
1

Free from Using Zone Identifier

for IPv6 Link-Local
<draft-kitamura-ipv6-zoneid-free-03.txt>

Hiroshi KITAMURA

NEC Corporation

kitamura@da.jp.nec.com

Analysis of the problems of using Zone-ID

Problem 1:

 Zone-ID information is hard to tell for normal end users.

Problem 2:

 Zone-ID is node-local info. and cannot be shared with others.

Problem 3:

 Zone-ID depends on node's situation and can be changed.

Problem 4:
 “<Address>%<Zone-ID>” representation (with %<Zone-ID>) is

 quite different from

 traditional “<Address>” only representation (without %<Zone-ID>).

2

 Server Node S

<servicing address>

fe80::aaaa:bbbb.cccc:dddd

 Client Node C1 Client Node C2

I/F: eth0 I/F: rl0

<destination argument>

fe80::aaaa:bbbb:cccc:dddd%eth0

<destination argument>

fe80::aaaa:bbbb:cccc:dddd%rl0

Problem: on providing services via Link-Local Address

3

The provided services are the same,

but Client Nodes can NOT use the same arguments.

Current Style with %<Zone-ID>

Goal Communication Style without %<Zone-ID>

What ”Zone-ID Free” function should do is:

 Without %<Zone-ID> info. at argument,

 Go on communication programs (without causing errors / stopping)

Goals of “Zone-ID Free” function and what will be done

4

> ping6 <Link-Local_Address_A>%<Zone-ID_X>

> ping6 <Link-Local_Address_B>%<Zone-ID_Y>

> ssh <Link-Local_Address_A>%<Zone-ID_X>

> ssh <Link-Local_Address_B>%<Zone-ID_Y>

> ping6 <Link-Local_Address_A>

> ping6 <Link-Local_Address_B>

> ssh <Link-Local_Address_A>

> ssh <Link-Local_Address_B>

Where is Zone-ID specification?

Basic Socket API [RFC3493] defines

 “sockaddr_in6” structure as follows:

 “sin6_scope_id” member definition is

 directly related with Zone-ID information.

(Advanced Socket API [RFC3542] also defines Zone-ID related specification.

Since targets of this document are simple usages of normal end users,

Advanced Socket API is not discussed here.)
5

struct sockaddr_in6 {

 sa_family_t sin6_family; /* AF_INET6 */

 in_port_t sin6_port; /* transport layer port # */

 uint32_t sin6_flowinfo; /* IPv6 flow information */

 struct in6_addr sin6_addr; /* IPv6 address */

 uint32_t sin6_scope_id; /* set of interfaces for a scope */

 };

Zone-ID (at Application) => sin6_scope_id (at kernel)

If Zone-ID info. is not provided by end users,

 sin6_scope_id filled with 0 (special value).

When the kernel meets sin6_scope_id =0 situation:

 Reactions are categorized into two cases:

 1: Non Link-Local (such as Global) Address Case:

 The kernel proceeds and applications go on.

 2: Link-Local Address Case:

 The kernel can NOT proceed the operations.

 Applications receive ERROR return value from the kernel,

 and applications can NOT continue and STOP.

How Zone-ID info. dealt with in the current impl.

6

Design and Implementation of “Zone-ID Free” function

In order to avoid ERROR and STOP situation,
sin6_scope_id value should be resolved by the kernel

Two types to resolving:

 One is NO probing type

 without issuing probes, sin6_scope_id is resolved.

 (dominant at normal end users environment)

 The other is Probing type

 with issuing probes, sin6_scope_id is resolved.

7

NO probing type (dominant)

There are three cases:

• One Case:

Number of available interface of a node is One.

• Self Case:

Target address is issuer's Self address.
(loopback type communication)

• Filled Case:

Neighbor Cache entry has already been Filled.
(N.C. entry is filled by some operations

 before Socket functions are called.)

From a view point that no probes are needed,

 these cases can be called "trivial" type.
8

Probing type “Zone-ID Learning”

This is the last resort.

If the situation does not match any of no probing cases

(One/Self/Filled), “sin6_scope_id (Zone-ID)” is

resolved (learned) by issuing probes.

 This method is called "Zone-ID Learning“

 NS (Neighbor Solicitation) is used for a probe.

At normal end user environment, Zone-ID information is

 usually obtained by either of One/Self/Filled Cases.

It is very rare to execute "Zone-ID Leaning" method.

9

 Initiator Node I

(who has multi- I/Fs)
I/F: em0

I/F: fxp0

 Responder Node B1

(who has a target addr.)
 Responder Node B2

 Responder Node A1 Responder Node A2

(1) NS

(1) NS

(2) NA

Network X

Network Y

Zone-ID Learning (send multiple NS probes)

10

Initiator

Node I

Respond.

Node B1
Respond.

Node B2

Respond.

Node A2

Respond.

Node A1

(1) NS
(1) NS

(2) NA

I/F: fxp0
I/F: em0

Neighbor

Cache

Update

Zone-ID Learning (send multiple NS probes)

Typical Sequence Chart

11

Considerations on “Zone-ID Learning”

There are three cases to reply to multiple-probes.

1. No Reply:

Clear situation. There are no difficulties.

2. Single Reply:

Most comfortable and typical situation.

Zone-ID is resolved. There are no difficulties.

3. Multiple Replies:

 Rarely happened. If appropriate Zone-ID is needed,

 users can fall back to the Zone-ID accompanied method.

 Since the "Zone-ID Free" functions are upper compatible,

 there is no difficulties to fall back to the current method.

12

Target Socket functions and Implementation

Socket functions that returns ERROR value when they are

called with sin6_scope_id = 0 must be improved.

The following 5 types of Socket functions are actual targets.

1. TCP connect()

2. UDP sendto()/sendmsg()

3. UDP connect()

4. TCP bind()

5. UDP bind()

Only with modifying the kernel implementation,

 socket functions do NOT return ERROR value.

So it is not necessary to modify userland/library implementation.

13

Implementation

Currently, above described "Zone-ID Free" functions

have been implemented and verified

under the following OS environment.

– OS: Linux (Ubuntu 13.04)

– Kernel: 3.8.13 (Ubuntu 13.04) and 3.8.8 Vanilla kernel

– Code size (kernel patch) : less than 1k line

14

Summary
This I-D describes:

- How "Zone-ID Free" functions work

- How end users are released from using nuisance Zone-ID

The "Zone-ID Free" functions are:

– Upper compatible with the current usage of link-local addresses

– Harmless to the existing communications.

End users' network connecting topology is generally simple.

 Even if their nodes are equipped multiple interfaces,

 they use only one interface to connect to network at one time

 It is dominant that Zone-ID is resolved without issuing probes.

For the rare cases, a new technology "Zone-ID Learning" that issues

multiple probes to resolve sin6_scope_id is introduced.

15

16

Discussions

Please let us know your comments.

Acknowledgment:

 A part of these works are supported by the program: SCOPE (Strategic

Information and Communications R&D Promotion Programme) operated by

Ministry of Internal Affairs and Communications of JAPAN.

17

Reserved slides are started from here.

Socket functions and Implementation (1/3)

1. TCP connect()

2. UDP sendto()/sendmsg()

 Since goals of above 2 types of Socket functions is to issues IP

packets, it is easy to associate that they can become trigger

functions to issue multiple NS probing messages (when

correspondent neighbor cache entry is empty). IP packets are

issued soon after NS/NA sequences are finished.

18

Socket functions and Implementation (2/3)

3. UDP connect()

 Since goal of UDP connect() functions is NOT to issues IP

packets, it is not easy to associate that UDP connect() functions

can become trigger functions to issue NS probing messages.

However, in order not to return Error value and to resolve

"sin6_scope_id" value, multiple NS probing messages can

be issued here.

19

Socket functions and Implementation (3/3)

4. TCP bind()

5. UDP bind()

 Since an argument of bind() function must be Self address,

"sin6_scope_id" value is solved by no probing (Self Case).

20

