
Elephants, Mice, and Lemmings!
Oh My!

Fred Baker
Fellow

25 July 2014

Making life better in data centers and high speed computing

Cisco Public 2 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Data Center
Applications

§  Names withheld for customer/vendor
confidentiality reasons

§  Common social networking applications
might have
§  O(103) racks in a data center
§  42 1RU hosts per rack
§  A dozen Virtual Machines per host
§  O(219) virtual hosts per data center
§  O(104) standing TCP connections per VM to

other VMs in the data center

§  When one opens a <pick your social media
application> web page
§  Thread is created for the client
§  O(104) requests go out for data
§  O(104) 2-3 1460 byte responses come back
§  O(45 X 106) bytes in switch queues

instantaneously
§  At 10 GBPS, instant 36 ms queue depth

Cisco Public 3 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Taxonomy of data flows

§  We are pretty comfortable with the concepts of mice and
elephants
§  “mice”: small sessions, a few RTTs total
§  “elephants”: long sessions with many RTTs

§  In Data Centers with Map/Reduce applications, we also
have lemmings
§  O(104) mice migrating together

§  Solution premises
§  Mice: we don’t try to manage these
§  Elephants: if we can manage them, network works
§  Lemmings: Elephant-oriented congestion management results in HOL

blocking

Cisco Public 4 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

§  Most proposals I see, in one way or another, attempt to use AQM to
manage latency, by responding to traffic aggressively.

§  What if we’re going at it the wrong way?
§  What if the right way to handle latency on short RTT timescales is from TCP

“congestion” control, using delay-based or jitter-based procedures?

§  What procedures?
§  TCP Vegas (largely discredited as a congestion control procedure)
§  CalTech FAST (blocked by IPR and now owned by Akamai)
§  CAIA Delay Gradient (CDG), in FreeBSD but disabled by a bug

My question

Cisco Public 5 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Technical Platform

C
ou

rte
sy

 T
si

ng
hu

a
U

ni
ve

rs
ity

C

is
co

/T
si

ng
hu

a
Jo

in
t L

ab

Ø  Machines
u Hosts with 3.1GHz CPU, 2GB RAM and 1Gbps NIC (4)

u NetFPGA

u  Freebsd 9.2-prerelease

Ø  Multi-thread traffic generator

u  Each responses 64KB

u  Buffer: 128KB

Cisco Public 6 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

TCP Performance on short RTT
timeframes

Ø  Each flow responses 100KB data
Ø  Last for 5min.

C
ou

rte
sy

 T
si

ng
hu

a
U

ni
ve

rs
ity

C

is
co

/T
si

ng
hu

a
Jo

in
t L

ab

Cisco Public 7 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Effects of TCP Timeout

Ø The ultimate reason for throughput collapse in
Incast is timeout.

200ms

flow	
 i

flow	
 j

Block	
 k Block	
 k+1

flow	
 k

flow	
 z

Waste!	

C
ou

rte
sy

 T
si

ng
hu

a
U

ni
ve

rs
ity

C

is
co

/T
si

ng
hu

a
Jo

in
t L

ab

Cisco Public 8 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Prevalence of TCP Timeout

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Timeout events in Newreno
of others
of rexmit losses
of BTTO losses
of BHTO losses

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Timeout events in Fast
of others
of rexmit losses
of BTTO losses
of BHTO losses

C
ou

rte
sy

 T
si

ng
hu

a
U

ni
ve

rs
ity

C

is
co

/T
si

ng
hu

a
Jo

in
t L

ab

Cisco Public 9 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

§  Using a Delay-based procedure helped quite a bit, but
didn’t solve incast cold.
§  It did, however, significantly increase TCP’s capability to

maximize throughput, minimize latency, and improve
reliability on short timescales.

§  We also need something else to fix the incast problem,
probably at the application layer in terms of how many
VMs are required

Tsinghua conclusions

Cisco Public 10 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

§  In two words, amplification and coupling.
§  Amplification Principle

§  Non-linearities occur at large scale which do not occur at small to medium
scale.

§  Think “Tocoma Narrows Bridge”, the canonical example of nonlinear resonant
amplification in physics

§  RFC 3439

What’s the other half of the incast problem?

Cisco Public 11 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

§  Coupling Principle
§  As things get larger, they often exhibit increased interdependence between

components.

§  When a request is sent to O(104) other machines and they all respond
§  Bad things happen…

What’s the other half of the incast problem?

Cisco Public 12 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Large scale shared-nothing
analytic engine

§  Time to start looking at next
generation analytics

§  UCSD CNS – moving away from
rotating storage to solid-state
drives dramatically improves
Tritonsort while reducing VM
count.

§  Facebook: uses Memcache as
basic storage medium

Cisco Public 13 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

§  TCP and related protocols should use a delay-based or jitter-based
procedure such as FAST or CDG. This demonstrably helps maximize
throughput while minimizing latency, and does better than loss-based
procedures on short timescales.
§  What other timescales? There are known issues with TCP Congestion Control

on long delay links.
§  Note that Akamai owns the CalTech FAST technology, presumably with the

intent to use it on some timescales, and Amazon appears to use it within data
centers.

§  Ongoing work to fix CDG in FreeBSD 10.0.

§  What do we need to do to move away from Map/Reduce applications or
limit their VM count besides using solid-state storage and shared-
nothing architectures?

My view

Thank you.

