
AQM working group T. Hoeiland-Joergensen
Internet-Draft Karlstad University
Intended status: Informational P. McKenney
Expires: May 14, 2015 IBM Linux Technology Center
 D. Taht
 Teklibre
 J. Gettys
 E. Dumazet
 Google, Inc.
 November 10, 2014

 FlowQueue-Codel
 draft-hoeiland-joergensen-aqm-fq-codel-01

Abstract

 This memo presents the FQ-CoDel hybrid packet scheduler/AQM
 algorithm, a critical tool for fighting bufferbloat and reducing
 latency across the Internet.

 FQ-CoDel mixes packets from multiple flows and reduces the impact of
 head of line blocking from bursty traffic. It provides isolation for
 low-rate traffic such as DNS, web, and videoconferencing traffic. It
 improves utilisation across the networking fabric, especially for
 bidirectional traffic, by keeping queue lengths short; and it can be
 implemented in a memory- and CPU-efficient fashion across a wide
 range of hardware.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 14, 2015.

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 1]

Internet-Draft Fq_Codel November 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 The FQ-CoDel algorithm is a combined packet scheduler and AQM
 developed as part of the bufferbloat-fighting community effort. It
 is based on a modified Deficit Round Robin (DRR) queue scheduler,
 with the CoDel AQM algorithm operating on each sub-queue. This
 document describes the combined algorithm; reference implementations
 are available for ns2 and ns3 and it is included in the mainline
 Linux kernel as the FQ-CoDel queueing discipline.

 The rest of this document is structured as follows: This section
 gives some concepts and terminology used in the rest of the document,
 and gives a short informal summary of the FQ-CoDel algorithm.
 Section 2 gives an overview of the CoDel algorithm. Section 3 covers
 the DRR portion. Section 4 defines the parameters and data
 structures employed by FQ-CoDel. Section 5 describes the working of
 the algorithm in detail. Section 6 describes implementation
 considerations, and section 7 lists some of the limitations of using
 flow queueing. Finally section 11 concludes.

1.1. Terminology and concepts

 Flow: A flow is typically identified by a 5-tuple of source IP,
 destination IP, source port, destination port, and protocol. It can
 also be identified by a superset or subset of those parameters, or by
 mac address, or other means.

 Queue: A queue of packets represented internally in FQ-CoDel. In
 most instances each flow gets its own queue; however because of the
 possibility of hash collisions, this is not always the case. In an
 attempt to avoid confusion, the word ’queue’ is used to refer to the
 internal data structure, and ’flow’ to refer to the actual stream of
 packets being delivered to the FQ-CoDel algorithm.

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 2]

Internet-Draft Fq_Codel November 2014

 Scheduler: A mechanism to select which queue a packet is dequeued
 from.

 CoDel AQM: The Active Queue Management algorithm employed by FQ-
 CoDel.

 DRR: Deficit round-robin scheduling.

 Quantum: The maximum amount of bytes to be dequeued from a queue at
 once.

1.2. Informal summary of FQ-CoDel

 FQ-CoDel is a _hybrid_ of DRR [DRR] and CODEL [CODEL2012], with an
 optimisation for sparse flows similar to SQF [SQF2012] and DRR++
 [DRRPP]. We call this "Flow Queueing" rather than "Fair Queueing" as
 flows that build a queue are treated differently than flows that do
 not.

 FQ-CoDel stochastically classifies incoming packets into different
 sub-queues by hashing the 5-tuple of IP protocol number and source
 and destination IP and port numbers, perturbed with a random number
 selected at initiation time (although other flow classification
 schemes can optionally be configured instead). Each queue is managed
 by the CoDel queueing discipline. Packet ordering within a queue is
 preserved, since queues have FIFO ordering.

 The FQ-CoDel algorithm consists of two logical parts: the scheduler
 which selects which queue to dequeue a packet from, and the CoDel AQM
 which works on each of the queues. The subtleties of FQ-CoDel are
 mostly in the scheduling part, whereas the interaction between the
 scheduler and the CoDel algorithm are fairly straight forward:

 At initialisation, each queue is set up to have a separate set of
 CoDel state variables. By default, 1024 queues are created. The
 current implementation supports anywhere from one to 64K separate
 queues, and each queue maintains the state variables throughout its
 lifetime, and so acts the same as the non-FQ CoDel variant would.
 This means that with only one queue, FQ-CoDel behaves essentially the
 same as CoDel by itself.

 On dequeue, FQ-CoDel selects a queue from which to dequeue by a two-
 tier round-robin scheme, in which each queue is allowed to dequeue up
 to a configurable quantum of bytes for each iteration. Deviations
 from this quantum is maintained as a deficit for the queue, which
 serves to make the fairness scheme byte-based rather than a packet-
 based. The two-tier round-robin mechanism distinguishes between
 "new" queues (which don’t build up a standing queue) and "old"

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 3]

Internet-Draft Fq_Codel November 2014

 queues, that have queued enough data to be around for more than one
 iteration of the round-robin scheduler.

 This new/old queue distinction has a particular consequence for
 queues that don’t build up more than a quantum of bytes before being
 visited by the scheduler: Such queues are removed from the list, and
 then re-added as a new queue each time a packet arrives for it, and
 so will get priority over queues that do not empty out each round
 (except for a minor modification to protect against starvation,
 detailed below). Exactly how much data a flow has to send to keep
 its queue in this state is somewhat difficult to reason about,
 because it depends on both the egress link speed and the number of
 concurrent flows. However, in practice many things that are
 beneficial to have prioritised for typical internet use (ACKs, DNS
 lookups, interactive SSH, HTTP requests, ARP, ICMP, VoIP) _tend_ to
 fall in this category, which is why FQ-CoDel performs so well for
 many practical applications. However, the implicitness of the
 prioritisation means that for applications that require guaranteed
 priority (for instance multiplexing the network control plane over
 the network itself), explicit classification is still needed.

 This scheduling scheme has some subtlety to it, which is explained in
 detail in the remainder of this document.

2. CoDel

 CoDel is described in the the ACM Queue paper, CODEL [CODEL2012], and
 Van Jacobson’s IETF84 presentation CODELDRAFT [CODELDRAFT]. The
 basic idea is to control queue length, maintaining sufficient
 queueing to keep the outgoing link busy, but avoiding building up the
 queue beyond that point. This is done by preferentially dropping
 packets that remain in the queue for "too long".

 When each new packet arrives, its arrival time is stored with it.
 Later, when it is that packet’s turn to be dequeued, CoDel computes
 its sojourn time (the current time minus the arrival time). If the
 sojourn time for packets being dequeued exceeds the _target_ time for
 a time period of at least the (current value of) _interval_, one or
 more packets will be dropped (or marked, if ECN is enabled) in order
 to signal the source endpoint to reduce its send rate. If the
 sojourn still remains above the target time, the value of interval be
 lowered, and additional packet drops will occur on a schedule
 computed from an inverse-square-root control law until either (1) the
 queue becomes empty or (2) a packet is encountered with a sojourn
 time that is less than the target time. Upon exiting the dropping
 mode, CoDel caches the last calculated interval (applying varying
 amounts of hysteresis to it), to be used as the starting point on
 subsequent re-entries into dropping mode.

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 4]

Internet-Draft Fq_Codel November 2014

 The _target_ time is normally set to about five milliseconds, and the
 initial _interval_ is normally set to about 100 milliseconds. This
 approach has proven to be quite effective in a wide variety of
 situations.

 CoDel drops packets at the head of a queue, rather than at the tail.

3. Flow Queueing

 FQ-CoDel’s DRR scheduler is byte-based, employing a deficit round-
 robin mechanism between queues. This works by keeping track of the
 current byte _deficit_ of each queue. This deficit is initialised to
 the configurable quantum; each time a queue gets a dequeue
 opportunity, it gets to dequeue packets, decreasing the deficit by
 the packet size for each packet, until the deficit runs into the
 negative, at which point it is increased by one quantum, and the
 dequeue opportunity ends.

 This means that if one queue contains packets of size quantum/3, and
 another contains quantum-sized packets, the first queue will dequeue
 three packets each time it gets a turn, whereas the second only
 dequeues one. This means that flows that send small packets are not
 penalised by the difference in packet sizes; rather, the DRR scheme
 approximates a (single-)byte-based fairness queueing. The size of
 the quantum determines the scheduling granularity, with the tradeoff
 from too small a quantum being scheduling overhead. For small
 bandwidths, lowering the quantum from the default MTU size can be
 advantageous.

 Unlike DRR there are two sets of flows - a "new" list for flows that
 have not built a queue recently, and an "old" list for flow-building
 queues.

4. FQ-CoDel Parameters and Data Structures

 This section goes into the parameters and data structures in FQ-
 CoDel.

4.1. Parameters

4.1.1. Interval

 The _interval_ parameter has the same semantics as CoDel and is used
 to ensure that the measured minimum delay does not become too stale.
 The minimum delay MUST be experienced in the last epoch of length
 interval. It SHOULD be set on the order of the worst-case RTT
 through the bottleneck to give end-points sufficient time to react.

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 5]

Internet-Draft Fq_Codel November 2014

 The default interval value is 100 ms.

4.1.2. Target

 The _target_ parameter has the same semantics as CoDel. It is the
 acceptable minimum standing/persistent queue delay for each FQ-CoDel
 Queue. This minimum delay is identified by tracking the local
 minimum queue delay that packets experience.

 The default target value is 5 ms, but this value SHOULD be tuned to
 be at least the transmission time of a single MTU-sized packet at the
 prevalent egress link speed (which for e.g. 1Mbps and MTU 1500 is
 ˜15ms). It should otherwise be set to on the order of 5-10% of the
 configured interval.

4.1.3. Packet limit

 Routers do not have infinite memory, so some packet limit MUST be
 enforced.

 The _limit_ parameter is the hard limit on the real queue size,
 measured in number of packets. This limit is a global limit on the
 number of packets in all queues; each individual queue does not have
 an upper limit. When the limit is reached and a new packet arrives
 for enqueue, a packet is dropped from the head of the largest queue
 (measured in bytes) to make room for the new packet.

 The default packet limit is 10240 packets, which is suitable for up
 to 10GigE speeds. In practice, the hard limit is rarely, if ever,
 hit, as drops are performed by the CoDel algorithm long before the
 limit is hit. For platforms that are severely memory constrained, a
 lower limit can be used.

4.1.4. Quantum

 The _quantum_ parameter is the number of bytes each queue gets to
 dequeue on each round of the scheduling algorithm. The default is
 set to 1514 bytes which corresponds to the Ethernet MTU plus the
 hardware header length of 14 bytes.

 In TSO-enabled systems, where a "packet" consists of an offloaded
 packet train, it can presently be as large as 64K bytes. In GRO-
 enabled systems, up to 17 times the TCP max segment size (or 25K
 bytes).

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 6]

Internet-Draft Fq_Codel November 2014

4.1.5. Flows

 The _flows_ parameter sets the number of sub-queues into which the
 incoming packets are classified. Due to the stochastic nature of
 hashing, multiple flows may end up being hashed into the same slot.

 This parameter can be set only at load time since memory has to be
 allocated for the hash table in the current implementation.

 The default value is 1024.

4.1.6. ECN

 ECN is _enabled_ by default. Rather than do anything special with
 misbehaved ECN flows, FQ-CoDel relies on the packet scheduling system
 to minimise their impact, thus unresponsive packets in a flow being
 marked with ECN can grow to the overall packet limit, but will not
 otherwise affect the performance of the system.

 It can be disabled by specifying the _noecn_ parameter.

4.2. Data structures

4.2.1. Internal sub-queues

 The main data structure of FQ-CoDel is the array of sub-queues, which
 is instantiated to the number of queues specified by the _flows_
 parameter at instantiation time. Each sub-queue consists simply of
 an ordered list of packets with FIFO semantics, two state variables
 tracking the queue deficit and total number of bytes enqueued, and
 the set of CoDel state variables. Other state variables to track
 queue statistics can also be included: for instance, the Linux
 implementation keeps a count of dropped packets.

 Queue space is shared: there’s a global limit on the number of
 packets the queues can hold, but not one per queue.

4.2.2. New and old queues lists

 FQ-CoDel maintains two lists of active queues, called "new" and "old"
 queues. Each list is an ordered list containing references to the
 array of sub-queues. When a packet is added to a queue that is not
 currently active, that queue becomes active by being added to the
 list of new queues. Later on, it is moved to the list of old queues,
 from which it is removed when it is no longer active. This behaviour
 is the source of some subtlety in the packet scheduling at dequeue
 time, explained below.

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 7]

Internet-Draft Fq_Codel November 2014

5. The FQ-CoDel scheduler and AQM interactions

 This section describes the operation of the FQ-CoDel scheduler and
 AQM. It is split into two parts explaining the enqueue and dequeue
 operations.

5.1. Enqueue

 The packet enqueue mechanism consists of three stages: classification
 into a sub-queue, timestamping and bookkeeping, and optionally
 dropping a packet when the total number of enqueued packets goes over
 the maximum.

 When a packet is enqueued, it is first classified into the
 appropriate sub-queue. By default, this is done by hashing on the
 5-tuple of IP protocol, and source and destination IP and port
 numbers, permuted by a random value selected at initialisation time,
 and taking the hash value modulo the number of sub-queues. However,
 an implementation MAY also specify a configurable classification
 scheme along a wide variety of other possible parameters such as mac
 address, diffserv, firewall and flow specific markings, etc. (the
 Linux implementation does so in the form of the ’tc filter’ command).

 If a custom filter fails, classification failure results in the
 packet being dropped and no further action taken. By design the
 standard filter cannot fail.

 Additionally, the default hashing algorithm presently deployed does
 decapsulation of some common packet types (6in4, IPIP, GRE 0), mixes
 IPv6 IP addresses thoroughly, and uses Jenkins hash on the result.

 Once the packet has been successfully classified into a sub-queue, it
 is handed over to the CoDel algorithm for timestamping. It is then
 added to the tail of the selected queue, and the queue’s byte count
 is updated by the packet size. Then, if the queue is not currently
 active (i.e. if it is not in either the list of new or the list of
 old queues), it is added to the end of the list of new queues, and
 its deficit is initiated to the configured quantum. Otherwise it is
 added to the old queue list.

 Finally, the total number of enqueued packets is compared with the
 configured limit, and if it is _above_ this value (which can happen
 since a packet was just enqueued), a packet is dropped from the head
 of the queue with the largest current byte count. Note that this in
 most cases means that the packet that gets dropped is different from
 the one that was just enqueued, and may even be from a different
 queue.

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 8]

Internet-Draft Fq_Codel November 2014

5.2. Dequeue

 Most of FQ-CoDel’s work is done at packet dequeue time. It consists
 of three parts: selecting a queue from which to dequeue a packet,
 actually dequeuing it (employing the CoDel algorithm in the process),
 and some final bookkeeping.

 For the first part, the scheduler first looks at the list of new
 queues; for each queue in that list, if that queue has a negative
 deficit (i.e. it has already dequeued at least a quantum of bytes),
 its deficit is increased by one quantum, and the queue is put onto
 the end of the list of old queues, and the routine selects the next
 queue and starts again.

 Otherwise, that queue is selected for dequeue. If the list of new
 queues is empty, the scheduler proceeds down the list of old queues
 in the same fashion (checking the deficit, and either selecting the
 queue for dequeuing, or increasing the deficit and putting the queue
 back at the end of the list).

 After having selected a queue from which to dequeue a packet, the
 CoDel algorithm is invoked on that queue. This applies the CoDel
 control law, and may discard one or more packets from the head of
 that queue, before returning the packet that should be dequeued (or
 nothing if the queue is or becomes empty while being handled by the
 CoDel algorithm).

 Finally, if the CoDel algorithm did not return a packet, the queue is
 empty, and the scheduler does one of two things: if the queue
 selected for dequeue came from the list of new queues, it is moved to
 the end of the list of old queues. If instead it came from the list
 of old queues, that queue is removed from the list, to be added back
 (as a new queue) the next time a packet arrives that hashes to that
 queue. Then (since no packet was available for dequeue), the whole
 dequeue process is restarted from the beginning.

 If, instead, the scheduler _did_ get a packet back from the CoDel
 algorithm, it updates the byte deficit for the selected queue before
 returning the packet as the result of the dequeue operation.

 The step that moves an empty queue from the list of new queues to the
 list of old queues before it is removed is crucial to prevent
 starvation. Otherwise the queue could reappear (the next time a
 packet arrives for it) before the list of old queues is visited; this
 can go on indefinitely even with a small number of active flows, if
 the flow providing packets to the queue in question transmits at just
 the right rate. This is prevented by first moving the queue to the

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 9]

Internet-Draft Fq_Codel November 2014

 list of old queues, forcing a pass through that, and thus preventing
 starvation.

 The resulting migration of queues between the different states is
 summarised in the following state diagram:

 +-----------------+ +--------------------+
 | | Empty | |
 | Empty |<---------------+ Old +-----+
 | | | | |
 +-------+---------+ +--------------------+ |
 | ^ ^ |Quantum
 |Arrival | | |Exceeded
 v | | |
 +-----------------+ | | |
 | | Empty or | | |
 | New +-------------------+ +--------+
 | | Quantum exceeded
 +-----------------+

6. Implementation considerations

6.1. Probability of hash collisions

 Since the Linux FQ-CoDel implementation by default uses 1024 hash
 buckets, the probability that (say) 100 VoIP sessions will all hash
 to the same bucket is something like ten to the power of minus 300.
 Thus, the probability that at least one of the VoIP sessions will
 hash to some other queue is very high indeed.

 Conversely, the probability that each of the 100 VoIP sessions will
 get its own queue is given by (1023!/(924!*1024^99)) or about 0.007;
 so not all that probable. The probability rises sharply, however, if
 we are willing to accept a few collisions. For example, there is
 about an 86% probability that no more than two of the 100 VoIP
 sessions will be involved in any given collision, and about a 99%
 probability that no more than three of the VoIP sessions will be
 involved in any given collision. These last two results were
 computed using Monte Carlo simulations: Oddly enough, the mathematics
 for VoIP-session collision exactly matches that of hardware cache
 overflow.

6.2. Memory Overhead

 FQ-CoDel can be implemented with a very low memory footprint (less
 than 64 bytes per queue on 64 bit systems). These are the data
 structures used in the Linux implementation:

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 10]

Internet-Draft Fq_Codel November 2014

struct codel_vars {
 u32 count;
 u32 lastcount;
 bool dropping;
 u16 rec_inv_sqrt;
 codel_time_t first_above_time;
 codel_time_t drop_next;
 codel_time_t ldelay;
};

struct fq_codel_flow {
 struct sk_buff *head;
 struct sk_buff *tail;
 struct list_head flowchain;
 int deficit;
 u32 dropped; /* number of drops (or ECN marks) on this flow */
 struct codel_vars cvars;
};

 The master table managing all queues looks like this:

 struct fq_codel_sched_data {
 struct tcf_proto *filter_list; /* optional external classifier */
 struct fq_codel_flow *flows; /* Flows table [flows_cnt] */
 u32 *backlogs; /* backlog table [flows_cnt] */
 u32 flows_cnt; /* number of flows */
 u32 perturbation; /* hash perturbation */
 u32 quantum; /* psched_mtu(qdisc_dev(sch)); */
 struct codel_params cparams;
 struct codel_stats cstats;
 u32 drop_overlimit;
 u32 new_flow_count;

 struct list_head new_flows; /* list of new flows */
 struct list_head old_flows; /* list of old flows */
 };

6.3. Per-Packet Timestamping

 The CoDel portion of the algorithm requires per-packet timestamps be
 stored along with the packet. While this approach works well for
 software-based routers, it may be impossible to retrofit devices that
 do most of their processing in silicon and lack space or mechanism
 for timestamping.

 Also, while perfect resolution is not needed, timestamping functions
 in the core OS need to be efficient as they are called at least once
 on each packet enqueue and dequeue.

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 11]

Internet-Draft Fq_Codel November 2014

6.4. Other forms of "Fair Queueing"

 Much of the scheduling portion of FQ-CoDel is derived from DRR and is
 substantially similar to DRR++. SFQ-based versions have also been
 produced and tested in ns2. Other forms of Fair Queueing, such as
 WFQ or QFQ, have not been thoroughly explored.

6.5. Differences between CoDel and FQ-CoDel behaviour

 CoDel can be applied to a single queue system as a straight AQM,
 where it converges towards an "ideal" drop rate (i.e. one that
 minimises delay while keeping a high link utilisation), and then
 optimises around that control point.

 The scheduling of FQ-CoDel mixes packets of competing flows, which
 acts to pace bursty flows to better fill the pipe. Additionally, a
 new flow gets substantial "credit" over other flows until CoDel finds
 an ideal drop rate for it. However, for a new flow that exceeds the
 configured quantum, more time passes before all of its data is
 delivered (as packets from it, too, are mixed across the other
 existing queue-building flows). Thus, FQ-CoDel takes longer (as
 measured in time) to converge towards an ideal drop rate for a given
 new flow, but does so within fewer delivered _packets_ from that
 flow.

 Finally, the flow isolation FQ-CoDel provides means that the CoDel
 drop mechanism operates on the flows actually building queues, which
 results in packets being dropped more accurately from the largest
 flows than CoDel alone manages. Additionally, flow isolation
 radically improves the transient behaviour of the network when
 traffic or link characteristics change (e.g. when new flows start up
 or the link bandwidth changes); while CoDel itself can take a while
 to respond, fq_codel doesn’t miss a beat.

7. Limitations of flow queueing

 While FQ-CoDel has been shown in many scenarios to offer significant
 performance gains, there are some scenarios where the scheduling
 algorithm in particular is not a good fit. This section documents
 some of the known cases which either may require tweaking the default
 behaviour, or where alternatives to flow queueing should be
 considered.

7.1. Fairness between things other than flows

 In some parts of the network, enforcing flow-level fairness may not
 be desirable, or some other level of fairness may be more important.
 An example of this can be an Internet Service Provider that may be

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 12]

Internet-Draft Fq_Codel November 2014

 more interested in ensuring fairness between customers than between
 flows. Or a hosting or transit provider that wishes to ensure
 fairness between connecting Autonomous Systems or networks. Another
 issue can be that the number of simultaneous flows experienced at a
 particular link can be too high for flow-based fairness queueing to
 be effective.

 Whatever the reason, in a scenario where fairness between flows is
 not desirable, reconfiguring FQ-CoDel to match on a different
 characteristic can be a way forward. The implementation in Linux can
 leverage the powerful packet matching mechanism of the _tc_ subsystem
 to use any available packet field to partition packets into virtual
 queues, to for instance match on address or subnet source/destination
 pairs, application layer characteristics, etc.

 Furthermore, as commonly deployed today, FQ-CoDel is used with three
 or more tiers of classification: priority, best effort and
 background, based on diffserv markings. Some products do more
 detailed classification, including deep packet inspection and
 destination-specific filters to achieve their desired result.

7.2. Flow bunching by opaque encapsulation

 Where possible, FQ-CoDel will attempt to decapsulate packets before
 matching on the header fields for the flow hashing. However, for
 some encapsulation techniques, most notably encrypted VPNs, this is
 not possible. If several flows are bunched into one such
 encapsulated tunnel, they will be seen as one flow by the FQ-CoDel
 algorithm. This means that they will share a queue, and drop
 behaviour, and so flows inside the encapsulation will not benefit
 from the implicit prioritisation of FQ-CoDel, but will continue to
 benefit from the reduced overall queue length from the CoDel
 algorithm operating on the queue. In addition, when such an
 encapsulated bunch competes against other flows, it will count as one
 flow, and not assigned a share of the bandwidth based on how many
 flows are inside the encapsulation.

 Depending on the application, this may or may not be desirable
 behaviour. In cases where it is not, changing FQ-CoDel’s matching to
 not be flow-based (as detailed in the previous subsection above) can
 be a way to mitigate this.

7.3. Low-priority congestion control algorithms

 Because of the flow isolation that FQ-CoDel provides, low-priority
 congestion control algorithms (or, in general, algorithms that try to
 voluntarily use up less than their fair share of bandwidth) can be
 re-prioritised. Because a flow experiences very little added latency

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 13]

Internet-Draft Fq_Codel November 2014

 when the link is congested, such algorithms lack the signal to back
 off that added latency previously afforded them. As such, existing
 algorithms tend to revert to loss-based congestion control, and will
 consume the fair share of bandwidth afforded to them by the FQ-CoDel
 scheduler. However, low-priority congestion control mechanisms may
 be able to take steps to continue to be low priority, for instance by
 taking into account the vastly reduced level of delay afforded by an
 AQM, or by using a coupled approach to observing the behaviour of
 multiple flows.

8. Security Considerations

 There are no specific security exposures associated with FQ-CoDel.
 Some exposures present in current FIFO systems are in fact reduced
 (e.g. simple minded packet floods).

9. IANA Considerations

 This document has no actions for IANA.

10. Acknowledgements

 Our deepest thanks to Eric Dumazet (author of FQ-CoDel), Kathie
 Nichols, Van Jacobson, and all the members of the bufferbloat.net
 effort.

11. Conclusions

 FQ-CoDel is a very general, efficient, nearly parameterless active
 queue management approach combining flow queueing with CoDel. It is
 a critical tool in solving bufferbloat.

 FQ-CoDel’s default settings SHOULD be modified for other special-
 purpose networking applications, such as for exceptionally slow
 links, for use in data centres, or on links with inherent delay
 greater than 800ms (e.g. satellite links).

 On-going projects are: improving FQ-CoDel with more SFQ-like
 behaviour for lower bandwidth systems, improving the control law,
 optimising sparse packet drop behaviour, etc..

 In addition to the Linux kernel sources, ns2 and ns3 models are
 available. Refinements (such as NFQCODEL [1]) are being tested in
 the CeroWrt effort.

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 14]

Internet-Draft Fq_Codel November 2014

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC0896] Nagle, J., "Congestion control in IP/TCP internetworks",
 RFC 896, January 1984.

 [RFC0970] Nagle, J., "On packet switches with infinite storage", RFC
 970, December 1985.

 [RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
 S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
 Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
 S., Wroclawski, J., and L. Zhang, "Recommendations on
 Queue Management and Congestion Avoidance in the
 Internet", RFC 2309, April 1998.

 [CODELDRAFT]
 Nichols, K., Jacobson, V., McGregor, A., and J. Iyengar,
 "Controlling Queue Delay", October 2014,
 <https://datatracker.ietf.org/doc/draft-ietf-aqm-codel/>.

12.2. Informative References

 [SFQ] McKenney, P., "Stochastic Fairness Queuing", September
 1990, <http://www2.rdrop.com/˜paulmck/scalability/paper/
 sfq.2002.06.04.pdf>.

 [CODEL2012]
 Nichols, K. and V. Jacobson, "Controlling Queue Delay",
 July 2012, <http://queue.acm.org/detail.cfm?id=2209336>.

 [SQF2012] Bonald, T., Muscariello, L., and N. Ostallo, "On the
 impact of TCP and per-flow scheduling on Internet
 Performance - IEEE/ACM transactions on Networking", April
 2012, <http://perso.telecom-
 paristech.fr/˜bonald/Publications_files/BMO2011.pdf>.

 [DRR] Shreedhar, M. and G. Varghese, "Efficient Fair Queueing
 Using Deficit Round Robin", June 1996,
 <http://users.ece.gatech.edu/˜siva/ECE4607/presentations/
 DRR.pdf>.

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 15]

Internet-Draft Fq_Codel November 2014

 [DRRPP] MacGregor, and Shi, "Deficits for Bursty Latency-critical
 Flows: DRR++", 2000, <http://ieeexplore.ieee.org/xpls/
 abs_all.jsp?arnumber=875803>.

12.3. URIs

 [1] http://www.bufferbloat.net/projects/cerowrt/wiki/nfq_codel

Authors’ Addresses

 Toke Hoeiland-Joergensen
 Karlstad University
 Dept. of Computer Science
 Karlstad 65188
 Sweden

 Email: toke.hoiland-jorgensen@kau.se

 Paul McKenney
 IBM Linux Technology Center
 1385 NW Amberglen Parkway
 Hillsboro, OR 97006
 USA

 Email: paulmck@linux.vnet.ibm.com
 URI: http://www2.rdrop.com/˜paulmck/

 Dave Taht
 Teklibre
 2104 W First street
 Apt 2002
 FT Myers, FL 33901
 USA

 Email: d+ietf@teklibre.com
 URI: http://www.teklibre.com/

 Jim Gettys
 Google, Inc.
 21 Oak Knoll Road
 Carlisle, MA 01741
 USA

 Email: jg@freedesktop.org
 URI: https://en.wikipedia.org/wiki/Jim_Gettys

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 16]

Internet-Draft Fq_Codel November 2014

 Eric Dumazet
 Google, Inc.
 1600 Amphitheater Pkwy
 Mountain View, Ca 94043
 USA

 Email: edumazet@gmail.com

Hoeiland-Joergensen, et alExpires May 14, 2015 [Page 17]

