News from service discovery front Markus Stenberg < fingon@iki.fi> Homenet WG, IETF90 #### Agenda - * What has happened since IETF 89 - * hybrid-proxy-zeroconf-o1: minor update - * homenet-minimalist-pcp-proxy-00: PCP in a homenet - * What's left: Solution gap analysis #### draft-stenberg-homenet-dnssdhybrid-proxy-zeroconf-01 - * NO real content changes! - * Some editing - * Changed physical interface names to logical ones in examples (etho => wlano) - * Fixed example addresses and prefixes in appendix A - * Added some further discussion on 'why not mDNS proxying' in the appendix C.1 ## draft-stenberg-homenet-minimalist-pcp-proxy-00 PCP in a homenet - * Currently in an IPv6 homenet hosts do NOT have all information needed to choose PCP server correctly - * Source specific routing in effect outside home, but no way to communicate it to hosts (and current hosts don't care) - * First-hop router needs to proxy PCP to PCP server appropriate for the chosen source address choices: - * draft-ietf-pcp-proxy defines proxy = full PCP client+server => e.g. libpcp -9k LoC client + server Xk LoC - * draft-stenberg-homenet-minimalist-pcp-proxy-00 defines 'minimalist', almost stateless PCP proxy - * -oo version of draft is flawed due to assuming clients use always fixed port (two ways to fix it) - * My implementation of it (https://github.com/fingon/minimalist-pcproxy) is just -1k LoC of C - * Design similar to our hybrid proxy implementation assume 'someone else' provides the (source prefix, PCP server) mapping tuples - * (In our case, we use the addresses of the routers that publish delegated prefixes in HNCP) #### Solution gap analysis (1/2) mDNS/DNS-SD - * Currently DNS-SD (+mDNS services) usable - * mDNS-only using clients are **NOT** addressed what's needed: - * 'merge all hybrid proxy zones to one zone' (TBD in hybrid draft) + - * 'merged DNS-SD zone served via mDNS' could address this - * .. or the good old mDNS proxying, but I still consider it harmful - * Given default deny firewall, PCP allows the local services to be available outside home - * However, no way to control who can do it beyond per-host level - * draft-ietf-pcp-authentication process ongoing but slow #### Solution gap analysis (2/2) UPnP - * In theory, in-home case is simple - * UPnP architecture annex A 1.1 (2011) - * ULA > GUA > link-local address preference - * MUST do link-local multicast - * MUST be CAPABLE to do site-local multicast (using GUA or ULA) - * In practice - * IGDv2 is not source specific => need to do IGDv2 proxy (or IGDv2 -> PCP proxy, perhaps) - * Installed base challenge users won't be editing Windows registry to enable site-local - * Based on strict spec reading, proxying link-local to site-local and back is not practical (MUST use RFC3484-ish addresses also in e.g. Location in SSDP) - * => IPv4 works better out of the box, given IPv4 home-wide multicast, +- low TTLs #### Conclusions - * DNS-SD / mDNS (both for client / server) is solvable - * UPnP is an open question - * IGDv2 is easy enough, but - * all clients are link-local only by default (IPv4 would work given multicast routing, *cough*) - * The solutions of PCP working group seem somewhat out of sync with what multi-ISP home network requires - * Their underlying assumption seems to be that the PCP server addresses correspond with associated prefixes, and it's ok to retry with other servers too - * Their PCP proxy spec light-weight, implementation heavy-weight ### Any questions?