivalent to adding 2^128 to the number.  For the shorter
      block it can be 2^120, 2^112, or any power of two that is evenly
      divisible by 8, all the way down to 2^8.
   o  If the block is not 17 bytes long (the last block), pad it with
      zeros.  This is meaningless if you’re treating it them as numbers.
   o  Add this number to the accumulator.
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   o  Multiply by "r"
   o  Set the accumulator to the result modulo p.  To summarize: Acc =
      ((Acc+block)*r) % p.

   Finally, the value of the secret key "s" is added to the accumulator,
   and the 128 least significant bits are serialized in little-endian
   order to form the tag.

2.5.1.  Poly1305 Example and Test Vector

   For our example, we will dispense with generating the one-time key
   using AES, and assume that we got the following keying material:
   o  Key Material: 85:d6:be:78:57:55:6d:33:7f:44:52:fe:42:d5:06:a8:01:
      03:80:8a:fb:0d:b2:fd:4a:bf:f6:af:41:49:f5:1b
   o  s as an octet string: 01:03:80:8a:fb:0d:b2:fd:4a:bf:f6:af:41:49:
      f5:1b
   o  s as a 128-bit number: 1bf54941aff6bf4afdb20dfb8a800301
   o  r before clamping: 85:d6:be:78:57:55:6d:33:7f:44:52:fe:42:d5:06:a8
   o  Clamped r as a number: 806d5400e52447c036d555408bed685.

   For our message, we’ll use a short text:

  Message to be Authenticated:
  000  43 72 79 70 74 6f 67 72 61 70 68 69 63 20 46 6f  Cryptographic Fo
  016  72 75 6d 20 52 65 73 65 61 72 63 68 20 47 72 6f  rum Research Gro
  032  75 70                                            up

   Since Poly1305 works in 16-byte chunks, the 34-byte message divides
   into 3 blocks.  In the following calculation, "Acc" denotes the
   accumulator and "Block" the current block:

   Block #1

   Acc = 00
   Block = 6f4620636968706172676f7470797243
   Block with 0x01 byte = 016f4620636968706172676f7470797243
   Acc + block = 016f4620636968706172676f7470797243
   (Acc+Block) * r =
        b83fe991ca66800489155dcd69e8426ba2779453994ac90ed284034da565ecf
   Acc = ((Acc+Block)*r) % P = 2c88c77849d64ae9147ddeb88e69c83fc
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   Block #2

   Acc = 2c88c77849d64ae9147ddeb88e69c83fc
   Block = 6f7247206863726165736552206d7572
   Block with 0x01 byte = 016f7247206863726165736552206d7572
   Acc + block = 437febea505c820f2ad5150db0709f96e
   (Acc+Block) * r =
        21dcc992d0c659ba4036f65bb7f88562ae59b32c2b3b8f7efc8b00f78e548a26
   Acc = ((Acc+Block)*r) % P = 2d8adaf23b0337fa7cccfb4ea344b30de

   Last Block

   Acc = 2d8adaf23b0337fa7cccfb4ea344b30de
   Block = 7075
   Block with 0x01 byte = 017075
   Acc + block = 2d8adaf23b0337fa7cccfb4ea344ca153
   (Acc + Block) * r =
        16d8e08a0f3fe1de4fe4a15486aca7a270a29f1e6c849221e4a6798b8e45321f
   ((Acc + Block) * r) % P = 28d31b7caff946c77c8844335369d03a7

   Adding s we get this number, and serialize if to get the tag:

   Acc + s = 2a927010caf8b2bc2c6365130c11d06a8

   Tag: a8:06:1d:c1:30:51:36:c6:c2:2b:8b:af:0c:01:27:a9

2.6.  Generating the Poly1305 key using ChaCha20

   As said in Section 2.5, it is acceptable to generate the one-time
   Poly1305 pseudo-randomly.  This section proposes such a method.

   To generate such a key pair (r,s), we will use the ChaCha20 block
   function described in Section 2.3.  This assumes that we have a 256-
   bit session key for the MAC function, such as SK_ai and SK_ar in
   IKEv2 ([RFC5996]), the integrity key in ESP and AH, or the
   client_write_MAC_key and server_write_MAC_key in TLS.  Any document
   that specifies the use of Poly1305 as a MAC algorithm for some
   protocol must specify that 256 bits are allocated for the integrity
   key.

   The method is to call the block function with the following
   parameters:
   o  The 256-bit session integrity key is used as the ChaCha20 key.
   o  The block counter is set to zero.
   o  The protocol will specify a 96-bit or 64-bit nonce.  This MUST be
      unique per invocation with the same key, so it MUST NOT be
      randomly generated.  A counter is a good way to implement this,
      but other methods, such as an LFSR are also acceptable.  ChaCha20
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      as specified here requires a 96-bit nonce.  So if the provided
      nonce is only 64-bit, then the first 32 bits of the nonce will be
      set to a constant number.  This will usually be zero, but for
      protocols with multiple senders it may be different for each
      sender, but should be the same for all invocations of the function
      with the same key by a particular sender.

   After running the block function, we have a 512-bit state.  We take
   the first 256 bits or the serialized state, and use those as the one-
   time Poly1305 key: The first 128 bits are clamped, and form "r",
   while the next 128 bits become "s".  The other 256 bits are
   discarded.

   Note that while many protocols have provisions for a nonce for
   encryption algorithms (often called Initialization Vectors, or IVs),
   they usually don’t have such a provision for the MAC function.  In
   that case the per-invocation nonce will have to come from somewhere
   else, such as a message counter.

2.6.1.  Poly1305 Key Generation Test Vector

   For this example, we’ll set:

  Key:
  000  80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f  ................
  016  90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f  ................

   Nonce:
   000  00 00 00 00 00 01 02 03 04 05 06 07              ............

   The ChaCha state set up with key, nonce, and block counter zero:
         61707865  3320646e  79622d32  6b206574
         83828180  87868584  8b8a8988  8f8e8d8c
         93929190  97969594  9b9a9998  9f9e9d9c
         00000000  00000000  03020100  07060504

   The ChaCha state after 20 rounds:
         8ba0d58a  cc815f90  27405081  7194b24a
         37b633a8  a50dfde3  e2b8db08  46a6d1fd
         7da03782  9183a233  148ad271  b46773d1
         3cc1875a  8607def1  ca5c3086  7085eb87

  Output bytes:
  000  8a d5 a0 8b 90 5f 81 cc 81 50 40 27 4a b2 94 71  ....._...P@’J..q
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  016  a8 33 b6 37 e3 fd 0d a5 08 db b8 e2 fd d1 a6 46  .3.7...........F

   And that output is also the 32-byte one-time key used for Poly1305.

2.7.  A Pseudo-Random Function for ChaCha/Poly-1305 based Crypto Suites

   Some protocols such as IKEv2([RFC5996]) require a Pseudo-Random
   Function (PRF), mostly for key derivation.  In the IKEv2 definition,
   a PRF is a function that accepts a variable-length key and a
   variable-length input, and returns a fixed-length output.  This
   section does not specify such a function.

   Poly-1305 is an obvious choice, because MAC functions are often used
   as PRFs.  However, Poly-1305 prohibits using the same key twice,
   whereas the PRF in IKEv2 is used multiple times with the same key.
   Adding a nonce or a counter to Poly-1305 can solve this issue, much
   as we do when using this function as a MAC, but that would require
   changing the interface for the PRF function.

   Chacha20 could be used as a key-derivation function, by generating an
   arbitrarily long keystream.  However, that is not what protocols such
   as IKEv2 require.

   For this reason, this document does not specify a PRF, and recommends
   that crypto suites use some other PRF such as PRF_HMAC_SHA2_256
   (section 2.1.2 of [RFC4868])

2.8.  AEAD Construction

   AEAD_CHACHA20-POLY1305 is an authenticated encryption with additional
   data algorithm.  The inputs to AEAD_CHACHA20-POLY1305 are:
   o  A 256-bit key
   o  A 96-bit nonce - different for each invocation with the same key.
   o  An arbitrary length plaintext
   o  Arbitrary length additional authenticated data (AAD)

   The ChaCha20 and Poly1305 primitives are combined into an AEAD that
   takes a 256-bit key and 64-bit IV as follows:
   o  First the 96-bit nonce is constructed by prepending a 32-bit
      constant value to the IV.  This could be set to zero, or could be
      derived from keying material, or could be assigned to a sender.
      It is up to the specific protocol to define the source for that
      32-bit value.
   o  Next, a Poly1305 one-time key is generated from the 256-bit key
      and nonce using the procedure described in Section 2.6.
   o  The ChaCha20 encryption function is called to encrypt the
      plaintext, using the same key and nonce, and with the initial
      counter set to 1.
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   o  The Poly1305 function is called with the Poly1305 key calculated
      above, and a message constructed as a concatenation of the
      following:
      *  The AAD
      *  padding1 - the padding is up to 15 zero bytes, and it brings
         the total length so far to an integral multiple of 16.  If the
         length of the AAD was already an integral multiple of 16 bytes,
         this field is zero-length.
      *  The ciphertext
      *  padding2 - the padding is up to 15 zero bytes, and it brings
         the total length so far to an integral multiple of 16.  If the
         length of the ciphertext was already an integral multiple of 16
         bytes, this field is zero-length.
      *  The length of the additional data in octets (as a 64-bit
         little-endian integer).
      *  The length of the ciphertext in octets (as a 64-bit little-
         endian integer).

   Decryption is pretty much the same thing.

   The output from the AEAD is twofold:
   o  A ciphertext of the same length as the plaintext.
   o  A 128-bit tag, which is the output of the Poly1305 function.

   A few notes about this design:
   1.  The amount of encrypted data possible in a single invocation is
       2^32-1 blocks of 64 bytes each, because of the size of the block
       counter field in the ChaCha20 block function.  This gives a total
       of 247,877,906,880 bytes, or nearly 256 GB.  This should be
       enough for traffic protocols such as IPsec and TLS, but may be
       too small for file and/or disk encryption.  For such uses, we can
       return to the original design, reduce the nonce to 64 bits, and
       use the integer at position 13 as the top 32 bits of a 64-bit
       block counter, increasing the total message size to over a
       million petabytes (1,180,591,620,717,411,303,360 bytes to be
       exact).
   2.  Despite the previous item, the ciphertext length field in the
       construction of the buffer on which Poly1305 runs limits the
       ciphertext (and hence, the plaintext) size to 2^64 bytes, or
       sixteen thousand petabytes (18,446,744,073,709,551,616 bytes to
       be exact).

2.8.1.  Example and Test Vector for AEAD_CHACHA20-POLY1305

   For a test vector, we will use the following inputs to the
   AEAD_CHACHA20-POLY1305 function:
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  Plaintext:
  000  4c 61 64 69 65 73 20 61 6e 64 20 47 65 6e 74 6c  Ladies and Gentl
  016  65 6d 65 6e 20 6f 66 20 74 68 65 20 63 6c 61 73  emen of the clas
  032  73 20 6f 66 20 27 39 39 3a 20 49 66 20 49 20 63  s of ’99: If I c
  048  6f 75 6c 64 20 6f 66 66 65 72 20 79 6f 75 20 6f  ould offer you o
  064  6e 6c 79 20 6f 6e 65 20 74 69 70 20 66 6f 72 20  nly one tip for
  080  74 68 65 20 66 75 74 75 72 65 2c 20 73 75 6e 73  the future, suns
  096  63 72 65 65 6e 20 77 6f 75 6c 64 20 62 65 20 69  creen would be i
  112  74 2e                                            t.

   AAD:
   000  50 51 52 53 c0 c1 c2 c3 c4 c5 c6 c7              PQRS........

  Key:
  000  80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f  ................
  016  90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f  ................

   IV:
   000  40 41 42 43 44 45 46 47                          @ABCDEFG

   32-bit fixed-common part:
   000  07 00 00 00                                      ....

   Set up for generating poly1305 one-time key (sender id=7):
       61707865  3320646e  79622d32  6b206574
       83828180  87868584  8b8a8988  8f8e8d8c
       93929190  97969594  9b9a9998  9f9e9d9c
       00000000  00000007  43424140  47464544

   After generating Poly1305 one-time key:
       252bac7b  af47b42d  557ab609  8455e9a4
       73d6e10a  ebd97510  7875932a  ff53d53e
       decc7ea2  b44ddbad  e49c17d1  d8430bc9
       8c94b7bc  8b7d4b4b  3927f67d  1669a432

  Poly1305 Key:
  000  7b ac 2b 25 2d b4 47 af 09 b6 7a 55 a4 e9 55 84  {.+%-.G...zU..U.
  016  0a e1 d6 73 10 75 d9 eb 2a 93 75 78 3e d5 53 ff  ...s.u..*.ux>.S.

  Poly1305 r =  455e9a4057ab6080f47b42c052bac7b
  Poly1305 s = ff53d53e7875932aebd9751073d6e10a
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   Keystream bytes:
   9f:7b:e9:5d:01:fd:40:ba:15:e2:8f:fb:36:81:0a:ae:
   c1:c0:88:3f:09:01:6e:de:dd:8a:d0:87:55:82:03:a5:
   4e:9e:cb:38:ac:8e:5e:2b:b8:da:b2:0f:fa:db:52:e8:
   75:04:b2:6e:be:69:6d:4f:60:a4:85:cf:11:b8:1b:59:
   fc:b1:c4:5f:42:19:ee:ac:ec:6a:de:c3:4e:66:69:78:
   8e:db:41:c4:9c:a3:01:e1:27:e0:ac:ab:3b:44:b9:cf:
   5c:86:bb:95:e0:6b:0d:f2:90:1a:b6:45:e4:ab:e6:22:
   15:38

  Ciphertext:
  000  d3 1a 8d 34 64 8e 60 db 7b 86 af bc 53 ef 7e c2  ...4d.‘.{...S.˜.
  016  a4 ad ed 51 29 6e 08 fe a9 e2 b5 a7 36 ee 62 d6  ...Q)n......6.b.
  032  3d be a4 5e 8c a9 67 12 82 fa fb 69 da 92 72 8b  =..^..g....i..r.
  048  1a 71 de 0a 9e 06 0b 29 05 d6 a5 b6 7e cd 3b 36  .q.....)....˜.;6
  064  92 dd bd 7f 2d 77 8b 8c 98 03 ae e3 28 09 1b 58  ....-w......(..X
  080  fa b3 24 e4 fa d6 75 94 55 85 80 8b 48 31 d7 bc  ..$...u.U...H1..
  096  3f f4 de f0 8e 4b 7a 9d e5 76 d2 65 86 ce c6 4b  ?....Kz..v.e...K
  112  61 16                                            a.

  AEAD Construction for Poly1305:
  000  50 51 52 53 c0 c1 c2 c3 c4 c5 c6 c7 00 00 00 00  PQRS............
  016  d3 1a 8d 34 64 8e 60 db 7b 86 af bc 53 ef 7e c2  ...4d.‘.{...S.˜.
  032  a4 ad ed 51 29 6e 08 fe a9 e2 b5 a7 36 ee 62 d6  ...Q)n......6.b.
  048  3d be a4 5e 8c a9 67 12 82 fa fb 69 da 92 72 8b  =..^..g....i..r.
  064  1a 71 de 0a 9e 06 0b 29 05 d6 a5 b6 7e cd 3b 36  .q.....)....˜.;6
  080  92 dd bd 7f 2d 77 8b 8c 98 03 ae e3 28 09 1b 58  ....-w......(..X
  096  fa b3 24 e4 fa d6 75 94 55 85 80 8b 48 31 d7 bc  ..$...u.U...H1..
  112  3f f4 de f0 8e 4b 7a 9d e5 76 d2 65 86 ce c6 4b  ?....Kz..v.e...K
  128  61 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00  a...............
  144  0c 00 00 00 00 00 00 00 72 00 00 00 00 00 00 00  ........r.......

   Note the 4 zero bytes in line 000 and the 14 zero bytes in line 128

   Tag:
   1a:e1:0b:59:4f:09:e2:6a:7e:90:2e:cb:d0:60:06:91

3.  Implementation Advice

   Each block of ChaCha20 involves 16 move operations and one increment
   operation for loading the state, 80 each of XOR, addition and Roll
   operations for the rounds, 16 more add operations and 16 XOR
   operations for protecting the plaintext.  Section 2.3 describes the
   ChaCha block function as "adding the original input words".  This
   implies that before starting the rounds on the ChaCha state, we copy
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   it aside, only to add it in later.  This is correct, but we can save
   a few operations if we instead copy the state and do the work on the
   copy.  This way, for the next block you don’t need to recreate the
   state, but only to increment the block counter.  This saves
   approximately 5.5% of the cycles.

   It is not recommended to use a generic big number library such as the
   one in OpenSSL for the arithmetic operations in Poly1305.  Such
   libraries use dynamic allocation to be able to handle any-sized
   integer, but that flexibility comes at the expense of performance as
   well as side-channel security.  More efficient implementations that
   run in constant time are available, one of them in DJB’s own library,
   NaCl ([NaCl]).  A constant-time but not optimal approach would be to
   naively implement the arithmetic operations for a 288-bit integers,
   because even a naive implementation will not exceed 2^288 in the
   multiplication of (acc+block) and r.  An efficient constant-time
   implementation can be found in the public domain library poly1305-
   donna ([poly1305_donna]).

4.  Security Considerations

   The ChaCha20 cipher is designed to provide 256-bit security.

   The Poly1305 authenticator is designed to ensure that forged messages
   are rejected with a probability of 1-(n/(2^102)) for a 16n-byte
   message, even after sending 2^64 legitimate messages, so it is SUF-
   CMA in the terminology of [AE].

   Proving the security of either of these is beyond the scope of this
   document.  Such proofs are available in the referenced academic
   papers.

   The most important security consideration in implementing this draft
   is the uniqueness of the nonce used in ChaCha20.  Counters and LFSRs
   are both acceptable ways of generating unique nonces, as is
   encrypting a counter using a 64-bit cipher such as DES.  Note that it
   is not acceptable to use a truncation of a counter encrypted with a
   128-bit or 256-bit cipher, because such a truncation may repeat after
   a short time.

   The Poly1305 key MUST be unpredictable to an attacker.  Randomly
   generating the key would fulfill this requirement, except that
   Poly1305 is often used in communications protocols, so the receiver
   should know the key.  Pseudo-random number generation such as by
   encrypting a counter is acceptable.  Using ChaCha with a secret key
   and a nonce is also acceptable.
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   The algorithms presented here were designed to be easy to implement
   in constant time to avoid side-channel vulnerabilities.  The
   operations used in ChaCha20 are all additions, XORs, and fixed
   rotations.  All of these can and should be implemented in constant
   time.  Access to offsets into the ChaCha state and the number of
   operations do not depend on any property of the key, eliminating the
   chance of information about the key leaking through the timing of
   cache misses.

   For Poly1305, the operations are addition, multiplication and
   modulus, all on >128-bit numbers.  This can be done in constant time,
   but a naive implementation (such as using some generic big number
   library) will not be constant time.  For example, if the
   multiplication is performed as a separate operation from the modulus,
   the result will some times be under 2^256 and some times be above
   2^256.  Implementers should be careful about timing side-channels for
   Poly1305 by using the appropriate implementation of these operations.

5.  IANA Considerations

   There are no IANA considerations for this document.
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Appendix A.  Additional Test Vectors

   The sub-sections of this appendix contain more test vectors for the
   algorithms in the sub-sections of Section 2.

A.1.  The ChaCha20 Block Functions

  Test Vector #1:
  ==============

  Key:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  Nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 00              ............

  Block Counter = 0

    ChaCha State at the end
        ade0b876  903df1a0  e56a5d40  28bd8653
        b819d2bd  1aed8da0  ccef36a8  c70d778b
        7c5941da  8d485751  3fe02477  374ad8b8
        f4b8436a  1ca11815  69b687c3  8665eeb2

  Keystream:
  000  76 b8 e0 ad a0 f1 3d 90 40 5d 6a e5 53 86 bd 28  v.....=.@]j.S..(
  016  bd d2 19 b8 a0 8d ed 1a a8 36 ef cc 8b 77 0d c7  .........6...w..
  032  da 41 59 7c 51 57 48 8d 77 24 e0 3f b8 d8 4a 37  .AY|QWH.w$.?..J7
  048  6a 43 b8 f4 15 18 a1 1c c3 87 b6 69 b2 ee 65 86  jC.........i..e.
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  Test Vector #2:
  ==============

  Key:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  Nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 00              ............

  Block Counter = 1

    ChaCha State at the end
        bee7079f  7a385155  7c97ba98  0d082d73
        a0290fcb  6965e348  3e53c612  ed7aee32
        7621b729  434ee69c  b03371d5  d539d874
        281fed31  45fb0a51  1f0ae1ac  6f4d794b

  Keystream:
  000  9f 07 e7 be 55 51 38 7a 98 ba 97 7c 73 2d 08 0d  ....UQ8z...|s-..
  016  cb 0f 29 a0 48 e3 65 69 12 c6 53 3e 32 ee 7a ed  ..).H.ei..S>2.z.
  032  29 b7 21 76 9c e6 4e 43 d5 71 33 b0 74 d8 39 d5  ).!v..NC.q3.t.9.
  048  31 ed 1f 28 51 0a fb 45 ac e1 0a 1f 4b 79 4d 6f  1..(Q..E....KyMo

  Test Vector #3:
  ==============

  Key:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01  ................

  Nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 00              ............

  Block Counter = 1

    ChaCha State at the end
        2452eb3a  9249f8ec  8d829d9b  ddd4ceb1
        e8252083  60818b01  f38422b8  5aaa49c9
        bb00ca8e  da3ba7b4  c4b592d1  fdf2732f
        4436274e  2561b3c8  ebdd4aa6  a0136c00

  Keystream:
  000  3a eb 52 24 ec f8 49 92 9b 9d 82 8d b1 ce d4 dd  :.R$..I.........
  016  83 20 25 e8 01 8b 81 60 b8 22 84 f3 c9 49 aa 5a  . %....‘."...I.Z
  032  8e ca 00 bb b4 a7 3b da d1 92 b5 c4 2f 73 f2 fd  ......;...../s..
  048  4e 27 36 44 c8 b3 61 25 a6 4a dd eb 00 6c 13 a0  N’6D..a%.J...l..
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  Test Vector #4:
  ==============

  Key:
  000  00 ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  Nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 00              ............

  Block Counter = 2

    ChaCha State at the end
        fb4dd572  4bc42ef1  df922636  327f1394
        a78dea8f  5e269039  a1bebbc1  caf09aae
        a25ab213  48a6b46c  1b9d9bcb  092c5be6
        546ca624  1bec45d5  87f47473  96f0992e

  Keystream:
  000  72 d5 4d fb f1 2e c4 4b 36 26 92 df 94 13 7f 32  r.M....K6&.....2
  016  8f ea 8d a7 39 90 26 5e c1 bb be a1 ae 9a f0 ca  ....9.&^........
  032  13 b2 5a a2 6c b4 a6 48 cb 9b 9d 1b e6 5b 2c 09  ..Z.l..H.....[,.
  048  24 a6 6c 54 d5 45 ec 1b 73 74 f4 87 2e 99 f0 96  $.lT.E..st......

  Test Vector #5:
  ==============

  Key:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  Nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 02              ............

  Block Counter = 0

    ChaCha State at the end
        374dc6c2  3736d58c  b904e24a  cd3f93ef
        88228b1a  96a4dfb3  5b76ab72  c727ee54
        0e0e978a  f3145c95  1b748ea8  f786c297
        99c28f5f  628314e8  398a19fa  6ded1b53

  Keystream:
  000  c2 c6 4d 37 8c d5 36 37 4a e2 04 b9 ef 93 3f cd  ..M7..67J.....?.
  016  1a 8b 22 88 b3 df a4 96 72 ab 76 5b 54 ee 27 c7  ..".....r.v[T.’.
  032  8a 97 0e 0e 95 5c 14 f3 a8 8e 74 1b 97 c2 86 f7  .....\....t.....
  048  5f 8f c2 99 e8 14 83 62 fa 19 8a 39 53 1b ed 6d  _......b...9S..m
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A.2.  ChaCha20 Encryption

  Test Vector #1:
  ==============

  Key:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  Nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 00              ............

  Initial Block Counter = 0

  Plaintext:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  032  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  048  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  Ciphertext:
  000  76 b8 e0 ad a0 f1 3d 90 40 5d 6a e5 53 86 bd 28  v.....=.@]j.S..(
  016  bd d2 19 b8 a0 8d ed 1a a8 36 ef cc 8b 77 0d c7  .........6...w..
  032  da 41 59 7c 51 57 48 8d 77 24 e0 3f b8 d8 4a 37  .AY|QWH.w$.?..J7
  048  6a 43 b8 f4 15 18 a1 1c c3 87 b6 69 b2 ee 65 86  jC.........i..e.

  Test Vector #2:
  ==============

  Key:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01  ................

  Nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 02              ............

  Initial Block Counter = 1

  Plaintext:
  000  41 6e 79 20 73 75 62 6d 69 73 73 69 6f 6e 20 74  Any submission t
  016  6f 20 74 68 65 20 49 45 54 46 20 69 6e 74 65 6e  o the IETF inten
  032  64 65 64 20 62 79 20 74 68 65 20 43 6f 6e 74 72  ded by the Contr
  048  69 62 75 74 6f 72 20 66 6f 72 20 70 75 62 6c 69  ibutor for publi
  064  63 61 74 69 6f 6e 20 61 73 20 61 6c 6c 20 6f 72  cation as all or
  080  20 70 61 72 74 20 6f 66 20 61 6e 20 49 45 54 46   part of an IETF
  096  20 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 20   Internet-Draft
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  112  6f 72 20 52 46 43 20 61 6e 64 20 61 6e 79 20 73  or RFC and any s
  128  74 61 74 65 6d 65 6e 74 20 6d 61 64 65 20 77 69  tatement made wi
  144  74 68 69 6e 20 74 68 65 20 63 6f 6e 74 65 78 74  thin the context
  160  20 6f 66 20 61 6e 20 49 45 54 46 20 61 63 74 69   of an IETF acti
  176  76 69 74 79 20 69 73 20 63 6f 6e 73 69 64 65 72  vity is consider
  192  65 64 20 61 6e 20 22 49 45 54 46 20 43 6f 6e 74  ed an "IETF Cont
  208  72 69 62 75 74 69 6f 6e 22 2e 20 53 75 63 68 20  ribution". Such
  224  73 74 61 74 65 6d 65 6e 74 73 20 69 6e 63 6c 75  statements inclu
  240  64 65 20 6f 72 61 6c 20 73 74 61 74 65 6d 65 6e  de oral statemen
  256  74 73 20 69 6e 20 49 45 54 46 20 73 65 73 73 69  ts in IETF sessi
  272  6f 6e 73 2c 20 61 73 20 77 65 6c 6c 20 61 73 20  ons, as well as
  288  77 72 69 74 74 65 6e 20 61 6e 64 20 65 6c 65 63  written and elec
  304  74 72 6f 6e 69 63 20 63 6f 6d 6d 75 6e 69 63 61  tronic communica
  320  74 69 6f 6e 73 20 6d 61 64 65 20 61 74 20 61 6e  tions made at an
  336  79 20 74 69 6d 65 20 6f 72 20 70 6c 61 63 65 2c  y time or place,
  352  20 77 68 69 63 68 20 61 72 65 20 61 64 64 72 65   which are addre
  368  73 73 65 64 20 74 6f                             ssed to

  Ciphertext:
  000  a3 fb f0 7d f3 fa 2f de 4f 37 6c a2 3e 82 73 70  ...}../.O7l.>.sp
  016  41 60 5d 9f 4f 4f 57 bd 8c ff 2c 1d 4b 79 55 ec  A‘].OOW...,.KyU.
  032  2a 97 94 8b d3 72 29 15 c8 f3 d3 37 f7 d3 70 05  *....r)....7..p.
  048  0e 9e 96 d6 47 b7 c3 9f 56 e0 31 ca 5e b6 25 0d  ....G...V.1.^.%.
  064  40 42 e0 27 85 ec ec fa 4b 4b b5 e8 ea d0 44 0e  @B.’....KK....D.
  080  20 b6 e8 db 09 d8 81 a7 c6 13 2f 42 0e 52 79 50   ........./B.RyP
  096  42 bd fa 77 73 d8 a9 05 14 47 b3 29 1c e1 41 1c  B..ws....G.)..A.
  112  68 04 65 55 2a a6 c4 05 b7 76 4d 5e 87 be a8 5a  h.eU*....vM^...Z
  128  d0 0f 84 49 ed 8f 72 d0 d6 62 ab 05 26 91 ca 66  ...I..r..b..&..f
  144  42 4b c8 6d 2d f8 0e a4 1f 43 ab f9 37 d3 25 9d  BK.m-....C..7.%.
  160  c4 b2 d0 df b4 8a 6c 91 39 dd d7 f7 69 66 e9 28  ......l.9...if.(
  176  e6 35 55 3b a7 6c 5c 87 9d 7b 35 d4 9e b2 e6 2b  .5U;.l\..{5....+
  192  08 71 cd ac 63 89 39 e2 5e 8a 1e 0e f9 d5 28 0f  .q..c.9.^.....(.
  208  a8 ca 32 8b 35 1c 3c 76 59 89 cb cf 3d aa 8b 6c  ..2.5.<vY...=..l
  224  cc 3a af 9f 39 79 c9 2b 37 20 fc 88 dc 95 ed 84  .:..9y.+7 ......
  240  a1 be 05 9c 64 99 b9 fd a2 36 e7 e8 18 b0 4b 0b  ....d....6....K.
  256  c3 9c 1e 87 6b 19 3b fe 55 69 75 3f 88 12 8c c0  ....k.;.Uiu?....
  272  8a aa 9b 63 d1 a1 6f 80 ef 25 54 d7 18 9c 41 1f  ...c..o..%T...A.
  288  58 69 ca 52 c5 b8 3f a3 6f f2 16 b9 c1 d3 00 62  Xi.R..?.o......b
  304  be bc fd 2d c5 bc e0 91 19 34 fd a7 9a 86 f6 e6  ...-.....4......
  320  98 ce d7 59 c3 ff 9b 64 77 33 8f 3d a4 f9 cd 85  ...Y...dw3.=....
  336  14 ea 99 82 cc af b3 41 b2 38 4d d9 02 f3 d1 ab  .......A.8M.....
  352  7a c6 1d d2 9c 6f 21 ba 5b 86 2f 37 30 e3 7c fd  z....o!.[./70.|.
  368  c4 fd 80 6c 22 f2 21                             ...l".!
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  Test Vector #3:
  ==============

  Key:
  000  1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0  ..@..U...3......
  016  47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0  G9..@+....\. pu.

  Nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 02              ............

  Initial Block Counter = 42

  Plaintext:
  000  27 54 77 61 73 20 62 72 69 6c 6c 69 67 2c 20 61  ’Twas brillig, a
  016  6e 64 20 74 68 65 20 73 6c 69 74 68 79 20 74 6f  nd the slithy to
  032  76 65 73 0a 44 69 64 20 67 79 72 65 20 61 6e 64  ves.Did gyre and
  048  20 67 69 6d 62 6c 65 20 69 6e 20 74 68 65 20 77   gimble in the w
  064  61 62 65 3a 0a 41 6c 6c 20 6d 69 6d 73 79 20 77  abe:.All mimsy w
  080  65 72 65 20 74 68 65 20 62 6f 72 6f 67 6f 76 65  ere the borogove
  096  73 2c 0a 41 6e 64 20 74 68 65 20 6d 6f 6d 65 20  s,.And the mome
  112  72 61 74 68 73 20 6f 75 74 67 72 61 62 65 2e     raths outgrabe.

  Ciphertext:
  000  62 e6 34 7f 95 ed 87 a4 5f fa e7 42 6f 27 a1 df  b.4....._..Bo’..
  016  5f b6 91 10 04 4c 0d 73 11 8e ff a9 5b 01 e5 cf  _....L.s....[...
  032  16 6d 3d f2 d7 21 ca f9 b2 1e 5f b1 4c 61 68 71  .m=..!...._.Lahq
  048  fd 84 c5 4f 9d 65 b2 83 19 6c 7f e4 f6 05 53 eb  ...O.e...l....S.
  064  f3 9c 64 02 c4 22 34 e3 2a 35 6b 3e 76 43 12 a6  ..d.."4.*5k>vC..
  080  1a 55 32 05 57 16 ea d6 96 25 68 f8 7d 3f 3f 77  .U2.W....%h.}??w
  096  04 c6 a8 d1 bc d1 bf 4d 50 d6 15 4b 6d a7 31 b1  .......MP..Km.1.
  112  87 b5 8d fd 72 8a fa 36 75 7a 79 7a c1 88 d1     ....r..6uzyz...

A.3.  Poly1305 Message Authentication Code

   Notice how in test vector #2 r is equal to zero.  The part of the
   Poly1305 algorithm where the accumulator is multiplied by r means
   that with r equal zero, the tag will be equal to s regardless of the
   content of the Text.  Fortunately, all the proposed methods of
   generating r are such that getting this particular weak key is very
   unlikely.
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  Test Vector #1:
  ==============

  One-time Poly1305 Key:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  Text to MAC:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  032  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  048  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  Tag:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

Nir & Langley            Expires January 5, 2015               [Page 29]



Internet-Draft             ChaCha20 & Poly1305                 July 2014

  Test Vector #2:
  ==============

  One-time Poly1305 Key:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  36 e5 f6 b5 c5 e0 60 70 f0 ef ca 96 22 7a 86 3e  6.....‘p...."z.>

  Text to MAC:
  000  41 6e 79 20 73 75 62 6d 69 73 73 69 6f 6e 20 74  Any submission t
  016  6f 20 74 68 65 20 49 45 54 46 20 69 6e 74 65 6e  o the IETF inten
  032  64 65 64 20 62 79 20 74 68 65 20 43 6f 6e 74 72  ded by the Contr
  048  69 62 75 74 6f 72 20 66 6f 72 20 70 75 62 6c 69  ibutor for publi
  064  63 61 74 69 6f 6e 20 61 73 20 61 6c 6c 20 6f 72  cation as all or
  080  20 70 61 72 74 20 6f 66 20 61 6e 20 49 45 54 46   part of an IETF
  096  20 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 20   Internet-Draft
  112  6f 72 20 52 46 43 20 61 6e 64 20 61 6e 79 20 73  or RFC and any s
  128  74 61 74 65 6d 65 6e 74 20 6d 61 64 65 20 77 69  tatement made wi
  144  74 68 69 6e 20 74 68 65 20 63 6f 6e 74 65 78 74  thin the context
  160  20 6f 66 20 61 6e 20 49 45 54 46 20 61 63 74 69   of an IETF acti
  176  76 69 74 79 20 69 73 20 63 6f 6e 73 69 64 65 72  vity is consider
  192  65 64 20 61 6e 20 22 49 45 54 46 20 43 6f 6e 74  ed an "IETF Cont
  208  72 69 62 75 74 69 6f 6e 22 2e 20 53 75 63 68 20  ribution". Such
  224  73 74 61 74 65 6d 65 6e 74 73 20 69 6e 63 6c 75  statements inclu
  240  64 65 20 6f 72 61 6c 20 73 74 61 74 65 6d 65 6e  de oral statemen
  256  74 73 20 69 6e 20 49 45 54 46 20 73 65 73 73 69  ts in IETF sessi
  272  6f 6e 73 2c 20 61 73 20 77 65 6c 6c 20 61 73 20  ons, as well as
  288  77 72 69 74 74 65 6e 20 61 6e 64 20 65 6c 65 63  written and elec
  304  74 72 6f 6e 69 63 20 63 6f 6d 6d 75 6e 69 63 61  tronic communica
  320  74 69 6f 6e 73 20 6d 61 64 65 20 61 74 20 61 6e  tions made at an
  336  79 20 74 69 6d 65 20 6f 72 20 70 6c 61 63 65 2c  y time or place,
  352  20 77 68 69 63 68 20 61 72 65 20 61 64 64 72 65   which are addre
  368  73 73 65 64 20 74 6f                             ssed to

  Tag:
  000  36 e5 f6 b5 c5 e0 60 70 f0 ef ca 96 22 7a 86 3e  6.....‘p...."z.>
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  Test Vector #3:
  ==============

  One-time Poly1305 Key:
  000  36 e5 f6 b5 c5 e0 60 70 f0 ef ca 96 22 7a 86 3e  6.....‘p...."z.>
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  Text to MAC:
  000  41 6e 79 20 73 75 62 6d 69 73 73 69 6f 6e 20 74  Any submission t
  016  6f 20 74 68 65 20 49 45 54 46 20 69 6e 74 65 6e  o the IETF inten
  032  64 65 64 20 62 79 20 74 68 65 20 43 6f 6e 74 72  ded by the Contr
  048  69 62 75 74 6f 72 20 66 6f 72 20 70 75 62 6c 69  ibutor for publi
  064  63 61 74 69 6f 6e 20 61 73 20 61 6c 6c 20 6f 72  cation as all or
  080  20 70 61 72 74 20 6f 66 20 61 6e 20 49 45 54 46   part of an IETF
  096  20 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 20   Internet-Draft
  112  6f 72 20 52 46 43 20 61 6e 64 20 61 6e 79 20 73  or RFC and any s
  128  74 61 74 65 6d 65 6e 74 20 6d 61 64 65 20 77 69  tatement made wi
  144  74 68 69 6e 20 74 68 65 20 63 6f 6e 74 65 78 74  thin the context
  160  20 6f 66 20 61 6e 20 49 45 54 46 20 61 63 74 69   of an IETF acti
  176  76 69 74 79 20 69 73 20 63 6f 6e 73 69 64 65 72  vity is consider
  192  65 64 20 61 6e 20 22 49 45 54 46 20 43 6f 6e 74  ed an "IETF Cont
  208  72 69 62 75 74 69 6f 6e 22 2e 20 53 75 63 68 20  ribution". Such
  224  73 74 61 74 65 6d 65 6e 74 73 20 69 6e 63 6c 75  statements inclu
  240  64 65 20 6f 72 61 6c 20 73 74 61 74 65 6d 65 6e  de oral statemen
  256  74 73 20 69 6e 20 49 45 54 46 20 73 65 73 73 69  ts in IETF sessi
  272  6f 6e 73 2c 20 61 73 20 77 65 6c 6c 20 61 73 20  ons, as well as
  288  77 72 69 74 74 65 6e 20 61 6e 64 20 65 6c 65 63  written and elec
  304  74 72 6f 6e 69 63 20 63 6f 6d 6d 75 6e 69 63 61  tronic communica
  320  74 69 6f 6e 73 20 6d 61 64 65 20 61 74 20 61 6e  tions made at an
  336  79 20 74 69 6d 65 20 6f 72 20 70 6c 61 63 65 2c  y time or place,
  352  20 77 68 69 63 68 20 61 72 65 20 61 64 64 72 65   which are addre
  368  73 73 65 64 20 74 6f                             ssed to

  Tag:
  000  f3 47 7e 7c d9 54 17 af 89 a6 b8 79 4c 31 0c f0  .G˜|.T.....yL1..
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  Test Vector #4:
  ==============

  One-time Poly1305 Key:
  000  1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0  ..@..U...3......
  016  47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0  G9..@+....\. pu.

  Text to MAC:
  000  27 54 77 61 73 20 62 72 69 6c 6c 69 67 2c 20 61  ’Twas brillig, a
  016  6e 64 20 74 68 65 20 73 6c 69 74 68 79 20 74 6f  nd the slithy to
  032  76 65 73 0a 44 69 64 20 67 79 72 65 20 61 6e 64  ves.Did gyre and
  048  20 67 69 6d 62 6c 65 20 69 6e 20 74 68 65 20 77   gimble in the w
  064  61 62 65 3a 0a 41 6c 6c 20 6d 69 6d 73 79 20 77  abe:.All mimsy w
  080  65 72 65 20 74 68 65 20 62 6f 72 6f 67 6f 76 65  ere the borogove
  096  73 2c 0a 41 6e 64 20 74 68 65 20 6d 6f 6d 65 20  s,.And the mome
  112  72 61 74 68 73 20 6f 75 74 67 72 61 62 65 2e     raths outgrabe.

  Tag:
  000  45 41 66 9a 7e aa ee 61 e7 08 dc 7c bc c5 eb 62  EAf.˜..a...|...b

   Test Vector #5: If one uses 130-bit partial reduction, does the code
   handle the case where partially reduced final result is not fully
   reduced?

   R:
   02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   S:
   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   data:
   FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
   tag:
   03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

   Test Vector #6: What happens if addition of s overflows modulo 2^128?

   R:
   02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   S:
   FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
   data:
   02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   tag:
   03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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   Test Vector #7: What happens if data limb is all ones and there is
   carry from lower limb?

   R:
   01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   S:
   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   data:
   FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
   F0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
   11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   tag:
   05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

   Test Vector #8: What happens if final result from polynomial part is
   exactly 2^130-5?

   R:
   01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   S:
   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   data:
   FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
   FB FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
   01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
   tag:
   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

   Test Vector #9: What happens if final result from polynomial part is
   exactly 2^130-6?

   R:
   02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   S:
   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   data:
   FD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
   tag:
   FA FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
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   Test Vector #10: What happens if 5*H+L-type reduction produces 131-
   bit intermediate result?

   R:
   01 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00
   S:
   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   data:
   E3 35 94 D7 50 5E 43 B9 00 00 00 00 00 00 00 00
   33 94 D7 50 5E 43 79 CD 01 00 00 00 00 00 00 00
   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   tag:
   14 00 00 00 00 00 00 00 55 00 00 00 00 00 00 00

   Test Vector #11: What happens if 5*H+L-type reduction produces 131-
   bit final result?

   R:
   01 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00
   S:
   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   data:
   E3 35 94 D7 50 5E 43 B9 00 00 00 00 00 00 00 00
   33 94 D7 50 5E 43 79 CD 01 00 00 00 00 00 00 00
   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   tag:
   13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

A.4.  Poly1305 Key Generation Using ChaCha20

  Test Vector #1:
  ==============

  The key:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  The nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 00              ............

  Poly1305 one-time key:
  000  76 b8 e0 ad a0 f1 3d 90 40 5d 6a e5 53 86 bd 28  v.....=.@]j.S..(
  016  bd d2 19 b8 a0 8d ed 1a a8 36 ef cc 8b 77 0d c7  .........6...w..

Nir & Langley            Expires January 5, 2015               [Page 34]



Internet-Draft             ChaCha20 & Poly1305                 July 2014

  Test Vector #2:
  ==============

  The key:
  000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  016  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01  ................

  The nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 02              ............

  Poly1305 one-time key:
  000  ec fa 25 4f 84 5f 64 74 73 d3 cb 14 0d a9 e8 76  ..%O._dts......v
  016  06 cb 33 06 6c 44 7b 87 bc 26 66 dd e3 fb b7 39  ..3.lD{..&f....9

  Test Vector #3:
  ==============

  The key:
  000  1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0  ..@..U...3......
  016  47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0  G9..@+....\. pu.

  The nonce:
  000  00 00 00 00 00 00 00 00 00 00 00 02              ............

  Poly1305 one-time key:
  000  96 5e 3b c6 f9 ec 7e d9 56 08 08 f4 d2 29 f9 4b  .^;...˜.V....).K
  016  13 7f f2 75 ca 9b 3f cb dd 59 de aa d2 33 10 ae  ...u..?..Y...3..

A.5.  ChaCha20-Poly1305 AEAD Decryption

   Below we’ll see decrypting a message.  We receive a ciphertext, a
   nonce, and a tag.  We know the key.  We will check the tag, and then
   (assuming that it validates) decrypt the ciphertext.  In this
   particular protocol, we’ll assume that there is no padding of the
   plaintext.
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  The key:
  000  1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0  ..@..U...3......
  016  47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0  G9..@+....\. pu.

  Ciphertext:
  000  64 a0 86 15 75 86 1a f4 60 f0 62 c7 9b e6 43 bd  d...u...‘.b...C.
  016  5e 80 5c fd 34 5c f3 89 f1 08 67 0a c7 6c 8c b2  ^.\.4\....g..l..
  032  4c 6c fc 18 75 5d 43 ee a0 9e e9 4e 38 2d 26 b0  Ll..u]C....N8-&.
  048  bd b7 b7 3c 32 1b 01 00 d4 f0 3b 7f 35 58 94 cf  ...<2.....;.5X..
  064  33 2f 83 0e 71 0b 97 ce 98 c8 a8 4a bd 0b 94 81  3/..q......J....
  080  14 ad 17 6e 00 8d 33 bd 60 f9 82 b1 ff 37 c8 55  ...n..3.‘....7.U
  096  97 97 a0 6e f4 f0 ef 61 c1 86 32 4e 2b 35 06 38  ...n...a..2N+5.8
  112  36 06 90 7b 6a 7c 02 b0 f9 f6 15 7b 53 c8 67 e4  6..{j|.....{S.g.
  128  b9 16 6c 76 7b 80 4d 46 a5 9b 52 16 cd e7 a4 e9  ..lv{.MF..R.....
  144  90 40 c5 a4 04 33 22 5e e2 82 a1 b0 a0 6c 52 3e  .@...3"^.....lR>
  160  af 45 34 d7 f8 3f a1 15 5b 00 47 71 8c bc 54 6a  .E4..?..[.Gq..Tj
  176  0d 07 2b 04 b3 56 4e ea 1b 42 22 73 f5 48 27 1a  ..+..VN..B"s.H’.
  192  0b b2 31 60 53 fa 76 99 19 55 eb d6 31 59 43 4e  ..1‘S.v..U..1YCN
  208  ce bb 4e 46 6d ae 5a 10 73 a6 72 76 27 09 7a 10  ..NFm.Z.s.rv’.z.
  224  49 e6 17 d9 1d 36 10 94 fa 68 f0 ff 77 98 71 30  I....6...h..w.q0
  240  30 5b ea ba 2e da 04 df 99 7b 71 4d 6c 6f 2c 29  0[.......{qMlo,)
  256  a6 ad 5c b4 02 2b 02 70 9b                       ..\..+.p.

  The nonce:
  000  00 00 00 00 01 02 03 04 05 06 07 08              ............

  The AAD:
  000  f3 33 88 86 00 00 00 00 00 00 4e 91              .3........N.

  Received Tag:
  000  ee ad 9d 67 89 0c bb 22 39 23 36 fe a1 85 1f 38  ...g..."9#6....8
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   First, we calculate the one-time Poly1305 key

  @@@  ChaCha state with key set up
        61707865  3320646e  79622d32  6b206574
        a540921c  8ad355eb  868833f3  f0b5f604
        c1173947  09802b40  bc5cca9d  c0757020
        00000000  00000000  04030201  08070605

  @@@  ChaCha state after 20 rounds
        a94af0bd  89dee45c  b64bb195  afec8fa1
        508f4726  63f554c0  1ea2c0db  aa721526
        11b1e514  a0bacc0f  828a6015  d7825481
        e8a4a850  d9dcbbd6  4c2de33a  f8ccd912

  @@@ out bytes:
  bd:f0:4a:a9:5c:e4:de:89:95:b1:4b:b6:a1:8f:ec:af:
  26:47:8f:50:c0:54:f5:63:db:c0:a2:1e:26:15:72:aa

  Poly1305 one-time key:
  000  bd f0 4a a9 5c e4 de 89 95 b1 4b b6 a1 8f ec af  ..J.\.....K.....
  016  26 47 8f 50 c0 54 f5 63 db c0 a2 1e 26 15 72 aa  &G.P.T.c....&.r.

   Next, we construct the AEAD buffer

  Poly1305 Input:
  000  f3 33 88 86 00 00 00 00 00 00 4e 91 00 00 00 00  .3........N.....
  016  64 a0 86 15 75 86 1a f4 60 f0 62 c7 9b e6 43 bd  d...u...‘.b...C.
  032  5e 80 5c fd 34 5c f3 89 f1 08 67 0a c7 6c 8c b2  ^.\.4\....g..l..
  048  4c 6c fc 18 75 5d 43 ee a0 9e e9 4e 38 2d 26 b0  Ll..u]C....N8-&.
  064  bd b7 b7 3c 32 1b 01 00 d4 f0 3b 7f 35 58 94 cf  ...<2.....;.5X..
  080  33 2f 83 0e 71 0b 97 ce 98 c8 a8 4a bd 0b 94 81  3/..q......J....
  096  14 ad 17 6e 00 8d 33 bd 60 f9 82 b1 ff 37 c8 55  ...n..3.‘....7.U
  112  97 97 a0 6e f4 f0 ef 61 c1 86 32 4e 2b 35 06 38  ...n...a..2N+5.8
  128  36 06 90 7b 6a 7c 02 b0 f9 f6 15 7b 53 c8 67 e4  6..{j|.....{S.g.
  144  b9 16 6c 76 7b 80 4d 46 a5 9b 52 16 cd e7 a4 e9  ..lv{.MF..R.....
  160  90 40 c5 a4 04 33 22 5e e2 82 a1 b0 a0 6c 52 3e  .@...3"^.....lR>
  176  af 45 34 d7 f8 3f a1 15 5b 00 47 71 8c bc 54 6a  .E4..?..[.Gq..Tj
  192  0d 07 2b 04 b3 56 4e ea 1b 42 22 73 f5 48 27 1a  ..+..VN..B"s.H’.
  208  0b b2 31 60 53 fa 76 99 19 55 eb d6 31 59 43 4e  ..1‘S.v..U..1YCN
  224  ce bb 4e 46 6d ae 5a 10 73 a6 72 76 27 09 7a 10  ..NFm.Z.s.rv’.z.
  240  49 e6 17 d9 1d 36 10 94 fa 68 f0 ff 77 98 71 30  I....6...h..w.q0
  256  30 5b ea ba 2e da 04 df 99 7b 71 4d 6c 6f 2c 29  0[.......{qMlo,)
  272  a6 ad 5c b4 02 2b 02 70 9b 00 00 00 00 00 00 00  ..\..+.p........
  288  0c 00 00 00 00 00 00 00 09 01 00 00 00 00 00 00  ................
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   We calculate the Poly1305 tag and find that it matches

  Calculated Tag:
  000  ee ad 9d 67 89 0c bb 22 39 23 36 fe a1 85 1f 38  ...g..."9#6....8

   Finally, we decrypt the ciphertext

  Plaintext::
  000  49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 73 20  Internet-Drafts
  016  61 72 65 20 64 72 61 66 74 20 64 6f 63 75 6d 65  are draft docume
  032  6e 74 73 20 76 61 6c 69 64 20 66 6f 72 20 61 20  nts valid for a
  048  6d 61 78 69 6d 75 6d 20 6f 66 20 73 69 78 20 6d  maximum of six m
  064  6f 6e 74 68 73 20 61 6e 64 20 6d 61 79 20 62 65  onths and may be
  080  20 75 70 64 61 74 65 64 2c 20 72 65 70 6c 61 63   updated, replac
  096  65 64 2c 20 6f 72 20 6f 62 73 6f 6c 65 74 65 64  ed, or obsoleted
  112  20 62 79 20 6f 74 68 65 72 20 64 6f 63 75 6d 65   by other docume
  128  6e 74 73 20 61 74 20 61 6e 79 20 74 69 6d 65 2e  nts at any time.
  144  20 49 74 20 69 73 20 69 6e 61 70 70 72 6f 70 72   It is inappropr
  160  69 61 74 65 20 74 6f 20 75 73 65 20 49 6e 74 65  iate to use Inte
  176  72 6e 65 74 2d 44 72 61 66 74 73 20 61 73 20 72  rnet-Drafts as r
  192  65 66 65 72 65 6e 63 65 20 6d 61 74 65 72 69 61  eference materia
  208  6c 20 6f 72 20 74 6f 20 63 69 74 65 20 74 68 65  l or to cite the
  224  6d 20 6f 74 68 65 72 20 74 68 61 6e 20 61 73 20  m other than as
  240  2f e2 80 9c 77 6f 72 6b 20 69 6e 20 70 72 6f 67  /...work in prog
  256  72 65 73 73 2e 2f e2 80 9d                       ress./...
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