
tcpcrypt
Andrea Bittau, Dan Boneh, Mike Hamburg,
Mark Handley, David Mazières, Quinn Slack

!
Stanford, UCL

Reminder: project goal

Not drawn to scale

IPsec SSH

TCP traffic today

TLS

Unencrypted

Not drawn to scale

IPsec SSH

Goal for TCP traffic

TLS

Unencrypted

tcpcrypt

Reminder: project goal

tcpcrypt summary
• Two new TCP options: CRYPT & MAC.

• Public-key based session key negotiation in extended
4-way TCP handshake.

• Cached session completes in normal 3-way
handshake.

• Encryption of payload, integrity of most TCP header
fields and full payload.

• Session ID, app-support bit for future app-level security.

tcpcrypt in action
SYN CRYPT<HELLO> option

SYN ACK

CRYPT<PKCONF>: public key ciphers, key sizes

ACK CRYPT<INIT1>: symmetric ciphers, MACs, nonce, public key
ACK

CRYPT<INIT2>: key material [RSA encrypted server nonce]

 [DH: dh-param, server nonce]

ACK MAC [encrypted data]

Session ID

tcpcrypt

Session ID:
0xabcdef

Session ID:
0xabcdef

tcpcrypt

Session ID:
0xabcdef

Session ID:
0xdead

tcpcrypt

Application-layer
authentication

Application

Transport
tcpcrypt

SI
Dgetsockopt

SESSION_ID

Application

Transport
tcpcrypt

SI
D

Encryption & MAC

Authentication

E.g.: HMAC(password, SID)

Application-aware bit
E.g., DANE integration

…!
s = connect(“hello.com”)!
send(s, “GET / HTTP/1.0\n\n”)!
…

SYN
CRYPT<HELLO-APP>

SYN ACK
CRYPT <PKCONF-APP>

• Get certificate from DNS
• Sign tcpcrypt SID

Python Ruby

http://hello.com

Feedback from last IETF

0. Why encrypt at the TCP layer?!?

1. Must never delay or break TCP connections.

2. Want more data on middlebox behavior.

Previous middlebox
compatibility measures

• Fallback to TCP if CRYPT option stripped.

• Do not MAC source port, destination port,
timestamp option, etc.

• MAC sequence number and ack number offsets
from ISN.

• Consistent retransmission of ciphertext. See
Authenticated Sequence Mode encryption in draft.

• Integrity check of RST disabled by default.

Possible failure cases

SYN SYN
CRYPT<HELLO>
SYN ACK SYN ACK

Middlebox

Result: no tcpcrypt, but TCP works fine

Scenario 1: middlebox strips unknown options.

Possible failure cases

SYN ACK SYN ACK
CRYPT<PKCONF> CRYPT<PKCONF>

ACK
CRYPT<INIT1>

SYN SYN
CRYPT<HELLO> CRYPT<HELLO>

Middlebox

Connection fails!

Scenario 2:
• Middlebox leaves unknown options.
• Middlebox drops packets that don’t conform to

application-layer protocol.
• E.g., HTTP over tcpcrypt won’t look like HTTP.

tcpcrypt check server
• tcpcrypt implementation performs following tests on ports

80 and 7777 of check.tcpcrypt.org

1. Sends a GET request on plain TCP connection.

2. Sends non-HTTP data on plain TCP connection.

3. Performs a tcpcrypt connection.

• If tests fail, tcpcrypt is disabled. No disruption to
connections.

• Initially allows us to gather statistics on middlebox behavior.

Implementation status
• Easy to install user-space implementation. No kernel

mods.

• tcpcrypt protocol is amenable to implementation as a
simple packet rewriter.

• Released a new stable Windows version.

• Official Debian package is being created.

• Runs on Windows, Mac, Linux, FreeBSD.

• 8,000 lines of code.

Key tcpcrypt properties
• Leverage TCP handshake to negotiate increased

security.

• Opportunistic forward secrecy with no configuration.

• Provide applications a Session ID with which to
authenticate connections.

• Provide applications with out-of-band signaling to
negotiate authentication of Session ID.

http://tcpcrypt.org

http://tcpcrypt.org

Backup slides

Handshake
SYN CRYPT<HELLO> option

SYN ACK

CRYPT<PKCONF>: public key ciphers, key sizes

ACK CRYPT<INIT1>: symmetric ciphers, MACs, nonce, public key
ACK

CRYPT<INIT2>: key material [RSA encrypted server nonce]

 [DH: dh-param, server nonce]

Session cached handshake

Pre-master secret

Session keys Session ID

Session cached handshake

Pre-master secret

Session keys Session ID

Next connection Next
Pre-master secret

SYN
CRYPT<NEXTK1>

SYN ACK
CRYPT<NEXTK2>

ACK
 MAC

Low latency!

MAC and encryption

src port dst port

seq no

ack no

d. off. flags window checksum urg ptr

options (e.g., SACK) MAC option

data

(64-bit seq)

(64-bit ack)

TCP length

MACed
Encrypted
MACed

tcpinc requirements
No modifications to upper layers. Yes

Forward secrecy with per-connection granularity and integrity protection Yes

NAT and firewall traversal. Yes

Key rollover without significant impact. Yes

Lower overhead than stacked solutions. Yes

No manual configuration. Yes

Crypto agility. Yes

Fallback to TCP. Yes

Minimize option space especially in SYN segments. Yes

Must not require authentication but must provide hooks for authentication. Yes

No extra linkability by third party eavesdroppers. When session cache disabled

Client has option to defeat fingerprinting. Yes - modulo configuration

