
CoRE Working Group A. Castellani
Internet-Draft University of Padova
Intended status: Informational S. Loreto
Expires: December 24, 2014 Ericsson
 A. Rahman
 InterDigital Communications, LLC
 T. Fossati
 KoanLogic
 E. Dijk
 Philips Research
 June 22, 2014

 Advanced Guidelines for HTTP-CoAP Mapping Implementations
 draft-castellani-core-advanced-http-mapping-04

Abstract

 This draft describes advanced features for HTTP-CoAP proxy
 implementors. It details deployment options, discusses possible
 approaches for URI mapping, and provides useful considerations
 related to protocol translation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 24, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Castellani, et al. Expires December 24, 2014 [Page 1]

Internet-Draft HTTP-CoAP Mapping June 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Terminology and Conventions 3
 2. Introduction . 3
 3. Use Case: HTTP/IPv4-CoAP/IPv6 Proxy 3
 4. URI Mapping via HTTP Cache Control Extensions 6
 5. Multiple Message Exchanges Mapping 6
 5.1. Relevant Features of Existing Standards 6
 5.1.1. Multipart Messages 6
 5.1.2. Immediate Message Delivery 7
 5.1.3. Detailing Source Information 7
 5.2. Multicast Mapping . 7
 5.2.1. URI Identification and Mapping 8
 5.2.2. Request Handling 8
 5.2.3. Examples . 9
 5.3. Multicast Response Caching 11
 5.4. Observe Mapping . 12
 5.4.1. Identification 12
 5.4.2. Notification(s) Mapping 14
 5.4.3. Examples . 15
 6. HTML5 Scheme Handler Registration 21
 7. Placement and Deployment 21
 8. Examples . 22
 9. Acknowledgements . 24
 10. IANA Considerations . 24
 11. Security Considerations 24
 11.1. Cross-protocol Security Policy Mapping 25
 11.2. Subscription . 25
 12. References . 25
 12.1. Normative References 25
 12.2. Informative References 26
 Appendix A. Internal Mapping Functions (from an Implementer’s
 Perspective) . 27
 A.1. URL Map Algorithm . 28
 A.2. Security Policy Map Algorithm 29
 A.3. Content-Type Map Algorithm 30
 Authors’ Addresses . 31

Castellani, et al. Expires December 24, 2014 [Page 2]

Internet-Draft HTTP-CoAP Mapping June 2014

1. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document assumes readers are familiar with the terms and
 concepts that are used in [I-D.ietf-core-coap] . In addition, this
 document defines the following terminology:

 A device providing cross-protocol HTTP-CoAP mapping is called an
 HTTP-CoAP cross-protocol proxy (HC proxy).

 At least two different kinds of HC proxies exist:

 o One-way cross-protocol proxy (1-way proxy): This proxy translates
 from a client of a protocol to a server of another protocol but
 not vice-versa.

 o Two-way (or bidirectional) cross-protocol proxy (2-way proxy):
 This proxy translates from a client of both protocols to a server
 supporting one protocol.

2. Introduction

 RESTful protocols, such as HTTP [RFC2616] and CoAP
 [I-D.ietf-core-coap], can interoperate through an intermediary proxy
 which performs cross-protocol mapping.

 A base reference for the mapping process is provided in
 [I-D.ietf-core-coap]. However, depending on the involved
 application, deployment scenario, or network topology, such mapping
 can be realized using a wide range of intermediaries.

 Moreover, the process of implementing such a proxy can be complex,
 and details regarding its internal procedures and design choices
 deserve further discussion, which is provided in this document.

 This draft itself is an evolution of the mapping features covered in
 [I-D.ietf-core-http-mapping].

3. Use Case: HTTP/IPv4-CoAP/IPv6 Proxy

 This section covers the expected common use case regarding an HTTP/
 IPv4 client accessing a CoAP/IPv6 resource.

 While HTTP and IPv4 are today widely adopted communication protocols
 in the Internet, a pervasive deployment of constrained nodes

Castellani, et al. Expires December 24, 2014 [Page 3]

Internet-Draft HTTP-CoAP Mapping June 2014

 exploiting the IPv6 address space is expected: enabling direct
 interoperability of such technologies is a valuable goal.

 An HC proxy supporting IPv4/IPv6 mapping is said to be a v4/v6 proxy.

 An HC v4/v6 proxy SHOULD always try to resolve the URI authority, and
 SHOULD prefer using the IPv6 resolution if available. The authority
 part of the URI is used internally by the HC proxy and SHOULD NOT be
 mapped to CoAP.

 Figure 1 shows an HTTP client on IPv4 (C) accessing a CoAP server on
 IPv6 (S) through an HC proxy on IPv4/IPv6 (P). The DNS has an A
 record for "node.coap.something.net" resolving to the IPv4 address of
 the HC proxy, and an AAAA record with the IPv6 address of the CoAP
 server.

Castellani, et al. Expires December 24, 2014 [Page 4]

Internet-Draft HTTP-CoAP Mapping June 2014

 C P S
 | | |
 | | | Source: IPv4 of C
 | | | Destination: IPv4 of P
 +---->| | GET /foo HTTP/1.1
 | | | Host: node.coap.something.net
 | | | ..other HTTP headers ..
 | | |
 | | | Source: IPv6 of P
 | | | Destination: IPv6 of S
 | +---->| CON GET
 | | | URI-Path: foo
 | | |
 | | | Source: IPv6 of S
 | | | Destination: IPv6 of P
 | |<----+ ACK
 | | |
 | | | ... Time passes ...
 | | |
 | | | Source: IPv6 of S
 | | | Destination: IPv6 of P
 | |<----+ CON 2.00
 | | | "bar"
 | | |
 | | | Source: IPv6 of P
 | | | Destination: IPv6 of S
 | +---->| ACK
 | | |
 | | | Source: IPv4 of P
 | | | Destination: IPv4 of C
 |<----+ | HTTP/1.1 200 OK
 | | | .. other HTTP headers ..
 | | |
 | | | bar
 | | |

 Figure 1: HTTP/IPv4 to CoAP/IPv6 Mapping

 The proposed example shows the HC proxy operating also the mapping
 between IPv4 to IPv6 using the authority information available in any
 HTTP 1.1 request. This way, IPv6 connectivity is not required at the
 HTTP client when accessing a CoAP server over IPv6 only, which is a
 typical expected use case.

 When P is an interception HC proxy, the CoAP request SHOULD have the
 IPv6 address of C as source (IPv4 can always be mapped into IPv6).

Castellani, et al. Expires December 24, 2014 [Page 5]

Internet-Draft HTTP-CoAP Mapping June 2014

 The described solution takes into account only the HTTP/IPv4 clients
 accessing CoAP/IPv6 servers; this solution does not provide a full
 fledged mapping from HTTP to CoAP.

 In order to obtain a working deployment for HTTP/IPv6 clients, a
 different HC proxy access method may be required, or Internet AAAA
 records should not point to the node anymore (the HC proxy should use
 a different DNS database pointing to the node).

 When an HC interception proxy deployment is used this solution is
 fully working even with HTTP/IPv6 clients.

4. URI Mapping via HTTP Cache Control Extensions

 An advanced strategy for triggering the cross-proxy that a
 translation is needed can be done via the HTTP Cache Control
 Extensions described in Section 5.2.3 of [RFC7234]. Specifically two
 new extensions can be defined, i.e. cross-coap and cross-coaps, that
 when included in a request to an HC forward cross-proxy translate the
 request to coap or coaps.

5. Multiple Message Exchanges Mapping

 This section discusses the mapping of the multicast and observe
 features of CoAP, which have no corresponding primitive in HTTP, and
 as such are not immediately translatable.

 The mapping, which must be considered in both the arrow directions
 (H->C, C->H) may involve multi-part responses, as in the multicast
 use case, asynchronous delivery through HTTP bidirectional
 techniques, and HTTP Web Linking in order to reduce the semantics
 lost in the translation.

5.1. Relevant Features of Existing Standards

 Various features provided by existing standards are useful to
 efficiently represent sessions involving multiple messages.

5.1.1. Multipart Messages

 In particular, the "multipart/*" media type, defined in Section 5.1
 of [RFC2046], is a suitable solution to deliver multiple CoAP
 responses within a single HTTP payload. Each part of a multipart
 entity SHOULD be represented using "message/http" media type
 containing the full mapping of a single CoAP response as previously
 described.

Castellani, et al. Expires December 24, 2014 [Page 6]

Internet-Draft HTTP-CoAP Mapping June 2014

5.1.2. Immediate Message Delivery

 An HC proxy may prefer to transfer each CoAP response immediately
 after its reception. This is possible thanks to the HTTP Transfer-
 Encoding "chunked", that enables transferring single responses
 without any further delay.

 A detailed discussion on the use of chunked Transfer-Encoding to
 stream data over HTTP can be found in [RFC6202]. Large delays
 between chunks can lead the HTTP session to timeout, more details on
 this issue can be found in [I-D.thomson-hybi-http-timeout].

 An HC proxy MAY prefer (e.g. to avoid buffering) to transfer each
 response related to a multicast request as soon as it comes in from
 the server. One possible way to achieve this result is using the
 "chunked" Transfer-Encoding in the HTTP response, to push individual
 responses until some trigger is fired (timeout, max number of
 messages, etc.).

 An example showing immediate delivery of CoAP responses using HTTP
 chunks will be provided in Section 5.4, while describing its
 application to an observe session.

5.1.3. Detailing Source Information

 Under some circumstances, responses may come from different sources
 (i.e. responses to a multicast request); in this case details about
 the actual source of each CoAP response MAY be provided to the
 client. Source information can be represented using HTTP Web Linking
 as defined in [RFC5988], by adding the actual source URI into each
 response using Link option with "via" relation type.

5.2. Multicast Mapping

 In order to establish a multicast communication such a feature should
 be offered either by the network (i.e. IP multicast, link-layer
 multicast, etc.) or by a gateway (i.e. the HC proxy). Rationale on
 the methods available to obtain such a feature is out-of-scope of
 this document, and extensive discussion of group communication
 techniques is available in [I-D.ietf-core-groupcomm].

 Additional considerations related to handling multicast requests
 mapping are detailed in the following sections.

Castellani, et al. Expires December 24, 2014 [Page 7]

Internet-Draft HTTP-CoAP Mapping June 2014

5.2.1. URI Identification and Mapping

 In order to successfully handle a multicast request, the HC proxy
 MUST successfully perform the following tasks on the URI:

 Identification: The HC proxy MUST understand whether the requested
 URI identifies a group of nodes.

 Mapping: The HC proxy MUST know how to distribute the multicast
 request to involved servers; this process is specific of the group
 communication technology used.

 When using IPv6 multicast paired with DNS, the mapping to IPv6
 multicast is simply done using DNS resolution. If the group
 management is performed at the proxy, the URI or part of it (i.e. the
 authority) can be mapped using some static or dynamic table available
 at the HC proxy. In Section 3.5 of [I-D.ietf-core-groupcomm]
 discusses a method to build and maintain a local table of multicast
 authorities.

5.2.2. Request Handling

 When the HC proxy receives a request to a URI that has been
 successfully identified and mapped to a group of nodes, it SHOULD
 start a multicast proxying operation, if supported by the proxy.

 Multicast request handling consists of the following steps:

 Multicast TX: The HC proxy sends out the request on the CoAP side by
 using the methods offered by the specific group communication
 technology used in the constrained network;

 Collecting RXs: The HC proxy collects every response related to the
 request;

 Timeout: The HC proxy has to pay special attention in multicast
 timing, detailed discussion about timing depends upon the
 particular group communication technology used;

 Distributing RXs to the client: The HC proxy can distribute the
 responses in two different ways: batch delivering them at the end
 of the process or on timeout, or immediately delivering them as
 they are available. Batch requires more caching and introduces
 delays but may lead to lower TCP overhead and simpler processing.
 Immediate delivery is the converse. A trade-off solution of
 partial batch delivery may also be feasible and efficient in some
 circumstances.

Castellani, et al. Expires December 24, 2014 [Page 8]

Internet-Draft HTTP-CoAP Mapping June 2014

5.2.3. Examples

 Figure 2 shows an HTTP client (C) requesting the resource "/foo" to a
 group of CoAP servers (S1/S2/S3) through an HC proxy (P) which uses
 IP multicast to send the corresponding CoAP request.

Castellani, et al. Expires December 24, 2014 [Page 9]

Internet-Draft HTTP-CoAP Mapping June 2014

 C P S1 S2 S3
 | | | | |
 +---->| | | | GET /foo HTTP/1.1
 | | | | | Host: group-of-nodes.coap.something.net
 | | | | | .. other HTTP headers ..
 | | | | |
 | +---->|---->|---->| NON GET
 | | | | | URI-Path: foo
 | | | | |
 | |<----------+ | NON 2.00
 | | | | | "S2"
 | | | | |
 | | X---------------+ NON 2.00
 | | | | | "S3"
 | | | | |
 | |<----+ | | NON 2.00
 | | | | | "S1"
 | | | | |
 | | | | | ... Timeout ...
 | | | | |
 |<----+ | | | HTTP/1.1 200 OK
 | | | | | Content-Type: multipart/mixed;
 | | | | | boundary="response"
 | | | | | .. other HTTP headers ..
 | | | | |
 | | | | | --response
 | | | | | Content-Type: message/http
 | | | | |
 | | | | | HTTP/1.1 200 OK
 | | | | | Link: <http://node2.coap.something.net/foo>;
 | | | | | rel=via
 | | | | |
 | | | | | S2
 | | | | |
 | | | | | --response
 | | | | | Content-Type: message/http
 | | | | |
 | | | | | HTTP/1.1 200 OK
 | | | | | Link: <http://node1.coap.something.net/foo>;
 | | | | | rel=via
 | | | | |
 | | | | | S1
 | | | | |
 | | | | | --response--
 | | | | |

 Figure 2: Unicast HTTP to Multicast CoAP Mapping

Castellani, et al. Expires December 24, 2014 [Page 10]

Internet-Draft HTTP-CoAP Mapping June 2014

 The example proposed in the above diagram does not make any
 assumption on which underlying group communication technology is
 available in the constrained network. Some detailed discussion is
 provided about it along the following lines.

 C makes a GET request to group-of-nodes.coap.something.net. This
 domain name MAY either resolve to the address of P, or to the IPv6
 multicast address of the nodes (if IP multicast is supported and P is
 an interception proxy), or the proxy P is specifically known by the
 client that sends this request to it.

 To successfully start multicast proxying operation, the HC proxy MUST
 know that the destination URI involves a group of CoAP servers, e.g.
 the authority group-of-nodes.coap.something.net is known to identify
 a group of nodes either by using an internal lookup table, using DNS
 paired with IPv6 multicast, or by using some other special technique.

 A specific implementation option is proposed to further explain the
 proposed example. Assume that DNS is configured such that all
 subdomain queries to coap.something.net, such as group-of-
 nodes.coap.something.net, resolve to the address of P. P performs
 the HC URI mapping by removing the ’coap’ subdomain from the
 authority and by switching the scheme from ’http’ to ’coap’ (result:
 "coap://group-of-node.something.net/foo"); "group-of-
 nodes.something.net" is resolved to an IPv6 multicast address to
 which S1, S2 and S3 belong. The proxy handles this request as
 multicast and sends the request "GET /foo" to the multicast group .

5.3. Multicast Response Caching

 We call perfect caching when the proxy uses only the cached
 representations to provide a response to the HTTP client. In the
 case of a multicast CoAP request, perfect caching is not adequate.
 This section updates the general caching and congestion control
 guidelines of with specific guidelines for the multicast use case.

 Due to the inherent unreliable nature of the NON messages involved
 and since nodes may have dynamic membership in multicast groups,
 responding only with previously cached responses without issuing a
 new multicast request is not recommended. This perfect caching
 behaviour leads to miss responses of nodes that later joined the
 multicast group, and/or to repeatedly serve partial representations
 due to message losses. Therefore a multicast CoAP request SHOULD be
 sent by a HC proxy for each incoming request addressed to a multicast
 group.

 Caching of multicast responses is still a valuable goal to pursue
 reduce network congestion, battery consumption and response latency.

Castellani, et al. Expires December 24, 2014 [Page 11]

Internet-Draft HTTP-CoAP Mapping June 2014

 Some considerations to be performed when adopting a multicast caching
 behaviour are outlined in the following paragraph.

 Caching of multicast GET responses MAY be implemented by adopting
 some technique that takes into account either knowledge about dynamic
 characteristics of group membership (occurrence or frequency of group
 changes) or even better its full knowledge (list of nodes currently
 part of the group).

 When using a technique exploiting this knowledge, valid cached
 responses SHOULD be served from cache.

5.4. Observe Mapping

 By design, and certainly not without a good rationale, HTTP lacks a
 publish-subscriber facility. This implies that the mapping of the
 CoAP observe semantics has to be created ad hoc, perhaps by making
 use of one of the well-known HTTP techniques currently employed to
 establish an HTTP bidirectional connection with the target resource -
 as documented in [RFC6202].

 In the following sections we will describe some of the approaches
 that can be used to identify an observable resource and to create the
 communication bridging needed to set up an end to end HTTP-CoAP
 observation.

5.4.1. Identification

 In order to appropriately process an observe request, the HC proxy
 needs to know whether a given request is intended to establish an
 observation on the target resource, instead of triggering a regular
 request-response exchange.

 At least two different approaches to identify such special requests
 exist, as discussed below.

5.4.1.1. Observable URI Mapping

 An URI is said to be observable whenever every request to it
 implicitly requires the establishment of an HTTP bidirectional
 connection to the resource.

 Such subscription to the resource is always paired, if possible, to a
 CoAP observe session to the actual resource being observed. In
 general, multiple connections that are active with a single
 observable resource at the same time, are multiplexed to the single
 observe session opened by the intermediary. Its notifications are
 then de-multiplexed by the HC proxy to every HTTP subscriber.

Castellani, et al. Expires December 24, 2014 [Page 12]

Internet-Draft HTTP-CoAP Mapping June 2014

 An intermediary MAY pair a couple of distinct HTTP URIs to a single
 CoAP observable resource: one providing the usual request-response
 mediated access to the resource, and the other that always triggers a
 CoAP observe session.

5.4.1.1.1. Discovery

 As shown in Figure 3, in order to know whether an URI is observable,
 an HTTP UA MAY do a pre-flight request to the target resource using
 the HTTP OPTIONS method (see section 6.2 of
 [I-D.ietf-httpbis-p2-semantics]) to discover the communication
 options available for that resource.

 If the resource supports observation, the proxy adds a Link Header
 [RFC5988] with the "obs" attribute as link-param (see Section 7 of
 [I-D.ietf-core-observe]).

 C P S
 | | | OPTIONS /kitchen/temp HTTP/1.1
 +------>| | Host: node.coap.something.net
 | | |
 | +------>| CON GET
 | | | Uri-Path: /.well-known/core?anchor=/kitchen/temp
 | | |
 | |<------+ ACK 2.05
 | | | Payload: </kitchen/temp>;obs
 | | |
 |<------+ | HTTP/1.1 200 OK
 | | | Link: </kitchen/temp>; obs;
 | | | type="application/atom+xml"
 | | | Allow: GET, OPTIONS

 Figure 3: Discover Observability with HTTP OPTIONS

5.4.1.2. Differentiation Using HTTP Header

 Discerning an observation request through in-protocol means, e.g. via
 the presence and values of some HTTP metadata, avoids introducing
 static "observable" URIs in the HC proxy namespace. Though ideally
 the former should be preferred, there seems to be no standard way to
 use one of the established HTTP headers to convey the observe
 semantics.

 Standardizing such methods is out-of-scope of this document, so we
 just point out some possible approaches that in the future may be
 used to differentiate observation requests from regular requests.

Castellani, et al. Expires December 24, 2014 [Page 13]

Internet-Draft HTTP-CoAP Mapping June 2014

5.4.1.2.1. Expect Header

 The first method involves the use of the Expect header as defined in
 Section 9.3 of [I-D.ietf-httpbis-p2-semantics]. Whenever an HC proxy
 receives a request with a "206-partial-content" expectation, the
 proxy MUST fulfill this expectation by pairing this request to either
 a new or existing observe session to the resource.

 If the proxy is unable to observe the resource, or if the observation
 establishment fails, the proxy MUST reply to the client with "417
 Expectation Failed" status code.

 Given that the Expect header is processed hop-by-hop, this method
 will fail immediately in case a proxy not supporting this expectation
 is traversed. For this reason, at present, the said approach can’t
 be used in the public Internet.

5.4.1.2.2. Prefer Header

 A second, very similar, approach involves the use of the Prefer
 header, defined in [I-D.snell-http-prefer]. The HTTP user agent
 expresses the preference to establish an observation with the target
 resource by including a "streaming" preference to request an HTTP
 Streaming session, or a "long-polling" preference to signal to the
 proxy its intended polling behaviour (see [RFC6202]).

 A compliant HC proxy will try to fulfill the preference, and manifest
 observation establishment success by responding with a status code of
 "206 Partial Content". The observation request fails, falling back
 to a single response, whenever the status code is different from 206.

 This approach will never fail immediately, differently from the
 previous one, even across a chain of unaware proxies; however, as
 documented in [RFC6202], caching intermediaries may interfere, delay
 or block the HTTP bidirectional connection, making this approach
 unacceptable when no weak consistency of the resource can be
 tolerated by the requesting UA.

5.4.2. Notification(s) Mapping

 Multiplexing notifications using a single HTTP bidirectional session
 needs some further considerations about the selection of the media
 type that best fits this specific use case.

 The usage of two different content-types that are suitable for
 carrying multiple notifications in a single session, is discussed in
 the following sections.

Castellani, et al. Expires December 24, 2014 [Page 14]

Internet-Draft HTTP-CoAP Mapping June 2014

5.4.2.1. Multipart Messaging

 As already discussed in Section 5.1.1 for multicasting, the
 "multipart/*" media type is a suitable solution to deliver multiple
 CoAP notifications within a single HTTP payload.

 As in the multicast case, each part of the multipart entity MAY be
 represented using a "message/http" media type, containing the full
 mapping of the single CoAP notification mapped, so that CoAP envelope
 information are preserved (e.g. the response code).

 A more sophisticated mapping could use multipart/mixed with native or
 translated media type.

5.4.2.2. Using ATOM Feeds

 Popular observable resources with refresh rates higher than a couple
 of seconds may be treated as Atom feeds [RFC4287], especially with
 delay tolerant user agents and where persistence is required.

 Figure 3 shows a resource supporting ’application/atom+xml’ media-
 type. In such case clients can listen to update notification by
 regularly polling the resource via opportunely spaced GETs, i.e.
 driven by the advertised max-age value.

5.4.3. Examples

 Figure 4 shows the interaction between an HTTP client (C), an HC
 proxy (P), and a CoAP server (S) for the observation of the resource
 "temperature" (T) available on S.

 C manifests its intention to observe T by including the Expect Header
 in the request; if P or S do not support this interaction, the
 request MUST fail with "417 Expectation Failed" return code. In the
 presented example, both P and C support this interaction, and the
 subscription is successful, as stated by the "206 Partial Content"
 return code.

 At every notification corresponds the emission of a HTTP chunk
 containing a single part, which contains a "message/http" payload
 containing the full mapping of the notification. When the
 observation is dropped by the CoAP server, the HTTP streaming session
 is closed.

 C P S
 | | |
 +---->| | GET /temperature HTTP/1.1

Castellani, et al. Expires December 24, 2014 [Page 15]

Internet-Draft HTTP-CoAP Mapping June 2014

 | | | Host: node.coap.something.net
 | | | Expect: 206-partial-content
 | | | Accept: multipart/mixed
 | | |
 | +---->| CON GET
 | | | Uri-Path: temperature
 | | | Observe: 0
 | | |
 | |<----+ ACK 2.05
 | | | Observe: 3482
 | | | "22.1 C"
 | | |
 |<----+ | HTTP/1.1 206 Partial Content
 | | | Content-Type: multipart/mixed; boundary=notification
 | | |
 | | | XX
 | | | --notification
 | | | Content-Type: message/http
 | | |
 | | | HTTP/1.1 200 OK
 | | |
 | | | 22.1 C
 | | |
 | | | ... about 60 seconds have passed ...
 | | |
 | |<----+ NON 2.05
 | | | Observe: 3542
 | | | "21.6 C"
 | | |
 |<----+ | YY
 | | | --notification
 | | | Content-Type: message/http
 | | |
 | | | HTTP/1.1 200 OK
 | | |
 | | | 21.6 C
 | | |
 | | | ... if the server drops the relationship ...
 | | |
 | |<----+ NON 2.05
 | | | "21.8 C"
 | | |
 |<----+ | ZZ
 | | | --notification
 | | | Content-Type: message/http
 | | |
 | | | HTTP/1.1 200 OK
 | | |

Castellani, et al. Expires December 24, 2014 [Page 16]

Internet-Draft HTTP-CoAP Mapping June 2014

 | | | 21.8 C
 | | |
 | | | --notification--
 | | |
 | | | 0

 Figure 4: HTTP Streaming to CoAP Observe

 Figure 5 shows the interaction between an HTTP client (C), an HC
 proxy (P), and a CoAP server (S) for the observation of the resource
 "temperature" (T) available on S.

 C manifests its intention to observe T by including the Prefer Header
 in the request; if P or S do not support this interaction, the
 request silently fails if a status code "200 OK" is returned, which
 means that no further notification is expected on that session.

 In the presented example, both P and C support this interaction, and
 the subscription is successful, as stated by the "206 Partial
 Content" status code. At every notification a new response is sent
 to the pending client, always containing the "206 Partial Content"
 status code, to indicate that the observe session is still active, so
 that C can issue a new long-polling request immediately after this
 notification.

 If the observation relationship is dropped by S, P notifies the last
 received content using the "200 OK" status code, indicating that no
 further notification is expected on this observe session.

Castellani, et al. Expires December 24, 2014 [Page 17]

Internet-Draft HTTP-CoAP Mapping June 2014

 C P S
 | | |
 +---->| | GET /temperature HTTP/1.1
 | | | Host: node.coap.something.net
 | | | Prefer: long-polling
 | | |
 | +---->| CON GET
 | | | Uri-Path: temperature
 | | | Observe: 0
 | | |
 | |<----+ ACK 2.05
 | | | Observe: 3482
 | | | "22.1 C"
 | | |
 |<----+ | HTTP/1.1 206 Partial Content
 | | |
 | | | 22.1 C
 | | |
 +---->| | GET /temperature HTTP/1.1
 | | | Host: node.coap.something.net
 | | | Prefer: long-polling
 | | |
 | | | ... about 60 seconds have passed ...
 | | |
 | |<----+ NON 2.05
 | | | Observe: 3542
 | | | "21.6 C"
 | | |
 |<----+ | HTTP/1.1 206 Partial Content
 | | |
 | | | 21.6 C
 | | |
 +---->| | GET /temperature HTTP/1.1
 | | | Host: node.coap.something.net
 | | | Prefer: long-polling
 | | |
 | | | ... if the server drops the relationship ...
 | | |
 | |<----+ NON 2.05
 | | | "21.8 C"
 | | |
 |<----+ | HTTP/1.1 200 OK
 | | |
 | | | 21.8 C

 Figure 5: HTTP Long Polling to CoAP Observe

Castellani, et al. Expires December 24, 2014 [Page 18]

Internet-Draft HTTP-CoAP Mapping June 2014

 Figure 6 shows the interaction between an HTTP client (C), an HC
 proxy (P), and a CoAP server (S) for the observation of the resource
 "kitchen/temp" (T) available on S.

 It is assumed that the HC proxy knows that the requested resource is
 observable (since perhaps being asked beforehand to discover its
 properties as described in Figure 3.) When asked by the HTTP client
 to retrieve the resource, it requests an observation - in case it
 weren’t already in place - and then sends the collected data to the
 client as an Atom feed. The data coming through in the constrained
 network is stored locally on the proxy, and forwarded when further
 requests are received on the HTTP side. As already said, using the
 Atom format has two main advantages: first, there is always a
 "current" feed, but there may also be a complete log made available
 to HTTP clients; secondly, the HTTP intermediaries can play a
 substantial role in absorbing a fair amount of the load on the HC
 proxy. The latter is a very important property when the requested
 resource is or becomes very popular.

Castellani, et al. Expires December 24, 2014 [Page 19]

Internet-Draft HTTP-CoAP Mapping June 2014

 C P S
 | | | GET /kitchen/temp HTTP/1.1
 +------>| | Host: node.coap.something.net
 | | |
 | +------>| CON GET
 | | | Uri-Path: kitchen/temp
 | | | Observe: 0
 | | |
 | |<------+ ACK 2.05
 | | | Observe: 1000
 | | | Max-Age: 10
 | | | "22.3 C"
 | | |
 |<------+ | HTTP/1.1 200 OK
 | | | Cache-Control: max-age=10
 | | | ETag: "0x5555"
 | | | Content-Type: application/atom+xml
 | | |
 | | | <feed xmlns="http://www.w3.org/2005/Atom">
 | | | <entry>
 | | | <id>urn:uuid:
 | | | bf08203a-fbbf-49e8-bf11-3c4cff708525</id>
 | | | <updated>2012-03-07T11:14:30</updated>
 | | | <content type="text/plain">
 | | | 22.3 C
 | | | </content>
 | | | <entry>
 | | | </feed>
 | | |
 | | |
 | |<------+ NON 2.05
 | | | Observe: 1010
 | | | Max-Age: 10
 | | | "22.4 C"
 | | |
 +------>| | GET /kitchen/temp HTTP/1.1
 | | | Host: node.coap.something.net
 | | |
 | | | [...]
 | | |

 Figure 6: Observation via Atom feeds

Castellani, et al. Expires December 24, 2014 [Page 20]

Internet-Draft HTTP-CoAP Mapping June 2014

6. HTML5 Scheme Handler Registration

 The draft HTML5 standard offers a mechanism that allows an HTTP user
 agent to register a custom scheme handler through an HTML5 web page.
 This feature permits to an HC proxy to be registered as "handler" for
 URIs with the ’web+coap’ or ’web+coaps’ schemes using an HTML5 web
 page which embeds the custom scheme handler registration call
 registerProtocolHandler() described in Section 6.5.1.2 of
 [W3C.HTML5].

 Example: the HTML5 homepage of a HC proxy at h2c.example.org could
 include the method call:

 registerProtocolHandler(’web+coap’,’proxy?url=%s’,’example HC proxy’)

 This registration call will prompt the HTTP user agent to ask for the
 user’s permission to register the HC proxy as a handler for all
 ’web+coap’ URIs. If the user accepts, whenever a ’web+coap’ link is
 requested, the request will be fulfilled through the HC proxy: URI
 "web+coap://foo.org/a" will be transformed into URI
 "http://h2c.example.org/proxy?url=web+coap://foo.org/a".

7. Placement and Deployment

 In typical scenarios, for communication from a CoAP client to an HTTP
 origin server, the HC proxy is expected to be located on the client-
 side (CS). Specifically, the HC proxy is expected to be deployed at
 the edge of the constrained network as shown in Figure 7.

 The arguments supporting CS placement are as follows:

 Client/Proxy/Network configuration overhead: CoAP clients require
 either static proxy configuration or proxy discovery support.
 This overhead is simplified if the proxy is placed on the same
 network domain of the client.

 TCP/UDP: Translation between CoAP and HTTP requires also UDP to TCP
 mapping; UDP performance over the unconstrained Internet may not
 be adequate. In order to minimize the number of required
 retransmissions on the constrained part of the network and the
 overall reliability, TCP/UDP conversion SHOULD be performed as
 soon as possible in the network path.

 Caching: Efficient caching requires that all the CoAP traffic is
 intercepted by the same proxy, thus a CS placement, collecting all
 the traffic, is strategic for this need.

Castellani, et al. Expires December 24, 2014 [Page 21]

Internet-Draft HTTP-CoAP Mapping June 2014

 +------+
 | |
 | DNS |
 | |
 +------+

 // \\
 / /-----\ /---\ \
 / CoAP CoAP \
 || client client ||
 +----------+ \-----/ \-----/ ||
 | HTTP/CoAP| /-----\ ||
 | Proxy | CoAP ||
 |(HC Proxy)| client ||
 +------+ +----------+ \-----/ ||
 |HTTP | || /-----\ ||
 |Origin| || CoAP ||
 |Server| \ client /-----\ /
 +------+ \ \-----/ CoAP /
 \ client /
 \\ \-----/ //

 Figure 7: Client-side HC Proxy Deployment Scenario

8. Examples

 Figure 8 shows an example implementation of a basic CoAP GET request
 with an HTTP URI as the value of a Proxy-URI option. The proxy
 retrieves a representation of the target resource from the HTTP
 origin server. It converts the payload to a UTF-8 charset,
 calculates the Max-Age Option from the Expires header field, and
 derives an entity-tag from the ETag header field.

Castellani, et al. Expires December 24, 2014 [Page 22]

Internet-Draft HTTP-CoAP Mapping June 2014

 C P S
 | | |
 +---------->| | CoAP Header: GET (T=CON, Code=1, MID=0x1633)
 | CoAP | | Token: 0x5a
 | Get | | Proxy-URI: http://www.example.com/foo/bar
 | | |
 | | |
 | +---------->| HTTP/1.1 GET /foo/bar
 | | HTTP | Host: www.example.com
	GET
<----------+	CoAP Header: (T=ACK, Code=0, MID=0x1633)
	<----------+ HTTP/1.1 200 OK
	HTTP
	200 OK
<----------+	CoAP Header: 2.00 OK
CoAP	
2.00 OK	
 +---------->| | CoAP Header: (T=ACK, Code=0, MID=0xAAF0)

 Figure 8: A Basic CoAP-HTTP GET Request

 The example in Figure 9 builds on the previous example and shows an
 implementation of a GET request that includes a previously returned
 ETag Option. The proxy makes a Conditional Request to the HTTP
 origin server by including an If-None-Match header field in the HTTP
 GET Request. The CoAP response indicates that the response stored by
 the client is fresh. It includes a Max-Age Option calculated from
 the HTTP response’s Expires header field.

Castellani, et al. Expires December 24, 2014 [Page 23]

Internet-Draft HTTP-CoAP Mapping June 2014

 C P S
 | | |
 +---------->| | CoAP Header: GET (T=CON, Code=1, MID=0x1CBO)
 | CoAP | | Token: 0x7b
 | Get | | Proxy-URI: http://www.example.com/foo/bar
 | | | ETag: 0x78797A7A79
 | | |
 | | |
 | +---------->| HTTP/1.1 GET /foo/bar
 | | HTTP | Host: www.example.com
 | | GET | If-None-Match: "xyzzy"
 | | |
 | | |
 |<----------+ | CoAP Header: (T=ACK, Code=0, MID=0x1CBO)
 | | |
 | | |
 | |<----------+ HTTP/1.1 304 Not Modified
 | | HTTP | Date: Friday, 14 Oct 2011 17:00:00 GMT
 | | 304 | Expires: Friday, 14 Oct 2011 18:00:00 GMT
 | | | ETag: "xyzzy"
 | | | Connection: close
 | | |
 | | |
 |<----------+ | CoAP Header: 2.03 Valid
 | | | (T=CON, Code=67, MID=0xAAFF)
 | CoAP | | Token: 0x7b
 | 2.03 | | Max-Age: 3600
 | | | ETag: 0x78797A7A79
 | | |
 | | |
 +---------->| | CoAP Header: (T=ACK, Code=0, MID=0xAAFF)

 Figure 9: A CoAP-HTTP GET Request with an ETag Option

9. Acknowledgements

 TBD.

10. IANA Considerations

 This memo includes no request to IANA.

11. Security Considerations

Castellani, et al. Expires December 24, 2014 [Page 24]

Internet-Draft HTTP-CoAP Mapping June 2014

11.1. Cross-protocol Security Policy Mapping

 At the moment of this writing, CoAP and HTTP are missing any cross-
 protocol security policy mapping.

 The HC proxy SHOULD flexibly support security policies between the
 two protocols, possibly as part of the HC URI mapping function, in
 order to statically map HTTP and CoAP security policies at the proxy
 (see Appendix A.2 for an example.)

11.2. Subscription

 As noted in Section 7 of [I-D.ietf-core-observe], when using the
 observe pattern, an attacker could easily impose resource exhaustion
 on a naive server who’s indiscriminately accepting observer
 relationships establishment from clients. The converse of this
 problem is also present, a malicious client may also target the HC
 proxy itself, by trying to exhaust the HTTP connection limit of the
 proxy by opening multiple subscriptions to some CoAP resource.

 Effective strategies to reduce success of such a DoS on the HTTP side
 (by forcing prior identification of the HTTP client via usual web
 authentication mechanisms), must always be weighted against an
 acceptable level of usability of the exposed CoAP resources.

12. References

12.1. Normative References

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",
 draft-ietf-core-block-12 (work in progress), June 2013.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., and C. Bormann, "Constrained
 Application Protocol (CoAP)", draft-ietf-core-coap-18
 (work in progress), June 2013.

 [I-D.ietf-core-groupcomm]
 Rahman, A. and E. Dijk, "Group Communication for CoAP",
 draft-ietf-core-groupcomm-09 (work in progress), May 2013.

 [I-D.ietf-core-http-mapping]
 Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
 E. Dijk, "Best Practices for HTTP-CoAP Mapping
 Implementation", draft-ietf-core-http-mapping-00 (work in
 progress), June 2013.

Castellani, et al. Expires December 24, 2014 [Page 25]

Internet-Draft HTTP-CoAP Mapping June 2014

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-08 (work in progress), February 2013.

 [I-D.ietf-httpbis-p1-messaging]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", draft-ietf-
 httpbis-p1-messaging-22 (work in progress), February 2013.

 [I-D.ietf-httpbis-p2-semantics]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", draft-ietf-httpbis-
 p2-semantics-22 (work in progress), February 2013.

 [I-D.thomson-hybi-http-timeout]
 Thomson, M., Loreto, S., and G. Wilkins, "Hypertext
 Transfer Protocol (HTTP) Keep-Alive Header", draft-
 thomson-hybi-http-timeout-03 (work in progress), July
 2012.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RFC4287] Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
 Syndication Format", RFC 4287, December 2005.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

12.2. Informative References

 [I-D.bormann-core-simple-server-discovery]
 Bormann, C., "CoRE Simple Server Discovery", draft-
 bormann-core-simple-server-discovery-01 (work in
 progress), March 2012.

Castellani, et al. Expires December 24, 2014 [Page 26]

Internet-Draft HTTP-CoAP Mapping June 2014

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Krco, S., and C. Bormann, "CoRE Resource
 Directory", draft-ietf-core-resource-directory-00 (work in
 progress), June 2013.

 [I-D.snell-http-prefer]
 Snell, J., "Prefer Header for HTTP", draft-snell-http-
 prefer-18 (work in progress), January 2013.

 [I-D.vanderstok-core-bc]
 Stok, P. and K. Lynn, "CoAP Utilization for Building
 Control", draft-vanderstok-core-bc-05 (work in progress),
 October 2011.

 [RFC3040] Cooper, I., Melve, I., and G. Tomlinson, "Internet Web
 Replication and Caching Taxonomy", RFC 3040, January 2001.

 [RFC4732] Handley, M., Rescorla, E., and IAB, "Internet Denial-of-
 Service Considerations", RFC 4732, December 2006.

 [RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,
 "Known Issues and Best Practices for the Use of Long
 Polling and Streaming in Bidirectional HTTP", RFC 6202,
 April 2011.

 [RFC7234] Fielding, R., Nottingham, M., and J. Reschke, "Hypertext
 Transfer Protocol (HTTP/1.1): Caching", RFC 7234, June
 2014.

 [W3C.HTML5]
 Hickson, I., "HTML5", World Wide Web Consortium WD (work
 in progress) WD-html5-20111018, October 2011,
 <http://dev.w3.org/html5/spec/>.

Appendix A. Internal Mapping Functions (from an Implementer’s
 Perspective)

 At least three mapping functions have been identified, which take
 place at different stages of the HC proxy processing chain, involving
 the URL, Content-Type and Security Policy translation.

 All these maps are required to have at least URL granularity so that,
 in principle, each and every requested URL may be treated as an
 independent mapping source.

 In the following, the said map functions are characterized via their
 expected input and output, and a simple, yet sufficiently rich,
 configuration syntax is suggested.

Castellani, et al. Expires December 24, 2014 [Page 27]

Internet-Draft HTTP-CoAP Mapping June 2014

 In the spirit of a document providing implementation guidance, the
 specification of a map grammar aims at putting the basis for a
 reusable software component (e.g. a stand-alone C library) that many
 different proxy implementations can link to, and benefit from.

A.1. URL Map Algorithm

 In case the HC proxy is a reverse proxy, i.e. it acts as the origin
 server in face of the served network, the URL of the resource
 requested by its clients (perhaps having an ’http’ scheme) shall be
 mapped to the real resource origin (perhaps in the ’coap’ scheme).

 In case HC is a forward proxy, no URL translation is needed since the
 client already knows the "real name" of the resource.

 An interception HC proxy, instead, MAY use the homogeneous mapping
 strategy to operate without any pre-configuration need.

 As noted in Appendix B of [RFC3986] any correctly formatted URL can
 be matched by a POSIX regular expression. By leveraging on this
 property, we suggest a syntax that describes the URL mapping in terms
 of substituting the regex-matching portions of the requested URL into
 the mapped URL template.

 E.g.: given the source regular expression ’^http://example.com/
 coap/.*$’ and destination template ’coap://$1’ (where $1 stands for
 the first - and only in this specific case - substring matched by the
 regex pattern in the source), the input URL
 "http://example.com/coap/node1/resource2" translates to
 "coap://node1/resource2".

 This is a well established technique used in many todays web
 components (e.g. Django URL dispatcher, Apache mod_rewrite, etc.),
 which provides a compact and powerful engine to implement what
 essentially is an URL rewrite function.

Castellani, et al. Expires December 24, 2014 [Page 28]

Internet-Draft HTTP-CoAP Mapping June 2014

 INPUT
 * requested URL

 OUTPUT
 * target URL

 SYNTAX
 url_map [rule name] {
 requested_url <regex>
 mapped_url <regex match subst template>
 }

 EXAMPLE 1
 url_map homogeneous {
 requested_url ’^http://.*$’
 mapped_url ’coap//$1’
 }

 EXAMPLE 2
 url_map embedded {
 requested_url ’^http://example.com/coap/.*$’
 mapped_url ’coap//$1’
 }

 Note that many different url_map records may be given in order to
 build the whole mapping function. Each of these records can be
 queried (in some predefined order) by the HC proxy until a match is
 found, or the list is exhausted. In the latter case, depending on
 the mapping policy (only internal, internal then external, etc.) the
 original request can be refused, or the same mapping query is
 forwarded to one or more external URL mapping components.

A.2. Security Policy Map Algorithm

 In case the "incoming" URL has been successfully translated, the HC
 proxy must lookup the security policy, if any, that needs to be
 applied to the request/response transaction carried on the "outgoing"
 leg.

Castellani, et al. Expires December 24, 2014 [Page 29]

Internet-Draft HTTP-CoAP Mapping June 2014

 INPUT
 * target URL (after URL map has been applied)
 * original requester identity (given by cookie, or IP address, or
 crypto credentials/security context, etc.)

 OUTPUT
 * security context that will be applied to access the target URL

 SYNTAX
 sec_map [rule name] {
 target_url <regex> -- one or more
 requester_id <TBD>
 sec_context <TBD>
 }

 EXAMPLE
 <TBD>

A.3. Content-Type Map Algorithm

 In case a set of destination URLs is known as being limited in
 handling a narrow subset of mime types, a content-type map can be
 configured in order to let the HC proxy transparently handle the
 compatible/lossless format translation.

 INPUT
 * destination URL (after URL map has been applied)
 * original content-type

 OUTPUT
 * mapped content-type

 SYNTAX
 ct_map {
 target_url <regex> -- one or more targetURLs
 ct_switch <source_ct, dest_ct> -- one or more CTs
 }

 EXAMPLE
 ct_map {
 target_url ’^coap://class-1-device/.*$’
 ct_switch */xml application/exi
 }

Castellani, et al. Expires December 24, 2014 [Page 30]

Internet-Draft HTTP-CoAP Mapping June 2014

Authors’ Addresses

 Angelo P. Castellani
 University of Padova
 Via Gradenigo 6/B
 Padova 35131
 Italy

 Email: angelo@castellani.net

 Salvatore Loreto
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: salvatore.loreto@ericsson.com

 Akbar Rahman
 InterDigital Communications, LLC
 1000 Sherbrooke Street West
 Montreal H3A 3G4
 Canada

 Phone: +1 514 585 0761
 Email: Akbar.Rahman@InterDigital.com

 Thomas Fossati
 KoanLogic
 Via di Sabbiuno 11/5
 Bologna 40136
 Italy

 Phone: +39 051 644 82 68
 Email: tho@koanlogic.com

 Esko Dijk
 Philips Research

 Email: esko.dijk@philips.com

Castellani, et al. Expires December 24, 2014 [Page 31]

