
AQM K. Nichols
Internet-Draft Pollere, Inc.
Intended status: Experimental V. Jacobson
Expires: April 16, 2018 A. McGregor, ed.
 J. Iyengar, ed.
 Google
 October 13, 2017

 Controlled Delay Active Queue Management
 draft-ietf-aqm-codel-10

Abstract

 This document describes a general framework called CoDel (Controlled
 Delay) that controls bufferbloat-generated excess delay in modern
 networking environments. CoDel consists of an estimator, a setpoint,
 and a control loop. It requires no configuration in normal Internet
 deployments.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 16, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Nichols, et al. Expires April 16, 2018 [Page 1]

Internet-Draft CoDel October 2017

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Conventions and terms used in this document 4
 3. Understanding the Building Blocks of Queue Management 5
 3.1. Estimator . 6
 3.2. Target Setpoint . 8
 3.3. Control Loop . 10
 4. Overview of the Codel AQM 12
 4.1. Non-starvation . 13
 4.2. Setting INTERVAL . 13
 4.3. Setting TARGET . 14
 4.4. Use with multiple queues 15
 4.5. Setting up CoDel . 15
 5. Annotated Pseudo-code for CoDel AQM 16
 5.1. Data Types . 16
 5.2. Per-queue state (codel_queue_t instance variables) . . . 17
 5.3. Constants . 17
 5.4. Enqueue routine . 17
 5.5. Dequeue routine . 17
 5.6. Helper routines . 19
 5.7. Implementation considerations 20
 6. Further Experimentation 21
 7. Security Considerations 21
 8. IANA Considerations . 21
 9. Acknowledgments . 21
 10. References . 22
 10.1. Normative References 22
 10.2. Informative References 22
 10.3. URIs . 23
 Appendix A. Applying CoDel in the datacenter 24
 Authors’ Addresses . 25

1. Introduction

 The "persistently full buffer" problem has been discussed in the IETF
 community since the early 80’s [RFC896]. The IRTF’s End-to-End
 Research Group called for the deployment of active queue management
 (AQM) to solve the problem in 1998 [RFC2309]. Despite this
 awareness, the problem has only gotten worse as Moore’s Law growth in
 memory density fueled an exponential increase in buffer pool size.
 Efforts to deploy AQM have been frustrated by difficult configuration
 and negative impact on network utilization. This "bufferbloat"
 problem [TSV2011] [BB2011] has become increasingly important

Nichols, et al. Expires April 16, 2018 [Page 2]

Internet-Draft CoDel October 2017

 throughout the Internet but particularly at the consumer edge. Queue
 management has become more critical due to increased consumer use of
 the Internet, mixing large video transactions with time-critical VoIP
 and gaming.

 An effective AQM remediates bufferbloat at a bottleneck while "doing
 no harm" at hops where buffers are not bloated. The development and
 deployment of AQM however is frequently subject to misconceptions
 about the cause of packet queues in network buffers. Network buffers
 exist to absorb the packet bursts that occur naturally in
 statistically multiplexed networks. Buffers helpfully absorb the
 queues created by such reasonable packet network behavior as short-
 term mismatches in traffic arrival and departure rates that arise
 from upstream resource contention, transport conversation startup
 transients and/or changes in the number of conversations sharing a
 link. Unfortunately, other less useful network behaviors can cause
 queues to fill and their effects are not nearly as benign.
 Discussion of these issues and the reason why the solution is not
 simply smaller buffers can be found in [RFC2309], [VANQ2006],
 [REDL1998], and [CODEL2012]. To understand queue management, it is
 critical to understand the difference between the necessary, useful
 "good" queue, and the counterproductive "bad" queue.

 Several approaches to AQM have been developed over the past two
 decades but none has been widely deployed due to performance
 problems. When designed with the wrong conceptual model for queues,
 AQMs have limited operational range, require a lot of configuration
 tweaking, and frequently impair rather than improve performance.
 Learning from this past history, the CoDel approach is designed to
 meet the following goals:

 o Making it parameterless for normal operation, with no knobs for
 operators, users, or implementers to adjust.

 o Being able to distinguish "good queue" from bad queue and treat
 them differently, that is, keep delay low while permitting
 necessary bursts of traffic.

 o Controlling delay while insensitive (or nearly so) to round trip
 delays, link rates and traffic loads; this goal is to "do no harm"
 to network traffic while controlling delay.

 o Adapting to dynamically changing link rates with no negative
 impact on utilization.

 o Allowing simple and efficient implementation (can easily span the
 spectrum from low-end access points and home routers up to high-
 end router silicon).

Nichols, et al. Expires April 16, 2018 [Page 3]

Internet-Draft CoDel October 2017

 CoDel has five major differences from prior AQMs: use of local queue
 minimum to track congestion ("bad queue"), use of an efficient single
 state variable representation of that tracked statistic, use of
 packet sojourn time as the observed datum, rather than packets,
 bytes, or rates, use of mathematically determined setpoint derived
 from maximizing network power [KLEIN81], and a modern state space
 controller.

 CoDel configures itself based on a round-trip time metric which can
 be set to 100ms for the normal, terrestrial Internet. With no
 changes to parameters, CoDel is expected to work across a wide range
 of conditions, with varying links and the full range of terrestrial
 round trip times.

 CoDel is easily adapted to multiple queue systems as shown by [FQ-
 CODEL-ID]. Implementers and users SHOULD use the fq_codel multiple-
 queue approach as it deals with many problems beyond the reach of an
 AQM on a single queue.

 CoDel was first published in [CODEL2012] and has been implemented in
 the Linux kernel.

 Note that while this document refers to dropping packets when
 indicated by CoDel, it is reasonable to ECN-mark packets instead as
 well.

2. Conventions and terms used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying [RFC2119] significance.

 The following terms are defined as used in this document:

 sojourn time: the amount of time a packet has spent in a particular
 buffer, i.e. the time a packet departs the buffer minus the time the
 packet arrived at the buffer. A packet can depart a buffer via
 transmission or drop.

 standing queue: a queue (in packets, bytes, or time delay) in a
 buffer that persists for a "long" time where "long" is on the order
 of the longer round trip times through the buffer as discussed in
 section 4.2. A standing queue occurs when the minimum queue over the

Nichols, et al. Expires April 16, 2018 [Page 4]

Internet-Draft CoDel October 2017

 "long" time is nonzero and is usually tolerable and even desirable as
 long as it does not exceed some target delay.

 bottleneck bandwidth: the limiting bandwidth along a network path.

3. Understanding the Building Blocks of Queue Management

 At the heart of queue management is the notion of "good queue" and
 "bad queue" and the search for ways to get rid of the bad queue
 (which only adds delay) while preserving the good queue (which
 provides for good utilization). This section explains queueing, both
 good and bad, and covers the CoDel building blocks that can be used
 to manage packet buffers to keep their queues in the "good" range.

 Packet queues form in buffers facing bottleneck links, i.e., where
 the line rate goes from high to low or where many links converge.
 The well-known bandwidth-delay product (sometimes called "pipe size")
 is the bottleneck’s bandwidth multiplied by the sender-receiver-
 sender round-trip delay, and is the amount of data that has to be in
 transit between two hosts in order to run the bottleneck link at 100%
 utilization. To explore how queues can form, consider a long-lived
 TCP connection with a 25 packet window sending through a connection
 with a bandwidth-delay product of 20 packets. After an initial burst
 of packets the connection will settle into a five packet (+/-1)
 standing queue; this standing queue size is determined by the
 mismatch between the window size and the pipe size, and is unrelated
 to the connection’s sending rate. The connection has 25 packets in
 flight at all times, but only 20 packets arrive at the destination
 over a round trip time. If the TCP connection has a 30 packet
 window, the queue will be ten packets with no change in sending rate.
 Similarly, if the window is 20 packets, there will be no queue but
 the sending rate is the same. Nothing can be inferred about the
 sending rate from the queue size, and any queue other than transient
 bursts only creates delays in the network. The sender needs to
 reduce the number of packets in flight rather than sending rate.

 In the above example, the five packet standing queue can be seen to
 contribute nothing but delay to the connection, and thus is clearly
 "bad queue". If, in our example, there is a single bottleneck link
 and it is much slower than the link that feeds it (say, a high-speed
 ethernet link into a limited DSL uplink) a 20 packet buffer at the
 bottleneck might be necessary to temporarily hold the 20 packets in
 flight to keep the bottleneck link’s utilization high. The burst of
 packets should drain completely (to 0 or 1 packets) within a round
 trip time and this transient queue is "good queue" because it allows
 the connection to keep the 20 packets in flight and for the
 bottleneck link to be fully utilized. In terms of the delay

Nichols, et al. Expires April 16, 2018 [Page 5]

Internet-Draft CoDel October 2017

 experienced, the "good queue" goes away in about a round trip time,
 while "bad queue" hangs around for longer, causing delays.

 Effective queue management detects "bad queue" while ignoring "good
 queue" and takes action to get rid of the bad queue when it is
 detected. The goal is a queue controller that accomplishes this
 objective. To control a queue, we need three basic components

 o Estimator - figure out what we’ve got.

 o Target setpoint - know what we want.

 o Control loop - if what we’ve got isn’t what we want, we need a way
 to move it there.

3.1. Estimator

 The estimator both observes the queue and detects when good queue
 turns to bad queue and vice versa. CoDel has two parts to its
 estimator: what is observed as an indicator of queue and how the
 observations are used to detect good/bad queue.

 Queue length has been widely used as an observed indicator of
 congestion and is frequently conflated with sending rate. Use of
 queue length as a metric is sensitive to how and when the length is
 observed. A high speed arrival link to a buffer serviced at a much
 lower rate can rapidly build up a queue that might disperse
 completely or down to a single packet before a round trip time has
 elapsed. If the queue length is monitored at packet arrival (as in
 original RED) or departure time, every packet will see a queue with
 one possible exception. If the queue length itself is time sampled
 (as recommended in [REDL1998], a truer picture of the queue’s
 occupancy can be gained at the expense of considerable implementation
 complexity.

 The use of queue length is further complicated in networks that are
 subject to both short and long term changes in available link rate
 (as in WiFi). Link rate drops can result in a spike in queue length
 that should be ignored unless it persists. It is not the queue
 length that should be controlled but the amount of excess delay
 packets experience due to a persistent or standing queue, which means
 that the packet sojourn time in the buffer is exactly what we want to
 track. Tracking the packet sojourn times in the buffer observes the
 actual delay experienced by each packet. Sojourn time allows queue
 management to be independent of link rate, gives superior performance
 to use of buffer size, and is directly related to user-visible
 performance. It works regardless of line rate changes or link

Nichols, et al. Expires April 16, 2018 [Page 6]

Internet-Draft CoDel October 2017

 sharing by multiple queues (which the individual queues may
 experience as changing rates).

 Consider a link shared by two queues with different priorities.
 Packets that arrive at the high priority queue are sent as soon as
 the link is available while packets in the other queue have to wait
 until the high priority queue is empty (i.e., a strict priority
 scheduler). The number of packets in the high priority queue might
 be large but the queue is emptied quickly and the amount of time each
 packet spends enqueued (the sojourn time) is not large. The other
 queue might have a smaller number of packets, but packet sojourn
 times will include the waiting time for the high priority packets to
 be sent. This makes the sojourn time a good sample of the congestion
 that each separate queue is experiencing. This example also shows
 how the metric of sojourn time is independent of the number of queues
 or the service discipline used, and is instead indicative of
 congestion seen by the individual queues.

 How can observed sojourn time be used to separate good queue from bad
 queue? Although averages, especially of queue length, have
 previously been widely used as an indicator of bad queue, their
 efficacy is questionable. Consider the burst that disperses every
 round trip time. The average queue will be one-half the burst size,
 though this might vary depending on when the average is computed and
 the timing of arrivals. The average queue sojourn time would be one-
 half the time it takes to clear the burst. The average then would
 indicate a persistent queue where there is none. Instead of averages
 we recommend tracking the minimum sojourn time, then, if there is one
 packet that has a zero sojourn time then there is no persistent
 queue.

 A persistent queue can be detected by tracking the (local) minimum
 queue delay packets experience. To ensure that this minimum value
 does not become stale, it has to have been experienced recently, i.e.
 during an appropriate past time interval. This interval is the
 maximum amount of time a minimum value is considered to be in effect,
 and is related to the amount of time it takes for the largest
 expected burst to drain. Conservatively, this interval SHOULD be at
 least a round trip time to avoid falsely detecting a persistent queue
 and not a lot more than a round trip time to avoid delay in detecting
 the persistent queue. This suggests that the appropriate interval
 value is the maximum round-trip time of all the connections sharing
 the buffer.

 (The following key insight makes computation of the local minimum
 efficient: It is sufficient to keep a single state variable of how
 long the minimum has been above or below the target value rather than
 retaining all the local values to compute the minimum, leading to

Nichols, et al. Expires April 16, 2018 [Page 7]

Internet-Draft CoDel October 2017

 both storage and computational savings. We use this insight in the
 pseudo-code for CoDel later in the document.)

 These two parts, use of sojourn time as observed values and the local
 minimum as the statistic to monitor queue congestion are key to
 CoDel’s estimator building block. The local minimum sojourn time
 provides an accurate and robust measure of standing queue and has an
 efficient implementation. In addition, use of the minimum sojourn
 time has important advantages in implementation. The minimum packet
 sojourn can only be decreased when a packet is dequeued which means
 that all the work of CoDel can take place when packets are dequeued
 for transmission and that no locks are needed in the implementation.
 The minimum is the only statistic with this property.

 A more detailed explanation with many pictures can be found in
 http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
 [1].

3.2. Target Setpoint

 Now that we have a robust way of detecting standing queue, we need a
 target setpoint that tells us when to act. If the controller is set
 to take action as soon as the estimator has a non-zero value, the
 average drop rate will be maximized, which minimizes TCP goodput
 [MACTCP1997]. Also, this policy results in no backlog over time (no
 persistent queue), which negates much of the value of having a
 buffer, since it maximizes the bottleneck link bandwidth lost due to
 normal stochastic variation in packet interarrival time. We want a
 target that maximizes utilization while minimizing delay. Early in
 the history of packet networking, Kleinrock developed the analytic
 machinery to do this using a quantity he called ’power’, which is the
 ratio of a normalized throughput to a normalized delay [KLEIN81].

 It is straightforward to derive an analytic expression for the
 average goodput of a TCP conversation at a given round-trip time r
 and target f (where f is expressed as a fraction of r). Reno TCP,
 for example, yields:

 goodput = r (3 + 6f - f^2) / (4 (1+f))

 Since the peak queue delay is simply the product of f and r, power is
 solely a function of f since the r’s in the numerator and denominator
 cancel:

 power is proportional to (1 + 2f - 1/3 f^2) / (1 + f)^2

 As Kleinrock observed, the best operating point, in terms of
 bandwidth / delay tradeoff, is the peak power point, since points off

Nichols, et al. Expires April 16, 2018 [Page 8]

Internet-Draft CoDel October 2017

 the peak represent a higher cost (in delay) per unit of bandwidth.
 The power vs. f curve for any Additive Increase Multiplicative
 Decrease (AIMD) TCP is monotone decreasing. But the curve is very
 flat for f < 0.1 followed by a increasing curvature with a knee
 around f = 0.2, then a steep, almost linear fall off [TSV84]. Since
 the previous equation showed that goodput is monotone increasing with
 f, the best operating point is near the right edge of the flat top
 since that represents the highest goodput achievable for a negligible
 increase in delay. However, since the r in the model is a
 conservative upper bound, a target of 0.1r runs the risk of pushing
 shorter RTT connections over the knee and giving them higher delay
 for no significant goodput increase. Generally, a more conservative
 target of 0.05r offers a good utilization vs. delay tradeoff while
 giving enough headroom to work well with a large variation in real
 RTT.

 As the above analysis shows, a very small standing queue gives close
 to 100% utilization of the bottleneck link. While this result was
 for Reno TCP, the derivation uses only properties that must hold for
 any ’TCP friendly’ transport. We have verified by both analysis and
 simulation that this result holds for Reno, Cubic, and Westwood
 [TSV84]. This results in a particularly simple form for the target:
 the ideal range for the permitted standing queue, or the target
 setpoint, is between 5% and 10% of the TCP connection’s RTT.

 We used simulation to explore the impact when TCPs are mixed with
 other traffic and with connections of different RTTs. Accordingly,
 we experimented extensively with values in the 5-10% of RTT range
 and, overall, used target values between 1 and 20 milliseconds for
 RTTs from 30 to 500ms and link bandwidths of 64Kbps to 100Mbps to
 experimentally explore a value for the target that gives consistently
 high utilization while controlling delay across a range of
 bandwidths, RTTs, and traffic loads. Our results were notably
 consistent with the mathematics above.

 A congested (but not overloaded) CoDel link with traffic composed
 solely or primarily of long-lived TCP flows will have a median delay
 through the link will tend to the target. For bursty traffic loads
 and for overloaded conditions (where it is difficult or impossible
 for all the arriving flows to be accommodated) the median queues will
 be longer than the target.

 The non-starvation drop inhibit feature dominates where the link rate
 becomes very small. By inhibiting drops when there is less than an
 (outbound link) MTU worth of bytes in the buffer, CoDel adapts to
 very low bandwidth links, as shown in [CODEL2012].

Nichols, et al. Expires April 16, 2018 [Page 9]

Internet-Draft CoDel October 2017

3.3. Control Loop

 Section 3.1 describes a simple, reliable way to measure bad
 (persistent) queue. Section 3.2 shows that TCP congestion control
 dynamics gives rise to a target setpoint for this measure that’s a
 provably good balance between enhancing throughput and minimizing
 delay, and that this target is a constant fraction of the same
 ’largest average RTT’ interval used to distinguish persistent from
 transient queue. The only remaining building block needed for a
 basic AQM is a ’control loop’ algorithm to effectively drive the
 queueing system from any ’persistent queue above the target’ state to
 a state where the persistent queue is below the target.

 Control theory provides a wealth of approaches to the design of
 control loops. Most of classical control theory deals with the
 control of linear, time-invariant, single-input-single-output (SISO)
 systems. Control loops for these systems generally come from a (well
 understood) class known as Proportional-Integral-Derivative (PID)
 controllers. Unfortunately, a queue is not a linear system and an
 AQM operates at the point of maximum non-linearity (where the output
 link bandwidth saturates so increased demand creates delay rather
 than higher utilization). Output queues are also not time-invariant
 since traffic is generally a mix of connections which start and stop
 at arbitrary times and which can have radically different behaviors
 ranging from "open loop" UDP audio/video to "closed-loop" congestion-
 avoiding TCP. Finally, the constantly changing mix of connections
 (which can’t be converted to a single ’lumped parameter’ model
 because of their transfer function differences) makes the system
 multi-input-multi-output (MIMO), not SISO.

 Since queueing systems match none of the prerequisites for a
 classical controller, a modern state-space controller is a better
 approach with states ’no persistent queue’ and ’has persistent
 queue’. Since Internet traffic mixtures change rapidly and
 unpredictably, a noise and error tolerant adaptation algorithm like
 Stochastic Gradient is a good choice. Since there’s essentially no
 information in the amount of persistent queue [TSV84], the adaptation
 should be driven by how long it has persisted.

 Consider the two extremes of traffic behavior, a single open-loop UDP
 video stream and a single, long-lived TCP bulk data transfer. If the
 average bandwidth of the UDP video stream is greater that the
 bottleneck link rate, the link’s queue will grow and the controller
 will eventually enter ’has persistent queue’ state and start dropping
 packets. Since the video stream is open loop, its arrival rate is
 unaffected by drops so the queue will persist until the average drop
 rate is greater than the output bandwidth deficit (= average arrival
 rate - average departure rate) so the job of the adaptation algorithm

Nichols, et al. Expires April 16, 2018 [Page 10]

Internet-Draft CoDel October 2017

 is to discover this rate. For this example, the adaptation could
 consist of simply estimating the arrival and departure rates then
 dropping at a rate slightly greater than their difference. But this
 class of algorithm won’t work at all for the bulk data TCP stream.
 TCP runs in closed-loop flow balance [TSV84] so its arrival rate is
 almost always exactly equal to the departure rate - the queue isn’t
 the result of a rate imbalance but rather a mismatch between the TCP
 sender’s window and the source-destination-source round-trip path
 capacity (i.e., the connection’s bandwidth-delay product). The
 sender’s TCP congestion avoidance algorithm will slowly increase the
 send window (one packet per round-trip-time) [RFC2581] which will
 eventually cause the bottleneck to enter ’has persistent queue’
 state. But, since the average input rate is the same as the average
 output rate, the rate deficit estimation that gave the correct drop
 rate for the video stream would compute a drop rate of zero for the
 TCP stream. However, if the output link drops one packet as it
 enters ’has persistent queue’ state, when the sender discovers this
 (via TCP’s normal packet loss repair mechanisms) it will reduce its
 window by a factor of two [RFC2581] so, one round-trip-time after the
 drop, the persistent queue will go away.

 If there were N TCP conversations sharing the bottleneck, the
 controller would have to drop O(N) packets, one from each
 conversation, to make all the conversations reduce their window to
 get rid of the persistent queue. If the traffic mix consists of
 short (<= bandwidth-delay product) conversations, the aggregate
 behavior becomes more like the open-loop video example since each
 conversation is likely to have already sent all its packets by the
 time it learns about a drop so each drop has negligible effect on
 subsequent traffic.

 The controller does not know the number, duration, or kind of
 conversations creating its queue, so it has to learn the appropriate
 response. Since single drops can have a large effect if the degree
 of multiplexing (the number of active conversations) is small,
 dropping at too high a rate is likely to have a catastrophic effect
 on throughput. Dropping at a low rate (< 1 packet per round-trip-
 time) then increasing the drop rate slowly until the persistent queue
 goes below the target is unlikely to overdrop and is guaranteed to
 eventually dissipate the persistent queue. This stochastic gradient
 learning procedure is the core of CoDel’s control loop (the gradient
 exists because a drop always reduces the (instantaneous) queue so an
 increasing drop rate always moves the system "down" toward no
 persistent queue, regardless of traffic mix).

 The "next drop time" is decreased in inverse proportion to the square
 root of the number of drops since the drop state was entered, using

Nichols, et al. Expires April 16, 2018 [Page 11]

Internet-Draft CoDel October 2017

 the well-known nonlinear relationship of drop rate to throughput to
 get a linear change in throughput [REDL1998], [MACTCP1997].

 Since the best rate to start dropping is at slightly more than one
 packet per RTT, the controller’s initial drop rate can be directly
 derived from the estimator’s interval. When the minimum sojourn time
 first crosses the target and CoDel drops a packet, the earliest the
 controller could see the effect of the drop is the round trip time
 (interval) + the local queue wait time (the target). If the next
 drop happens any earlier than this time (interval + target), CoDel
 will overdrop. In practice, the local queue waiting time tends to
 vary, so making the initial drop spacing (i.e., the time to the
 second drop) be exactly the minimum possible also leads to
 overdropping. Analysis of simulation and real-world measured data
 shows that the 75th percentile magnitude of this variation is less
 than the target, and so the initial drop spacing SHOULD be set to the
 estimator’s interval (i.e., initial drop spacing = interval) to
 ensure that the controller has accounted for acceptable congestion
 delays.

 Use of the minimum statistic lets the controller be placed in the
 dequeue routine with the estimator. This means that the control
 signal (the drop) can be sent at the first sign of bad queue (as
 indicated by the sojourn time) and that the controller can stop
 acting as soon as the sojourn time falls below the target. Dropping
 at dequeue has both implementation and control advantages.

4. Overview of the Codel AQM

 CoDel was initially designed as a bufferbloat solution for the
 consumer network edge. The CoDel building blocks are able to adapt
 to different or time-varying link rates, to be easily used with
 multiple queues, to have excellent utilization with low delay, and to
 have a simple and efficient implementation.

 The CoDel algorithm described in the rest of this document uses two
 key variables: TARGET, which is the controller’s target setpoint
 described in Section 3.2 and INTERVAL, which is the estimator’s
 interval described in Section 3.3.

 The only setting CoDel requires is the INTERVAL value, and as 100ms
 satisfies that definition for normal Internet usage, CoDel can be
 parameter-free for consumer use. To ensure that link utilization is
 not adversely affected, CoDel’s estimator sets TARGET to one that
 optimizes power. CoDel’s controller does not drop packets when the
 drop would leave the queue empty or with fewer than a maximum
 transmission unit (MTU) worth of bytes in the buffer. Section 3.2
 shows that an ideal TARGET is 5-10% of the connection round trip time

Nichols, et al. Expires April 16, 2018 [Page 12]

Internet-Draft CoDel October 2017

 (RTT). In the open terrestrial-based Internet, especially at the
 consumer edge, we expect most unbloated RTTs to have a ceiling of
 100ms [CHARB2007]. Using this RTT gives a minimum TARGET of 5ms and
 INTERVAL of 100ms. In practice, uncongested links will see sojourn
 times below TARGET more often than once per RTT, so the estimator is
 not overly sensitive to the value of INTERVAL.

 When the estimator finds a persistent delay above TARGET, the
 controller enters the drop state where a packet is dropped and the
 next drop time is set. As discussed in section 3.3, the initial next
 drop spacing is intended to be long enough to give the endpoints time
 to react to the single drop so SHOULD be set to a value equal to
 INTERVAL. If the estimator’s output falls below TARGET, the
 controller cancels the next drop and exits the drop state. (The
 controller is more sensitive than the estimator to an overly short
 INTERVAL value, since an unnecessary drop would occur and lower link
 utilization.) If next drop time is reached while the controller is
 still in drop state, the packet being dequeued is dropped and the
 next drop time is recalculated.

 Additional logic prevents re-entering the drop state too soon after
 exiting it and resumes the drop state at a recent control level, if
 one exists. This logic is described more precisely in the pseudo-
 code below. Additional work is required to determine the frequency
 and importance of re-entering the drop state.

 Note that CoDel AQM only enters its drop state when the local minimum
 sojourn delay has exceeded TARGET for a time period long enough for
 normal bursts to dissipate, ensuring that a burst of packets that
 fits in the pipe will not be dropped.

4.1. Non-starvation

 CoDel’s goals are to control delay with little or no impact on link
 utilization and to be deployed on a wide range of link bandwidths,
 including variable-rate links, without reconfiguration. To keep from
 making drops when it would starve the output link, CoDel makes
 another check before dropping to see if at least an MTU worth of
 bytes remains in the buffer. If not, the packet SHOULD NOT be
 dropped and, therefore, CoDel exits the drop state. The MTU size can
 be set adaptively to the largest packet seen so far or can be read
 from the interface driver.

4.2. Setting INTERVAL

 The INTERVAL value is chosen to give endpoints time to react to a
 drop without being so long that response times suffer. CoDel’s
 estimator, TARGET, and control loop all use INTERVAL. Understanding

Nichols, et al. Expires April 16, 2018 [Page 13]

Internet-Draft CoDel October 2017

 their derivation shows that CoDel is the most sensitive to the value
 of INTERVAL for single long-lived TCPs with a decreased sensitivity
 for traffic mixes. This is fortunate as RTTs vary across connections
 and are not known a priori. The best policy seems to be to use an
 INTERVAL value slightly larger than the RTT seen by most of the
 connections using a link, a value that can be determined as the
 largest RTT seen if the value is not an outlier (use of a 95-99th
 percentile value should work). In practice, this value is not known
 or measured (though see section 6.2 for an application where INTERVAL
 is measured). An INTERVAL setting of 100ms works well across a range
 of RTTs from 10ms to 1 second (excellent performance is achieved in
 the range from 10 ms to 300ms). For devices intended for the normal
 terrestrial Internet, INTERVAL SHOULD have a value of 100ms. This
 will only cause overdropping where a long-lived TCP has an RTT longer
 than 100ms and there is little or no mixing with other connections
 through the link.

4.3. Setting TARGET

 TARGET is the maximum acceptable persistent queue delay above which
 CoDel is dropping or preparing to drop and below which CoDel will not
 drop. TARGET SHOULD be set to 5ms for normal Internet traffic.

 The calculations of section 3.2 show that the best TARGET value is
 5-10% of the RTT, with the low end of 5% preferred. Extensive
 simulations exploring the impact of different TARGET values when used
 with mixed traffic flows with different RTTs and different bandwidths
 show that below a TARGET of 5ms, utilization suffers for some
 conditions and traffic loads, and above 5ms showed very little or no
 improvement in utilization.

 Sojourn times must remain above the TARGET for INTERVAL amount of
 time in order to enter the drop state. Any packet with a sojourn
 time less than TARGET will reset the time that the queue was last
 below TARGET. Since Internet traffic has very dynamic
 characteristics, the actual sojourn delay experienced by packets
 varies greatly and is often less than TARGET unless the overload is
 excessive. When a link is not overloaded, it is not a bottleneck and
 packet sojourn times will be small or nonexistent. In the usual
 case, there are only one or two places along a path where packets
 will encounter a bottleneck (usually at the edge), so the total
 amount of queueing delay experienced by a packet should be less than
 10ms even under extremely congested conditions. This net delay is
 substantially lower than common current queueing delays on the
 Internet that grow to orders of seconds [NETAL2010, CHARB2007].

 A note on the roles of TARGET and the minimum-tracking INTERVAL.
 TARGET SHOULD NOT be increased in response to lower layers that have

Nichols, et al. Expires April 16, 2018 [Page 14]

Internet-Draft CoDel October 2017

 a bursty nature, where packets are transmitted for short periods
 interspersed with idle periods where the link is waiting for
 permission to send. CoDel’s estimator will "see" the effective
 transmission rate over an INTERVAL amount of time, and increasing
 TARGET only leads to longer queue delays. On the other hand, where a
 significant additional delay is added to the intrinsic RTT of most or
 all packets due to the waiting time for a transmission, it is
 necessary to increase INTERVAL by that extra delay. TARGET SHOULD
 NOT be adjusted for such short-term bursts, but INTERVAL MAY need to
 be adjusted if the path’s intrinsic RTT changes.

4.4. Use with multiple queues

 CoDel is easily adapted to multiple queue systems. With other
 approaches there is always a question of how to account for the fact
 that each queue receives less than the full link rate over time and
 usually sees a varying rate over time. This is what CoDel excels at:
 using a packet’s sojourn time in the buffer completely circumvents
 this problem. In a multiple-queue setting, a separate CoDel
 algorithm runs on each queue, but each CoDel instance uses the packet
 sojourn time the same way a single-queue CoDel does. Just as a
 single-queue CoDel adapts to changing link bandwidths [CODEL2012], so
 does a multiple-queue CoDel system. As an optimization to avoid
 queueing more than necessary, when testing for queue occupancy before
 dropping, the total occupancy of all queues sharing the same output
 link SHOULD be used. This property of CoDel has been exploited in
 fq_codel [FQ-CODEL-ID], which hashes on the packet header fields to
 determine a specific bin, or sub-queue, for the packet, and runs
 CoDel on each bin or sub-queue thus creating a well-mixed output flow
 and obviating issues of reverse path flows (including "ack
 compression").

4.5. Setting up CoDel

 CoDel is set for use in devices in the open Internet. An INTERVAL
 setting of 100ms is used, TARGET is set to 5% of INTERVAL, and the
 initial drop spacing is also set to the INTERVAL. These settings
 have been chosen so that a device, such as a small WiFi router, can
 be sold without the need for any values to be made adjustable,
 yielding a parameterless implementation. In addition, CoDel is
 useful in environments with significantly different characteristics
 from the normal Internet, for example, in switches used as a cluster
 interconnect within a data center. Since cluster traffic is entirely
 internal to the data center, round trip latencies are low (typically
 <100us) but bandwidths are high (1-40Gbps) so it’s relatively easy
 for the aggregation phase of a distributed computation (e.g., the
 Reduce part of a Map/Reduce) to persistently fill then overflow the
 modest per-port buffering available in most high speed switches. A

Nichols, et al. Expires April 16, 2018 [Page 15]

Internet-Draft CoDel October 2017

 CoDel configured for this environment (TARGET and INTERVAL in the
 microsecond rather than millisecond range) can minimize drops or ECN
 marks while keeping throughput high and latency low.

 Devices destined for these environments MAY use a different value for
 INTERVAL, where suitable. If appropriate analysis indicates, the
 TARGET MAY be set to some other value in the 5-10% of INTERVAL and
 the initial drop spacing MAY be set to a value of 1.0 to 1.2 times
 INTERVAL. But these settings will cause problems such as
 overdropping and low throughput if used on the open Internet, so
 devices that allow CoDel to be configured SHOULD default to Internet-
 appropriate values given in this document.

5. Annotated Pseudo-code for CoDel AQM

 What follows is the CoDel algorithm in C++-like pseudo-code. Since
 CoDel adds relatively little new code to a basic tail-drop fifo-
 queue, we have attempted to highlight just these additions by
 presenting CoDel as a sub-class of a basic fifo-queue base class.
 The reference code is included to aid implementers who wish to apply
 CoDel to queue management as described here or to adapt its
 principles to other applications.

 Implementors are strongly encouraged to also look at the Linux kernel
 version of CoDel - a well-written, well tested, real-world, C-based
 implementation. As of this writing, it is available at
 https://github.com/torvalds/linux/blob/master/net/sched/sch_codel.c.

5.1. Data Types

 time_t is an integer time value in units convenient for the system.
 The code presented here uses 0 as a flag value to indicate "no time
 set."

 packet_t* is a pointer to a packet descriptor. We assume it has a
 tstamp field capable of holding a time_t and that field is available
 for use by CoDel (it will be set by the enqueue routine and used by
 the dequeue routine).

 queue_t is a base class for queue objects (the parent class for
 codel_queue_t objects). We assume it has enqueue() and dequeue()
 methods that can be implemented in child classes. We assume it has a
 bytes() method that returns the current queue size in bytes. This
 can be an approximate value. The method is invoked in the dequeue()
 method but shouldn’t require a lock with the enqueue() method.

 flag_t is a Boolean.

Nichols, et al. Expires April 16, 2018 [Page 16]

Internet-Draft CoDel October 2017

5.2. Per-queue state (codel_queue_t instance variables)

 time_t first_above_time_ = 0; // Time to declare sojourn time above
 // TARGET
 time_t drop_next_ = 0; // Time to drop next packet
 uint32_t count_ = 0; // Packets dropped in drop state
 uint32_t lastcount_ = 0; // Count from previous iteration
 flag_t dropping_ = false; // Set to true if in drop state

5.3. Constants

 time_t TARGET = MS2TIME(5); // 5ms TARGET queue delay
 time_t INTERVAL = MS2TIME(100); // 100ms sliding-minimum window
 u_int maxpacket = 512; // Maximum packet size in bytes
 // (SHOULD use interface MTU)

5.4. Enqueue routine

 All the work of CoDel is done in the dequeue routine. The only CoDel
 addition to enqueue is putting the current time in the packet’s
 tstamp field so that the dequeue routine can compute the packet’s
 sojourn time. Note that packets arriving at a full buffer will be
 dropped, but these drops are not counted towards CoDel’s
 computations.

 void codel_queue_t::enqueue(packet_t* pkt)
 {
 pkt->timestamp() = clock();
 queue_t::enqueue(pkt);
 }

5.5. Dequeue routine

 This is the heart of CoDel. There are two branches based on whether
 the controller is in drop state: (i) if the controller is in drop
 state (that is, the minimum packet sojourn time is greater than
 TARGET) then the controller checks if it is time to leave drop state
 or schedules the next drop(s); or (ii) if the controller is not in
 drop state, it determines if it should enter drop state and do the
 initial drop.

 packet_t* CoDelQueue::dequeue()
 {
 time_t now = clock();
 dodequeue_result r = dodequeue(now);
 uint32_t delta;

 if (dropping_) {

Nichols, et al. Expires April 16, 2018 [Page 17]

Internet-Draft CoDel October 2017

 if (! r.ok_to_drop) {
 // sojourn time below TARGET - leave drop state
 dropping_ = false;
 }
 // Time for the next drop. Drop current packet and dequeue
 // next. If the dequeue doesn’t take us out of dropping
 // state, schedule the next drop. A large backlog might
 // result in drop rates so high that the next drop should
 // happen now, hence the ’while’ loop.
 while (now >= drop_next_ && dropping_) {
 drop(r.p);
 ++count_;
 r = dodequeue(now);
 if (! r.ok_to_drop) {
 // leave drop state
 dropping_ = false;
 } else {
 // schedule the next drop.
 drop_next_ = control_law(drop_next_, count_);
 }
 }
 // If we get here we’re not in drop state. The ’ok_to_drop’
 // return from dodequeue means that the sojourn time has been
 // above ’TARGET’ for ’INTERVAL’ so enter drop state.
 } else if (r.ok_to_drop) {
 drop(r.p);
 r = dodequeue(now);
 dropping_ = true;

 // If min went above TARGET close to when it last went
 // below, assume that the drop rate that controlled the
 // queue on the last cycle is a good starting point to
 // control it now. (’drop_next’ will be at most ’INTERVAL’
 // later than the time of the last drop so ’now - drop_next’
 // is a good approximation of the time from the last drop
 // until now.) Implementations vary slightly here; this is
 // the Linux version, which is more widely deployed and
 // tested.
 delta = count_ - lastcount_;
 count_ = 1;
 if ((delta > 1) && (now - drop_next_ < 16*INTERVAL))
 count_ = delta;

 drop_next_ = control_law(now, count_);
 lastcount_ = count_;
 }
 return (r.p);
 }

Nichols, et al. Expires April 16, 2018 [Page 18]

Internet-Draft CoDel October 2017

5.6. Helper routines

 Since the degree of multiplexing and nature of the traffic sources is
 unknown, CoDel acts as a closed-loop servo system that gradually
 increases the frequency of dropping until the queue is controlled
 (sojourn time goes below TARGET). This is the control law that
 governs the servo. It has this form because of the sqrt(p)
 dependence of TCP throughput on drop probability. Note that for
 embedded systems or kernel implementation, the inverse sqrt can be
 computed efficiently using only integer multiplication.

 time_t codel_queue_t::control_law(time_t t, uint32_t count)
 {
 return t + INTERVAL / sqrt(count);
 }

 Next is a helper routine the does the actual packet dequeue and
 tracks whether the sojourn time is above or below TARGET and, if
 above, if it has remained above continuously for at least INTERVAL
 amount of time. It returns two values: a Boolean indicating if it is
 OK to drop (sojourn time above TARGET for at least INTERVAL), and the
 packet dequeued.

Nichols, et al. Expires April 16, 2018 [Page 19]

Internet-Draft CoDel October 2017

 typedef struct {
 packet_t* p;
 flag_t ok_to_drop;
 } dodequeue_result;

 dodequeue_result codel_queue_t::dodequeue(time_t now)
 {
 dodequeue_result r = { queue_t::dequeue(), false };
 if (r.p == NULL) {
 // queue is empty - we can’t be above TARGET
 first_above_time_ = 0;
 return r;
 }

 // To span a large range of bandwidths, CoDel runs two
 // different AQMs in parallel. One is sojourn-time-based
 // and takes effect when the time to send an MTU-sized
 // packet is less than TARGET. The 1st term of the "if"
 // below does this. The other is backlog-based and takes
 // effect when the time to send an MTU-sized packet is >=
 // TARGET. The goal here is to keep the output link
 // utilization high by never allowing the queue to get
 // smaller than the amount that arrives in a typical
 // interarrival time (MTU-sized packets arriving spaced
 // by the amount of time it takes to send such a packet on
 // the bottleneck). The 2nd term of the "if" does this.
 time_t sojourn_time = now - r.p->tstamp;
 if (sojourn_time_ < TARGET || bytes() <= maxpacket_) {
 // went below - stay below for at least INTERVAL
 first_above_time_ = 0;
 } else {
 if (first_above_time_ == 0) {
 // just went above from below. if still above at
 // first_above_time, will say it’s ok to drop.
 first_above_time_ = now + INTERVAL;
 } else if (now >= first_above_time_) {
 r.ok_to_drop = true;
 }
 }
 return r;
 }

5.7. Implementation considerations

 time_t is an integer time value in units convenient for the system.
 Resolution to at least a millisecond is required and better
 resolution is useful up to the minimum possible packet time on the
 output link; 64- or 32-bit widths are acceptable but with 32 bits the

Nichols, et al. Expires April 16, 2018 [Page 20]

Internet-Draft CoDel October 2017

 resolution should be no finer than 2^{-16} to leave enough dynamic
 range to represent a wide range of queue waiting times. Narrower
 widths also have implementation issues due to overflow (wrapping) and
 underflow (limit cycles because of truncation to zero) that are not
 addressed in this pseudocode.

 Since CoDel requires relatively little per-queue state and no direct
 communication or state sharing between the enqueue and dequeue
 routines, it is relatively simple to add CoDel to almost any packet
 processing pipeline, including ASIC- or NPU-based forwarding engines.
 One issue to consider is dodequeue()’s use of a ’bytes()’ function to
 determine the current queue size in bytes. This value does not need
 to be exact. If the enqueue part of the pipeline keeps a running
 count of the total number of bytes it has put into the queue and the
 dequeue routine keeps a running count of the total bytes it has
 removed from the queue, ’bytes()’ is simply the difference between
 these two counters (32-bit counters should be adequate.) Enqueue has
 to update its counter once per packet queued but it does not matter
 when (before, during or after the packet has been added to the
 queue). The worst that can happen is a slight, transient,
 underestimate of the queue size which might cause a drop to be
 briefly deferred.

6. Further Experimentation

 We encourage experimentation with the recommended values of TARGET
 and INTERVAL for Internet settings. CoDel provides general,
 efficient, parameterless building blocks for queue management that
 can be applied to single or multiple queues in a variety of data
 networking scenarios. CoDel’s settings may be modified for other
 special-purpose networking applications.

7. Security Considerations

 This document describes an active queue management algorithm for
 implementation in networked devices. There are no known security
 exposures associated with CoDel at this time.

8. IANA Considerations

 This document does not require actions by IANA.

9. Acknowledgments

 The authors thank Jim Gettys for the constructive nagging that made
 us get the work "out there" before we thought it was ready. We thank
 Dave Taht, Eric Dumazet, and the open source community for showing
 the value of getting it "out there" and for making it real. We thank

Nichols, et al. Expires April 16, 2018 [Page 21]

Internet-Draft CoDel October 2017

 Nandita Dukkipati for contributions to section 6 and for comments
 which helped to substantially improve this draft. We thank the AQM
 working group and the Transport Area shepherd, Wes Eddy, for
 patiently prodding this draft all the way to a standard.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key Words for use in RFCs to Indicate
 Requirement Levels", March 1997.

10.2. Informative References

 [BB2011] Gettys, J. and K. Nichols, "Bufferbloat: Dark Buffers in
 the Internet", Communications of the ACM 9(11) pp. 57-65.

 [BMPFQ] Suter, B., "Buffer Management Schemes for Supporting TCP
 in Gigabit Routers with Per-flow Queueing", IEEE Journal
 on Selected Areas in Communications Vol. 17 Issue 6, June,
 1999, pp. 1159-1169.

 [CHARB2007]
 Dischinger, M., "Characterizing Residential Broadband
 Networks", Proceedings of the Internet Measurement
 Conference San Diego, CA, 2007.

 [CODEL2012]
 Nichols, K. and V. Jacobson, "Controlling Queue Delay",
 Communications of the ACM Vol. 55 No. 11, July, 2012, pp.
 42-50.

 [FQ-CODEL-ID]
 Hoeiland-Joergensen, T., McKenney, P.,
 dave.taht@gmail.com, d., Gettys, J., and E. Dumazet,
 "FlowQueue-Codel", draft-ietf-aqm-fq-codel-06 (work in
 progress), March 2017.

 [KLEIN81] Kleinrock, L. and R. Gail, "An Invariant Property of
 Computer Network Power", International Conference on
 Communications June, 1981,
 <http://www.lk.cs.ucla.edu/data/files/Gail/power.pdf>.

 [MACTCP1997]
 Mathis, M., Semke, J., and J. Mahdavi, "The Macroscopic
 Behavior of the TCP Congestion Avoidance Algorithm", ACM
 SIGCOMM Computer Communications Review Vol. 27 no. 1, Jan.
 2007.

Nichols, et al. Expires April 16, 2018 [Page 22]

Internet-Draft CoDel October 2017

 [NETAL2010]
 Kreibich, C., "Netalyzr: Illuminating the Edge Network",
 Proceedings of the Internet Measurement
 Conference Melbourne, Australia, 2010.

 [REDL1998]
 Nichols, K., Jacobson, V., and K. Poduri, "RED in a
 Different Light", Tech report, September, 1999,
 <http://www.cnaf.infn.it/˜ferrari/papers/ispn/
 red_light_9_30.pdf>.

 [RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
 S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
 Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
 S., Wroclawski, J., and L. Zhang, "Recommendations on
 Queue Management and Congestion Avoidance in the
 Internet", RFC 2309, April 1998.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC896] Nagle, J., "Congestion control in IP/TCP internetworks",
 RFC 896, January 1984.

 [SFQ1990] McKenney, P., "Stochastic Fairness Queuing", Proceedings
 of IEEE INFOCOMM 90 San Francisco, 1990.

 [TSV2011] Gettys, J., "Bufferbloat: Dark Buffers in the Internet",
 IETF 80 presentation to Transport Area Open Meeting,
 March, 2011,
 <http://www.ietf.org/proceedings/80/tsvarea.html>.

 [TSV84] Jacobson, V., "CoDel talk at TSV meeting IETF 84",
 <http://www.ietf.org/proceedings/84/slides/
 slides-84-tsvarea-4.pdf>.

 [VANQ2006]
 Jacobson, V., "A Rant on Queues", talk at MIT Lincoln
 Labs, Lexington, MA July, 2006,
 <http://www.pollere.net/Pdfdocs/QrantJul06.pdf>.

10.3. URIs

 [1] http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf

Nichols, et al. Expires April 16, 2018 [Page 23]

Internet-Draft CoDel October 2017

Appendix A. Applying CoDel in the datacenter

 Nandita Dukkipati and her group at Google realized that the CoDel
 building blocks could be applied to bufferbloat problems in
 datacenter servers, not just to Internet routers. The Linux CoDel
 queueing discipline (qdisc) was adapted in three ways to tackle this
 bufferbloat problem.

 1. The default CoDel action was modified to be a direct feedback
 from qdisc to the TCP layer at dequeue. The direct feedback
 simply reduces TCP’s congestion window just as congestion control
 would do in the event of drop. The scheme falls back to ECN
 marking or packet drop if the TCP socket lock could not be
 acquired at dequeue.

 2. Being located in the server makes it possible to monitor the
 actual RTT to use as CoDel’s interval rather than making a "best
 guess" of RTT. The CoDel interval is dynamically adjusted by
 using the maximum TCP round-trip time (RTT) of those connections
 sharing the same Qdisc/bucket. In particular, there is a history
 entry of the maximum RTT experienced over the last second. As a
 packet is dequeued, the RTT estimate is accessed from its TCP
 socket. If the estimate is larger than the current CoDel
 interval, the CoDel interval is immediately refreshed to the new
 value. If the CoDel interval is not refreshed for over a second,
 it is decreased it to the history entry and the process is
 repeated. The use of the dynamic TCP RTT estimate lets interval
 adapt to the actual maximum value currently seen and thus lets
 the controller space its drop intervals appropriately.

 3. Since the mathematics of computing the setpoint are invariant, a
 target of 5% of the RTT or CoDel interval was used here.

 Non-data packets were not dropped as these are typically small and
 sometimes critical control packets. Being located on the server,
 there is no concern with misbehaving users as there would be on the
 public Internet.

 In several data center workload benchmarks, which are typically
 bursty, CoDel reduced the queueing latencies at the qdisc, and
 thereby improved the mean and 99th-percentile latencies from several
 tens of milliseconds to less than one millisecond. The minimum
 tracking part of the CoDel framework proved useful in disambiguating
 "good" queue versus "bad" queue, particularly helpful in controlling
 qdisc buffers that are inherently bursty because of TCP Segmentation
 Offload (TSO).

Nichols, et al. Expires April 16, 2018 [Page 24]

Internet-Draft CoDel October 2017

Authors’ Addresses

 Kathleen Nichols
 Pollere, Inc.
 PO Box 370201
 Montara, CA 94037
 USA

 Email: nichols@pollere.com

 Van Jacobson
 Google

 Email: vanj@google.com

 Andrew McGregor
 Google

 Email: andrewmcgr@google.com

 Janardhan Iyengar
 Google

 Email: jri@google.com

Nichols, et al. Expires April 16, 2018 [Page 25]

