MMUSIC

ICE Happy Eyeballs

draft-reddy-mmusic-ice-happy-eyeballs-07

June 2014 IETF 90

Authors: Tirumaleswar Reddy, Prashanth Patil

Presenter: Pål-Erik Martinsen

The Problem

- Current guidelines inn RFC5245 (section 4.1.2.2) favor IPv6.
- The number of IPv6 candidates can be large. If IPv6 is broken, it takes a long time to get to the IPv4 connectivity checks and ICE completion.
- Some fairness is needed. Helps deployment of dual stack.

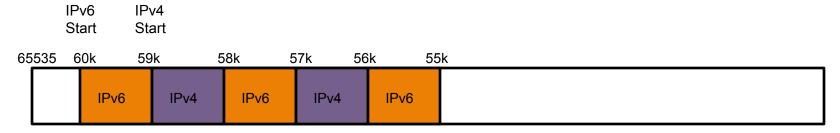
Draft Update

- Moved algorithm example to appendix.
- Nits and clarifications

Draft overview

```
priority = (2^24)*(type preference) + (2^8)*(local preference) + (2^0)*(256 - component ID)
```

Safe to play with


because

```
pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
```

Will fix checklist synchronization on local and remote side

Recommends implementations to choose the local preference value in such a way that some fairness between IPv4 and IPv6 candidates is achieved

Appendix (Example algorithm)

local_preference = S - N*2*(Cn/Cmax)

S = Address Type specific start value

N = abs(IPv6_Start – IPv4_Start)

Cn = Number of candidates of specific type

C_{max} = Number of consecutive candidates of a addr type allowed

Values can be tweaked by the implementation.

Having some ICE metrics on how to measure the effect on an algorithm and specific values might be interesting.

Purpose of the Draft

- Show implementers that some care should be taken when using dual stack IPv4/IPv6 and ICE.
- Spell out what is safe to play with without breaking ICE interop.
- NOT_ trying to get the optimal algorithm to solve the problem.

Summary

- A little unclear if this is a real problem when it comes to number of IPv6 addresses an interface can have.
 - Spec does not limit number
 - Implementations? 16, 32, Higher?
- With 4 IPv6 addresses this draft is useful.

Next Steps?

- WG adoption?
- It was fun, lets move on?