
Internet Draft R. Pan
Active Queue Management P. Natarajan
Working Group F. Baker
Intended Status: Experimental Track Cisco Systems
 G. White
 CableLabs
Expires: March 30, 2017 September 26, 2016

 PIE: A Lightweight Control Scheme To Address the
 Bufferbloat Problem

 draft-ietf-aqm-pie-10

Abstract

 Bufferbloat is a phenomenon in which excess buffers in the network
 cause high latency and latency variation. As more and more
 interactive applications (e.g. voice over IP, real time video
 streaming and financial transactions) run in the Internet, high
 latency and latency variation degrade application performance. There
 is a pressing need to design intelligent queue management schemes
 that can control latency and latency variation, and hence provide
 desirable quality of service to users.

 This document presents a lightweight active queue management design,
 called PIE (Proportional Integral controller Enhanced), that can
 effectively control the average queueing latency to a target value.
 Simulation results, theoretical analysis and Linux testbed results
 have shown that PIE can ensure low latency and achieve high link
 utilization under various congestion situations. The design does not
 require per-packet timestamps, so it incurs very little overhead and
 is simple enough to implement in both hardware and software.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Pan et al. Expires March 30, 2017 [Page 1]

INTERNET DRAFT PIE August 24, 2016

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Terminology . 5
 3. Design Goals . 5
 4. The Basic PIE Scheme . 6
 4.1 Random Dropping . 7
 4.2 Drop Probability Calculation 8
 4.3 Latency Calculation . 10
 4.4 Burst Tolerance . 10
 5. Optional Design Elements of PIE 11
 5.1 ECN Support . 11
 5.2 Dequeue Rate Estimation 11
 5.3 Setting PIE active and inactive 13
 5.4 De-randomization . 14
 5.5 Cap Drop Adjustment . 15
 6. Implementation Cost . 15
 7. Scope of Experimentation 16
 8. Incremental Deployment . 17
 9. Security Considerations . 18
 10. IANA Considerations . 18

Pan et al. Expires March 30, 2017 [Page 2]

INTERNET DRAFT PIE August 24, 2016

 11. References . 18
 11.1 Normative References 18
 11.2 Informative References 18
 11.3 Other References . 19
 12. The Basic PIE pseudo Code 20
 13. Pseudo code for PIE with optional enhancement 23

Pan et al. Expires March 30, 2017 [Page 3]

INTERNET DRAFT PIE August 24, 2016

1. Introduction

 The explosion of smart phones, tablets and video traffic in the
 Internet brings about a unique set of challenges for congestion
 control. To avoid packet drops, many service providers or data center
 operators require vendors to put in as much buffer as possible.
 Because of the rapid decrease in memory chip prices, these requests
 are easily accommodated to keep customers happy. While this solution
 succeeds in assuring low packet loss and high TCP throughput, it
 suffers from a major downside. The TCP protocol continuously
 increases its sending rate and causes network buffers to fill up. TCP
 cuts its rate only when it receives a packet drop or mark that is
 interpreted as a congestion signal. However, drops and marks usually
 occur when network buffers are full or almost full. As a result,
 excess buffers, initially designed to avoid packet drops, would lead
 to highly elevated queueing latency and latency variation. Designing
 a queue management scheme is a delicate balancing act: it not only
 should allow short-term burst to smoothly pass, but also should
 control the average latency in the presence of long-running greedy
 flows.

 AQM schemes could potentially solve the aforementioned problem.
 Active queue management (AQM) schemes, such as Random Early Detection
 (RED [RED] as suggested in RFC 2309[RFC2309], now obsoleted by RFC
 7567 [RFC7567]), have been around for well over a decade. RED is
 implemented in a wide variety of network devices, both in hardware
 and software. Unfortunately, due to the fact that RED needs careful
 tuning of its parameters for various network conditions, most network
 operators don’t turn RED on. In addition, RED is designed to control
 the queue length which would affect latency implicitly. It does not
 control latency directly. Hence, the Internet today still lacks an
 effective design that can control buffer latency to improve the
 quality of experience to latency-sensitive applications. The more
 recent RFC 7567 calls for new methods of controlling network
 latency.

 New algorithms are beginning to emerge to control queueing latency
 directly to address the bufferbloat problem [CoDel]. Along these
 lines, PIE also aims to keep the benefits of RED: including easy
 implementation and scalability to high speeds. Similar to RED, PIE
 randomly drops an incoming packet at the onset of the congestion. The
 congestion detection, however, is based on the queueing latency
 instead of the queue length like RED. Furthermore, PIE also uses the
 derivative (rate of change) of the queueing latency to help determine
 congestion levels and an appropriate response. The design parameters
 of PIE are chosen via control theory stability analysis. While these
 parameters can be fixed to work in various traffic conditions, they
 could be made self-tuning to optimize system performance.

Pan et al. Expires March 30, 2017 [Page 4]

INTERNET DRAFT PIE August 24, 2016

 Separately, it is assumed that any latency-based AQM scheme would be
 applied over a Fair Queueing (FQ) structure or one of its approximate
 designs, Flow Queueing or Class Based Queueing (CBQ). FQ is one of
 the most studied scheduling algorithms since it was first proposed in
 1985 [RFC970]. CBQ has been a standard feature in most network
 devices today[CBQ]. Any AQM scheme that is built on top of FQ or CBQ
 could benefit from these advantages. Furthermore, these advantages
 such as per flow/class fairness are orthogonal to the AQM design
 whose primary goal is to control latency for a given queue. For flows
 that are classified into the same class and put into the same queue,
 one needs to ensure their latency is better controlled and their
 fairness is not worse than those under the standard DropTail or RED
 design. More details about the relationship between FQ and AQM can be
 found in IETF draft [FQ-Implement].

 In October 2013, CableLabs’ DOCSIS 3.1 specification [DOCSIS_3.1]
 mandated that cable modems implement a specific variant of the PIE
 design as the active queue management algorithm. In addition to cable
 specific improvements, the PIE design in DOCSIS 3.1 [DOCSIS-PIE] has
 improved the original design in several areas, including de-
 randomization of coin tosses and enhanced burst protection.

 This draft describes the design of PIE and separates it into basic
 elements and optional components that may be implemented to enhance
 the performance of PIE.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Design Goals

 A queue management framework is designed to improve the performance
 of interactive and latency-sensitive applications. It should follow
 the general guidelines set by the AQM working group document "
 Recommendations Regarding Active Queue Management" [RFC7567]. More
 specifically PIE design has the following basic criteria.

 * First, queueing latency, instead of queue length, is
 controlled. Queue sizes change with queue draining rates and
 various flows’ round trip times. Latency bloat is the real issue
 that needs to be addressed as it impairs real time applications.

Pan et al. Expires March 30, 2017 [Page 5]

INTERNET DRAFT PIE August 24, 2016

 If latency can be controlled, bufferbloat is not an issue. In
 fact, once latency is under control it frees up buffers for
 sporadic bursts.

 * Secondly, PIE aims to attain high link utilization. The goal
 of low latency shall be achieved without suffering link under-
 utilization or losing network efficiency. An early congestion
 signal could cause TCP to back off and avoid queue building up.
 On the other hand, however, TCP’s rate reduction could result in
 link under-utilization. There is a delicate balance between
 achieving high link utilization and low latency.

 * Furthermore, the scheme should be simple to implement and
 easily scalable in both hardware and software. PIE strives to
 maintain similar design simplicity to RED, which has been
 implemented in a wide variety of network devices.

 * Finally, the scheme should ensure system stability for various
 network topologies and scale well across an arbitrary number of
 streams. Design parameters shall be set automatically. Users
 only need to set performance-related parameters such as target
 queue latency, not design parameters.

In the following, the design of PIE and its operation are described in
detail.

4. The Basic PIE Scheme

As illustrated in Fig. 1, PIE is comprised of three simple basic
components: a) random dropping at enqueueing; b) periodic drop
probability update; c) latency calculation. When a packet arrives, a
random decision is made regarding whether to drop the packet. The drop
probability is updated periodically based on how far the current latency
is away from the target and whether the queueing latency is currently
trending up or down. The queueing latency can be obtained using direct
measurements or using estimations calculated from the queue length and
the dequeue rate.

The detailed definition of parameters can be found in the pseudo code
section of this document (Section 11). Any state variables that PIE
maintains are noted using "PIE->". For full description of the
algorithm, one can refer to the full paper [HPSR-PIE].

Pan et al. Expires March 30, 2017 [Page 6]

INTERNET DRAFT PIE August 24, 2016

 Random Drop
 / --------------
 -------/ --------------> | | | | | -------------->
 /|\ | | | | |
 | --------------
 | Queue Buffer \
 | | \
 | |queue \
 | |length \
 | | \
 | \|/ \/
 | ----------------- -------------------
 | | Drop | | |
 -----<-----| Probability |<---| Latency |
 | Calculation | | Calculation |
 ----------------- -------------------

 Figure 1. The PIE Structure

4.1 Random Dropping

PIE randomly drops a packet upon its arrival to a queue according to a
drop probability, PIE->drop_prob_, that is obtained from the drop-
probability-calculation component. The random drop is triggered by a
packet arrival before enqueueing into a queue.

 * Upon a packet enqueue:

 randomly drop the packet with a probability PIE->drop_prob_.

To ensure that PIE is work conserving, we bypass the random drop if the
latency sample, PIE->qdelay_old_, is smaller than half of the target
latency value (QDELAY_REF) when the drop probability is not too high,
PIE->drop_prob_ < 0.2; or if the queue has less than a couple of
packets.

 * Upon a packet enqueue, PIE:

 //Safeguard PIE to be work conserving
 if ((PIE->qdelay_old_ < QDELAY_REF/2 && PIE->drop_prob_ < 0.2)
 || (queue_.byte_length() <= 2 * MEAN_PKTSIZE)) {
 return ENQUE;
 else
 randomly drop the packet with a probability PIE->drop_prob_.

Pan et al. Expires March 30, 2017 [Page 7]

INTERNET DRAFT PIE August 24, 2016

PIE optionally supports ECN and see Section 5.1.

4.2 Drop Probability Calculation

The PIE algorithm periodically updates the drop probability based on the
latency samples: not only the current latency sample but also the trend
where the latency is going, up or down. This is the classical
Proportional Integral (PI) controller method which is known for
eliminating steady state errors. This type of controller has been
studied before for controlling the queue length [PI, QCN]. PIE adopts
the Proportional Integral controller for controlling latency. The
algorithm also auto-adjusts the control parameters based on how heavy
the congestion is, which is reflected in the current drop probability.
Note that the current drop probability is a direct measure of current
congestion level, no need to measure the arrival rate and dequeue rate
mismatches.

When a congestion period goes away, we might be left with a high drop
probability with light packet arrivals. Hence, the PIE algorithm
includes a mechanism by which the drop probability decay exponentially
(rather than linearly) when the system is not congested. This would help
the drop probability converge to 0 faster while the PI controller
ensures that it would eventually reaches zero. The decay parameter of 2%
gives us a time constant around 50*T_UPDATE.

Specifically, the PIE algorithm periodically adjust the drop probability
every T_UPDATE interval:

 * calculate drop probability PIE->drop_prob_ and auto-tune it as:

 p = alpha*(current_qdelay-QDELAY_REF) +
 beta*(current_qdelay-PIE->qdelay_old_);

 if (PIE->drop_prob_ < 0.000001) {
 p /= 2048;
 } else if (PIE->drop_prob_ < 0.00001) {
 p /= 512;
 } else if (PIE->drop_prob_ < 0.0001) {
 p /= 128;
 } else if (PIE->drop_prob_ < 0.001) {
 p /= 32;
 } else if (PIE->drop_prob_ < 0.01) {
 p /= 8;
 } else if (PIE->drop_prob_ < 0.1) {
 p /= 2;

Pan et al. Expires March 30, 2017 [Page 8]

INTERNET DRAFT PIE August 24, 2016

 } else {
 p = p;
 }
 PIE->drop_prob_ += p;

 * decay the drop probability exponentially:

 if (current_qdelay == 0 && PIE->qdelay_old_ == 0) {

 PIE->drop_prob_ = PIE->drop_prob_*0.98; //1- 1/64
 //is sufficient

 }

 * bound the drop probability
 if (PIE->drop_prob_ < 0)
 PIE->drop_prob_ = 0.0
 if (PIE->drop_prob_ > 1)
 PIE->drop_prob_ = 1.0

 * store current latency value:

 PIE->qdelay_old_ = current_qdelay.

The update interval, T_UPDATE, is defaulted to be 15ms. It MAY be
reduced on high speed links in order to provide smoother response. The
target latency value, QDELAY_REF, SHOULD be set to 15ms. Variables,
current_qdelay and PIE->qdelay_old_ represent the current and previous
samples of the queueing latency, which are calculated by the "Latency
Calculation" component (see Section 4.3). The variable current_qdelay is
actually a temporary variable while PIE->qdelay_old_ is a state variable
that PIE keeps. The drop probability is a value between 0 and 1.
However, implementations can certainly use integers.

The controller parameters, alpha and beta(in the unit of hz) are
designed using feedback loop analysis where TCP’s behaviors are modeled
using the results from well-studied prior art[TCP-Models]. Note that the
above adjustment of ’p’ effectively scales the alpha and beta parameters
based on current congestion level indicated by the drop probability.

The theoretical analysis of PIE can be found in [HPSR-PIE]. As a rule of
thumb, to keep the same feedback loop dynamics, if we cut T_UPDATE in
half, we should also cut alpha by half and increase beta by alpha/4. If
the target latency is reduced, e.g. for data center use, the values of
alpha and beta should be increased by the same order of magnitude that
the target latency is reduced. For example, if QDELAY_REF is reduced

Pan et al. Expires March 30, 2017 [Page 9]

INTERNET DRAFT PIE August 24, 2016

changed from 15ms to 150us, a reduction of two orders of magnitude, then
alpha and beta values should be increased to alpha*100 and beta*100.

4.3 Latency Calculation

The PIE algorithm uses latency to calculate drop probability.

 * It estimates current queueing latency using Little’s law:

 current_qdelay = queue_.byte_length()/dequeue_rate;

 Details can be found in Section 5.2.

 * or it may use other techniques for calculating queueing latency,
 ex: timestamp packets at enqueue and use the same to calculate
 latency during dequeue.

4.4 Burst Tolerance

PIE does not penalize short-term packet bursts as suggested in RFC7567
[RFC7567]. PIE allows bursts of traffic that create finite-duration
events in which current queueing latency exceeds the QDELAY_REF, without
triggering packet drops. A parameter, MAX_BURST, is introduced that
defines the burst duration that will be protected. By default, the
parameter SHOULD be set to be 150ms. For simplicity, the PIE algorithm
MAY effectively round MAX_BURST up to an integer multiple of T_UPDATE.

To implement the burst tolerance function, two basic components of PIE
are involved: "random dropping" and "drop probability calculation". The
PIE algorithm does the following:

 * In "Random Dropping" block and upon a packet arrival , PIE checks:

 Upon a packet enqueue:
 if PIE->burst_allowance_ > 0 enqueue packet;
 else randomly drop a packet with a probability PIE->drop_prob_.

 if (PIE->drop_prob_ == 0 and current_qdelay < QDELAY_REF/2 and
 PIE->qdelay_old_ < QDELAY_REF/2)
 PIE->burst_allowance_ = MAX_BURST;

 * In "Drop Probability Calculation" block, PIE additionally
 calculates:

 PIE->burst_allowance_ = max(0,PIE->burst_allowance_ -

Pan et al. Expires March 30, 2017 [Page 10]

INTERNET DRAFT PIE August 24, 2016

 T_UPDATE);

The burst allowance, noted by PIE->burst_allowance_, is initialized to
MAX_BURST. As long as PIE->burst_allowance_ is above zero, an incoming
packet will be enqueued bypassing the random drop process. During each
update instance, the value of PIE->burst_allowance_ is decremented by
the update period, T_UPDATE and is bottomed at 0. When the congestion
goes away, defined here as PIE->drop_prob_ equals 0 and both the current
and previous samples of estimated latency are less than half of
QDELAY_REF, PIE->burst_allowance_ is reset to MAX_BURST.

5. Optional Design Elements of PIE

The above forms the basic elements of the PIE algorithm. There are
several enhancements that are added to further augment the performance
of the basic algorithm. For clarity purposes, they are included in this
section.

5.1 ECN Support

PIE MAY support ECN by marking (rather than dropping) ECN capable
packets [IETF-ECN]. As a safeguard, an additional threshold,
mark_ecnth, is introduced. If the calculated drop probability exceeds
mark_ecnth, PIE reverts to packet drop for ECN capable packets. The
variable mark_ecnth SHOULD be set at 0.1(10%).

 * To support ECN, the "random drop with a probability
 PIE->drop_prob_" function in "Random Dropping" block are
 changed to the following:

 * Upon a packet enqueue:

 if rand() < PIE->drop_prob_:

 if PIE->drop_prob_ < mark_ecnth && ecn_capable_packet == TRUE:

 mark packet;

 else:

 drop packet;

5.2 Dequeue Rate Estimation

Pan et al. Expires March 30, 2017 [Page 11]

INTERNET DRAFT PIE August 24, 2016

Using the timestamps, a latency sample can only be obtained when a
packet reaches at the head of a queue. When a quick response time is
desired or a direct latency sample is not available, one may obtain
latency through measuring the dequeue rate. The draining rate of a queue
in the network often varies either because other queues are sharing the
same link, or the link capacity fluctuates. Rate fluctuation is
particularly common in wireless networks. One may measure directly at
the dequeue operation. Short, non-persistent bursts of packets result in
empty queues from time to time, this would make the measurement less
accurate. PIE measures when a sufficient data in the buffer, i.e., when
the queue length is over a certain threshold (DQ_THRESHOLD). PIE
measures how long it takes to drain DQ_THRESHOLD of packets. More
specifically, the rate estimation can be implemented as follows:

 current_qdelay = queue_.byte_length() *
 PIE->avg_dq_time_/DQ_THRESHOLD;

 * Upon a packet deque:

 if PIE->in_measurement_ == FALSE and queue.byte_length() >=
 DQ_THRESHOLD:
 PIE->in_measurement_ = TRUE;
 PIE->measurement_start_ = now;
 PIE->dq_count_ = 0;

 if PIE->in_measurement_ == TRUE:
 PIE->dq_count_ = PIE->dq_count_ + deque_pkt_size;
 if PIE->dq_count_ >= DQ_THRESHOLD then
 weight = DQ_THRESHOLD/2^16
 PIE->avg_dq_time_ = (now-PIE->measurement_start_)*weight
 + PIE->avg_dq_time_*(1-weight);
 PIE->dq_count_=0;
 PIE->measurement_start_ = now
 else
 PIE->in_measurement_ = FALSE;

The parameter, PIE->dq_count_, represents the number of bytes departed
since the last measurement. Once PIE->dq_count_ is over DQ_THRESHOLD, a
measurement sample is obtained. The threshold is recommended to be set
to 16KB assuming a typical packet size of around 1KB or 1.5KB. This
threshold would allow sufficient data to obtain an average draining rate
but also fast enough (< 64KB) to reflect sudden changes in the draining
rate. IF DQ_THRESHOLD is smaller than 64KB, a small weight is used to
smooth out the dequeue time and obtain PIE->avg_dq_time_. The dequeue
rate is simply DQ_THRESHOLD divided by PIE->avg_dq_time_. This threshold
is not crucial for the system’s stability. Please note that the update
interval for calculating the drop probability is different from the rate
measurement cycle. The drop probability calculation is done periodically

Pan et al. Expires March 30, 2017 [Page 12]

INTERNET DRAFT PIE August 24, 2016

per section 4.2 and it is done even when the algorithm is not in a
measurement cycle; in this case the previously latched value of PIE-
>avg_dq_time_ is used.

 Random Drop
 / --------------
 -------/ --------------------> | | | | | -------------->
 /|\ | | | | | |
 | | --------------
 | | Queue Buffer
 | | |
 | | |queue
 | | |length
 | | |
 | \|/ \|/
 | ------------------------------
 | | Dequeue Rate |
 -----<-----| & Drop Probability |
 | Calculation |

 Figure 2. The Enqueue-based PIE Structure

In some platforms, enqueueing and dequeueing functions belong to
different modules that are independent of each other. In such
situations, a pure enqueue-based design can be designed. As shown in
Figure 2, an enqueue-based design is depicted. The dequeue rate is
deduced from the number of packets enqueued and the queue length. The
design is based on the following key observation: over a certain time
interval, the number of dequeued packets = the number of enqueued
packets - the number of remaining packets in queue. In this design,
everything can be triggered by a packet arrival including the background
update process. The design complexity here is similar to the original
design.

5.3 Setting PIE active and inactive

Traffic naturally fluctuates in a network. It would be preferable not to
unnecessarily drop packets due to a spurious uptick in queueing latency.
PIE has an optional feature of automatically becoming active/inactive.
To implement this feature, PIE may choose to only become active (from
inactive) when the buffer occupancy is over a certain threshold, which

Pan et al. Expires March 30, 2017 [Page 13]

INTERNET DRAFT PIE August 24, 2016

may be set to 1/3 of the tail drop threshold. PIE becomes inactive when
congestion is over, i.e. when the drop probability reaches 0, current
and previous latency samples are all below half of QDELAY_REF.

Ideally, PIE should become active/inactive based on the latency.
However, calculating latency when PIE is inactive would introduce
unnecessary packet processing overhead. Weighing the trade-offs, it is
decided to compare against tail drop threshold to keep things simple.

When PIE is optionally becomes active/inactive, the burst protection
logic in Section 4.4 are modified as follows:

 * "Random Dropping" block, PIE adds:

 Upon packet arrival:

 if PIE->active_ == FALSE && queue_length >= TAIL_DROP/3:
 PIE->active_ = TRUE;
 PIE->burst_allowance_ = MAX_BURST;

 if PIE->burst_allowance_ > 0 enqueue packet;
 else randomly drop a packet with a probability PIE->drop_prob_.

 if (PIE->drop_prob_ == 0 and current_qdelay < QDELAY_REF/2 and
 PIE->qdelay_old_ < QDELAY_REF/2)
 PIE->active_ = FALSE;
 PIE->burst_allowance_ = MAX_BURST;

 * "Drop Probability Calculation" block, PIE does the following:
 if PIE->active_ == TRUE:
 PIE->burst_allowance_ = max(0,PIE->burst_allowance_ - T_UPDATE);

5.4 De-randomization

Although PIE adopts random dropping to achieve latency control,
independent coin tosses could introduce outlier situations where packets
are dropped too close to each other or too far from each other. This
would cause real drop percentage to temporarily deviate from the
intended value PIE->drop_prob_. In certain scenarios, such as small
number of simultaneous TCP flows, these deviations can cause significant
deviations in link utilization and queueing latency. PIE may use a de-
randomization mechanism to avoid such situations. A parameter, called
PIE->accu_prob_, is reset to 0 after a drop. Upon a packet arrival, PIE-
>accu_prob_ is incremented by the amount of drop probability, PIE-
>drop_prob_. If PIE->accu_prob_ is less than a low threshold, e.g. 0.85,
the arriving packet is enqueued; on the other hand, if PIE->accu_prob_
is more than a high threshold, e.g. 8.5, and the queue is congested, the

Pan et al. Expires March 30, 2017 [Page 14]

INTERNET DRAFT PIE August 24, 2016

arrival packet is forced to be dropped. A packet is only randomly
dropped if PIE->accu_prob_ falls in between the two thresholds. Since
PIE->accu_prob_ is reset to 0 after a drop, another drop will not happen
until 0.85/PIE->drop_prob_ packets later. This avoids packets being
dropped too close to each other. In the other extreme case where
8.5/PIE->drop_prob_ packets have been enqueued without incurring a drop,
PIE would force a drop in order to prevent the drops from being spaced
too far apart. Further analysis can be found in [DOCSIS-PIE].

5.5 Cap Drop Adjustment

In the case of one single TCP flow during slow start phase in the
system, queue could quickly increase during slow start and demands high
drop probability. In some environments such as Cable Modem Speed Test,
one could not afford triggering timeout and lose throughput as
throughput is shown to customers who are testing his/her connection
speed. PIE could cap the maximum drop probability increase in each step.

 * "Drop Probability Calculation" block, PIE adds:

 if (PIE->drop_prob_ >= 0.1 && p > 0.02) {

 p = 0.02;

 }

6. Implementation Cost

PIE can be applied to existing hardware or software solutions. There are
three steps involved in PIE as discussed in Section 4. Their
complexities are examined below.

Upon packet arrival, the algorithm simply drops a packet randomly based
on the drop probability. This step is straightforward and requires no
packet header examination and manipulation. If the implementation
doesn’t rely on packet timestamps for calculating latency, PIE does not
require extra memory. Furthermore, the input side of a queue is
typically under software control while the output side of a queue is
hardware based. Hence, a drop at enqueueing can be readily retrofitted
into existing or software implementations.

The drop probability calculation is done in the background and it occurs
every T_UPDATE interval. Given modern high speed links, this period
translates into once every tens, hundreds or even thousands of packets.
Hence the calculation occurs at a much slower time scale than packet
processing time, at least an order of magnitude slower. The calculation
of drop probability involves multiplications using alpha and beta. Since
PIE’s control law is robust to minor changes in alpha and beta values,

Pan et al. Expires March 30, 2017 [Page 15]

INTERNET DRAFT PIE August 24, 2016

an implementation MAY choose these values to the closest multiples of 2
or 1/2 (ex: alpha=1/8, beta=1 + 1/4) such that the multiplications can
be done using simple adds and shifts. As no complicated functions are
required, PIE can be easily implemented in both hardware and software.
The state requirement is only one variables per queue: PIE->qdelay_old_.
Hence the memory overhead is small.

If one chooses to implement the departure rate estimation, PIE uses a
counter to keep track of the number of bytes departed for the current
interval. This counter is incremented per packet departure. Every
T_UPDATE, PIE calculates latency using the departure rate, which can be
implemented using a multiplication. Note that many network devices keep
track of an interface’s departure rate. In this case, PIE might be able
to reuse this information, simply skip the third step of the algorithm
and hence incurs no extra cost. If a platform already leverages packet
timestamps for other purposes, PIE can make use of these packet
timestamps for latency calculation instead of estimating departure rate.

Flow queuing can also be combined with PIE to provide isolation between
flows. In this case, it is preferable to have an independent value of
drop probability per queue. This allows each flow to receive the most
appropriate level of congestion signal, and ensures that sparse flows
are protected from experiencing packet drops. However, running the
entire PIE algorithm independently on each queue in order to calculate
the drop probability may be overkill. Furthermore, in the case that
departure rate estimation is used to predict queuing latency, it is not
possible to calculate an accurate per-queue departure rate upon which to
implement the PIE drop probability calculation. Instead, it has been
proposed ([DOCSIS_AQM]) that a single implementation of the PIE drop
probability calculation based on the overall latency estimate be used,
followed by a per-queue scaling of drop-probability based on the ratio
of queue-depth between the queue in question and the current largest
queue. This scaling is reasonably simple, and has a couple of nice
properties. One, if a packet is arriving to an empty queue, it is given
immunity from packet drops altogether, regardless of the state of the
other queues. Two, in the situation where only a single queue is in use,
the algorithm behaves exactly like the single-queue PIE algorithm.

In summary, PIE is simple enough to be implemented in both software and
hardware.

7. Scope of Experimentation

The design of the PIE algorithm is presented in this document. It

Pan et al. Expires March 30, 2017 [Page 16]

INTERNET DRAFT PIE August 24, 2016

effectively controls the average queueing latency to a target value. The
following areas can be further studied and experimented:

 * Autotuning of target latency without losing utilization;

 * Autotuning for average RTT of traffic;

 * The proper threshold to transition smoothly between ECN marking
 and dropping;

 * The enhancements in Section 5 can be experimented to see if they
 would bring more value in the real world. If so, they will be
 incorporated into the basic PIE algorithm;

 * The PIE design is separated into data path and control path, and
 the control path can be implemented in software. Field tests of
 other control laws can be experimented to further improve PIE’s
 performance.

Although all network nodes cannot be changed altogether to adopt
latency-based AQM schemes such as PIE, a gradual adoption would
eventually lead to end-to-end low latency service for all applications.

8. Incremental Deployment

From testbed experiments and large scale simulations of PIE so far, PIE
has been shown to be effective across diverse range of network
scenarios. There is no indication that PIE would be harmful to deploy.

The PIE scheme can be independently deployed and managed without a need
for interoperability between different network devices. In addition, any
individual buffer queue can be incrementally upgraded to PIE as it can
co-exist with existing AQM schemes such as WRED.

PIE is intended to be self-configuring. Users should not need to
configure any design parameters. Upon installation, the two user-
configurable parameters: QDELAY_REF and MAX_BURST, will be defaulted to
15ms and 150ms for non datacenter network devices and to 15us and 150us
for datacenter switches, respectively.

Since the data path of the algorithm needs only a simple coin toss and
the control path calculation happens in a much slower time scale, We
don’t forsee any scaling issues associated with the algorithm as the
link speed scales up.

Pan et al. Expires March 30, 2017 [Page 17]

INTERNET DRAFT PIE August 24, 2016

9. Security Considerations

This document describes an active queue management algorithm based on
implementations in different products. This algorithm introduces no
specific security exposures.

10. IANA Considerations

There are no actions for IANA.

11. References

11.1 Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

11.2 Informative References

 [RFC970] Nagle, J., "On Packet Switches With Infinite
 Storage",RFC970, December 1985.

 [RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
 S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
 Patridge, C., Peterson, L., Ramakrishnan, K., Shenker, S.,
 Wroclawski, J. and Zhang, L., "Recommendations on Queue
 Management and Congestion Avoidance in the Internet",
 April, 1998.

 [RFC7567] Baker, F. and Fairhurst, G., "Recommendations Regarding
 Active Queue Management", July, 2015.

 [CBQ] Cisco White Paper,
 "http://www.cisco.com/en/US/docs/12_0t/12_0tfeature/guide/cbwfq.html".

 [CoDel] Nichols, K., Jacobson, V., "Controlling Queue Delay", ACM
 Queue. ACM Publishing. doi:10.1145/2209249.22W.09264.

 [DOCSIS_3.1] http://www.cablelabs.com/wp-content/uploads/specdocs
 /CM-SP-MULPIv3.1-I01-131029.pdf.

 [DOCSIS-PIE] White, G. and Pan, R., "A PIE-Based AQM for DOCSIS
 Cable Modems", IETF draft-white-aqm-docsis-pie-02.

Pan et al. Expires March 30, 2017 [Page 18]

INTERNET DRAFT PIE August 24, 2016

 [FQ-Implement] Baker, F. and Pan, R. "On Queueing, Marking and
 Dropping", IETF draft-ietf-aqm-fq-implementation.

 [HPSR-PIE] Pan, R., Natarajan, P. Piglione, C., Prabhu, M.S.,
 Subramanian, V., Baker, F. Steeg and B. V., "PIE: A Lightweight
 Control Scheme to Address the Bufferbloat Problem", IEEE HPSR 2013.
 https://www.researchgate.net/publication/261134127_PIE_A_lightweight
 _control_scheme_to_address_the_bufferbloat_problem?origin=mail.

 [IETF-ECN] Briscoe, B. Kaippallimalil, J and Phaler, P.,
 "Guidelines for Adding Congestion Notification to Protocols that
 Encapsulate IP", draft-ietf-tsvwg-ecn-encap-guidelines.

11.3 Other References

 [PI] Hollot, C.V., Misra, V., Towsley, D. and Gong, W., "On
 Designing Improved Controller for AQM Routers Supporting TCP Flows",
 Infocom 2001.

 [QCN] "Data Center Bridging - Congestion Notification",
 http://www.ieee802.org/1/pages/802.1au.html.

 [RED] Floyd, S. and Jacobson V., "Random Early Detection (RED)
 Gateways for Congestion Avoidance", IEEE/ACM Transactions on
 Networking, August, 1993.

 [TCP-Models] Misra, V., Gong, W., and Towsley, D., "Fluid-base
 Analysis of a Network of AQM Routers Supporting TCP Flows with an
 Application to RED", SIGCOMM 2000.

 Authors’ Addresses

 Rong Pan
 Cisco Systems
 3625 Cisco Way,
 San Jose, CA 95134, USA
 Email: ropan@cisco.com

 Preethi Natarajan,
 Cisco Systems
 725 Alder Drive,
 Milpitas, CA 95035, USA
 Email: prenatar@cisco.com

 Fred Baker
 Cisco Systems
 725 Alder Drive,

Pan et al. Expires March 30, 2017 [Page 19]

INTERNET DRAFT PIE August 24, 2016

 Milpitas, CA 95035, USA
 Email: fred@cisco.com

 Greg White
 CableLabs
 858 Coal Creek Circle
 Louisville, CO 80027, USA
 Email: g.white@cablelabs.com

 Other Contributor’s Addresses

 Bill Ver Steeg
 Comcast Cable
 Email: William_VerSteeg@comcast.com

 Mythili Prabhu*
 Akamai Technologies
 3355 Scott Blvd
 Santa Clara, CA - 95054
 Email: mythili@akamai.com

 Chiara Piglione*
 Broadcom Corporation
 3151 Zanker Road
 San Jose, CA 95134
 Email: chiara@broadcom.com

 Vijay Subramanian*
 PLUMgrid, Inc.
 350 Oakmead Parkway,
 Suite 250
 Sunnyvale, CA 94085
 Email: vns@plumgrid.com
 * Formerly at Cisco Systems

12. The Basic PIE pseudo Code

 Configurable Parameters:
 - QDELAY_REF. AQM Latency Target (default: 15ms)
 - MAX_BURST. AQM Max Burst Allowance (default: 150ms)

 Internal Parameters:
 - Weights in the drop probability calculation (1/s):
 alpha (default: 1/8), beta(default: 1 + 1/4)
 - T_UPDATE: a period to calculate drop probability (default:15ms)

Pan et al. Expires March 30, 2017 [Page 20]

INTERNET DRAFT PIE August 24, 2016

 Table which stores status variables (ending with "_"):
 - burst_allowance_: current burst allowance
 - drop_prob_: The current packet drop probability. reset to 0
 - qdelay_old_: The previous queue delay. reset to 0

 Public/system functions:
 - queue_. Holds the pending packets.
 - drop(packet). Drops/discards a packet
 - now(). Returns the current time
 - random(). Returns a uniform r.v. in the range 0 ˜ 1
 - queue_.byte_length(). Returns current queue_ length in bytes
 - queue_.enque(packet). Adds packet to tail of queue_
 - queue_.deque(). Returns the packet from the head of queue_
 - packet.size(). Returns size of packet
 - packet.timestamp_delay(). Returns timestamped packet latency

============================

//called on each packet arrival
 enque(Packet packet) {
 if (PIE->drop_prob_ == 0 && current_qdelay < QDELAY_REF/2
 && PIE->qdelay_old_ < QDELAY_REF/2) {
 PIE->burst_allowance_ = MAX_BURST;
 }
 if (PIE->burst_allowance_ == 0 && drop_early() == DROP) {
 drop(packet);
 } else {
 queue_.enque(packet);
 }
 }

===========================

 drop_early() {

 //Safeguard PIE to be work conserving
 if ((PIE->qdelay_old_ < QDELAY_REF/2 && PIE->drop_prob_ < 0.2)
 || (queue_.byte_length() <= 2 * MEAN_PKTSIZE)) {
 return ENQUE;
 }

 double u = random();
 if (u < PIE->drop_prob_) {
 return DROP;
 } else {

Pan et al. Expires March 30, 2017 [Page 21]

INTERNET DRAFT PIE August 24, 2016

 return ENQUE;
 }
 }

===========================
//we choose the timestamp option of obtaining latency for clarity
//rate estimation method can be found in the extended PIE pseudo code

 deque(Packet packet) {

 current_qdelay = packet.timestamp_delay();

 }

============================
//update periodically, T_UPDATE = 15ms

 calculate_drop_prob() {

 //can be implemented using integer multiply,

 p = alpha*(current_qdelay - QDELAY_REF) + \
 beta*(current_qdelay-PIE->qdelay_old_);

 if (PIE->drop_prob_ < 0.000001) {
 p /= 2048;
 } else if (PIE->drop_prob_ < 0.00001) {
 p /= 512;
 } else if (PIE->drop_prob_ < 0.0001) {
 p /= 128;
 } else if (PIE->drop_prob_ < 0.001) {
 p /= 32;
 } else if (PIE->drop_prob_ < 0.01) {
 p /= 8;
 } else if (PIE->drop_prob_ < 0.1) {
 p /= 2;
 } else {
 p = p;
 }

 PIE->drop_prob_ += p;

 //Exponentially decay drop prob when congestion goes away
 if (current_qdelay == 0 && PIE->qdelay_old_ == 0) {
 PIE->drop_prob_ *= 0.98; //1- 1/64 is sufficient
 }

Pan et al. Expires March 30, 2017 [Page 22]

INTERNET DRAFT PIE August 24, 2016

 //bound drop probability
 if (PIE->drop_prob_ < 0)
 PIE->drop_prob_ = 0.0
 if (PIE->drop_prob_ > 1)
 PIE->drop_prob_ = 1.0

 PIE->qdelay_old_ = current_qdelay;

 PIE->burst_allowance_ = max(0,PIE->burst_allowance_ - T_UPDATE);

 }
}

13. Pseudo code for PIE with optional enhancement

 Configurable Parameters:
 - QDELAY_REF. AQM Latency Target (default: 15ms)
 - MAX_BURST. AQM Max Burst Allowance (default: 150ms)
 - MAX_ECNTH. AQM Max ECN Marking Threshold (default: 10%)

 Internal Parameters:
 - Weights in the drop probability calculation (1/s):
 alpha (default: 1/8), beta(default: 1+1/4)
 - DQ_THRESHOLD: (in bytes, default: 2^14 (in a power of 2))
 - T_UPDATE: a period to calculate drop probability (default:15ms)
 - TAIL_DROP: each queue has a tail drop threshold, pass it to PIE

 Table which stores status variables (ending with "_"):
 - active_: INACTIVE/ACTIVE
 - burst_allowance_: current burst allowance
 - drop_prob_: The current packet drop probability. reset to 0
 - accu_prob_: Accumulated drop probability. reset to 0
 - qdelay_old_: The previous queue delay estimate. reset to 0
 - last_timestamp_: Timestamp of previous status update
 - dq_count_, measurement_start_, in_measurement_,
 avg_dq_time_. variables for measuring average dequeue rate.

 Public/system functions:
 - queue_. Holds the pending packets.
 - drop(packet). Drops/discards a packet
 - mark(packet). Marks ECN for a packet
 - now(). Returns the current time

Pan et al. Expires March 30, 2017 [Page 23]

INTERNET DRAFT PIE August 24, 2016

 - random(). Returns a uniform r.v. in the range 0 ˜ 1
 - queue_.byte_length(). Returns current queue_ length in bytes
 - queue_.enque(packet). Adds packet to tail of queue_
 - queue_.deque(). Returns the packet from the head of queue_
 - packet.size(). Returns size of packet
 - packet.ecn(). Returns whether packet is ECN capable or not

============================
//called on each packet arrival
 enque(Packet packet) {
 if (queue_.byte_length()+packet.size() > TAIL_DROP) {
 drop(packet);
 PIE->accu_prob_ = 0;
 } else if (PIE->active_ == TRUE && drop_early() == DROP
 && PIE->burst_allowance_ == 0) {
 if (PIE->drop_prob_ < MAX_ECNTH && packet.ecn() == TRUE)
 mark(packet);
 else
 drop(packet);
 PIE->accu_prob_ = 0;
 } else {
 queue_.enque(packet);
 }

 //If the queue is over a certain threshold, turn on PIE
 if (PIE->active_ == INACTIVE
 && queue_.byte_length() >= TAIL_DROP/3) {
 PIE->active_ = ACTIVE;
 PIE->qdelay_old_ = 0;
 PIE->drop_prob_ = 0;
 PIE->in_measurement_ = TRUE;
 PIE->dq_count_ = 0;
 PIE->avg_dq_time_ = 0;
 PIE->last_timestamp_ = now;
 PIE->burst_allowance_ = MAX_BURST;
 PIE->accu_prob_ = 0;
 PIE->measurement_start_ = now;
 }

 //If the queue has been idle for a while, turn off PIE
 //reset counters when accessing the queue after some idle
 //period if PIE was active before
 if (PIE->drop_prob_ == 0 && PIE->qdelay_old_ == 0
 && current_qdelay == 0) {
 PIE->active_ = INACTIVE;
 PIE->in_measurement_ = FALSE;
 }

Pan et al. Expires March 30, 2017 [Page 24]

INTERNET DRAFT PIE August 24, 2016

 }

===========================

 drop_early() {

 //PIE is active but the queue is not congested, return ENQUE
 if ((PIE->qdelay_old_ < QDELAY_REF/2 && PIE->drop_prob_ < 0.2)
 || (queue_.byte_length() <= 2 * MEAN_PKTSIZE)) {
 return ENQUE;
 }

 if (PIE->drop_prob_ == 0) {
 PIE->accu_prob_ = 0;
 }

 //For practical reasons, drop probability can be further scaled
 //according to packet size. but need to set a bound to
 //avoid unnecessary bias

 //Random drop
 PIE->accu_prob_ += PIE->drop_prob_;
 if (PIE->accu_prob_ < 0.85)
 return ENQUE;
 if (PIE->accu_prob_ >= 8.5)
 return DROP;
 double u = random();
 if (u < PIE->drop_prob_) {
 PIE->accu_prob_ = 0;
 return DROP;
 } else {
 return ENQUE;
 }
 }

============================
 //update periodically, T_UPDATE = 15ms
 calculate_drop_prob() {
 if ((now - PIE->last_timestamp_) >= T_UPDATE &&
 PIE->active_ == ACTIVE) {

Pan et al. Expires March 30, 2017 [Page 25]

INTERNET DRAFT PIE August 24, 2016

 //can be implemented using integer multiply,
 //DQ_THRESHOLD is power of 2 value
 current_qdelay = queue_.byte_length() * PIE-
 >avg_dq_time_/DQ_THRESHOLD;

 p = alpha*(current_qdelay - QDELAY_REF) + \
 beta*(current_qdelay-PIE->qdelay_old_);

 if (PIE->drop_prob_ < 0.000001) {
 p /= 2048;
 } else if (PIE->drop_prob_ < 0.00001) {
 p /= 512;
 } else if (PIE->drop_prob_ < 0.0001) {
 p /= 128;
 } else if (PIE->drop_prob_ < 0.001) {
 p /= 32;
 } else if (PIE->drop_prob_ < 0.01) {
 p /= 8;
 } else if (PIE->drop_prob_ < 0.1) {
 p /= 2;
 } else {
 p = p;
 }

 if (PIE->drop_prob_ >= 0.1 && p > 0.02) {
 p = 0.02;
 }
 PIE->drop_prob_ += p;

 //Exponentially decay drop prob when congestion goes away
 if (current_qdelay < QDELAY_REF/2 && PIE->qdelay_old_ <
 QDELAY_REF/2) {
 PIE->drop_prob_ *= 0.98; //1- 1/64 is sufficient
 }

 //bound drop probability
 if (PIE->drop_prob_ < 0)
 PIE->drop_prob_ = 0
 if (PIE->drop_prob_ > 1)
 PIE->drop_prob_ = 1

 PIE->qdelay_old_ = current_qdelay;
 PIE->last_timestamp_ = now;
 PIE->burst_allowance_ = max(0,PIE->burst_allowance_ - T_UPDATE);
 }
}

Pan et al. Expires March 30, 2017 [Page 26]

INTERNET DRAFT PIE August 24, 2016

==========================
//called on each packet departure
 deque(Packet packet) {

 //deque rate estimation
 if (PIE->in_measurement_ == TRUE) {
 PIE->dq_count_ = packet.size() + PIE->dq_count_;
 //start a new measurement cycle if we have enough packets
 if (PIE->dq_count_ >= DQ_THRESHOLD) {
 dq_time = now - PIE->measurement_start_;
 if(PIE->avg_dq_time_ == 0) {
 PIE->avg_dq_time_ = dq_time;
 } else {
 weight = DQ_THRESHOLD/2^16
 PIE->avg_dq_time_ = dq_time*weight + PIE->avg_dq_time_*(1-
 weight);
 }
 PIE->in_measurement_ = FALSE;
 }
 }

 //start a measurement if we have enough data in the queue:
 if (queue_.byte_length() >= DQ_THRESHOLD &&
 PIE->in_measurement_ == FALSE) {
 PIE->in_measurement_ = TRUE;
 PIE->measurement_start_ = now;
 PIE->dq_count_ = 0;
 }
 }

Pan et al. Expires March 30, 2017 [Page 27]

