
NFSv4 T. Haynes
Internet-Draft Primary Data
Intended status: Informational April 10, 2014
Expires: October 12, 2014

 Considerations for a New pNFS Layout Type
 draft-haynes-nfsv4-layout-types-02.txt

Abstract

 This document provides help in distinguishing between the
 requirements for Network File System (NFS) version 4.1’s Parallel NFS
 (pNFS) and those those specifically directed to the pNFS File Layout.
 The lack of a clear separation between the two set of requirements
 may be troublesome for those trying to specify new Layout Types.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 12, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Haynes Expires October 12, 2014 [Page 1]

Internet-Draft Layout Types April 2014

Table of Contents

 1. Introduction . 2
 2. Definitions . 3
 2.1. Difference Between a Data Server and a Storage Device . . 4
 2.2. Requirements Language 4
 3. The Control Protocol . 4
 3.1. Protocol Requirements 5
 3.2. Non-protocol Requirements 5
 3.3. Editorial Requirements 6
 4. Implementations in Existing Layout Types 6
 4.1. File Layout Type . 6
 4.2. Block Layout Type . 7
 4.3. Object Layout Type 8
 5. Summary . 9
 6. Security Considerations 9
 7. IANA Considerations . 9
 8. References . 9
 8.1. Normative References 9
 8.2. Informative References 10
 Appendix A. Acknowledgments 10
 Appendix B. RFC Editor Notes 10
 Author’s Address . 10

1. Introduction

 Both Parallel Network File System (pNFS) and the File Layout Type
 were defined in the Network File System (NFS) version 4.1 protocol
 specification, [RFC5661]. The Block Layout Type was defined in
 [RFC5663] and the Object Layout Type was in turn defined in
 [RFC5664].

 Some implementers have interpreted the text in Sections 12 ("Parallel
 NFS (pNFS)") and 13 ("NFSv4.1 as a Storage Protocol in pNFS: the File
 Layout Type") of [RFC5661] as both being strictly for the File Layout
 Type. I.e., since Section 13 was not covered in a separate RFC like
 those for both the Block and Object Layout Types, there is some
 confusion as to the responsibilities of both the Metadata Server
 (MDS) and the Data Servers (DS) which were laid out in Section 12.

 As a consequence, new internet drafts (see [FlexFiles] and [Lustre])
 may struggle to meet the requirements to be a pNFS Layout Type. This
 document clarifies what are the Layout Type independent requirements
 placed on all Layout Types, whether one of the original three or any
 new variant.

Haynes Expires October 12, 2014 [Page 2]

Internet-Draft Layout Types April 2014

2. Definitions

 control protocol: is a set of requirements for the communication of
 information on layouts, stateids, file metadata, and file data
 between the metadata server and the storage devices.

 Data Server (DS): is one of the pNFS servers which provide the
 contents of a file system object which is a regular file.
 Depending on the layout, there might be one or more data servers
 over which the data is striped. Note that while the metadata
 server is strictly accessed over the NFSv4.1 protocol, depending
 on the Layout Type, the data server could be accessed via any
 protocol that meets the pNFS requirements.

 fencing: is when the metadata server prevents the storage devices
 from processing I/O from a specific client to a specific file.

 layout: informs a client of which storage devices it needs to
 communicate with (and over which protocol) to perform I/O on a
 file. The layout might also provide some hints about how the
 storage is physically organized.

 layout iomode: describes whether the layout granted to the client is
 for read or read/write I/O.

 layout stateid: is a 128-bit quantity returned by a server that
 uniquely defines the layout state provided by the server for a
 specific layout that describes a Layout Type and file (see
 Section 12.5.2 of [RFC5661]). Further, Section 12.5.3 describes
 the difference between a layout stateid and a normal stateid.

 Layout Type: describes both the storage protocol used to access the
 data and the aggregation scheme used to lays out the file data on
 the underlying storage devices.

 metadata: is that part of the file system object which describes the
 object and not the payload. E.g., it could be the time since last
 modification, access, etc.

 Metadata Server (MDS): is the pNFS server which provides metadata
 information for a file system object. It also is responsible for
 generating layouts for file system objects. Note that the MDS is
 responsible for directory-based operations.

 recalling a layout: is when the metadata server uses a back channel
 to inform the client that the layout is to be returned in a
 graceful manner. Note that the client could be able to flush any
 writes, etc., before replying to the metadata server.

Haynes Expires October 12, 2014 [Page 3]

Internet-Draft Layout Types April 2014

 revoking a layout: is when the metadata server invalidates the
 layout such that neither the metadata server nor any storage
 device will accept any access from the client with that layout.

 stateid: is a 128-bit quantity returned by a server that uniquely
 defines the open and locking states provided by the server for a
 specific open-owner or lock-owner/open-owner pair for a specific
 file and type of lock.

 storage device: is another term used almost interchangeably with
 data server. See Section 2.1 for the nuances between the two.

2.1. Difference Between a Data Server and a Storage Device

 We defined a data server as a pNFS server, which implies that it can
 utilize the NFSv4.1 protocol to communicate with the client. As
 such, only the File Layout Type would currently meet this
 requirement. The more generic concept is a storage device, which can
 use any protocol to communicate with the client. The requirements
 for a storage device to act together with the metadata server to
 provide data to a client are that there is a Layout Type
 specification for the given protocol and that the metadata server has
 granted a layout to the client. Note that nothing precludes there
 being multiple supported Layout Types (i.e., protocols) between a
 metadata server, storage devices, and client.

 As storage device is the more encompassing terminology, this document
 utilizes it over data server.

2.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. The Control Protocol

 In Section 12.2.6 of [RFC5661], the control protocol is introduced.
 There have been no specifications for control protocols, and indeed
 there need not be such a protocol in use for any given
 implementation. The control protocol is actually a set of
 requirements provided to describe the interaction between the
 metadata server and the storage device. When specifying a new Layout
 Type, the defining document MUST show how it meets these
 requirements, especially with respect to the security implications.

Haynes Expires October 12, 2014 [Page 4]

Internet-Draft Layout Types April 2014

3.1. Protocol Requirements

 The broad requirements of such interactions between the metadata
 server and the storage devices are:

 (1) NFSv4.1 clients MUST be able to access a file directly through
 the metadata server and not the storage device. I.e., the
 metadata server must be able to retrieve the data from the
 constituent storage devices and present it back to the client
 via normal NFSv4.1 operations. Whether the metadata server
 allows access over other protocols (e.g., NFSv3, Server Message
 Block (SMB), etc) is strictly an implementation choice.

 (2) The metadata server MUST be able to restrict access to a file on
 the storage devices when it revokes a layout. The metadata
 server typically would revoke a layout whenever a client fails
 to respond to a recall or fails to renew its lease in time. It
 might also revoke the layout as a means of enforcing a change in
 state that the storage device cannot directly enforce with the
 client.

 (3) Storage devices MUST NOT remove NFSv4.1’s access controls: ACLs
 and file open modes.

 (4) Locking MUST be respected.

 (5) The metadata server and the storage devices MUST agree on
 attributes like modify time, the change attribute, and the end-
 of-file (EOF) position.

 Note that "agree" here means that some state changes need not be
 propagated immediately, although all changes SHOULD be
 propagated promptly.

 Note that there is no requirement on how these are implemented.
 While the File Layout Type does use the stateid to fence off the
 client, there is no requirement that other Layout Types use this
 stateid approach. But the other Layout Types MUST document how the
 client, metadata server, and storage devices interact to meet these
 requirements.

3.2. Non-protocol Requirements

 In gathering the requirements from Section 12 of [RFC5661], there are
 some which are notable in their absence:

 (1) Storage device MUST honor the byte range restrictions present in
 the layout. I.e., if the layout only provides access to the

Haynes Expires October 12, 2014 [Page 5]

Internet-Draft Layout Types April 2014

 first 2 MB of the file, then any access after that MUST NOT be
 granted.

 (2) The enforcement of authentication and authorization so that
 restrictions that would be enforced by the metadata server are
 also enforced by the storage device. Examples include both
 export access checks and if the layout has an iomode of
 LAYOUTIOMODE4_READ, then if the client attempts to write, the I/
 O may be rejected.

 While storage devices should make such checks on the layout
 iomode, [RFC5661] does not mandate that all Layout Types have to
 make such checks.

 (3) The allocation and deallocation of storage. I.e., creating and
 deleting files.

 Of these, the first two are of concern to this draft and Layout Types
 SHOULD honor them if at all possible,

3.3. Editorial Requirements

 In addition to these protocol requirements, there are two editorial
 requirements for drafts that present a new Layout Type. At a
 minimum, the specification needs to address:

 (1) The approach the new Layout Type takes towards fencing clients
 once the metadata server determines that the layout is revoked.

 (2) The security considerations of the new Layout Type.

 While these could be envisioned as one section in that the fencing
 issue might be the only security issue, it is recommended to deal
 with them separably.

 The specification of the Layout Type should discuss how the client,
 metadata server, and storage device act together to meet the protocol
 requirements. I.e., if the storage device cannot enforce mandatory
 byte-range locks, then how can the metadata server and the client
 interact with the layout to enforce those locks?

4. Implementations in Existing Layout Types

4.1. File Layout Type

 Not surprisingly, the File Layout Type comes closest to the normal
 semantics of NFSv4.1. In particular, the stateid used for I/O MUST
 have the same effect and be subject to the same validation on a data

Haynes Expires October 12, 2014 [Page 6]

Internet-Draft Layout Types April 2014

 server as it would if the I/O was being performed on the metadata
 server itself in the absence of pNFS.

 And while for most implementations the storage devices can do the
 following validations:

 o client holds a valid layout,

 o client I/O matches the layout iomode, and,

 o client does not go out of the byte ranges,

 these are each presented as a "SHOULD" and not a "MUST". However, it
 is just these layout specific checks that are optional, not the
 normal file access semantics. The storage devices MUST make all of
 the required access checks on each READ or WRITE I/O as determined by
 the NFSv4.1 protocol. If the metadata server would deny a READ or
 WRITE operation on a file due to its ACL, mode attribute, open access
 mode, open deny mode, mandatory byte-range lock state, or any other
 attributes and state, the storage device MUST also deny the READ or
 WRITE operation. And note that while the NFSv4.1 protocol does not
 mandate export access checks based on the client’s IP address, if the
 metadata server implements such a policy, then that counts as such
 state as outlined above.

 As the data filehandle provided by the PUTFH operation and the
 stateid in the READ or WRITE operation are used to ensure that the
 client has a valid layout for the I/O being performed, the client can
 be fenced off for access to a specific file via the invalidation of
 either key.

4.2. Block Layout Type

 With the Block Layout Type, the storage devices are not guaranteed to
 be able to enforce file-based security. Typically, storage area
 network (SAN) disk arrays and SAN protocols provide access control
 mechanisms (e.g., Logical Unit Number (LUN) mapping and/or masking),
 which operate at the granularity of individual hosts, not individual
 blocks. Access to block storage is logically at a lower layer of the
 I/O stack than NFSv4, and hence NFSv4 security is not directly
 applicable to protocols that access such storage directly. As such,
 [RFC5663] is very careful to define that in environments where pNFS
 clients cannot be trusted to enforce such policies, pNFS Block Layout
 Types SHOULD NOT be used.

 The implication here is that the security burden has shifted from the
 storage devices to the client. It is the responsibility of the
 administrator doing the deployment to trust the client

Haynes Expires October 12, 2014 [Page 7]

Internet-Draft Layout Types April 2014

 implementation. However, this is not a new requirement when it comes
 to SAN protocols, the client is expected to provide block-based
 protection.

 This implication also extends to ACLs, locks, and layouts. The
 storage devices might not be able to enforce any of these and the
 burden is pushed to the client to make the appropriate checks before
 sending I/O to the storage devices. As an example, if the metadata
 server uses a layout iomode for reading to enforce a mandatory read-
 only lock, then the client has to honor that intent by not sending
 WRITEs to the storage devices. The basic issue here is that the
 storage device can be treated as a local dumb disk such that once the
 client has access to the storage device, it is able to perform either
 READ or WRITE I/O to the entire storage device. The byte ranges in
 the layout, any locks, the layout iomode, etc, can only be enforced
 by the client.

 While the Block Layout Type does support client fencing upon revoking
 a layout, the above restrictions come into play again: the
 granularity of the fencing can only be at the host/logical-unit
 level. Thus, if one of a client’s layouts is unilaterally revoked by
 the server, it will effectively render useless *all* of the client’s
 layouts for files located on the storage units comprising the logical
 volume. This may render useless the client’s layouts for files in
 other file systems.

4.3. Object Layout Type

 The Object Layout Type focuses security checks to occur during the
 allocation of the layout. The client will typically ask for a layout
 for each byte-range of either READ or READ/WRITE. At that time, the
 metadata server should verify permissions against the layout iomode,
 the outstanding locks, the file mode bits or ACLs, etc. As the
 client may be acting for multiple local users, it MUST authenticate
 and authorize the user by issuing respective OPEN and ACCESS calls to
 the metadata server, similar to having NFSv4 data delegations.

 Upon successful authorization, inside the layout, the client receives
 a set of object capabilities allowing it I/O access to the specified
 objects corresponding to the requested iomode. These capabilities
 are used to enforce access control at the storage devices. Whenever
 the metadata server detects one of:

 o the permissions on the object change,

 o a conflicting mandatory byte-range lock is granted, or

 o a layout is revoked and reassigned to another client,

Haynes Expires October 12, 2014 [Page 8]

Internet-Draft Layout Types April 2014

 then it MUST change the capability version attribute on all objects
 comprising the file to implicitly invalidate any outstanding
 capabilities before committing to one of these changes.

 When the metadata server wishes to fence off a client to a particular
 object, then it can use the above approach to invalidate the
 capability attribute on the given object. The client can be informed
 via the storage device that the capability has been rejected and is
 allowed to fetch a refreshed set of capabilities, i.e., re-acquire
 the layout.

5. Summary

 In the three published Layout Types, the burden of enforcing the
 security of NFSv4.1 can fall to either the storage devices (Files),
 the client (Blocks), or the metadata server (Objects). Such
 decisions seem to be forced by the native capabilities of the storage
 devices - if a real control protocol can be implemented, then the
 burden can be shifted primarily to the storage devices.

 But as we have seen, the control protocol is actually a set of
 requirements. And as new Layout Types are published, the enclosing
 documents minimally MUST address:

 (1) The fencing of clients after a layout is revoked.

 (2) The security implications of the native capabilities of the
 storage devices with respect to the requirements of the NFSv4.1
 security model.

6. Security Considerations

 The metadata server MUST be able to fence off a client’s access to a
 file stored on a storage device. When it revokes the layout, the
 client’s access MUST be terminated at the storage devices.

7. IANA Considerations

 This document has no actions for IANA.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", March 1997.

Haynes Expires October 12, 2014 [Page 9]

Internet-Draft Layout Types April 2014

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol", RFC
 5661, January 2010.

 [RFC5663] Black, D., Fridella, S., and J. Glasgow, "pNFS Block/
 Volume Layout", RFC 5663, January 2010.

 [RFC5664] Halevy, B., Welch, B., and J. Zelenka, "Object-Based
 Parallel NFS (pNFS) Operations", RFC 5664, January 2010.

8.2. Informative References

 [FlexFiles]
 Halevy, B., "Parallel NFS (pNFS) Flexible Files Layout",
 draft-bhalevy-nfsv4-flex-files-01 (Work In Progress),
 October 2013.

 [Lustre] Faibish, S. and P. Tao, "Parallel NFS (pNFS) Lustre Layout
 Operations", draft-faibish-nfsv4-pnfs-lustre-layout-06
 (Work In Progress), November 2013.

Appendix A. Acknowledgments

 Dave Noveck provided an early review that sharpened the clarity of
 the definitions.

Appendix B. RFC Editor Notes

 [RFC Editor: please remove this section prior to publishing this
 document as an RFC]

 [RFC Editor: prior to publishing this document as an RFC, please
 replace all occurrences of RFCTBD10 with RFCxxxx where xxxx is the
 RFC number of this document]

Author’s Address

 Thomas Haynes
 Primary Data, Inc.
 4300 El Camino Real Ste 100
 Los Altos, CA 94022
 USA

 Phone: +1 408 215 1519
 Email: thomas.haynes@primarydata.com

Haynes Expires October 12, 2014 [Page 10]

