TCP and SCTP RTO Restart

draft-ietf-tcpm-rtorestart-03

Per Hurtig, Anna Brunstrom, Andreas Petlund, Michael Welzl

2014-07-21

REDUCING INTERNET TRANSPORT LATENCY

Outline

RTO Restart

Updates to the draft

Outstanding Algorithm Issue

Experiments

Fully Controlled Realistic Loss Web Page

Implementation

RTO Restart

- As the RTO timer is restarted on an incoming ACK [RFC6298, RFC4960], the effective RTO often becomes RTO = RTO + RTT[+delACK]
- RTO restart adjusts the RTO so that retransmissions are performed after exactly RTO seconds
- The modified restart is only applied when FR can not be used

Updates to the draft

- Added a section to generalize the tracking of outstanding segments
 - to cover both byte-based and packet-based implementations
- Updated the document to use "RTOR" instead of "RTO Restart" when referring to the modified algorithm
- Moved document terminology to a section of its own, and added a description of the rrthresh variable there as well
- Clarified the relationship between fast retransmit and RTOR
- Improved the wording throughout the document

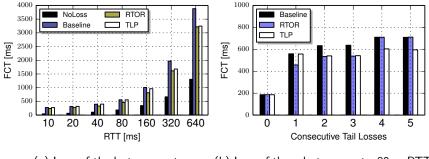
Outstanding Algorithm Issue

When an ACK is received that acknowledges new data:

- 1. Set T_earliest = 0
- 2. If the following two conditions hold:
 - a) The number of outstanding segments is less than a RTOR threshold (rrthresh). The rrthresh SHOULD be set to four
 - b) There is no unsent data ready for transmission

set T_earliest to the time elapsed since the earliest outstanding segment was sent

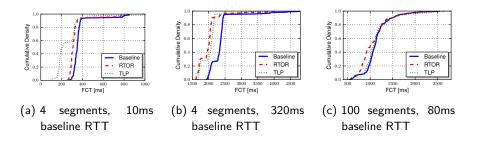
 Restart the retransmission timer so that it will expire after "RTO - T_earliest" seconds (for the current value of RTO)

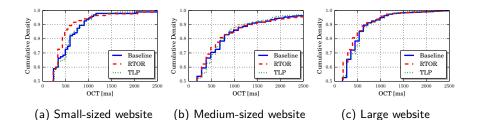

Outstanding Algorithm Issue

- Attempted fix in current draft rearms the retransmission timer after a new data transmission, if needed
 - this behavior causes other problems
- A possible alternative solution changes the conditions (in 2) to:
 - the number of outstanding and unsent segments is less than a RTOR threshold (rrthresh)

Experiments

- Fully controlled fixed-size flows with tail loss
- Realistic loss trace-driven background traffic
- Web pages web page downloads with correlated loss patterns


Fully Controlled


(a) Loss of the last segment

(b) Loss of the n last segments, 80ms RTT

Realistic Loss

Web Page

Implementation

- Updated for the 3.15 Linux kernel
- Can be downloaded from http://riteproject.eu

Questions?