ALTO Cost Calendar

draft-randriamasy-alto-cost-calendar-01

Sabine Randriamasy
Richard Yang
Qin Wu
Lingli Deng
Nico Schwan

ALTO Cost Calendar: Overview

- Allows applications to decide not only 'where' to connect to, but also 'when'
- New Cost Mode ="calendar"
 - Array of time-dependent ALTO Cost values
 - Specifies Calendar attributes on applicable date and duration
- Fulfill updated charter item #3
 - Protocol extensions to convey a richer set of attributes to allow applications to determine not only « where » but also « when » to connect

Use Cases

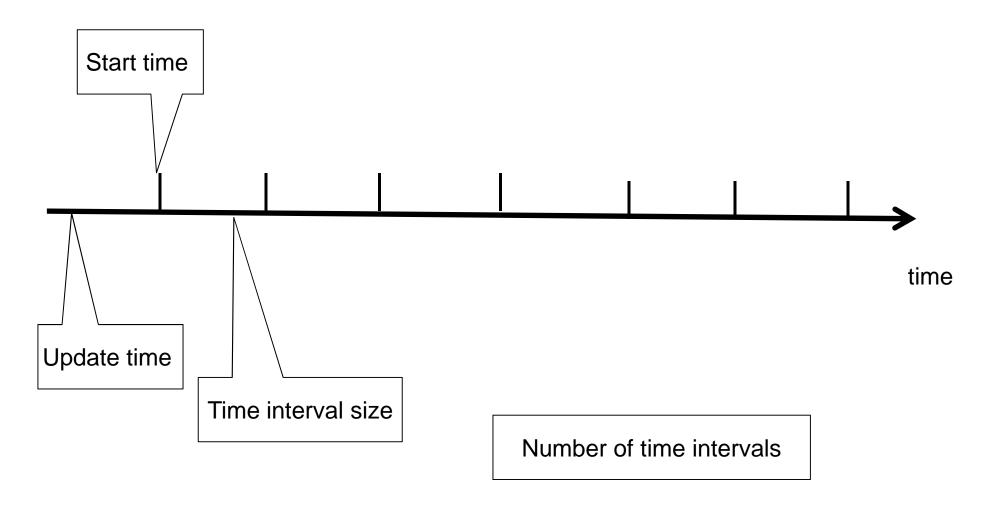
Non-real time applications that have a degree of freedom on *when* to use network resources,

- Resource = content in a CDN server, physical resource in a DC, service
- Bulk data transfer scheduling
 - W.r.t. surrogate location time zones, network maintenance
- Limited connectivity or access to datacenters
 - endsystems with scarce resources, patching
- SDN Controller guided access to application endpoints
 - ALTO Server in SDN-C guided traffic balancing
- Large flow scheduling on extended ALTO topologies
 - Any metric with quantitative or qualitative values
- Time-sensitve TE metrics Calendaring
 - ALTO bandwidth values = estimates based on TE measurements

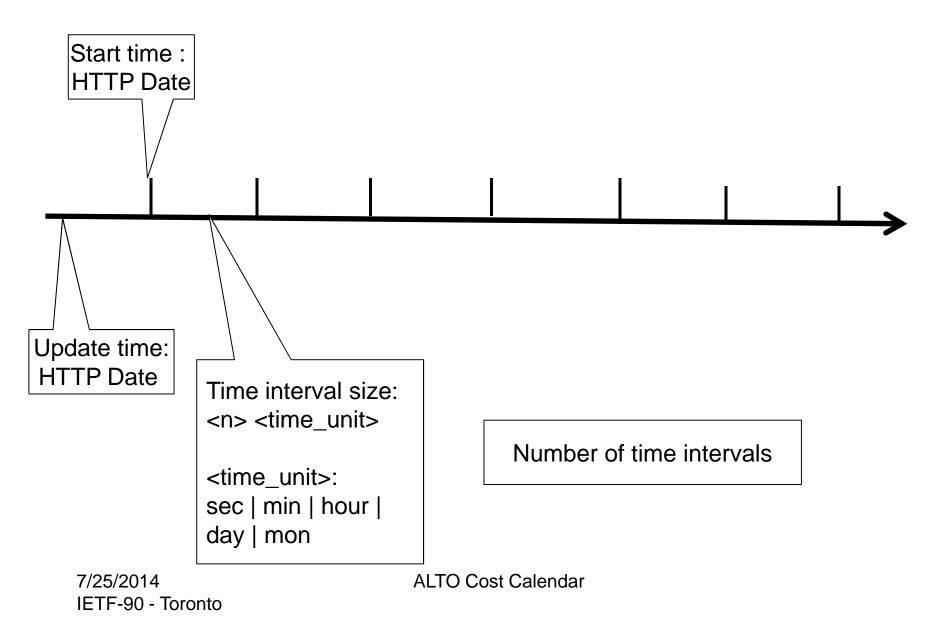
Design

- Q: How to provide information so that apps can schedule their transfers and access to app resources?
- Insight: provides forecast to apps of cost metric values

7/25/2014

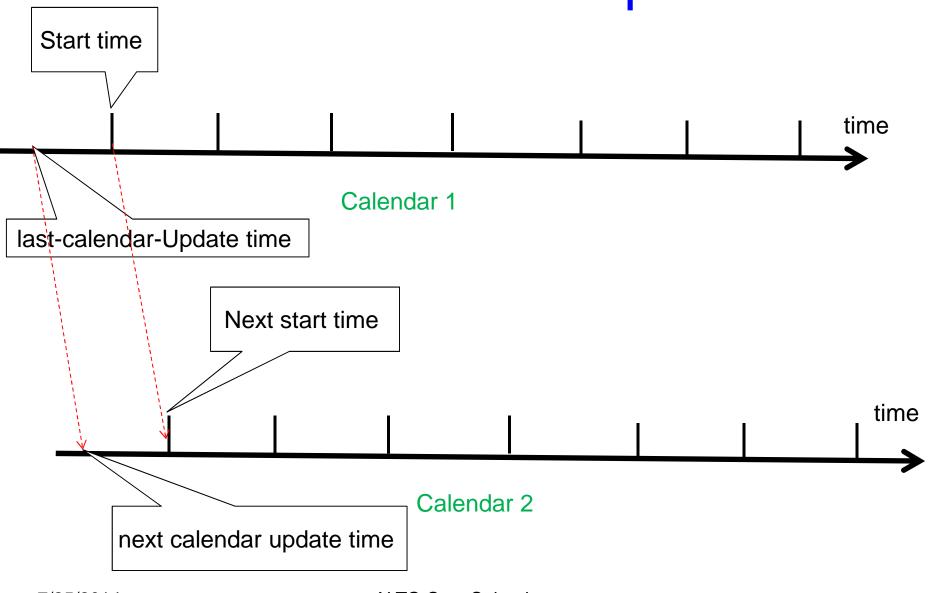

Design Decision

A sequence (e.g., 8) of forecast values of a given timing interval (e.g., hourly)


Note

 Forecast computation should reflect both natural traffic pattern (e.g., diurnal patterns) and policy (e.g., scheduled maintenance).

Encoding of Design Decision


Encoding of Design Decision

Example IRD

- 1 daily calendar of 12 time intervals of 2 hours, computed every day
- IRD GET done on Tuesday July 1st at 13:15

Inform Client on Update

7/25/2014 IETF-90 - Toronto **ALTO Cost Calendar**

Example IRD

- 7 daily calendars of 12 time intervals of 2 hours, computed every week on Sunday
- IRD GET done on Tuesday July 1st at 13:15

IETF-90 - Toronto

```
"meta" : { "cost-types": {
             "calendar-routing": {
               "cost-mode" : "calendar",
               "cost-metric": "routingcost",
               "description": {
                  "calendar-start-time" :
                       Tue, 1 Jul 2014 00:00:00 GMT,
                 "last-calendar-update-time" :
                       Sun, 29 Jun 2014, 23:59:00 GMT,
                 "time-interval-size" : "2 hour",
                 "numb-intervals" : 12,
                 "next-start-time" : Fri, 4 July 2014 00:00:00 GMT
                 "next-calendar-update-time":
                       Sun, 6 Jul 2014, 23:59:00 GMT
   7/25/2014
```

Example Calendar Transaction

Request on 'Availbandwidth 'Calendar:

daily pattern of 12 values on 2h intervals, computed every day, updated at 0h00, for 24 hours, with the first interval starting at 0h00

```
POST /endpointcalendarcost/calendar/lookup HTTP/1.1
Host: alto.example.com
Content-Length: [TODO]
Content-Type: application/alto-endpointcostparams+json
Accept: application/alto-endpointcalendarcost+json,application/alto-error+json
    "cost-type" : {"cost-mode" : "calendar", "cost-metric" : "Availbandwidth"},
        "endpoints" : {
           "srcs": [ "ipv4:192.0.2.2" ],
           "dsts": [
            "ipv4:192.0.2.89",
             "ipv4:198.51.100.34",
             "ipv4:203.0.113.45"
```

Example Calendar Transaction

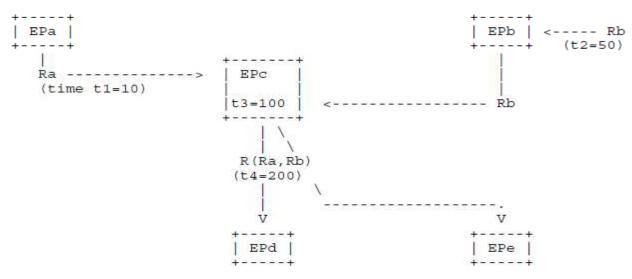
Client receives a 12-value array + calendar attributes

```
HTTP/1.1 200 OK
Content-Length: [TODO]
Content-Type: application/alto-endpointcalendarcost+json
  "meta" : {
    "cost-type" : {"cost-mode" : "calendar", "cost-metric" : "Availbandwidth"},
    "calendar-start-time" : Tue, 1 Jul 2014 00:00:00 GMT,
    "last-calendar-update-time" : Sun, 29 Jun 2014, 23:59:00 GMT,
    "time-interval-size" : "2 hour",
    "numb-intervals" : 12,
    "next-start-time" : Fri, 4 July 2014 00:00:00 GMT,
    "next-calendar-update-time" : Sun, 6 Jul 2014, 23:59:00 GMT
  "endpoint-cost-calendar-map" : {
    "ipv4:192.0.2.2": {
      "ipv4:192.0.2.89" : [... Array of 12 values],
      "ipv4:198.51.100.34" : [... Array of 12 values],
      "ipv4:203.0.113.45" : [... Array of 12 values]
```

Summary

- Introduce ALTO calendar cost mode
- Applicable to any ALTO cost metric types
- Applicable to multiple ALTO Services
 - Endpoint cost service
 - (Filtered) cost map
- Next step:
 - Futher discuss and specify the calendar attributes
 - Update draft according to discussions

Thank you

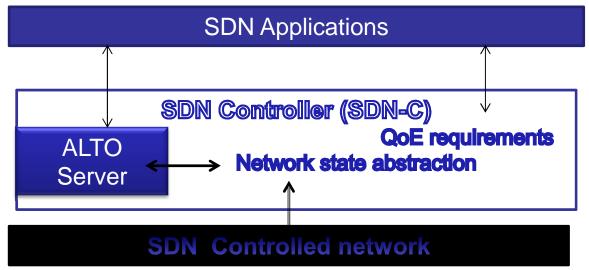

Back-up slides

Use case limited resources

- End systems with connectivity or access to datacenters that is variable and predictable
 - Applications: remote learning, enterprise database update, remote distributed computation, ...
 - → Wish to schedule their connection to application Endpoints

Example: scattered endpoints/resources

→ Interaction with Endpoints can be scheduled at times with the best possible ALTO Cost value


• ALTO Client themselves can schedule their ALTO requests 7/25/2heay now when ALTO Cakerndara are updated IETF-90 - Toronto

SDN Controller guided traffic balancing

- SDN-C can use ALTO Cost Calendar to influence the scheduling of application traffic
 - Do network state estimation/prediction over time periods
 - Store their abstraction in ALTO server
 - Give the values to SDN applications via the ALTO ECS
- → Applications get a better QoE as they pick the best time
- → SDN-C improves load balancing as it may
 - guide application traffic to selected Endpoints
 - AND indirectly distribute application traffic over time via carefully specified ALTO cost Schedule values

SDN Controller guided access to application endpoints

- Base ALTO protocol allows to perform SDN primitives
 - Abstraction, Get Network Topology, Get device capabilities

- SDN primitive "Get network resources"
 - Provides applications with informations to evaluate QoE
 - Abstracting e.g. delay, bandwidth → requires new ALTO Cost

7/25/2014Pes IETF-90 - Toronto