
dhc Working Group Y. Cui
Internet-Draft Z. Liu
Intended status: Informational C. Liu
Expires: April 29, 2015 Tsinghua University
 October 26, 2014

 DHCP4o6 Active Leasequery
 draft-cui-dhc-dhcp4o6-active-leasequery-00

Abstract

 As networks migrate towards IPv6, some entities still have the
 requirement for IPv4 configuration. DHCPv4 over DHCPv6 [RFC7341]
 provides a mechanism for obtaining IPv4 configuration information
 dynamically in IPv6 networks. DHCPv4/DHCPv6 Active Leasequery allows
 a client to get real-time DHCP address binding information data via
 TCP. This document describes an extension of DHCPv6 Active
 Leasequery to provide an mechanism to getting real-time DHCPv4 over
 DHCPv6 lease information.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 29, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Cui, et al. Expires April 29, 2015 [Page 1]

Internet-Draft DHCP4o6 Active Leasequery October 2014

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Solution . 3
 4. Use Case . 4
 5. Security Considerations 5
 6. References . 5
 6.1. Normative References 5
 6.2. Informative References 6
 Authors’ Addresses . 6

1. Introduction

 The DHCPv6 Leasequery [RFC5007] extends the basic DHCPv6 capability
 [RFC3315] to allow an external entity to query a DHCPv6 server to
 recover individual lease state information about a particular IPv6
 address or client in near real-time. The DHCPv6 Bulk Leasequery
 [RFC5460] extends DHCPv6 Leasequery [RFC5007] that allows an external
 entity to query a DHCPv6 server for bulk transfer of lease
 information via TCP. The Active Leasequery allows an entity not
 directly participated in DHCPv6 client-server transactions and caches
 the current DHCPv6 lease state in real-time.And for DHCPv4, there are
 also similar protocols for DHCPv4 lease. [RFC4388] [RFC6926]

 As networks migrate towards IPv6, hosts in some IPv6 network also
 need DHCPv4 configuration using DHCPv4 over DHCPv6[RFC7341]. The
 lease information in DHCPv4 over DHCPv6 (i.e. DHCP4o6 lease
 information) contains DHCPv4 lease information (including IPv4
 address and other DHCPv4 options) in DHCPv4 messages, and stateless
 DHCPv6 options in DHCPV4-QUERY/DHCPV4-RESPONSE messages. The
 capability of additional DHCPv6 options makes it different from
 original DHCPv4 [RFC2131]. One example usage is in Lightweight
 4over6 dynamic provisioning: A client (lwB4) chooses its IPv6 tunnel
 source address and puts it into a DHCPv6 option
 (OPTION_DHCP4O6_SADDR) [I-D.fsc-softwire-dhcp4o6-saddr-opt] to tell
 the provisioning system. The tuple of client (lease IPv4 address,
 port set, IPv6 tunnel source address)is then used to create a binding
 entry in lwAFTR.

 In the case that a requestor wants to get both DHCPv4 lease
 information and DHCPv6 lease information of the same client, it can
 run DHCPv4 Active Leasequery and DHCPv6 Active Leasequery separately,

Cui, et al. Expires April 29, 2015 [Page 2]

Internet-Draft DHCP4o6 Active Leasequery October 2014

 using the same client identifier to associate them together.
 However, it doesn’t work for a requestor getting DHCP4o6 lease
 information because there’s no DUID or any other DHCPv6 identifiers
 in DHCPV4-QUERY/DHCPV4-RESPONSE messages, thus the DHCPv6 options can
 only be associated with the DHCPv4 lease. A requestor asking for
 DHCP4o6 lease must get the DHCPv6 options along with the DHCPv4 lease
 information.

 However, the DHCPv4 Active Leasequery mechanism doesn’t support
 providing DHCPv6 options, and the DHCPv6 Active Leasequery mechanism
 doesn’t support providing DHCPv4 lease information. This document
 describes an extension of DHCPv6 Active Leasequery, naming the
 DHCP4o6 Active Leasequery, to allow an entity get the mixed DHCPv4
 over DHCPv6 lease information in real-time in IPv6 network.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Solution

 The DHCP4o6 Active Leasequery mechanism is modeled on the existing
 DHCPv4 over DHCPv6 protocol in [RFC7341], which combine DHCPv4 Active
 Leasequery and DHCPv6 Active Leasequery to providing real-time DHCPv4
 lease and related DHCPv6 lease information in IPv6 network. The
 DHCP4o6 Active Leasequery requestors and DHCP4o6 servers communicate
 with each other using DHCPv6 Active Leasequery which contains DHCPv4
 Message Option defined in [RFC7341].

 DHCPv4 Message Option defined in [RFC7341] contains the DHCPv4
 message sent by the DHCP client or server. In DHCP4o6 Active
 Leasequery scenario, DHCPv4 Message Option contains the DHCPv4 Active
 Leasequery message sent by requestor and DHCP4o6 server.

 DHCP4o6 Leasequery requestor SHOULD obtain necessary IPv6
 configuration and have the DHCP4o6 server IPv6 address available via
 configuration or some other means, and that it has unicast IPv6
 reachability to the DHCP4o6 server.

 DHCP4o6 Leasequery requestor creates a TCP connection to DHCP4o6
 server as defined [I-D.ietf-dhc-dhcpv6-active-leasequery]. After
 establishing a connection, requestor sends a DHCPv6 ACTIVELEASEQUERY
 message with a DHCPv4 Message Option in it to query for DHCPv4 over
 DHCPv6 lease information. The DHCPv4 Message Option encapsulates the
 DHCPv4 DHCPACTIVELEASEQUERY message to describe the query for a
 DHCPv4 lease. And the related DHCPv6 options will be queried in

Cui, et al. Expires April 29, 2015 [Page 3]

Internet-Draft DHCP4o6 Active Leasequery October 2014

 DHCPv6 query-options. The requestor MUST NOT put more than one
 DHCPv4 Message Option into a single DHCPv6 ACTIVELEASEQUERY message.

 When received the DHCPv6 ACTIVELEASEQUERY message, DHCP4o6 server
 SHOULD address the DHCPv4 DHCPACTIVELEASEQUERY message in the DHCPv4
 Message Option and the related DHCPv6 query in DHCPv6 query-options.
 DHCP4o6 server will reply with DHCPv6 LEASEQUERY-REPLY message/
 LEASEQUERY-DATA message. When the server update DHCPv4 lease or
 related DHCPv6 information, it will generate a response to
 requestors. In response, the server sends updates of DHCPv4 over
 DHCPv6 lease information in the DHCPv6 LEASEQUERY-DATA message. The
 DHCPv4 lease sent to the requestor using DHCPv4 DHCPLEASEACTIVE or
 DHCPLEASEUNASSIGNED message which will be encapsulated in DHCPv4
 Message Option. The related DHCPv6 options will be carried in the
 DHCPv6 OPTION_CLIENT_DATA option.

4. Use Case

 As the method described above, it will provide the requestor with
 related DHCPv4 lease and DHCPv6 information of a DHCP client in real-
 time. It MAY be used in many cases. We will describe the using for
 Lightweight 4over6 [I-D.ietf-softwire-lw4over6]as an example.

 In Lightweight 4over6, lwAFTR need the binding IPv6 address for the
 mapping table. lwAFTR can work as a DHCP4o6 Active Leasequery
 requestor to get real-time DHCPv4 lease and related DHCPv6
 information. lwAFTR need all lwB4’s IPv4 address, PSID, IPv6 address
 to make the maaping table for the tunnel. So, lwAFTR will send the
 DHCPv6 ACTIVELEASEQUERY message with DHCPv4 Message Option to query
 for DHCPv4 lease and related DHCPv6 lease information of a DHCP
 client. DHCPv4 ACTIVELEASEQUERY message in the DHCPv4 Message Option
 SHOULD contains the primary query as Query for All Configured IP
 addresses. And the Parameter Request List option in DHCPv4
 ACTIVELEASEQUERY message SHOULD contains the DHCPv4 Port Parameters
 option defined in [I-D.ietf-dhc-dynamic-shared-v4allocation]. And in
 the OPTION_LQ_QUERY option in DHCPv6 ACTIVELEASEQUERY message, the
 DHCPv6 OPTION_ORO option MUST contains the DHCPv4 over DHCPv6 Source
 address option defined in [I-D.fsc-softwire-dhcp4o6-saddr-opt].

 DHCP4o6 server configure the lwB4s with DHCPv4 lease, and get the
 binding IPv6 address during the process. As defined in [RFC7341],
 DHCP4o6 client query for DHCP4o6 server’s address during DHCPv6
 interaction. After receiving DHCP4o6 server’s address, DHCP4o6
 client will query for IPv4 address from DHCP4o6 server. At the same
 time, DHCP4o6 client MAY negotiate the binding IPv6 address with
 DHCP4o6 server, and DHCP4o6 server can record the binding IPv6
 address as defined in [I-D.fsc-softwire-dhcp4o6-saddr-opt]. When
 DHCP4o6 server received DHCPv6 ACTIVELEASEQUERY message from lwAFTR,

Cui, et al. Expires April 29, 2015 [Page 4]

Internet-Draft DHCP4o6 Active Leasequery October 2014

 it SHOULD reply with the DHCPv6 LEASEQUERY-REPLY/LEASEQUERY-DATA
 message which contains the CPEs’ IPv4 address, PSID, IPv6 address and
 other information in the following time if there is update of DHCPv4
 lease or DHCPv6 lease.

 In other cases, DHCP4o6 server MAY get more DHCPv6 information or
 even the whole DHCPv6 lease by some means, it can provide more
 information to the requestors.

5. Security Considerations

 To be continue

6. References

6.1. Normative References

 [I-D.ietf-dhc-dhcpv6-active-leasequery]
 Dushyant, D., Kinnear, K., and D. Kukrety, "DHCPv6 Active
 Leasequery", draft-ietf-dhc-dhcpv6-active-leasequery-01
 (work in progress), March 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC
 2131, March 1997.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, March 1997.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC4388] Woundy, R. and K. Kinnear, "Dynamic Host Configuration
 Protocol (DHCP) Leasequery", RFC 4388, February 2006.

 [RFC5007] Brzozowski, J., Kinnear, K., Volz, B., and S. Zeng,
 "DHCPv6 Leasequery", RFC 5007, September 2007.

 [RFC5460] Stapp, M., "DHCPv6 Bulk Leasequery", RFC 5460, February
 2009.

 [RFC6926] Kinnear, K., Stapp, M., Desetti, R., Joshi, B., Russell,
 N., Kurapati, P., and B. Volz, "DHCPv4 Bulk Leasequery",
 RFC 6926, April 2013.

Cui, et al. Expires April 29, 2015 [Page 5]

Internet-Draft DHCP4o6 Active Leasequery October 2014

 [RFC7341] Sun, Q., Cui, Y., Siodelski, M., Krishnan, S., and I.
 Farrer, "DHCPv4-over-DHCPv6 (DHCP 4o6) Transport", RFC
 7341, August 2014.

6.2. Informative References

 [I-D.fsc-softwire-dhcp4o6-saddr-opt]
 Farrer, I., Sun, Q., and Y. Cui, "DHCPv4 over DHCPv6
 Source Address Option", draft-fsc-softwire-dhcp4o6-saddr-
 opt-01 (work in progress), September 2014.

 [I-D.ietf-dhc-dhcpv4-active-leasequery]
 Kinnear, K., Stapp, M., Volz, B., and N. Russell, "Active
 DHCPv4 Lease Query", draft-ietf-dhc-dhcpv4-active-
 leasequery-01 (work in progress), June 2014.

 [I-D.ietf-dhc-dynamic-shared-v4allocation]
 Cui, Y., Qiong, Q., Farrer, I., Lee, Y., Sun, Q., and M.
 Boucadair, "Dynamic Allocation of Shared IPv4 Addresses",
 draft-ietf-dhc-dynamic-shared-v4allocation-02 (work in
 progress), September 2014.

 [I-D.ietf-softwire-lw4over6]
 Cui, Y., Qiong, Q., Boucadair, M., Tsou, T., Lee, Y., and
 I. Farrer, "Lightweight 4over6: An Extension to the DS-
 Lite Architecture", draft-ietf-softwire-lw4over6-11 (work
 in progress), October 2014.

Authors’ Addresses

 Yong Cui
 Tsinghua University
 Beijing 100084
 P.R.China

 Phone: +86-10-6260-3059
 Email: yong@csnet1.cs.tsinghua.edu.cn

 ZiLong Liu
 Tsinghua University
 Beijing 100084
 P.R.China

 Phone: +86-10-6278-5822
 Email: liuzilong8266@126.com

Cui, et al. Expires April 29, 2015 [Page 6]

Internet-Draft DHCP4o6 Active Leasequery October 2014

 Cong Liu
 Tsinghua University
 Beijing 100084
 P.R.China

 Phone: +86-10-6278-5822
 Email: gnocuil@gmail.com

Cui, et al. Expires April 29, 2015 [Page 7]

Dynamic Host Configuration (DHC) T. Mrugalski, Ed.
Internet-Draft M. Siodelski
Obsoletes: 3315,3633,3736,7083 (if ISC
 approved) B. Volz, Ed.
Intended status: Standards Track A. Yourtchenko
Expires: August 26, 2015 Cisco
 M. Richardson
 SSW
 S. Jiang
 Huawei
 T. Lemon
 Nominum
 February 22, 2015

 Dynamic Host Configuration Protocol for IPv6 (DHCPv6) bis
 draft-dhcwg-dhc-rfc3315bis-04

Abstract

 The Dynamic Host Configuration Protocol for IPv6 (DHCP) enables DHCP
 servers to pass configuration parameters such as IPv6 network
 addresses to IPv6 nodes. It offers the capability of automatic
 allocation of reusable network addresses and additional configuration
 flexibility. This protocol is a stateful counterpart to "IPv6
 Stateless Address Autoconfiguration" (RFC 4862), and can be used
 separately or concurrently with the latter to obtain configuration
 parameters.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 26, 2015.

Mrugalski, et al. Expires August 26, 2015 [Page 1]

Internet-Draft RFC 3315 bis February 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction and Overview 6
 1.1. Protocols and Addressing 7
 1.2. Client-server Exchanges Involving Two Messages 7
 1.3. Client-server Exchanges Involving Four Messages 8
 2. Requirements . 8
 3. Background . 9
 4. Terminology . 10
 4.1. IPv6 Terminology . 10
 4.2. DHCP Terminology . 11
 5. Operational Models . 14
 5.1. Stateless DHCP . 14
 5.2. DHCP for Non-Temporary Address Assignment 15
 5.3. DHCP for Prefix Delegation 15
 5.4. DHCP for Customer Edge Routers 18
 5.5. DHCP for Temporary Addresses 18
 6. DHCP Constants . 18
 6.1. Multicast Addresses 18
 6.2. UDP Ports . 19
 6.3. DHCP Message Types 19

Mrugalski, et al. Expires August 26, 2015 [Page 2]

Internet-Draft RFC 3315 bis February 2015

 6.4. Status Codes . 21
 6.5. Transmission and Retransmission Parameters 21
 6.6. Representation of time values and "Infinity" as a time
 value . 22
 7. Client/Server Message Formats 22
 8. Relay Agent/Server Message Formats 23
 8.1. Relay-forward Message 24
 8.2. Relay-reply Message 25
 9. Representation and Use of Domain Names 25
 10. DHCP Unique Identifier (DUID) 25
 10.1. DUID Contents . 26
 10.2. DUID Based on Link-layer Address Plus Time, DUID-LLT . . 26
 10.3. DUID Assigned by Vendor Based on Enterprise Number,
 DUID-EN . 28
 10.4. DUID Based on Link-layer Address, DUID-LL 29
 11. Identity Association . 30
 11.1. Identity Associations for Address Assignment 30
 11.2. Identity Associations for Prefix Delegation 30
 12. Selecting Addresses for Assignment to an IA 31
 13. Management of Temporary Addresses 32
 14. Transmission of Messages by a Client 33
 14.1. Rate Limiting . 33
 15. Reliability of Client Initiated Message Exchanges 34
 16. Message Validation . 35
 16.1. Use of Transaction IDs 36
 16.2. Solicit Message . 36
 16.3. Advertise Message 36
 16.4. Request Message . 37
 16.5. Confirm Message . 37
 16.6. Renew Message . 37
 16.7. Rebind Message . 37
 16.8. Decline Messages . 38
 16.9. Release Message . 38
 16.10. Reply Message . 38
 16.11. Reconfigure Message 39
 16.12. Information-request Message 39
 16.13. Relay-forward Message 39
 16.14. Relay-reply Message 40
 17. Client Source Address and Interface Selection 40
 17.1. Address Assignment 40
 17.2. Prefix Delegation 40
 18. DHCP Server Solicitation 41
 18.1. Client Behavior . 41
 18.1.1. Creation of Solicit Messages 41
 18.1.2. Transmission of Solicit Messages 42
 18.1.3. Receipt of Advertise Messages 43
 18.1.4. Receipt of Reply Message 44
 18.2. Server Behavior . 45

Mrugalski, et al. Expires August 26, 2015 [Page 3]

Internet-Draft RFC 3315 bis February 2015

 18.2.1. Receipt of Solicit Messages 45
 18.2.2. Creation and Transmission of Advertise Messages . . 45
 18.2.3. Creation and Transmission of Reply Messages 47
 18.3. Client behavior for Prefix Delegation 47
 18.4. Server Behavior for Prefix Delegation 48
 19. DHCP Client-Initiated Configuration Exchange 48
 19.1. Client Behavior . 49
 19.1.1. Creation and Transmission of Request Messages . . . 49
 19.1.2. Creation and Transmission of Confirm Messages . . . 50
 19.1.3. Creation and Transmission of Renew Messages 52
 19.1.4. Creation and Transmission of Rebind Messages 53
 19.1.5. Creation and Transmission of Information-request
 Messages . 54
 19.1.6. Creation and Transmission of Release Messages . . . 55
 19.1.7. Creation and Transmission of Decline Messages . . . 56
 19.1.8. Receipt of Reply Messages 57
 19.2. Server Behavior . 59
 19.2.1. Receipt of Request Messages 59
 19.2.2. Receipt of Confirm Messages 60
 19.2.3. Receipt of Renew Messages 61
 19.2.4. Receipt of Rebind Messages 62
 19.2.5. Receipt of Information-request Messages 62
 19.2.6. Receipt of Release Messages 63
 19.2.7. Receipt of Decline Messages 64
 19.2.8. Transmission of Reply Messages 64
 19.3. Requesting Router Behavior for Prefix Delegation 65
 19.4. Delegating Router Behavior for Prefix Delegation 66
 20. DHCP Server-Initiated Configuration Exchange 67
 20.1. Server Behavior . 68
 20.1.1. Creation and Transmission of Reconfigure Messages . 68
 20.1.2. Time Out and Retransmission of Reconfigure Messages 69
 20.2. Receipt of Renew or Rebind Messages 69
 20.3. Receipt of Information-request Messages 69
 20.4. Client Behavior . 70
 20.4.1. Receipt of Reconfigure Messages 70
 20.4.2. Creation and Transmission of Renew or Rebind
 Messages . 71
 20.4.3. Creation and Transmission of Information-request
 Messages . 71
 20.4.4. Time Out and Retransmission of Renew, Rebind or
 Information-request Messages 71
 20.4.5. Receipt of Reply Messages 71
 20.5. Prefix Delegation Reconfiguration 72
 20.5.1. Delegating Router Behavior 72
 20.5.2. Requesting Router Behavior 72
 21. Relay Agent Behavior . 72
 21.1. Relaying a Client Message or a Relay-forward Message . . 72
 21.1.1. Relaying a Message from a Client 73

Mrugalski, et al. Expires August 26, 2015 [Page 4]

Internet-Draft RFC 3315 bis February 2015

 21.1.2. Relaying a Message from a Relay Agent 73
 21.1.3. Relay Agent Behavior with Prefix Delegation 74
 21.2. Relaying a Relay-reply Message 74
 21.3. Construction of Relay-reply Messages 74
 22. Authentication of DHCP Messages 75
 22.1. Security of Messages Sent Between Servers and Relay
 Agents . 76
 22.2. Summary of DHCP Authentication 77
 22.3. Replay Detection . 77
 22.4. Delayed Authentication Protocol 78
 22.4.1. Use of the Authentication Option in the Delayed
 Authentication Protocol 78
 22.4.2. Message Validation 80
 22.4.3. Key Utilization 80
 22.4.4. Client Considerations for Delayed Authentication
 Protocol . 80
 22.4.4.1. Sending Solicit Messages 80
 22.4.4.2. Receiving Advertise Messages 81
 22.4.4.3. Sending Request, Confirm, Renew, Rebind, Decline
 or Release Messages 81
 22.4.4.4. Sending Information-request Messages 82
 22.4.4.5. Receiving Reply Messages 82
 22.4.4.6. Receiving Reconfigure Messages 82
 22.4.5. Server Considerations for Delayed Authentication
 Protocol . 82
 22.4.5.1. Receiving Solicit Messages and Sending Advertise
 Messages . 82
 22.4.5.2. Receiving Request, Confirm, Renew, Rebind or
 Release Messages and Sending Reply Messages . . 83
 22.5. Reconfigure Key Authentication Protocol 83
 22.5.1. Use of the Authentication Option in the Reconfigure
 Key Authentication Protocol 83
 22.5.2. Server considerations for Reconfigure Key protocol . 84
 22.5.3. Client considerations for Reconfigure Key protocol . 85
 23. DHCP Options . 85
 23.1. Format of DHCP Options 86
 23.2. Client Identifier Option 86
 23.3. Server Identifier Option 87
 23.4. Identity Association for Non-temporary Addresses Option 88
 23.5. Identity Association for Temporary Addresses Option . . 90
 23.6. IA Address Option 92
 23.7. Option Request Option 93
 23.8. Preference Option 94
 23.9. Elapsed Time Option 95
 23.10. Relay Message Option 95
 23.11. Authentication Option 96
 23.12. Server Unicast Option 97
 23.13. Status Code Option 98

Mrugalski, et al. Expires August 26, 2015 [Page 5]

Internet-Draft RFC 3315 bis February 2015

 23.14. Rapid Commit Option 100
 23.15. User Class Option 101
 23.16. Vendor Class Option 102
 23.17. Vendor-specific Information Option 104
 23.18. Interface-Id Option 106
 23.19. Reconfigure Message Option 107
 23.20. Reconfigure Accept Option 107
 23.21. Identity Association for Prefix Delegation Option . . . 108
 23.22. IA Prefix Option . 110
 23.23. SOL_MAX_RT Option 111
 23.24. INF_MAX_RT Option 112
 24. Security Considerations 113
 25. IANA Considerations . 116
 26. Acknowledgments . 116
 27. References . 117
 27.1. Normative References 117
 27.2. Informative References 119
 Appendix A. Changes since RFC3315 120
 Appendix B. Changes since RFC3633 123
 Appendix C. Appearance of Options in Message Types 123
 Appendix D. Appearance of Options in the Options Field of DHCP
 Options . 124
 Authors’ Addresses . 125

1. Introduction and Overview

 This document describes DHCP for IPv6 (DHCP), a client/server
 protocol that provides managed configuration of devices.

 DHCP can provide a device with addresses assigned by a DHCP server
 and other configuration information, which are carried in options.
 DHCP can be extended through the definition of new options to carry
 configuration information not specified in this document.

 DHCP is the "stateful address autoconfiguration protocol" and the
 "stateful autoconfiguration protocol" referred to in "IPv6 Stateless
 Address Autoconfiguration" [RFC4862].

 This document also provides a mechanism for automated delegation of
 IPv6 prefixes using DHCP. Through this mechanism, a delegating
 router can delegate prefixes to requesting routers.

 The operational models and relevant configuration information for
 DHCPv4 [RFC2132][RFC2131] and DHCPv6 are sufficiently different that
 integration between the two services is not included in this
 document. [RFC3315] suggested that future work might be to extend
 DHCPv6 to carry IPv4 address and configuration information. However,
 the current consensus of the IETF is that DHCPv4 should be used

Mrugalski, et al. Expires August 26, 2015 [Page 6]

Internet-Draft RFC 3315 bis February 2015

 rather than DHCPv6 when conveying IPv4 configuration information to
 nodes. [RFC7341] describes a transport mechanism to carry DHCPv4
 messages using the DHCPv6 protocol for the dynamic provisioning of
 IPv4 address and configuration information across IPv6-only networks.

 The remainder of this introduction summarizes DHCP, explaining the
 message exchange mechanisms and example message flows. The message
 flows in Section 1.2 and Section 1.3 are intended as illustrations of
 DHCP operation rather than an exhaustive list of all possible client-
 server interactions. Section 5 provides an overview of common
 operational models. Section 18, Section 19, and Section 20 explain
 client and server operation in detail.

1.1. Protocols and Addressing

 Clients and servers exchange DHCP messages using UDP [RFC0768]. The
 client uses a link-local address or addresses determined through
 other mechanisms for transmitting and receiving DHCP messages.

 A DHCP client sends most messages using a reserved, link-scoped
 multicast destination address so that the client need not be
 configured with the address or addresses of DHCP servers.

 To allow a DHCP client to send a message to a DHCP server that is not
 attached to the same link, a DHCP relay agent on the client’s link
 will relay messages between the client and server. The operation of
 the relay agent is transparent to the client and the discussion of
 message exchanges in the remainder of this section will omit the
 description of message relaying by relay agents.

 Once the client has determined the address of a server, it may under
 some circumstances send messages directly to the server using
 unicast.

1.2. Client-server Exchanges Involving Two Messages

 When a DHCP client does not need to have a DHCP server assign it IP
 addresses, the client can obtain configuration information such as a
 list of available DNS servers [RFC3646] or NTP servers [RFC4075]
 through a single message and reply exchanged with a DHCP server. To
 obtain configuration information the client first sends an
 Information-request message to the All_DHCP_Relay_Agents_and_Servers
 multicast address. Servers respond with a Reply message containing
 the configuration information for the client.

 This message exchange assumes that the client requires only
 configuration information and does not require the assignment of any
 IPv6 addresses.

Mrugalski, et al. Expires August 26, 2015 [Page 7]

Internet-Draft RFC 3315 bis February 2015

 When a server has IPv6 addresses and other configuration information
 committed to a client, the client and server may be able to complete
 the exchange using only two messages, instead of four messages as
 described in the next section. In this case, the client sends a
 Solicit message to the All_DHCP_Relay_Agents_and_Servers requesting
 the assignment of addresses and other configuration information.
 This message includes an indication that the client is willing to
 accept an immediate Reply message from the server. The server that
 is willing to commit the assignment of addresses to the client
 immediately responds with a Reply message. The configuration
 information and the addresses in the Reply message are then
 immediately available for use by the client.

 Each address assigned to the client has associated preferred and
 valid lifetimes specified by the server. To request an extension of
 the lifetimes assigned to an address, the client sends a Renew
 message to the server. The server sends a Reply message to the
 client with the new lifetimes, allowing the client to continue to use
 the address without interruption.

1.3. Client-server Exchanges Involving Four Messages

 To request the assignment of one or more IPv6 addresses, a client
 first locates a DHCP server and then requests the assignment of
 addresses and other configuration information from the server. The
 client sends a Solicit message to the
 All_DHCP_Relay_Agents_and_Servers address to find available DHCP
 servers. Any server that can meet the client’s requirements responds
 with an Advertise message. The client then chooses one of the
 servers and sends a Request message to the server asking for
 confirmed assignment of addresses and other configuration
 information. The server responds with a Reply message that contains
 the confirmed addresses and configuration.

 As described in the previous section, the client sends a Renew
 message to the server to extend the lifetimes associated with its
 addresses, allowing the client to continue to use those addresses
 without interruption.

2. Requirements

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

 This document also makes use of internal conceptual variables to
 describe protocol behavior and external variables that an
 implementation must allow system administrators to change. The

Mrugalski, et al. Expires August 26, 2015 [Page 8]

Internet-Draft RFC 3315 bis February 2015

 specific variable names, how their values change, and how their
 settings influence protocol behavior are provided to demonstrate
 protocol behavior. An implementation is not required to have them in
 the exact form described here, so long as its external behavior is
 consistent with that described in this document.

3. Background

 The IPv6 Specification provides the base architecture and design of
 IPv6. Related work in IPv6 that would best serve an implementor to
 study includes the IPv6 Specification [RFC2460], the IPv6 Addressing
 Architecture [RFC4291], IPv6 Stateless Address Autoconfiguration
 [RFC4862], IPv6 Neighbor Discovery Processing [RFC4861], and Dynamic
 Updates to DNS [RFC2136]. These specifications enable DHCP to build
 upon the IPv6 work to provide both robust stateful autoconfiguration
 and autoregistration of DNS Host Names.

 The IPv6 Addressing Architecture specification [RFC4291] defines the
 address scope that can be used in an IPv6 implementation, and the
 various configuration architecture guidelines for network designers
 of the IPv6 address space. Two advantages of IPv6 are that support
 for multicast is required and nodes can create link-local addresses
 during initialization. The availability of these features means that
 a client can use its link-local address and a well-known multicast
 address to discover and communicate with DHCP servers or relay agents
 on its link.

 IPv6 Stateless Address Autoconfiguration [RFC4862] specifies
 procedures by which a node may autoconfigure addresses based on
 router advertisements [RFC4861], and the use of a valid lifetime to
 support renumbering of addresses on the Internet. In addition, the
 protocol interaction by which a node begins stateless or stateful
 autoconfiguration is specified. DHCP is one vehicle to perform
 stateful autoconfiguration. Compatibility with stateless address
 autoconfiguration is a design requirement of DHCP.

 IPv6 Neighbor Discovery [RFC4861] is the node discovery protocol in
 IPv6 which replaces and enhances functions of ARP [RFC0826]. To
 understand IPv6 and stateless address autoconfiguration, it is
 strongly recommended that implementors understand IPv6 Neighbor
 Discovery.

 Dynamic Updates to DNS [RFC2136] is a specification that supports the
 dynamic update of DNS records for both IPv4 and IPv6. DHCP can use
 the dynamic updates to DNS to integrate addresses and name space to
 not only support autoconfiguration, but also autoregistration in
 IPv6.

Mrugalski, et al. Expires August 26, 2015 [Page 9]

Internet-Draft RFC 3315 bis February 2015

4. Terminology

 This section defines terminology specific to IPv6 and DHCP used in
 this document.

4.1. IPv6 Terminology

 IPv6 terminology relevant to this specification from the IPv6
 Protocol [RFC2460], IPv6 Addressing Architecture [RFC4291], and IPv6
 Stateless Address Autoconfiguration [RFC4862] is included below.

 address An IP layer identifier for an interface or
 a set of interfaces.

 host Any node that is not a router.

 IP Internet Protocol Version 6 (IPv6). The
 terms IPv4 and IPv6 are used only in
 contexts where it is necessary to avoid
 ambiguity.

 interface A node’s attachment to a link.

 link A communication facility or medium over
 which nodes can communicate at the link
 layer, i.e., the layer immediately below
 IP. Examples are Ethernet (simple or
 bridged); Token Ring; PPP links, X.25,
 Frame Relay, or ATM networks; and Internet
 (or higher) layer "tunnels", such as
 tunnels over IPv4 or IPv6 itself.

 link-layer identifier A link-layer identifier for an interface.
 Examples include IEEE 802 addresses for
 Ethernet or Token Ring network interfaces,
 and E.164 addresses for ISDN links.

 link-local address An IPv6 address having a link-only scope,
 indicated by having the prefix (FE80::/10),
 that can be used to reach neighboring nodes
 attached to the same link. Every interface
 has a link-local address.

 multicast address An identifier for a set of interfaces
 (typically belonging to different nodes).
 A packet sent to a multicast address is
 delivered to all interfaces identified by
 that address.

Mrugalski, et al. Expires August 26, 2015 [Page 10]

Internet-Draft RFC 3315 bis February 2015

 neighbor A node attached to the same link.

 node A device that implements IP.

 packet An IP header plus payload.

 prefix The initial bits of an address, or a set of
 IP addresses that share the same initial
 bits.

 prefix length The number of bits in a prefix.

 router A node that forwards IP packets not
 explicitly addressed to itself.

 unicast address An identifier for a single interface. A
 packet sent to a unicast address is
 delivered to the interface identified by
 that address.

4.2. DHCP Terminology

 Terminology specific to DHCP can be found below.

 allocatable resource (or resource). It is an address, a prefix
 or any other allocatable resource that may
 be defined in the future. Currently there
 are three defined allocatable resources:
 non-temporary addresses, temporary
 addresses and delegated prefixes.

 appropriate to the link An address is "appropriate to the link"
 when the address is consistent with the
 DHCP server’s knowledge of the network
 topology, prefix assignment and address
 assignment policies.

 binding A binding (or, client binding) is a group
 of server data records containing the
 information the server has about the
 addresses in an IA or configuration
 information explicitly assigned to the
 client. Configuration information that has
 been returned to a client through a policy
 - for example, the information returned to
 all clients on the same link - does not
 require a binding. A binding containing
 information about an IA is indexed by the

Mrugalski, et al. Expires August 26, 2015 [Page 11]

Internet-Draft RFC 3315 bis February 2015

 tuple <DUID, IA-type, IAID> (where IA-type
 is the type of address in the IA; for
 example, temporary). A binding containing
 configuration information for a client is
 indexed by <DUID>.

 configuration parameter An element of the configuration information
 set on the server and delivered to the
 client using DHCP. Such parameters may be
 used to carry information to be used by a
 node to configure its network subsystem and
 enable communication on a link or
 internetwork, for example.

 delegating router: The router that acts as a DHCP server, and
 is responding to the prefix request.

 DHCP Dynamic Host Configuration Protocol for
 IPv6. The terms DHCPv4 and DHCPv6 are used
 only in contexts where it is necessary to
 avoid ambiguity.

 DHCP client (or client) A node that initiates requests on a link to
 obtain configuration parameters from one or
 more DHCP servers. Depending on the
 purpose of the client, it may feature the
 requesting router functionality, if it
 supports prefix delegation.

 DHCP domain A set of links managed by DHCP and operated
 by a single administrative entity.

 DHCP realm A name used to identify the DHCP
 administrative domain from which a DHCP
 authentication key was selected.

 DHCP relay agent (or relay agent) A node that acts as an
 intermediary to deliver DHCP messages
 between clients and servers. In certain
 configurations there may be more than one
 relay agent between clients and servers, so
 a relay agent may send DHCP messages to
 another relay agent.

 DHCP server (or server) A node that responds to requests from
 clients, and may or may not be on the same
 link as the client(s). Depending on its
 capabilities, it may also feature the

Mrugalski, et al. Expires August 26, 2015 [Page 12]

Internet-Draft RFC 3315 bis February 2015

 functionality of delegating router, if it
 supports prefix delegation.

 DUID A DHCP Unique IDentifier for a DHCP
 participant; each DHCP client and server
 has exactly one DUID. See Section 10 for
 details of the ways in which a DUID may be
 constructed.

 IA Identity Association: A collection of
 allocatable resources assigned to a client.
 Each IA has an associated IAID. A client
 may have more than one IA assigned to it;
 for example, one for each of its
 interfaces. Each IA holds one type of
 address; for example, an identity
 association for temporary addresses (IA_TA)
 holds temporary addresses (see "identity
 association for temporary addresses") and
 identity association for prefix delegation
 (IA_PD) holds delegated prefixes.
 Throughout this document, "IA" is used to
 refer to an identity association without
 identifying the type of allocatable
 resources in the IA. At the time of
 writing this document, there are 3 IA types
 defined: IA_NA, IA_TA and IA_PD. New IA
 types may be defined in the future.

 IAID Identity Association IDentifier: An
 identifier for an IA, chosen by the client.
 Each IA has an IAID, which is chosen to be
 unique among IAIDs for IAs of a specific
 type, belonging to that client.

 IA_NA Identity association for Non-temporary
 Addresses: An IA that carries assigned
 addresses that are not temporary addresses
 (see "identity association for temporary
 addresses")

 IA_TA Identity Association for Temporary
 Addresses: An IA that carries temporary
 addresses (see [RFC4941]).

 IA_PD Identity Association for Prefix Delegation:
 A collection of prefixes assigned to the
 requesting router. Each IA_PD has an

Mrugalski, et al. Expires August 26, 2015 [Page 13]

Internet-Draft RFC 3315 bis February 2015

 associated IAID. A requesting router may
 have more than one IA_PD assigned to it;
 for example, one for each of its
 interfaces.

 message A unit of data carried as the payload of a
 UDP datagram, exchanged among DHCP servers,
 relay agents and clients.

 Reconfigure key A key supplied to a client by a server used
 to provide security for Reconfigure
 messages.

 requesting router: The router that acts as a DHCP client and
 is requesting prefix(es) to be assigned.

 singleton option: An option that is allowed to appear only
 once. Most options are singletons.

 relaying A DHCP relay agent relays DHCP messages
 between DHCP participants.

 transaction ID An opaque value used to match responses
 with replies initiated either by a client
 or server.

5. Operational Models

 This section describes some of the current most common DHCP
 operational models. The described models are not mutually exclusive
 and are sometimes used together. For example, a device may start in
 stateful mode to obtain an address, and at a later time when an
 application is started, request additional parameters using stateless
 mode.

5.1. Stateless DHCP

 Stateless DHCP [RFC3736] is used when DHCP is not used for obtaining
 an allocatable resource, but a node (DHCP client) desires one or more
 DHCP "other configuration" parameters, such as a list of DNS
 recursive name servers or DNS domain search lists [RFC3646].
 Stateless may be used when a node initially boots or at any time the
 software on the node requires some missing or expired configuration
 information that is available via DHCP.

 This is the simplest and most basic operation for DHCP and requires a
 client (and a server) to support only two messages - Information-
 request and Reply. Note that DHCP servers and relay agents typically

Mrugalski, et al. Expires August 26, 2015 [Page 14]

Internet-Draft RFC 3315 bis February 2015

 also need to support the Relay-Forw and Relay-Reply messages to
 accommodate operation when clients and servers are not on the same
 link.

5.2. DHCP for Non-Temporary Address Assignment

 This model of operation was the original motivation for DHCP and is
 the "stateful address autoconfiguration protocol" for IPv6 [RFC2462].
 It is appropriate for situations where stateless address
 autoconfiguration is not desired, because of network policy,
 additional requirements (such as updating the DNS with forward or
 reverse resource records), or client specific requirements (i.e.,
 some prefixes are only available to some clients) which are not
 possible using stateless address autoconfiguration.

 The model of operation for non-temporary address assignment is as
 follows. The server is provided with IPv6 prefixes from which it may
 allocate addresses to clients, as well as any related network
 topology information as to which prefixes are present on which links.
 A client requests a non-temporary address to be assigned by the
 server. The server allocates an address or addresses appropriate for
 the link on which the client is connected. The server returns the
 allocated address or addresses to the client.

 Each address has an associated preferred and valid lifetime, which
 constitutes an agreement about the length of time over which the
 client is allowed to use the address. A client can request an
 extension of the lifetimes on an address and is required to terminate
 the use of an address if the valid lifetime of the address expires.

 Typically clients request other configuration parameters, such as the
 domain server addresses and search lists, when requesting addresses.

5.3. DHCP for Prefix Delegation

 The prefix delegation mechanism, originally described in [RFC3633],
 is another stateful mode of operation and intended for simple
 delegation of prefixes from a delegating router (DHCP server) to
 requesting routers (DHCP clients). It is appropriate for situations
 in which the delegating router does not have knowledge about the
 topology of the networks to which the requesting router is attached,
 and the delegating router does not require other information aside
 from the identity of the requesting router to choose a prefix for
 delegation. For example, these options would be used by a service
 provider to assign a prefix to a Customer Premise Equipment (CPE)
 device acting as a router between the subscriber’s internal network
 and the service provider’s core network.

Mrugalski, et al. Expires August 26, 2015 [Page 15]

Internet-Draft RFC 3315 bis February 2015

 The design of this prefix delegation mechanism meets the requirements
 for prefix delegation in [RFC3769].

 The model of operation for prefix delegation is as follows. A
 delegating router is provided IPv6 prefixes to be delegated to
 requesting routers. Examples of ways in which the delegating router
 may be provided these prefixes is given in Section 19.4. A
 requesting router requests prefix(es) from the delegating router, as
 described in Section 19.3. The delegating router chooses prefix(es)
 for delegation, and responds with prefix(es) to the requesting
 router. The requesting router is then responsible for the delegated
 prefix(es). For example, the requesting router might assign a subnet
 from a delegated prefix to one of its interfaces, and begin sending
 router advertisements for the prefix on that link.

 Each prefix has an associated valid and preferred lifetime, which
 constitutes an agreement about the length of time over which the
 requesting router is allowed to use the prefix. A requesting router
 can request an extension of the lifetimes on a delegated prefix and
 is required to terminate the use of a delegated prefix if the valid
 lifetime of the prefix expires.

 This prefix delegation mechanism would be appropriate for use by an
 ISP to delegate a prefix to a subscriber, where the delegated prefix
 would possibly be subnetted and assigned to the links within the
 subscriber’s network.

 Figure 1 illustrates a network architecture in which prefix
 delegation could be used.

Mrugalski, et al. Expires August 26, 2015 [Page 16]

Internet-Draft RFC 3315 bis February 2015

 ______________________ \
 / \ \
 | ISP core network | \
 __________ ___________/ |
 | |
 +-------+-------+ |
 | Aggregation | | ISP
 | device | | network
 | (delegating | |
 | router) | |
 +-------+-------+ |
 | /
 |DSL to subscriber /
 |premises /
 |
 +------+------+ \
 | CPE | \
 | (requesting | \
 | router) | |
 +----+---+----+ |
 | | | Subsciber
 ---+-------------+-----+ +-----+------ | Network
 | | | |
 +----+-----+ +-----+----+ +----+-----+ |
 |Subscriber| |Subscriber| |Subscriber| /
 | PC | | PC | | PC | /
 +----------+ +----------+ +----------+ /

 Figure 1: Prefix Delegation Newtork

 In this example, the delegating router is configured with a set of
 prefixes to be used for assignment to customers at the time of each
 customer’s first connection to the ISP service. The prefix
 delegation process begins when the requesting router requests
 configuration information through DHCP. The DHCP messages from the
 requesting router are received by the delegating router in the
 aggregation device. When the delegating router receives the request,
 it selects an available prefix or prefixes for delegation to the
 requesting router. The delegating router then returns the prefix or
 prefixes to the requesting router.

 The requesting router subnets the delegated prefix and assigns the
 longer prefixes to links in the subscriber’s network. In a typical
 scenario based on the network shown in Figure 1, the requesting
 router subnets a single delegated /48 prefix into /64 prefixes and
 assigns one /64 prefix to each of the links in the subscriber
 network.

Mrugalski, et al. Expires August 26, 2015 [Page 17]

Internet-Draft RFC 3315 bis February 2015

 The prefix delegation options can be used in conjunction with other
 DHCP options carrying other configuration information to the
 requesting router. The requesting router may, in turn, provide DHCP
 service to hosts attached to the internal network. For example, the
 requesting router may obtain the addresses of DNS and NTP servers
 from the ISP delegating router, and then pass that configuration
 information on to the subscriber hosts through a DHCP server in the
 requesting router.

5.4. DHCP for Customer Edge Routers

 The DHCP requirements and network architecture for Customer Edge
 Routers are described in [RFC7084]. This model of operation combines
 address assignment (see Section 5.2) and prefix delegation (see
 Section 5.3). In general, this model assumes that a single set of
 transactions between the client and server will assign or extend the
 client’s non-temporary addresses and delegated prefixes.

5.5. DHCP for Temporary Addresses

 Temporary addresses were originally introduced to avoid privacy
 concerns with stateless address autoconfiguration, which based
 64-bits of the address on the EUI-64 (see [RFC3041] and [RFC4941]).
 They were added to DHCP to provide complementary support when
 stateful address assignment is used.

 Temporary address assignment works mostly like non-temporary address
 assignment (see Section 5.2), however these addresses are generally
 intended to be used for a short period of time and not to have their
 lifetimes extended, though they can be if required.

6. DHCP Constants

 This section describes various program and networking constants used
 by DHCP.

6.1. Multicast Addresses

 DHCP makes use of the following multicast addresses:

 All_DHCP_Relay_Agents_and_Servers (FF02::1:2) A link-scoped
 multicast address used by a client to communicate
 with neighboring (i.e., on-link) relay agents and
 servers. All servers and relay agents are members of
 this multicast group.

 All_DHCP_Servers (FF05::1:3) A site-scoped multicast address used by
 a relay agent to communicate with servers, either

Mrugalski, et al. Expires August 26, 2015 [Page 18]

Internet-Draft RFC 3315 bis February 2015

 because the relay agent wants to send messages to all
 servers or because it does not know the unicast
 addresses of the servers. Note that in order for a
 relay agent to use this address, it must have an
 address of sufficient scope to be reachable by the
 servers. All servers within the site are members of
 this multicast group.

6.2. UDP Ports

 Clients listen for DHCP messages on UDP port 546. Servers and relay
 agents listen for DHCP messages on UDP port 547.

6.3. DHCP Message Types

 DHCP defines the following message types. More detail on these
 message types can be found in Section 7 and Section 8. Message types
 not listed here are reserved for future use. The numeric encoding
 for each message type is shown in parentheses.

 SOLICIT (1) A client sends a Solicit message to locate servers.

 ADVERTISE (2) A server sends an Advertise message to indicate that
 it is available for DHCP service, in response to a
 Solicit message received from a client.

 REQUEST (3) A client sends a Request message to request
 configuration parameters, including IP addresses,
 from a specific server.

 CONFIRM (4) A client sends a Confirm message to any available
 server to determine whether the addresses it was
 assigned are still appropriate to the link to which
 the client is connected.

 RENEW (5) A client sends a Renew message to the server that
 originally provided the client’s addresses and
 configuration parameters to extend the lifetimes on
 the addresses assigned to the client and to update
 other configuration parameters.

 REBIND (6) A client sends a Rebind message to any available
 server to extend the lifetimes on the addresses
 assigned to the client and to update other
 configuration parameters; this message is sent after
 a client receives no response to a Renew message.

Mrugalski, et al. Expires August 26, 2015 [Page 19]

Internet-Draft RFC 3315 bis February 2015

 REPLY (7) A server sends a Reply message containing assigned
 addresses and configuration parameters in response to
 a Solicit, Request, Renew, Rebind message received
 from a client. A server sends a Reply message
 containing configuration parameters in response to an
 Information-request message. A server sends a Reply
 message in response to a Confirm message confirming
 or denying that the addresses assigned to the client
 are appropriate to the link to which the client is
 connected. A server sends a Reply message to
 acknowledge receipt of a Release or Decline message.

 RELEASE (8) A client sends a Release message to the server that
 assigned addresses to the client to indicate that the
 client will no longer use one or more of the assigned
 addresses.

 DECLINE (9) A client sends a Decline message to a server to
 indicate that the client has determined that one or
 more addresses assigned by the server are already in
 use on the link to which the client is connected.

 RECONFIGURE (10) A server sends a Reconfigure message to a client to
 inform the client that the server has new or updated
 configuration parameters, and that the client is to
 initiate a Renew/Reply or Information-request/Reply
 transaction with the server in order to receive the
 updated information.

 INFORMATION-REQUEST (11) A client sends an Information-request
 message to a server to request configuration
 parameters without the assignment of any IP addresses
 to the client.

 RELAY-FORW (12) A relay agent sends a Relay-forward message to relay
 messages to servers, either directly or through
 another relay agent. The received message, either a
 client message or a Relay-forward message from
 another relay agent, is encapsulated in an option in
 the Relay-forward message.

 RELAY-REPL (13) A server sends a Relay-reply message to a relay agent
 containing a message that the relay agent delivers to
 a client. The Relay-reply message may be relayed by
 other relay agents for delivery to the destination
 relay agent.

Mrugalski, et al. Expires August 26, 2015 [Page 20]

Internet-Draft RFC 3315 bis February 2015

 The server encapsulates the client message as an
 option in the Relay-reply message, which the relay
 agent extracts and relays to the client.

6.4. Status Codes

 DHCPv6 uses status codes to communicate the success or failure of
 operations requested in messages from clients and servers, and to
 provide additional information about the specific cause of the
 failure of a message. The specific status codes are defined in
 Section 23.12.

 If the Status Code option does not appear in a message in which the
 option could appear, the status of the message is assumed to be
 Success.

6.5. Transmission and Retransmission Parameters

 This section presents a table of values used to describe the message
 transmission behavior of clients and servers.

Mrugalski, et al. Expires August 26, 2015 [Page 21]

Internet-Draft RFC 3315 bis February 2015

 +-----------------+-----------+-------------------------------------+
 | Parameter | Default | Description |
 +-----------------+-----------+-------------------------------------+
SOL_MAX_DELAY	1 sec	Max delay of first Solicit
SOL_TIMEOUT	1 sec	Initial Solicit timeout
SOL_MAX_RT	3600 secs	Max Solicit timeout value
REQ_TIMEOUT	1 sec	Initial Request timeout
REQ_MAX_RT	30 secs	Max Request timeout value
REQ_MAX_RC	10	Max Request retry attempts
CNF_MAX_DELAY	1 sec	Max delay of first Confirm
CNF_TIMEOUT	1 sec	Initial Confirm timeout
CNF_MAX_RT	4 secs	Max Confirm timeout
CNF_MAX_RD	10 secs	Max Confirm duration
REN_TIMEOUT	10 secs	Initial Renew timeout
REN_MAX_RT	600 secs	Max Renew timeout value
REB_TIMEOUT	10 secs	Initial Rebind timeout
REB_MAX_RT	600 secs	Max Rebind timeout value
INF_MAX_DELAY	1 sec	Max delay of first Information-
		request
INF_TIMEOUT	1 sec	Initial Information-request timeout
INF_MAX_RT	3600 secs	Max Information-request timeout
		value
REL_TIMEOUT	1 sec	Initial Release timeout
REL_MAX_RC	4	MAX Release retry attempts
DEC_TIMEOUT	1 sec	Initial Decline timeout
DEC_MAX_RC	4	Max Decline retry attempts
REC_TIMEOUT	2 secs	Initial Reconfigure timeout
REC_MAX_RC	8	Max Reconfigure attempts
HOP_COUNT_LIMIT	32	Max hop count in a Relay-forward
		message
 +-----------------+-----------+-------------------------------------+

6.6. Representation of time values and "Infinity" as a time value

 All time values for lifetimes, T1 and T2 are unsigned integers. The
 value 0xffffffff is taken to mean "infinity" when used as a lifetime
 (as in [RFC4861]) or a value for T1 or T2.

7. Client/Server Message Formats

 All DHCP messages sent between clients and servers share an identical
 fixed format header and a variable format area for options.

 All values in the message header and in options are in network byte
 order.

Mrugalski, et al. Expires August 26, 2015 [Page 22]

Internet-Draft RFC 3315 bis February 2015

 Options are stored serially in the options field, with no padding
 between the options. Options are byte-aligned but are not aligned in
 any other way such as on 2 or 4 byte boundaries.

 The following diagram illustrates the format of DHCP messages sent
 between clients and servers:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | msg-type | transaction-id |
 +-+
 | |
 . options .
 . (variable) .
 | |
 +-+

 Figure 2: Client/Server message format

 msg-type Identifies the DHCP message type; the
 available message types are listed in
 Section 6.3.

 transaction-id The transaction ID for this message exchange.

 options Options carried in this message; options are
 described in Section 23.

8. Relay Agent/Server Message Formats

 Relay agents exchange messages with servers to relay messages between
 clients and servers that are not connected to the same link.

 All values in the message header and in options are in network byte
 order.

 Options are stored serially in the options field, with no padding
 between the options. Options are byte-aligned but are not aligned in
 any other way such as on 2 or 4 byte boundaries.

 There are two relay agent messages, which share the following format:

Mrugalski, et al. Expires August 26, 2015 [Page 23]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | msg-type | hop-count | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 | link-address |
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 | peer-address |
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 . .
 . options (variable number and length)
 | |
 +-+

 Figure 3: Relay Agent/Server message format

 The following sections describe the use of the Relay Agent message
 header.

8.1. Relay-forward Message

 The following table defines the use of message fields in a Relay-
 forward message.

 msg-type RELAY-FORW

 hop-count Number of relay agents that have relayed this
 message.

 link-address An address that will be used by the server to
 identify the link on which the client is
 located. This is typically global, site-
 scoped or ULA [RFC4193], but see discussion
 in Section 21.1.1.

 peer-address The address of the client or relay agent from
 which the message to be relayed was received.

Mrugalski, et al. Expires August 26, 2015 [Page 24]

Internet-Draft RFC 3315 bis February 2015

 options MUST include a "Relay Message option" (see
 Section 23.10); MAY include other options
 added by the relay agent.

8.2. Relay-reply Message

 The following table defines the use of message fields in a Relay-
 reply message.

 msg-type RELAY-REPL

 hop-count Copied from the Relay-forward message

 link-address Copied from the Relay-forward message

 peer-address Copied from the Relay-forward message

 options MUST include a "Relay Message option"; see
 Section 23.10; MAY include other options

9. Representation and Use of Domain Names

 So that domain names may be encoded uniformly, a domain name or a
 list of domain names is encoded using the technique described in
 section 3.1 of [RFC1035]. A domain name, or list of domain names, in
 DHCP MUST NOT be stored in compressed form, as described in section
 4.1.4 of [RFC1035].

10. DHCP Unique Identifier (DUID)

 Each DHCP client and server has a DUID. DHCP servers use DUIDs to
 identify clients for the selection of configuration parameters and in
 the association of IAs with clients. DHCP clients use DUIDs to
 identify a server in messages where a server needs to be identified.
 See Section 23.2 and Section 23.3 for the representation of a DUID in
 a DHCP message.

 Clients and servers MUST treat DUIDs as opaque values and MUST only
 compare DUIDs for equality. Clients and servers MUST NOT in any
 other way interpret DUIDs. Clients and servers MUST NOT restrict
 DUIDs to the types defined in this document, as additional DUID types
 may be defined in the future.

 The DUID is carried in an option because it may be variable length
 and because it is not required in all DHCP messages. The DUID is
 designed to be unique across all DHCP clients and servers, and stable
 for any specific client or server - that is, the DUID used by a
 client or server SHOULD NOT change over time if at all possible; for

Mrugalski, et al. Expires August 26, 2015 [Page 25]

Internet-Draft RFC 3315 bis February 2015

 example, a device’s DUID should not change as a result of a change in
 the device’s network hardware.

 The motivation for having more than one type of DUID is that the DUID
 must be globally unique, and must also be easy to generate. The sort
 of globally-unique identifier that is easy to generate for any given
 device can differ quite widely. Also, some devices may not contain
 any persistent storage. Retaining a generated DUID in such a device
 is not possible, so the DUID scheme must accommodate such devices.

10.1. DUID Contents

 A DUID consists of a two-octet type code represented in network byte
 order, followed by a variable number of octets that make up the
 actual identifier. The length of the DUID (not including the type
 code) is at least 1 octet and at most 128 octets. The following
 types are currently defined:

 +------+--+
 | Type | Description |
 +------+--+
 | 1 | Link-layer address plus time |
 | 2 | Vendor-assigned unique ID based on Enterprise Number |
 | 3 | Link-layer address |
 | 4 | Universally Unique IDentifier (UUID) - see [RFC6355] |
 +------+--+

 Formats for the variable field of the DUID for the first 3 of the
 above types are shown below. The fourth type, DUID-UUID [RFC6355],
 can be used in situations where there is a UUID stored in a device’s
 firmware settings.

10.2. DUID Based on Link-layer Address Plus Time, DUID-LLT

 This type of DUID consists of a two octet type field containing the
 value 1, a two octet hardware type code, four octets containing a
 time value, followed by link-layer address of any one network
 interface that is connected to the DHCP device at the time that the
 DUID is generated. The time value is the time that the DUID is
 generated represented in seconds since midnight (UTC), January 1,
 2000, modulo 2^32. The hardware type MUST be a valid hardware type
 assigned by the IANA as described in [RFC0826]. Both the time and
 the hardware type are stored in network byte order. The link-layer
 address is stored in canonical form, as described in [RFC2464].

 The following diagram illustrates the format of a DUID-LLT:

Mrugalski, et al. Expires August 26, 2015 [Page 26]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | hardware type (16 bits) |
 +-+
 | time (32 bits) |
 +-+
 . .
 . link-layer address (variable length) .
 . .
 +-+

 Figure 4: DUID-LLT format

 The choice of network interface can be completely arbitrary, as long
 as that interface provides a globally unique link-layer address for
 the link type, and the same DUID-LLT SHOULD be used in configuring
 all network interfaces connected to the device, regardless of which
 interface’s link-layer address was used to generate the DUID-LLT.

 Clients and servers using this type of DUID MUST store the DUID-LLT
 in stable storage, and MUST continue to use this DUID-LLT even if the
 network interface used to generate the DUID-LLT is removed. Clients
 and servers that do not have any stable storage MUST NOT use this
 type of DUID.

 Clients and servers that use this DUID SHOULD attempt to configure
 the time prior to generating the DUID, if that is possible, and MUST
 use some sort of time source (for example, a real-time clock) in
 generating the DUID, even if that time source could not be configured
 prior to generating the DUID. The use of a time source makes it
 unlikely that two identical DUID-LLTs will be generated if the
 network interface is removed from the client and another client then
 uses the same network interface to generate a DUID-LLT. A collision
 between two DUID-LLTs is very unlikely even if the clocks have not
 been configured prior to generating the DUID.

 This method of DUID generation is recommended for all general purpose
 computing devices such as desktop computers and laptop computers, and
 also for devices such as printers, routers, and so on, that contain
 some form of writable non-volatile storage.

 Despite our best efforts, it is possible that this algorithm for
 generating a DUID could result in a client identifier collision. A
 DHCP client that generates a DUID-LLT using this mechanism MUST
 provide an administrative interface that replaces the existing DUID
 with a newly-generated DUID-LLT.

Mrugalski, et al. Expires August 26, 2015 [Page 27]

Internet-Draft RFC 3315 bis February 2015

10.3. DUID Assigned by Vendor Based on Enterprise Number, DUID-EN

 This form of DUID is assigned by the vendor to the device. It
 consists of the vendor’s registered Private Enterprise Number as
 maintained by IANA [IANA-PEN] followed by a unique identifier
 assigned by the vendor. The following diagram summarizes the
 structure of a DUID-EN:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 2 | enterprise-number |
 +-+
 | enterprise-number (contd) | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 . identifier .
 . (variable length) .
 . .
 +-+

 Figure 5: DUID-EN format

 The source of the identifier is left up to the vendor defining it,
 but each identifier part of each DUID-EN MUST be unique to the device
 that is using it, and MUST be assigned to the device no later than at
 the first usage and stored in some form of non-volatile storage.
 This typically means being assigned during manufacture process in
 case of physical devices or when the image is created or booted for
 the first time in case of virtual machines. The generated DUID
 SHOULD be recorded in non-erasable storage. The enterprise-number is
 the vendor’s registered Private Enterprise Number as maintained by
 IANA [IANA-PEN]. The enterprise-number is stored as an unsigned 32
 bit number.

 An example DUID of this type might look like this:

 +---+---+---+---+---+---+---+---+
 | 0 | 2 | 0 | 0 | 0 | 9| 12|192|
 +---+---+---+---+---+---+---+---+
 |132|211| 3 | 0 | 9 | 18|
 +---+---+---+---+---+---+

 Figure 6: DUID-EN example

Mrugalski, et al. Expires August 26, 2015 [Page 28]

Internet-Draft RFC 3315 bis February 2015

 This example includes the two-octet type of 2, the Enterprise Number
 (9), followed by eight octets of identifier data
 (0x0CC084D303000912).

10.4. DUID Based on Link-layer Address, DUID-LL

 This type of DUID consists of two octets containing the DUID type 3,
 a two octet network hardware type code, followed by the link-layer
 address of any one network interface that is permanently connected to
 the client or server device. For example, a host that has a network
 interface implemented in a chip that is unlikely to be removed and
 used elsewhere could use a DUID-LL. The hardware type MUST be a
 valid hardware type assigned by the IANA, as described in [RFC0826].
 The hardware type is stored in network byte order. The link-layer
 address is stored in canonical form, as described in [RFC2464]. The
 following diagram illustrates the format of a DUID-LL:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 3 | hardware type (16 bits) |
 +-+
 . .
 . link-layer address (variable length) .
 . .
 +-+

 Figure 7: DUID-LL format

 The choice of network interface can be completely arbitrary, as long
 as that interface provides a unique link-layer address and is
 permanently attached to the device on which the DUID-LL is being
 generated. The same DUID-LL SHOULD be used in configuring all
 network interfaces connected to the device, regardless of which
 interface’s link-layer address was used to generate the DUID.

 DUID-LL is recommended for devices that have a permanently-connected
 network interface with a link-layer address, and do not have
 nonvolatile, writable stable storage. DUID-LL MUST NOT be used by
 DHCP clients or servers that cannot tell whether or not a network
 interface is permanently attached to the device on which the DHCP
 client is running.

Mrugalski, et al. Expires August 26, 2015 [Page 29]

Internet-Draft RFC 3315 bis February 2015

11. Identity Association

 An "identity-association" (IA) is a construct through which a server
 and a client can identify, group, and manage a set of related IPv6
 addresses or delegated prefixes. Each IA consists of an IAID and
 associated configuration information.

 The IAID uniquely identifies the IA and must be chosen to be unique
 among the IAIDs for that IA type on the client. The IAID is chosen
 by the client. For any given use of an IA by the client, the IAID
 for that IA MUST be consistent across restarts of the DHCP client.
 The client may maintain consistency either by storing the IAID in
 non-volatile storage or by using an algorithm that will consistently
 produce the same IAID as long as the configuration of the client has
 not changed. There may be no way for a client to maintain
 consistency of the IAIDs if it does not have non-volatile storage and
 the client’s hardware configuration changes. If the client uses only
 one IAID, it can use a well-known value, e.g., zero.

11.1. Identity Associations for Address Assignment

 A client must associate at least one distinct IA with each of its
 network interfaces for which it is to request the assignment of IPv6
 addresses from a DHCP server. The client uses the IAs assigned to an
 interface to obtain configuration information from a server for that
 interface. Each IA must be associated with exactly one interface.

 The configuration information in an IA consists of one or more IPv6
 addresses along with the times T1 and T2 for the IA. See
 Section 22.4 for the representation of an IA in a DHCP message.

 Each address in an IA has a preferred lifetime and a valid lifetime,
 as defined in [RFC4862]. The lifetimes are transmitted from the DHCP
 server to the client in the IA option. The lifetimes apply to the
 use of IPv6 addresses, as described in section 5.5.4 of [RFC4862].

11.2. Identity Associations for Prefix Delegation

 An IA_PD is different from an IA for address assignment, in that it
 does not need to be associated with exactly one interface. One IA_PD
 can be associated with the requesting router, with a set of
 interfaces or with exactly one interface. A requesting router must
 create at least one distinct IA_PD. It may associate a distinct
 IA_PD with each of its downstream network interfaces and use that
 IA_PD to obtain a prefix for that interface from the delegating
 router.

Mrugalski, et al. Expires August 26, 2015 [Page 30]

Internet-Draft RFC 3315 bis February 2015

 The configuration information in an IA_PD consists of one or more
 IPv6 prefixes along with the times T1 and T2 for the IA_PD. See
 Section 23.21 for the representation of an IA_PD in a DHCP message.

12. Selecting Addresses for Assignment to an IA

 A server selects addresses to be assigned to an IA according to the
 address assignment policies determined by the server administrator
 and the specific information the server determines about the client
 from some combination of the following sources:

 - The link to which the client is attached. The server determines
 the link as follows:

 * If the server receives the message directly from the client and
 the source address in the IP datagram in which the message was
 received is a link-local address, then the client is on the
 same link to which the interface over which the message was
 received is attached.

 * If the server receives the message from a forwarding relay
 agent, then the client is on the same link as the one to which
 the interface, identified by the link-address field in the
 message from the relay agent, is attached. According to
 [RFC6221], the server MUST ignore any link-address field whose
 value is zero. The link address field referes to the link-
 address field of the Relay-Forward message, and the link-
 address fields in any Relay-Forward messages that may be nested
 within the Relay-Forward message.

 * If the server receives the message directly from the client and
 the source address in the IP datagram in which the message was
 received is not a link-local address, then the client is on the
 link identified by the source address in the IP datagram (note
 that this situation can occur only if the server has enabled
 the use of unicast message delivery by the client and the
 client has sent a message for which unicast delivery is
 allowed).

 - The DUID supplied by the client.

 - Other information in options supplied by the client, e.g. IA
 Address options that include the client’s requests for specific
 addresses.

 - Other information in options supplied by the relay agent.

Mrugalski, et al. Expires August 26, 2015 [Page 31]

Internet-Draft RFC 3315 bis February 2015

 Any address assigned by a server that is based on an EUI-64
 identifier MUST include an interface identifier with the "u"
 (universal/local) and "g" (individual/group) bits of the interface
 identifier set appropriately, as indicated in section 2.5.1 of
 [RFC4291].

 A server MUST NOT assign an address that is otherwise reserved for
 some other purpose. For example, a server MUST NOT assign reserved
 anycast addresses, as defined in [RFC2526], from any subnet.

13. Management of Temporary Addresses

 A client may request the assignment of temporary addresses (see
 [RFC4941] for the definition of temporary addresses). DHCPv6
 handling of address assignment is no different for temporary
 addresses.

 Clients ask for temporary addresses and servers assign them.
 Temporary addresses are carried in the Identity Association for
 Temporary Addresses (IA_TA) option (see Section 23.5). Each IA_TA
 option contains at most one temporary address for each of the
 prefixes on the link to which the client is attached.

 The lifetime of the assigned temporary address is set in the IA
 Address Option (see Section 23.6) with in the IA_TA option. It is
 RECOMMENDED to set short lifetimes, typically shorter than
 TEMP_VALID_LIFETIME and TEMP_PREFERRED_LIFETIME (see Section 5,
 [RFC4941].

 The IAID number space for the IA_TA option IAID number space is
 separate from the IA_NA option IAID number space.

 A DHCPv6 server implementation MAY generate temporary addresses
 referring to the algorithm defined in Section 3.2.1, [RFC4941], with
 additional condition that the new address is not duplicated with any
 assigned addresses.

 The server MAY update the DNS for a temporary address, as described
 in section 4 of [RFC4941].

 On the clients, by default, temporary addresses are preferred in
 source address selection, according to Rule 7, [RFC6724]. However,
 this policy is overridable.

 One of the most important properties of temporary address is
 unlinkability of different actions over time. So, it is NOT
 RECOMMENDED for a client to renew expired temporary addresses, though
 DHCPv6 provides such possibility (see Section 23.5).

Mrugalski, et al. Expires August 26, 2015 [Page 32]

Internet-Draft RFC 3315 bis February 2015

14. Transmission of Messages by a Client

 Unless otherwise specified in this document, or in a document that
 describes how IPv6 is carried over a specific type of link (for link
 types that do not support multicast), a client sends DHCP messages to
 the All_DHCP_Relay_Agents_and_Servers.

 A client uses multicast to reach all servers or an individual server.
 An individual server is indicated by specifying that server’s DUID in
 a Server Identifier option (see Section 23.3) in the client’s message
 (all servers will receive this message but only the indicated server
 will respond). All servers are indicated by not supplying this
 option.

 A client may send some messages directly to a server using unicast,
 as described in Section 23.12.

14.1. Rate Limiting

 In order to avoid prolonged message bursts that may be caused by
 possible logic loops, a DHCPv6 client MUST limit the rate of DHCPv6
 messages it transmits. One example is that a client obtains an
 address, but does not like the response; it reverts back to Solicit
 procedure, discovers the same (sole) server, requests an address and
 gets the same address as before (the server still has the lease that
 was requested just previously). This loops can repeat infinitely if
 there is not a quit/stop mechanism. Therefore, a client must not
 initiate transmissions too frequently.

 A recommended method for implementing the rate limiting function is a
 token bucket, limiting the average rate of transmission to a certain
 number in a certain time. This method of bounding burstiness also
 guarantees that the long-term transmission rate will not exceed.

 TRT Transmission Rate Limit

 The Transmission Rate Limit parameter (TRT) SHOULD be configurable.
 A possible default could be 20 packets in 20 seconds.

 For a device that has multiple interfaces, the limit MUST be enforced
 on a per interface basis.

 Rate limiting of forwarded DHCPv6 messages and server-side messages
 are out of scope of this specification.

Mrugalski, et al. Expires August 26, 2015 [Page 33]

Internet-Draft RFC 3315 bis February 2015

15. Reliability of Client Initiated Message Exchanges

 DHCP clients are responsible for reliable delivery of messages in the
 client-initiated message exchanges described in Section 18 and
 Section 19. If a DHCP client fails to receive an expected response
 from a server, the client must retransmit its message. This section
 describes the retransmission strategy to be used by clients in
 client-initiated message exchanges.

 Note that the procedure described in this section is slightly
 modified when used with the Solicit message. The modified procedure
 is described in Section 18.1.2.

 The client begins the message exchange by transmitting a message to
 the server. The message exchange terminates when either the client
 successfully receives the appropriate response or responses from a
 server or servers, or when the message exchange is considered to have
 failed according to the retransmission mechanism described below.

 The client retransmission behavior is controlled and described by the
 following variables:

 RT Retransmission timeout

 IRT Initial retransmission time

 MRC Maximum retransmission count

 MRT Maximum retransmission time

 MRD Maximum retransmission duration

 RAND Randomization factor

 With each message transmission or retransmission, the client sets RT
 according to the rules given below. If RT expires before the message
 exchange terminates, the client recomputes RT and retransmits the
 message.

 Each of the computations of a new RT include a randomization factor
 (RAND), which is a random number chosen with a uniform distribution
 between -0.1 and +0.1. The randomization factor is included to
 minimize synchronization of messages transmitted by DHCP clients.

 The algorithm for choosing a random number does not need to be
 cryptographically sound. The algorithm SHOULD produce a different
 sequence of random numbers from each invocation of the DHCP client.

Mrugalski, et al. Expires August 26, 2015 [Page 34]

Internet-Draft RFC 3315 bis February 2015

 RT for the first message transmission is based on IRT:

 RT = IRT + RAND*IRT

 RT for each subsequent message transmission is based on the previous
 value of RT:

 RT = 2*RTprev + RAND*RTprev

 MRT specifies an upper bound on the value of RT (disregarding the
 randomization added by the use of RAND). If MRT has a value of 0,
 there is no upper limit on the value of RT. Otherwise:

 if (RT > MRT)
 RT = MRT + RAND*MRT

 MRC specifies an upper bound on the number of times a client may
 retransmit a message. Unless MRC is zero, the message exchange fails
 once the client has transmitted the message MRC times.

 MRD specifies an upper bound on the length of time a client may
 retransmit a message. Unless MRD is zero, the message exchange fails
 once MRD seconds have elapsed since the client first transmitted the
 message.

 If both MRC and MRD are non-zero, the message exchange fails whenever
 either of the conditions specified in the previous two paragraphs are
 met.

 If both MRC and MRD are zero, the client continues to transmit the
 message until it receives a response.

 A client is not expected to listen for a response during the entire
 period between transmission of Solicit or Information-request
 messages.

16. Message Validation

 Clients and servers might get messages that contain options not
 allowed to appear in the received message. For example, an IA option
 is not allowed to appear in an Information-request message. Clients
 and servers MAY choose either to extract information from such a
 message if the information is of use to the recipient, or to ignore
 such message completely and just drop it.

 A server MUST discard any Solicit, Confirm, Rebind or Information-
 request messages it receives with a unicast destination address.

Mrugalski, et al. Expires August 26, 2015 [Page 35]

Internet-Draft RFC 3315 bis February 2015

 Message validation based on DHCP authentication is discussed in
 Section 22.4.2.

 If a server receives a message that contains options it should not
 contain (such as an Information-request message with an IA option),
 is missing options that it should contain, or is otherwise not valid,
 it MAY send a Reply (or Advertise as appropriate) with a Server
 Identifier option, a Client Identifier option if one was included in
 the message and a Status Code option with status UnSpecFail.

 A client or server MUST silently discary and yreceived DHCPv6
 messages with an unknown message type.

16.1. Use of Transaction IDs

 The "transaction-id" field holds a value used by clients and servers
 to synchronize server responses to client messages. A client SHOULD
 generate a random number that cannot easily be guessed or predicted
 to use as the transaction ID for each new message it sends. Note
 that if a client generates easily predictable transaction
 identifiers, it may become more vulnerable to certain kinds of
 attacks from off-path intruders. A client MUST leave the transaction
 ID unchanged in retransmissions of a message.

16.2. Solicit Message

 Clients MUST discard any received Solicit messages.

 Servers MUST discard any Solicit messages that do not include a
 Client Identifier option or that do include a Server Identifier
 option.

16.3. Advertise Message

 Clients MUST discard any received Advertise message that meets any of
 the following conditions:

 - the message does not include a Server Identifier option.

 - the message does not include a Client Identifier option.

 - the contents of the Client Identifier option does not match the
 client’s DUID.

 - the "transaction-id" field value does not match the value the
 client used in its Solicit message.

Mrugalski, et al. Expires August 26, 2015 [Page 36]

Internet-Draft RFC 3315 bis February 2015

 Servers and relay agents MUST discard any received Advertise
 messages.

16.4. Request Message

 Clients MUST discard any received Request messages.

 Servers MUST discard any received Request message that meets any of
 the following conditions:

 - the message does not include a Server Identifier option.

 - the contents of the Server Identifier option do not match the
 server’s DUID.

 - the message does not include a Client Identifier option.

16.5. Confirm Message

 Clients MUST discard any received Confirm messages.

 Servers MUST discard any received Confirm messages that do not
 include a Client Identifier option or that do include a Server
 Identifier option.

16.6. Renew Message

 Clients MUST discard any received Renew messages.

 Servers MUST discard any received Renew message that meets any of the
 following conditions:

 - the message does not include a Server Identifier option.

 - the contents of the Server Identifier option does not match the
 server’s identifier.

 - the message does not include a Client Identifier option.

16.7. Rebind Message

 Clients MUST discard any received Rebind messages.

 Servers MUST discard any received Rebind messages that do not include
 a Client Identifier option or that do include a Server Identifier
 option.

Mrugalski, et al. Expires August 26, 2015 [Page 37]

Internet-Draft RFC 3315 bis February 2015

16.8. Decline Messages

 Clients MUST discard any received Decline messages.

 Servers MUST discard any received Decline message that meets any of
 the following conditions:

 - the message does not include a Server Identifier option.

 - the contents of the Server Identifier option does not match the
 server’s identifier.

 - the message does not include a Client Identifier option.

16.9. Release Message

 Clients MUST discard any received Release messages.

 Servers MUST discard any received Release message that meets any of
 the following conditions:

 - the message does not include a Server Identifier option.

 - the contents of the Server Identifier option does not match the
 server’s identifier.

 - the message does not include a Client Identifier option.

16.10. Reply Message

 Clients MUST discard any received Reply message that meets any of the
 following conditions:

 - the message does not include a Server Identifier option.

 - the "transaction-id" field in the message does not match the value
 used in the original message.

 If the client included a Client Identifier option in the original
 message, the Reply message MUST include a Client Identifier option
 and the contents of the Client Identifier option MUST match the DUID
 of the client; OR, if the client did not include a Client Identifier
 option in the original message, the Reply message MUST NOT include a
 Client Identifier option.

 Servers and relay agents MUST discard any received Reply messages.

Mrugalski, et al. Expires August 26, 2015 [Page 38]

Internet-Draft RFC 3315 bis February 2015

16.11. Reconfigure Message

 Servers and relay agents MUST discard any received Reconfigure
 messages.

 Clients MUST discard any Reconfigure message that meets any of the
 following conditions:

 - the message was not unicast to the client.

 - the message does not include a Server Identifier option.

 - the message does not include a Client Identifier option that
 contains the client’s DUID.

 - the message does not contain a Reconfigure Message option.

 - the Reconfigure Message option msg-type is not a valid value.

 - the message includes any IA options and the msg-type in the
 Reconfigure Message option is INFORMATION-REQUEST.

 - the message does not include DHCP authentication:

 * the message does not contain an authentication option.

 * the message does not pass the authentication validation
 performed by the client.

16.12. Information-request Message

 Clients MUST discard any received Information-request messages.

 Servers MUST discard any received Information-request message that
 meets any of the following conditions:

 - The message includes a Server Identifier option and the DUID in
 the option does not match the server’s DUID.

 - The message includes an IA option.

16.13. Relay-forward Message

 Clients MUST discard any received Relay-forward messages.

Mrugalski, et al. Expires August 26, 2015 [Page 39]

Internet-Draft RFC 3315 bis February 2015

16.14. Relay-reply Message

 Clients and servers MUST discard any received Relay-reply messages.

17. Client Source Address and Interface Selection

 Client’s behavior is different depending on the purpose of the
 configuration.

17.1. Address Assignment

 When a client sends a DHCP message to the
 All_DHCP_Relay_Agents_and_Servers address, it SHOULD send the message
 through the interface for which configuration information is being
 requested. However, the client MAY send the message through another
 interface if the interface is a logical interface without direct link
 attachement or the client is certain that two interfaces are attached
 to the same link.

 When a client sends a DHCP message directly to a server using unicast
 (after receiving the Server Unicast option from that server), the
 source address in the header of the IPv6 datagram MUST be an address
 assigned to the interface for which the client is interested in
 obtaining configuration and which is suitable for use by the server
 in responding to the client.

17.2. Prefix Delegation

 Delegated prefixes are not associated with a particular interface in
 the same way as addresses are for address assignment, and mentioned
 above.

 When a client (acting as requesting router) sends a DHCP message for
 the purpose of prefix delegation, it SHOULD be sent on the interface
 associated with the upstream router (ISP network). The upstream
 interface is typically determined by configuration. This rule
 applies even in the case where a separate IA_PD is used for each
 downstream interface.

 When a requesting router sends a DHCP message directly to a
 delegating router using unicast (after receiving the Server Unicast
 option from that delegating router), the source address SHOULD be an
 address from the upstream interface and which is suitable for use by
 the delegating router in responding to the requesting router.

Mrugalski, et al. Expires August 26, 2015 [Page 40]

Internet-Draft RFC 3315 bis February 2015

18. DHCP Server Solicitation

 This section describes how a client locates servers that will assign
 addresses and delegated prefixes to IAs belonging to the client.

 The client is responsible for creating IAs and requesting that a
 server assign IPv6 addresses and delegated prefixes to the IAs. The
 client first creates the IAs and assigns IAIDs to them. The client
 then transmits a Solicit message containing the IA options describing
 the IAs. The client MUST NOT be using any of the addresses or
 delegated prefixes for which it tries to obtain the bindings by
 sending the Solicit message. In particular, if the client had some
 valid bindings and has chosen to start the server solicitation
 process to obtain the bindings from a different server, the client
 MUST stop using the addresses and delegated prefixes for the bindings
 it had obtained from the previous server, and which it is now trying
 to obtain from a new server.

 Servers that can assign addresses or delegated prefixes to the IAs
 respond to the client with an Advertise message. The client then
 initiates a configuration exchange as described in Section 19.

 If the client will accept a Reply message with committed address
 assignments and other resources in response to the Solicit message,
 the client includes a Rapid Commit option (see Section 23.14) in the
 Solicit message.

18.1. Client Behavior

 A client uses the Solicit message to discover DHCP servers configured
 to assign addresses or return other configuration parameters on the
 link to which the client is attached.

18.1.1. Creation of Solicit Messages

 The client sets the "msg-type" field to SOLICIT. The client
 generates a transaction ID and inserts this value in the
 "transaction-id" field.

 The client MUST include a Client Identifier option to identify itself
 to the server. The client includes IA options for any IAs to which
 it wants the server to assign addresses. The client MAY include
 addresses in the IAs as a hint to the server about addresses for
 which the client has a preference. The client MUST NOT include any
 other options in the Solicit message, except as specifically allowed
 in the definition of individual options.

Mrugalski, et al. Expires August 26, 2015 [Page 41]

Internet-Draft RFC 3315 bis February 2015

 The client uses IA_NA options to request the assignment of non-
 temporary addresses and uses IA_TA options to request the assignment
 of temporary addresses. Either IA_NA or IA_TA options, or a
 combination of both, can be included in DHCP messages.

 The client MUST include an Option Request option (see Section 23.7)
 to request the SOL_MAX_RT option (see Section 23.23) and any other
 options the client is interested in receiving. The client MAY
 additionally include instances of those options that are identified
 in the Option Request option, with data values as hints to the server
 about parameter values the client would like to have returned.

 The client includes a Reconfigure Accept option (see Section 23.20)
 if the client is willing to accept Reconfigure messages from the
 server.

18.1.2. Transmission of Solicit Messages

 The first Solicit message from the client on the interface MUST be
 delayed by a random amount of time between 0 and SOL_MAX_DELAY. In
 the case of a Solicit message transmitted when DHCP is initiated by
 IPv6 Neighbor Discovery, the delay gives the amount of time to wait
 after IPv6 Neighbor Discovery causes the client to invoke the
 stateful address autoconfiguration protocol (see section 5.5.3 of
 [RFC4862]). This random delay desynchronizes clients which start at
 the same time (for example, after a power outage).

 The client transmits the message according to Section 15, using the
 following parameters:

 IRT SOL_TIMEOUT

 MRT SOL_MAX_RT

 MRC 0

 MRD 0

 If the client has included a Rapid Commit option in its Solicit
 message, the client terminates the waiting process as soon as a Reply
 message with a Rapid Commit option is received.

 If the client is waiting for an Advertise message, the mechanism in
 Section 15 is modified as follows for use in the transmission of
 Solicit messages. The message exchange is not terminated by the
 receipt of an Advertise before the first RT has elapsed. Rather, the
 client collects Advertise messages until the first RT has elapsed.

Mrugalski, et al. Expires August 26, 2015 [Page 42]

Internet-Draft RFC 3315 bis February 2015

 Also, the first RT MUST be selected to be strictly greater than IRT
 by choosing RAND to be strictly greater than 0.

 A client MUST collect Advertise messages for the first RT seconds,
 unless it receives an Advertise message with a preference value of
 255. The preference value is carried in the Preference option
 (Section 23.8). Any Advertise that does not include a Preference
 option is considered to have a preference value of 0. If the client
 receives an Advertise message that includes a Preference option with
 a preference value of 255, the client immediately begins a client-
 initiated message exchange (as described in Section 19) by sending a
 Request message to the server from which the Advertise message was
 received. If the client receives an Advertise message that does not
 include a Preference option with a preference value of 255, the
 client continues to wait until the first RT elapses. If the first RT
 elapses and the client has received an Advertise message, the client
 SHOULD continue with a client-initiated message exchange by sending a
 Request message.

 If the client does not receive any Advertise messages before the
 first RT has elapsed, it begins the retransmission mechanism
 described in Section 15. The client terminates the retransmission
 process as soon as it receives any Advertise message, and the client
 acts on the received Advertise message without waiting for any
 additional Advertise messages.

 A DHCP client SHOULD choose MRC and MRD to be 0. If the DHCP client
 is configured with either MRC or MRD set to a value other than 0, it
 MUST stop trying to configure the interface if the message exchange
 fails. After the DHCP client stops trying to configure the
 interface, it SHOULD restart the reconfiguration process after some
 external event, such as user input, system restart, or when the
 client is attached to a new link.

18.1.3. Receipt of Advertise Messages

 The client MUST process SOL_MAX_RT and INF_MAX_RT options in an
 Advertise message, even if the message contains a Status Code option
 indicating a failure, and the Advertise message will be discarded by
 the client.

 The client MUST ignore any IAs in an Advertise message that include a
 Status Code option containing the value NoAddrsAvail, with the
 exception that the client MAY display the associated status message
 to the user.

Mrugalski, et al. Expires August 26, 2015 [Page 43]

Internet-Draft RFC 3315 bis February 2015

 Upon receipt of one or more valid Advertise messages, the client
 selects one or more Advertise messages based upon the following
 criteria.

 - Those Advertise messages with the highest server preference value
 are preferred over all other Advertise messages.

 - Within a group of Advertise messages with the same server
 preference value, a client MAY select those servers whose
 Advertise messages advertise information of interest to the
 client.

 - The client MAY choose a less-preferred server if that server has a
 better set of advertised parameters, such as the available
 addresses advertised in IAs.

 Once a client has selected Advertise message(s), the client will
 typically store information about each server, such as server
 preference value, addresses advertised, when the advertisement was
 received, and so on.

 In practice, this means that the client will maintain independent
 per-IA state machines per each selected server.

 If the client needs to select an alternate server in the case that a
 chosen server does not respond, the client chooses the next server
 according to the criteria given above.

18.1.4. Receipt of Reply Message

 If the client includes a Rapid Commit option in the Solicit message,
 it will expect a Reply message that includes a Rapid Commit option in
 response. The client discards any Reply messages it receives that do
 not include a Rapid Commit option. If the client receives a valid
 Reply message that includes a Rapid Commit option, it processes the
 message as described in Section 19.1.8. If it does not receive such
 a Reply message and does receive a valid Advertise message, the
 client processes the Advertise message as described in
 Section 18.1.3.

 If the client subsequently receives a valid Reply message that
 includes a Rapid Commit option, it either:

 - processes the Reply message as described in Section 19.1.8, and
 discards any Reply messages received in response to the Request
 message, or

Mrugalski, et al. Expires August 26, 2015 [Page 44]

Internet-Draft RFC 3315 bis February 2015

 - processes any Reply messages received in response to the Request
 message and discards the Reply message that includes the Rapid
 Commit option.

18.2. Server Behavior

 A server sends an Advertise message in response to valid Solicit
 messages it receives to announce the availability of the server to
 the client.

18.2.1. Receipt of Solicit Messages

 The server determines the information about the client and its
 location as described in Section 12 and checks its administrative
 policy about responding to the client. If the server is not
 permitted to respond to the client, the server discards the Solicit
 message. For example, if the administrative policy for the server is
 that it may only respond to a client that is willing to accept a
 Reconfigure message, if the client does not include a Reconfigure
 Accept option (see Section 23.20) in the Solicit message, the servers
 discard the Solicit message.

 If the client has included a Rapid Commit option in the Solicit
 message and the server has been configured to respond with committed
 address assignments and other resources, the server responds to the
 Solicit with a Reply message as described in Section 18.2.3.
 Otherwise, the server ignores the Rapid Commit option and processes
 the remainder of the message as if no Rapid Commit option were
 present.

18.2.2. Creation and Transmission of Advertise Messages

 The server sets the "msg-type" field to ADVERTISE and copies the
 contents of the transaction-id field from the Solicit message
 received from the client to the Advertise message. The server
 includes its server identifier in a Server Identifier option and
 copies the Client Identifier from the Solicit message into the
 Advertise message.

 The server MAY add a Preference option to carry the preference value
 for the Advertise message. The server implementation SHOULD allow
 the setting of a server preference value by the administrator. The
 server preference value MUST default to zero unless otherwise
 configured by the server administrator.

 The server includes a Reconfigure Accept option if the server wants
 to require that the client accept Reconfigure messages.

Mrugalski, et al. Expires August 26, 2015 [Page 45]

Internet-Draft RFC 3315 bis February 2015

 The server includes options the server will return to the client in a
 subsequent Reply message. The information in these options may be
 used by the client in the selection of a server if the client
 receives more than one Advertise message. If the client has included
 an Option Request option in the Solicit message, the server includes
 options in the Advertise message containing configuration parameters
 for all of the options identified in the Option Request option that
 the server has been configured to return to the client. The server
 MAY return additional options to the client if it has been configured
 to do so. The server must be aware of the recommendations on packet
 sizes and the use of fragmentation in section 5 of [RFC2460].

 If the Solicit message from the client included one or more IA
 options, the server MUST include IA options in the Advertise message
 containing any addresses that would be assigned to IAs contained in
 the Solicit message from the client. If the client has included
 addresses in the IAs in the Solicit message, the server uses those
 addresses as hints about the addresses the client would like to
 receive.

 If the server will not assign any addresses to any IAs in a
 subsequent Request from the client, the server MUST send an Advertise
 message to the client that includes only a Status Code option with
 code NoAddrsAvail and a status message for the user, a Server
 Identifier option with the server’s DUID, a Client Identifier option
 with the client’s DUID, and (optionally) SOL_MAX_RT and/or INF_MAX_RT
 options. The server SHOULD include other stateful IA options (like
 IA_PD) and other configuration options in the Advertise message.

 If the Solicit message was received directly by the server, the
 server unicasts the Advertise message directly to the client using
 the address in the source address field from the IP datagram in which
 the Solicit message was received. The Advertise message MUST be
 unicast on the link from which the Solicit message was received.

 If the Solicit message was received in a Relay-forward message, the
 server constructs a Relay-reply message with the Advertise message in
 the payload of a "relay-message" option. If the Relay-forward
 messages included an Interface-id option, the server copies that
 option to the Relay-reply message. The server unicasts the Relay-
 reply message directly to the relay agent using the address in the
 source address field from the IP datagram in which the Relay-forward
 message was received.

Mrugalski, et al. Expires August 26, 2015 [Page 46]

Internet-Draft RFC 3315 bis February 2015

18.2.3. Creation and Transmission of Reply Messages

 The server MUST commit the assignment of any addresses or other
 configuration information message before sending a Reply message to a
 client in response to a Solicit message.

 DISCUSSION:

 When using the Solicit-Reply message exchange, the server commits
 the assignment of any addresses before sending the Reply message.
 The client can assume it has been assigned the addresses in the
 Reply message and does not need to send a Request message for
 those addresses.

 Typically, servers that are configured to use the Solicit-Reply
 message exchange will be deployed so that only one server will
 respond to a Solicit message. If more than one server responds,
 the client will only use the addresses from one of the servers,
 while the addresses from the other servers will be committed to
 the client but not used by the client.

 The server includes a Rapid Commit option in the Reply message to
 indicate that the Reply is in response to a Solicit message.

 The server includes a Reconfigure Accept option if the server wants
 to require that the client accept Reconfigure messages.

 The server produces the Reply message as though it had received a
 Request message, as described in Section 19.2.1. The server
 transmits the Reply message as described in Section 19.2.8.

18.3. Client behavior for Prefix Delegation

 The requesting router creates and transmits a Solicit message as
 described in Section 18.1.1 and Section 18.1.2. The client creates
 an IA_PD and assigns it an IAID. The client MUST include the IA_PD
 option in the Solicit message.

 The client processes any received Advertise messages as described in
 Section 18.1.3. The client MAY choose to consider the presence of
 advertised prefixes in its decision about which delegating router to
 respond to.

 The client MUST ignore any IA_PDs in an Advertise message that
 include a Status Code option containing the value NoPrefixAvail, with
 the exception that the client MAY display the associated status
 message to the user and SHOULD process SOL_MAX_RT and INF_MAX_RT
 options.

Mrugalski, et al. Expires August 26, 2015 [Page 47]

Internet-Draft RFC 3315 bis February 2015

18.4. Server Behavior for Prefix Delegation

 The server sends an Advertise message to the requesting router in the
 same way as described in Section 18.2.2. If the message contains an
 IA_PD option and the delegating router is configured to delegate
 prefix(es) to the requesting router, the delegating router selects
 the prefix(es) to be delegated to the requesting router. The
 mechanism through which the delegating router selects prefix(es) for
 delegation is not specified in this document. Examples of ways in
 which the server might select prefix(es) for a client include: static
 assignment based on subscription to an ISP; dynamic assignment from a
 pool of available prefixes; selection based on an external authority
 such as a RADIUS server using the Framed-IPv6-Prefix option as
 described in [RFC3162].

 If the client includes an IA_PD Prefix option in the IA_PD option in
 its Solicit message, the server MAY choose to use the information in
 that option to select the prefix(es) or prefix size to be delegated
 to the client.

 The server sends an Advertise message to the requesting router in the
 same way as described in Section 18.2.2. The server MUST include an
 IA_PD option, identifying any prefix(es) that the server will
 delegate to the client.

 If the server will not assign any prefixes to an IA_PD in a
 subsequent Request from the requesting router, the server MUST send
 an Advertise message to the client that includes the IA_PD with no
 prefixes in the IA_PD and a Status Code option in the IA_PD
 containing status code NoPrefixAvail and a status message for the
 user, a Server Identifier option with the server’s DUID and a Client
 Identifier option with the client’s DUID. The server SHOULD include
 other stateful IA options (like IA_NA) and other configuration
 options in the Advertise message.

19. DHCP Client-Initiated Configuration Exchange

 A client initiates a message exchange with a server or servers to
 acquire or update configuration information of interest. The client
 may initiate the configuration exchange as part of the operating
 system configuration process, when requested to do so by the
 application layer, when required by Stateless Address
 Autoconfiguration or as required to extend the lifetime of
 address(es) or/and delegated prefix(es), using Renew and Rebind
 messages.

 According to a terminology for the prefix delegation, a client
 requesting a delegation of a prefix is referred to as a requesting

Mrugalski, et al. Expires August 26, 2015 [Page 48]

Internet-Draft RFC 3315 bis February 2015

 router and a server delegating the prefix is referred to as a
 delegating router. The requesting router and the delegating router
 use the IA_PD Prefix option to exchange information about prefix(es)
 in much the same way as IA Address options are used for assigned
 addresses. Typically, a single DHCP session is used to exchange
 information about addresses and prefixes, i.e. IA_NA and IA_PD
 options are carried in the same message.

19.1. Client Behavior

 A client uses Request, Renew, Rebind, Release and Decline messages
 during the normal life cycle of addresses. It uses Confirm to
 validate addresses when it may have moved to a new link. It uses
 Information-Request messages when it needs configuration information
 but no addresses.

 If the client has a source address of sufficient scope that can be
 used by the server as a return address, and the client has received a
 Server Unicast option (Section 23.12) from the server, the client
 SHOULD unicast any Request, Renew, Release and Decline messages to
 the server.

 DISCUSSION:

 Use of unicast may avoid delays due to the relaying of messages by
 relay agents, as well as avoid overhead and duplicate responses by
 servers due to the delivery of client messages to multiple
 servers. Requiring the client to relay all DHCP messages through
 a relay agent enables the inclusion of relay agent options in all
 messages sent by the client. The server should enable the use of
 unicast only when relay agent options will not be used.

19.1.1. Creation and Transmission of Request Messages

 The client uses a Request message to populate IAs with addresses and
 obtain other configuration information. The client includes one or
 more IA options in the Request message. The server then returns
 addresses and other information about the IAs to the client in IA
 options in a Reply message.

 The client generates a transaction ID and inserts this value in the
 "transaction-id" field.

 The client places the identifier of the destination server in a
 Server Identifier option.

 The client MUST include a Client Identifier option to identify itself
 to the server. The client adds any other appropriate options,

Mrugalski, et al. Expires August 26, 2015 [Page 49]

Internet-Draft RFC 3315 bis February 2015

 including one or more IA options (if the client is requesting that
 the server assign it some network addresses).

 The client MUST include an Option Request option (see Section 23.7)
 to indicate the options the client is interested in receiving. The
 client MAY include options with data values as hints to the server
 about parameter values the client would like to have returned.

 The client includes a Reconfigure Accept option (see Section 23.20)
 indicating whether or not the client is willing to accept Reconfigure
 messages from the server.

 The client transmits the message according to Section 15, using the
 following parameters:

 IRT REQ_TIMEOUT

 MRT REQ_MAX_RT

 MRC REQ_MAX_RC

 MRD 0

 If the message exchange fails, the client takes an action based on
 the client’s local policy. Examples of actions the client might take
 include:

 - Select another server from a list of servers known to the client;
 for example, servers that responded with an Advertise message.

 - Initiate the server discovery process described in Section 18.

 - Terminate the configuration process and report failure.

19.1.2. Creation and Transmission of Confirm Messages

 Whenever a client may have moved to a new link, the prefixes/
 addresses assigned to the interfaces on that link may no longer be
 appropriate for the link to which the client is attached. Examples
 of times when a client may have moved to a new link include:

 o The client reboots.

 o The client is physically connected to a wired connection.

 o The client returns from sleep mode.

 o The client using a wireless technology changes access points.

Mrugalski, et al. Expires August 26, 2015 [Page 50]

Internet-Draft RFC 3315 bis February 2015

 In any situation when a client may have moved to a new link, the
 client SHOULD initiate a Confirm/Reply message exchange. The client
 includes any IAs assigned to the interface that may have moved to a
 new link, along with the addresses associated with those IAs, in its
 Confirm message. Any responding servers will indicate whether those
 addresses are appropriate for the link to which the client is
 attached with the status in the Reply message it returns to the
 client.

 One example when this rule may not be followed is when the client
 does not store its leases in stable storage and experiences a reboot.
 It may simply not retain any information, so it does not know what to
 confirm. In such case client MUST restart server discovery process
 as described in Section 18.1.1.

 The client sets the "msg-type" field to CONFIRM. The client
 generates a transaction ID and inserts this value in the
 "transaction-id" field.

 The client MUST include a Client Identifier option to identify itself
 to the server. The client includes IA options for all of the IAs
 assigned to the interface for which the Confirm message is being
 sent. The IA options include all of the addresses the client
 currently has associated with those IAs. The client SHOULD set the
 T1 and T2 fields in any IA_NA options, and the preferred-lifetime and
 valid-lifetime fields in the IA Address options to 0, as the server
 will ignore these fields.

 The first Confirm message from the client on the interface MUST be
 delayed by a random amount of time between 0 and CNF_MAX_DELAY. The
 client transmits the message according to Section 15, using the
 following parameters:

 IRT CNF_TIMEOUT

 MRT CNF_MAX_RT

 MRC 0

 MRD CNF_MAX_RD

 If the client receives no responses before the message transmission
 process terminates, as described in Section 15, the client SHOULD
 continue to use any IP addresses, using the last known lifetimes for
 those addresses, and SHOULD continue to use any other previously
 obtained configuration parameters.

Mrugalski, et al. Expires August 26, 2015 [Page 51]

Internet-Draft RFC 3315 bis February 2015

19.1.3. Creation and Transmission of Renew Messages

 To extend the valid and preferred lifetimes for the addresses
 associated with an IA, the client sends a Renew message to the server
 from which the client obtained the addresses in the IA containing an
 IA option for the IA. The client includes IA Address options in the
 IA option for the addresses associated with the IA. The server
 determines new lifetimes for the addresses in the IA according to the
 administrative configuration of the server. The server may also add
 new addresses to the IA. The server may remove addresses from the IA
 by setting the preferred and valid lifetimes of those addresses to
 zero.

 The server controls the time at which the client contacts the server
 to extend the lifetimes on assigned addresses through the T1 and T2
 parameters assigned to an IA.

 At time T1 for an IA, the client initiates a Renew/Reply message
 exchange to extend the lifetimes on any addresses in the IA. The
 client includes an IA option with all addresses currently assigned to
 the IA in its Renew message.

 If T1 or T2 is set to 0 by the server (for an IA_NA) or there are no
 T1 or T2 times (for an IA_TA), the client may send a Renew or Rebind
 message, respectively, at the client’s discretion.

 The client sets the "msg-type" field to RENEW. The client generates
 a transaction ID and inserts this value in the "transaction-id"
 field.

 The client places the identifier of the destination server in a
 Server Identifier option.

 The client MUST include a Client Identifier option to identify itself
 to the server. The client adds any appropriate options, including
 one or more IA options. The client MUST include the list of
 addresses the client currently has associated with the IAs in the
 Renew message.

 The client MUST include an Option Request option (see Section 23.7)
 to indicate the options the client is interested in receiving. The
 client MAY include options with data values as hints to the server
 about parameter values the client would like to have returned.

 The client transmits the message according to Section 15, using the
 following parameters:

 IRT REN_TIMEOUT

Mrugalski, et al. Expires August 26, 2015 [Page 52]

Internet-Draft RFC 3315 bis February 2015

 MRT REN_MAX_RT

 MRC 0

 MRD Remaining time until T2

 The message exchange is terminated when time T2 is reached (see
 Section 19.1.4), at which time the client begins a Rebind message
 exchange.

19.1.4. Creation and Transmission of Rebind Messages

 At time T2 for an IA (which will only be reached if the server to
 which the Renew message was sent at time T1 has not responded), the
 client initiates a Rebind/Reply message exchange with any available
 server. The client includes an IA option with all addresses
 currently assigned to the IA in its Rebind message.

 The client sets the "msg-type" field to REBIND. The client generates
 a transaction ID and inserts this value in the "transaction-id"
 field.

 The client MUST include a Client Identifier option to identify itself
 to the server. The client adds any appropriate options, including
 one or more IA options. The client MUST include the list of
 addresses the client currently has associated with the IAs in the
 Rebind message.

 The client MUST include an Option Request option (see Section 23.7)
 to indicate the options the client is interested in receiving. The
 client MAY include options with data values as hints to the server
 about parameter values the client would like to have returned.

 The client transmits the message according to Section 15, using the
 following parameters:

 IRT REB_TIMEOUT

 MRT REB_MAX_RT

 MRC 0

 MRD Remaining time until valid lifetimes of all addresses have
 expired

 The message exchange is terminated when the valid lifetimes of all
 the addresses assigned to the IA expire (see Section 11), at which

Mrugalski, et al. Expires August 26, 2015 [Page 53]

Internet-Draft RFC 3315 bis February 2015

 time the client has several alternative actions to choose from; for
 example:

 - The client may choose to use a Solicit message to locate a new
 DHCP server and send a Request for the expired IA to the new
 server.

 - The client may have other addresses in other IAs, so the client
 may choose to discard the expired IA and use the addresses in the
 other IAs.

19.1.5. Creation and Transmission of Information-request Messages

 The client uses an Information-request message to obtain
 configuration information without having addresses assigned to it.

 The client sets the "msg-type" field to INFORMATION-REQUEST. The
 client generates a transaction ID and inserts this value in the
 "transaction-id" field.

 The client SHOULD include a Client Identifier option to identify
 itself to the server. If the client does not include a Client
 Identifier option, the server will not be able to return any client-
 specific options to the client, or the server may choose not to
 respond to the message at all. The client MUST include a Client
 Identifier option if the Information-Request message will be
 authenticated.

 The client MUST include an Option Request option (see Section 23.7)
 to request the INF_MAX_RT option (see Section 23.24) and any other
 options the client is interested in receiving. The client MAY
 include options with data values as hints to the server about
 parameter values the client would like to have returned.

 The first Information-request message from the client on the
 interface MUST be delayed by a random amount of time between 0 and
 INF_MAX_DELAY. The client transmits the message according to
 Section 15, using the following parameters:

 IRT INF_TIMEOUT

 MRT INF_MAX_RT

 MRC 0

 MRD 0

Mrugalski, et al. Expires August 26, 2015 [Page 54]

Internet-Draft RFC 3315 bis February 2015

19.1.6. Creation and Transmission of Release Messages

 To release one or more addresses, a client sends a Release message to
 the server.

 The client sets the "msg-type" field to RELEASE. The client
 generates a transaction ID and places this value in the "transaction-
 id" field.

 The client places the identifier of the server that allocated the
 address(es) in a Server Identifier option.

 The client MUST include a Client Identifier option to identify itself
 to the server. The client includes options containing the IAs for
 the addresses it is releasing in the "options" field. The addresses
 to be released MUST be included in the IAs. Any addresses for the
 IAs the client wishes to continue to use MUST NOT be added to the
 IAs.

 The client MUST NOT use any of the addresses it is releasing as the
 source address in the Release message or in any subsequently
 transmitted message.

 Because Release messages may be lost, the client should retransmit
 the Release if no Reply is received. However, there are scenarios
 where the client may not wish to wait for the normal retransmission
 timeout before giving up (e.g., on power down). Implementations
 SHOULD retransmit one or more times, but MAY choose to terminate the
 retransmission procedure early.

 The client transmits the message according to Section 15, using the
 following parameters:

 IRT REL_TIMEOUT

 MRT 0

 MRC REL_MAX_RC

 MRD 0

 The client MUST stop using all of the addresses being released as
 soon as the client begins the Release message exchange process. If
 addresses are released but the Reply from a DHCP server is lost, the
 client will retransmit the Release message, and the server may
 respond with a Reply indicating a status of NoBinding. Therefore,
 the client does not treat a Reply message with a status of NoBinding
 in a Release message exchange as if it indicates an error.

Mrugalski, et al. Expires August 26, 2015 [Page 55]

Internet-Draft RFC 3315 bis February 2015

 Note that if the client fails to release the addresses, each address
 assigned to the IA will be reclaimed by the server when the valid
 lifetime of that address expires.

19.1.7. Creation and Transmission of Decline Messages

 If a client detects that one or more addresses assigned to it by a
 server are already in use by another node, the client sends a Decline
 message to the server to inform it that the address is suspect.

 The client sets the "msg-type" field to DECLINE. The client
 generates a transaction ID and places this value in the "transaction-
 id" field.

 The client places the identifier of the server that allocated the
 address(es) in a Server Identifier option.

 The client MUST include a Client Identifier option to identify itself
 to the server. The client includes options containing the IAs for
 the addresses it is declining in the "options" field. The addresses
 to be declined MUST be included in the IAs. Any addresses for the
 IAs the client wishes to continue to use should not be in added to
 the IAs.

 The client MUST NOT use any of the addresses it is declining as the
 source address in the Decline message or in any subsequently
 transmitted message.

 The client transmits the message according to Section 15, using the
 following parameters:

 IRT DEC_TIMEOUT

 MRT 0

 MRC DEC_MAX_RC

 MRD 0

 If addresses are declined but the Reply from a DHCP server is lost,
 the client will retransmit the Decline message, and the server may
 respond with a Reply indicating a status of NoBinding. Therefore,
 the client does not treat a Reply message with a status of NoBinding
 in a Decline message exchange as if it indicates an error.

Mrugalski, et al. Expires August 26, 2015 [Page 56]

Internet-Draft RFC 3315 bis February 2015

19.1.8. Receipt of Reply Messages

 Upon the receipt of a valid Reply message in response to a Solicit
 (with a Rapid Commit option), Request, Confirm, Renew, Rebind or
 Information-request message, the client extracts the configuration
 information contained in the Reply. The client MAY choose to report
 any status code or message from the status code option in the Reply
 message.

 The client SHOULD perform duplicate address detection [RFC4862] on
 each of the addresses in any IAs it receives in the Reply message
 before using that address for traffic. If any of the addresses are
 found to be in use on the link, the client sends a Decline message to
 the server as described in Section 19.1.7.

 If the Reply was received in response to a Solicit (with a Rapid
 Commit option), Request, Renew or Rebind message, the client updates
 the information it has recorded about IAs from the IA options
 contained in the Reply message:

 - Record T1 and T2 times.

 - Add any new addresses in the IA option to the IA as recorded by
 the client.

 - Update lifetimes for any addresses in the IA option that the
 client already has recorded in the IA.

 - Discard any addresses from the IA, as recorded by the client, that
 have a valid lifetime of 0 in the IA Address option.

 - Leave unchanged any information about addresses the client has
 recorded in the IA but that were not included in the IA from the
 server.

 Management of the specific configuration information is detailed in
 the definition of each option in Section 23.

 If the client receives a Reply message with a Status Code containing
 UnspecFail, the server is indicating that it was unable to process
 the message due to an unspecified failure condition. If the client
 retransmits the original message to the same server to retry the
 desired operation, the client MUST limit the rate at which it
 retransmits the message and limit the duration of the time during
 which it retransmits the message (see Section 14.1).

 When the client receives a Reply message with a Status Code option
 with the value UseMulticast, the client records the receipt of the

Mrugalski, et al. Expires August 26, 2015 [Page 57]

Internet-Draft RFC 3315 bis February 2015

 message and sends subsequent messages to the server through the
 interface on which the message was received using multicast. The
 client resends the original message using multicast.

 When the client receives a NotOnLink status from the server in
 response to a Confirm message, the client performs DHCP server
 solicitation, as described in Section 18, and client-initiated
 configuration as described in Section 19. If the client receives any
 Reply messages that do not indicate a NotOnLink status, the client
 can use the addresses in the IA and ignore any messages that indicate
 a NotOnLink status.

 When the client receives a NotOnLink status from the server in
 response to a Solicit (with a Rapid Commit option) or a Request, the
 client can either re-issue the Request without specifying any
 addresses or restart the DHCP server discovery process (see
 Section 18).

 The client examines the status code in each IA individually. If the
 status code is NoAddrsAvail, the client has received no usable
 addresses in the IA and may choose to try obtaining addresses for the
 IA from another server. The client uses addresses and other
 information from any IAs that do not contain a Status Code option
 with the NoAddrsAvail code. If the client receives no addresses in
 any of the IAs, it may either try another server (perhaps restarting
 the DHCP server discovery process) or use the Information-request
 message to obtain other configuration information only.

 Whenever a client restarts the DHCP server discovery process or
 selects an alternate server, as described in Section 18.1.3, the
 client SHOULD stop using all the addresses and delegated prefixes for
 which it has the bindings and try to obtain all required adresses and
 prefixes from the new server. This facilitates the client using a
 single state machine for all bindings.

 When the client receives a Reply message in response to a Renew or
 Rebind message, the client examines each IA independently. For each
 IA in the original Renew or Rebind message, the client:

 - sends a Request message if the IA contained a Status Code option
 with the NoBinding status (and does not send any additional Renew/
 Rebind messages)

 - sends a Renew/Rebind if the IA is not in the Reply message

 - otherwise accepts the information in the IA

Mrugalski, et al. Expires August 26, 2015 [Page 58]

Internet-Draft RFC 3315 bis February 2015

 When the client receives a valid Reply message in response to a
 Release message, the client considers the Release event completed,
 regardless of the Status Code option(s) returned by the server.

 When the client receives a valid Reply message in response to a
 Decline message, the client considers the Decline event completed,
 regardless of the Status Code option(s) returned by the server.

19.2. Server Behavior

 For this discussion, the Server is assumed to have been configured in
 an implementation specific manner with configuration of interest to
 clients.

 In most instances, the server will send a Reply in response to a
 client message. This Reply message MUST always contain the Server
 Identifier option containing the server’s DUID and the Client
 Identifier option from the client message if one was present.

 In most Reply messages, the server includes options containing
 configuration information for the client. The server must be aware
 of the recommendations on packet sizes and the use of fragmentation
 in section 5 of [RFC2460]. If the client included an Option Request
 option in its message, the server includes options in the Reply
 message containing configuration parameters for all of the options
 identified in the Option Request option that the server has been
 configured to return to the client. The server MAY return additional
 options to the client if it has been configured to do so.

19.2.1. Receipt of Request Messages

 When the server receives a Request message via unicast from a client
 to which the server has not sent a unicast option, the server
 discards the Request message and responds with a Reply message
 containing a Status Code option with the value UseMulticast, a Server
 Identifier option containing the server’s DUID, the Client Identifier
 option from the client message, and no other options.

 When the server receives a valid Request message, the server creates
 the bindings for that client according to the server’s policy and
 configuration information and records the IAs and other information
 requested by the client.

 The server constructs a Reply message by setting the "msg-type" field
 to REPLY, and copying the transaction ID from the Request message
 into the transaction-id field.

Mrugalski, et al. Expires August 26, 2015 [Page 59]

Internet-Draft RFC 3315 bis February 2015

 The server MUST include a Server Identifier option containing the
 server’s DUID and the Client Identifier option from the Request
 message in the Reply message.

 If the server finds that the prefix on one or more IP addresses in
 any IA in the message from the client is not appropriate for the link
 to which the client is connected, the server MUST return the IA to
 the client with a Status Code option with the value NotOnLink.

 If the server cannot assign any addresses to an IA in the message
 from the client, the server MUST include the IA in the Reply message
 with no addresses in the IA and a Status Code option in the IA
 containing status code NoAddrsAvail.

 For any IAs to which the server can assign addresses, the server
 includes the IA with addresses and other configuration parameters,
 and records the IA as a new client binding.

 The server includes a Reconfigure Accept option if the server wants
 to require that the client accept Reconfigure messages.

 The server includes other options containing configuration
 information to be returned to the client as described in
 Section 19.2.

 If the server finds that the client has included an IA in the Request
 message for which the server already has a binding that associates
 the IA with the client, the client has resent a Request message for
 which it did not receive a Reply message. The server either resends
 a previously cached Reply message or sends a new Reply message.

19.2.2. Receipt of Confirm Messages

 When the server receives a Confirm message, the server determines
 whether the addresses in the Confirm message are appropriate for the
 link to which the client is attached. If all of the addresses in the
 Confirm message pass this test, the server returns a status of
 Success. If any of the addresses do not pass this test, the server
 returns a status of NotOnLink. If the server is unable to perform
 this test (for example, the server does not have information about
 prefixes on the link to which the client is connected), or there were
 no addresses in any of the IAs sent by the client, the server MUST
 NOT send a reply to the client.

 The server ignores the T1 and T2 fields in the IA options and the
 preferred-lifetime and valid-lifetime fields in the IA Address
 options.

Mrugalski, et al. Expires August 26, 2015 [Page 60]

Internet-Draft RFC 3315 bis February 2015

 The server constructs a Reply message by setting the "msg-type" field
 to REPLY, and copying the transaction ID from the Confirm message
 into the transaction-id field.

 The server MUST include a Server Identifier option containing the
 server’s DUID and the Client Identifier option from the Confirm
 message in the Reply message. The server includes a Status Code
 option indicating the status of the Confirm message.

19.2.3. Receipt of Renew Messages

 When the server receives a Renew message via unicast from a client to
 which the server has not sent a unicast option, the server discards
 the Renew message and responds with a Reply message containing a
 Status Code option with the value UseMulticast, a Server Identifier
 option containing the server’s DUID, the Client Identifier option
 from the client message, and no other options.

 When the server receives a Renew message that contains an IA option
 from a client, it locates the client’s binding and verifies that the
 information in the IA from the client matches the information stored
 for that client.

 If the server cannot find a client entry for the IA the server
 returns the IA containing no addresses with a Status Code option set
 to NoBinding in the Reply message.

 If the server finds that any of the addresses are not appropriate for
 the link to which the client is attached, the server returns the
 address to the client with lifetimes of 0.

 If the server finds the addresses in the IA for the client then the
 server sends back the IA to the client with new lifetimes and T1/T2
 times. The server may choose to change the list of addresses and the
 lifetimes of addresses in IAs that are returned to the client.

 The server constructs a Reply message by setting the "msg-type" field
 to REPLY, and copying the transaction ID from the Renew message into
 the transaction-id field.

 The server MUST include a Server Identifier option containing the
 server’s DUID and the Client Identifier option from the Renew message
 in the Reply message.

 The server includes other options containing configuration
 information to be returned to the client as described in
 Section 19.2.

Mrugalski, et al. Expires August 26, 2015 [Page 61]

Internet-Draft RFC 3315 bis February 2015

19.2.4. Receipt of Rebind Messages

 When the server receives a Rebind message that contains an IA option
 from a client, it locates the client’s binding and verifies that the
 information in the IA from the client matches the information stored
 for that client.

 If the server cannot find a client entry for the IA and the server
 determines that the addresses in the IA are not appropriate for the
 link to which the client’s interface is attached according to the
 server’s explicit configuration information, the server MAY send a
 Reply message to the client containing the client’s IA, with the
 lifetimes for the addresses in the IA set to zero. This Reply
 constitutes an explicit notification to the client that the addresses
 in the IA are no longer valid. In this situation, if the server does
 not send a Reply message it discards the Rebind message.

 If the server finds that any of the addresses are no longer
 appropriate for the link to which the client is attached, the server
 returns the address to the client with lifetimes of 0.

 If the server finds the addresses in the IA for the client then the
 server SHOULD send back the IA to the client with new lifetimes and
 T1/T2 times.

 The server constructs a Reply message by setting the "msg-type" field
 to REPLY, and copying the transaction ID from the Rebind message into
 the transaction-id field.

 The server MUST include a Server Identifier option containing the
 server’s DUID and the Client Identifier option from the Rebind
 message in the Reply message.

 The server includes other options containing configuration
 information to be returned to the client as described in
 Section 19.2.

19.2.5. Receipt of Information-request Messages

 When the server receives an Information-request message, the client
 is requesting configuration information that does not include the
 assignment of any addresses. The server determines all configuration
 parameters appropriate to the client, based on the server
 configuration policies known to the server.

 The server constructs a Reply message by setting the "msg-type" field
 to REPLY, and copying the transaction ID from the Information-request
 message into the transaction-id field.

Mrugalski, et al. Expires August 26, 2015 [Page 62]

Internet-Draft RFC 3315 bis February 2015

 The server MUST include a Server Identifier option containing the
 server’s DUID in the Reply message. If the client included a Client
 Identification option in the Information-request message, the server
 copies that option to the Reply message.

 The server includes options containing configuration information to
 be returned to the client as described in Section 19.2.

 If the Information-request message received from the client did not
 include a Client Identifier option, the server SHOULD respond with a
 Reply message containing any configuration parameters that are not
 determined by the client’s identity. If the server chooses not to
 respond, the client may continue to retransmit the Information-
 request message indefinitely.

19.2.6. Receipt of Release Messages

 When the server receives a Release message via unicast from a client
 to which the server has not sent a unicast option, the server
 discards the Release message and responds with a Reply message
 containing a Status Code option with value UseMulticast, a Server
 Identifier option containing the server’s DUID, the Client Identifier
 option from the client message, and no other options.

 Upon the receipt of a valid Release message, the server examines the
 IAs and the addresses in the IAs for validity. If the IAs in the
 message are in a binding for the client, and the addresses in the IAs
 have been assigned by the server to those IAs, the server deletes the
 addresses from the IAs and makes the addresses available for
 assignment to other clients. The server ignores addresses not
 assigned to the IA, although it may choose to log an error.

 After all the addresses have been processed, the server generates a
 Reply message and includes a Status Code option with value Success, a
 Server Identifier option with the server’s DUID, and a Client
 Identifier option with the client’s DUID. For each IA in the Release
 message for which the server has no binding information, the server
 adds an IA option using the IAID from the Release message, and
 includes a Status Code option with the value NoBinding in the IA
 option. No other options are included in the IA option.

 A server may choose to retain a record of assigned addresses and IAs
 after the lifetimes on the addresses have expired to allow the server
 to reassign the previously assigned addresses to a client.

Mrugalski, et al. Expires August 26, 2015 [Page 63]

Internet-Draft RFC 3315 bis February 2015

19.2.7. Receipt of Decline Messages

 When the server receives a Decline message via unicast from a client
 to which the server has not sent a unicast option, the server
 discards the Decline message and responds with a Reply message
 containing a Status Code option with the value UseMulticast, a Server
 Identifier option containing the server’s DUID, the Client Identifier
 option from the client message, and no other options.

 Upon the receipt of a valid Decline message, the server examines the
 IAs and the addresses in the IAs for validity. If the IAs in the
 message are in a binding for the client, and the addresses in the IAs
 have been assigned by the server to those IAs, the server deletes the
 addresses from the IAs. The server ignores addresses not assigned to
 the IA (though it may choose to log an error if it finds such an
 address).

 The client has found any addresses in the Decline messages to be
 already in use on its link. Therefore, the server SHOULD mark the
 addresses declined by the client so that those addresses are not
 assigned to other clients, and MAY choose to make a notification that
 addresses were declined. Local policy on the server determines when
 the addresses identified in a Decline message may be made available
 for assignment.

 After all the addresses have been processed, the server generates a
 Reply message and includes a Status Code option with the value
 Success, a Server Identifier option with the server’s DUID, and a
 Client Identifier option with the client’s DUID. For each IA in the
 Decline message for which the server has no binding information, the
 server adds an IA option using the IAID from the Decline message and
 includes a Status Code option with the value NoBinding in the IA
 option. No other options are included in the IA option.

19.2.8. Transmission of Reply Messages

 If the original message was received directly by the server, the
 server unicasts the Reply message directly to the client using the
 address in the source address field from the IP datagram in which the
 original message was received. The Reply message MUST be unicast
 through the interface on which the original message was received.

 If the original message was received in a Relay-forward message, the
 server constructs a Relay-reply message with the Reply message in the
 payload of a Relay Message option (see Section 23.10). If the Relay-
 forward messages included an Interface-id option, the server copies
 that option to the Relay-reply message. The server unicasts the
 Relay-reply message directly to the relay agent using the address in

Mrugalski, et al. Expires August 26, 2015 [Page 64]

Internet-Draft RFC 3315 bis February 2015

 the source address field from the IP datagram in which the Relay-
 forward message was received.

19.3. Requesting Router Behavior for Prefix Delegation

 The requesting router uses a Request message to populate IA_PDs with
 prefixes. The requesting router includes one or more IA_PD options
 in the Request message. The delegating router then returns the
 prefixes for the IA_PDs to the requesting router in IA_PD options in
 a Reply message.

 The requesting router includes IA_PD options in any Renew, or Rebind
 messages sent by the requesting router. The IA_PD option includes
 all of the prefixes the requesting router currently has associated
 with that IA_PD.

 In some circumstances the requesting router may need verification
 that the delegating router still has a valid binding for the
 requesting router. Examples of times when a requesting router may
 ask for such verification include:

 o The requesting router reboots.

 o The requesting router’s upstream link flaps.

 o The requesting router is physically disconnected from a wired
 connection.

 If such verification is needed the requesting router MUST initiate a
 Rebind/Reply message exchange as described in section Section 19.1.4,
 with the exception that the retransmission parameters should be set
 as for the Confirm message, described in Section 19.1.2. The
 requesting router includes any IA_PDs, along with prefixes associated
 with those IA_PDs in its Rebind message.

 Each prefix has valid and preferred lifetimes whose durations are
 specified in the IA_PD Prefix option for that prefix. The requesting
 router uses Renew and Rebind messages to request the extension of the
 lifetimes of a delegated prefix.

 The requesting router uses a Release message to return a delegated
 prefix to a delegating router. The prefixes to be released MUST be
 included in the IA_PDs.

 The Confirm and Decline message types are not used with Prefix
 Delegation.

Mrugalski, et al. Expires August 26, 2015 [Page 65]

Internet-Draft RFC 3315 bis February 2015

 Upon the receipt of a valid Reply message, for each IA_PD the
 requesting router assigns a subnet from each of the delegated
 prefixes to each of the links to which the associated interfaces are
 attached.

 When the Delegating Router delegates prefixes to a Requesting Router,
 the Requesting Router has sole authority for assignment of those
 prefixes, and the Delegating Router MUST NOT assign any prefixes from
 that delegated prefix to any of its own links.

 When a requesting router subnets a delegated prefix, it must assign
 additional bits to the prefix to generate unique, longer prefixes.
 For example, if the requesting router in Figure 1 were delegated
 3FFE:FFFF:0::/48, it might generate 3FFE:FFFF:0:1::/64 and
 3FFE:FFFF:0:2::/64 for assignment to the two links in the subscriber
 network. If the requesting router were delegated 3FFE:FFFF:0::/48
 and 3FFE:FFFF:5::/48, it might assign 3FFE:FFFF:0:1::/64 and
 3FFE:FFFF:5:1::/64 to one of the links, and 3FFE:FFFF:0:2::/64 and
 3FFE:FFFF:5:2::/64 for assignment to the other link.

 If the requesting router assigns a delegated prefix to a link to
 which the router is attached, and begins to send router
 advertisements for the prefix on the link, the requesting router MUST
 set the valid lifetime in those advertisements to be no later than
 the valid lifetime specified in the IA_PD Prefix option. A
 requesting router MAY use the preferred lifetime specified in the
 IA_PD Prefix option.

 Handling of Status Codes options in received Reply messages is
 described in section Section 19.1.8. The NoPrefixAvail Status Code
 is handled in the same manner as the NoAddrsAvail Status Code.

19.4. Delegating Router Behavior for Prefix Delegation

 When a delegating router receives a Request message from a requesting
 router that contains an IA_PD option, and the delegating router is
 authorized to delegate prefix(es) to the requesting router, the
 delegating router selects the prefix(es) to be delegated to the
 requesting router. The mechanism through which the delegating router
 selects prefix(es) for delegation is not specified in this document.
 Section 18.4 gives examples of ways in which a delegating router
 might select the prefix(es) to be delegated to a requesting router.

 A delegating router examines the prefix(es) identified in IA_PD
 Prefix options (in an IA_PD option) in Renew and Rebind messages and
 responds according to the current status of the prefix(es). The
 delegating router returns IA_PD Prefix options (within an IA_PD
 option) with updated lifetimes for each valid prefix in the message

Mrugalski, et al. Expires August 26, 2015 [Page 66]

Internet-Draft RFC 3315 bis February 2015

 from the requesting router. If the delegating router finds that any
 of the prefixes are not in the requesting router’s binding entry, the
 delegating router returns the prefix to the requesting router with
 lifetimes of 0.

 The delegating router behaves as follows when it cannot find a
 binding for the requesting router’s IA_PD:

 Renew message: If the delegating router cannot find a binding
 for the requesting router’s IA_PD the delegating
 router returns the IA_PD containing no prefixes
 with a Status Code option set to NoBinding in the
 Reply message.

 Rebind message: If the delegating router cannot find a binding
 for the requesting router’s IA_PD and the
 delegating router determines that the prefixes in
 the IA_PD are not appropriate for the link to
 which the requesting router’s interface is
 attached according to the delegating routers
 explicit configuration, the delegating router MAY
 send a Reply message to the requesting router
 containing the IA_PD with the lifetimes of the
 prefixes in the IA_PD set to zero. This Reply
 constitutes an explicit notification to the
 requesting router that the prefixes in the IA_PD
 are no longer valid. If the delegating router is
 unable to determine if the prefix is not
 appropriate for the link, the Rebind message is
 discarded.

 A delegating router may mark any prefix(es) in IA_PD Prefix options
 in a Release message from a requesting router as "available",
 dependent on the mechanism used to acquire the prefix, e.g., in the
 case of a dynamic pool.

 The delegating router MUST include an IA_PD Prefix option or options
 (in an IA_PD option) in Reply messages sent to a requesting router.

20. DHCP Server-Initiated Configuration Exchange

 A server initiates a configuration exchange to cause DHCP clients to
 obtain new addresses and other configuration information. For
 example, an administrator may use a server-initiated configuration
 exchange when links in the DHCP domain are to be renumbered. Other
 examples include changes in the location of directory servers,
 addition of new services such as printing, and availability of new
 software.

Mrugalski, et al. Expires August 26, 2015 [Page 67]

Internet-Draft RFC 3315 bis February 2015

20.1. Server Behavior

 A server sends a Reconfigure message to cause a client to initiate
 immediately a Renew/Reply or Information-request/Reply message
 exchange with the server.

20.1.1. Creation and Transmission of Reconfigure Messages

 The server sets the "msg-type" field to RECONFIGURE. The server sets
 the transaction-id field to 0. The server includes a Server
 Identifier option containing its DUID and a Client Identifier option
 containing the client’s DUID in the Reconfigure message.

 The server MAY include an Option Request option to inform the client
 of what information has been changed or new information that has been
 added. In particular, the server specifies the IA option in the
 Option Request option if the server wants the client to obtain new
 address information. If the server identifies the IA option in the
 Option Request option, the server MUST include an IA option to
 identify each IA that is to be reconfigured on the client. The IA
 options included by the server MUST NOT contain any options.

 Because of the risk of denial of service attacks against DHCP
 clients, the use of a security mechanism is mandated in Reconfigure
 messages. The server MUST use DHCP authentication in the Reconfigure
 message.

 The server MUST include a Reconfigure Message option (defined in
 Section 23.19) to select whether the client responds with a Renew
 message, a Rebind message, or an Information-Request message.

 The server MUST NOT include any other options in the Reconfigure
 except as specifically allowed in the definition of individual
 options.

 A server sends each Reconfigure message to a single DHCP client,
 using an IPv6 unicast address of sufficient scope belonging to the
 DHCP client. If the server does not have an address to which it can
 send the Reconfigure message directly to the client, the server uses
 a Relay-reply message (as described in Section 21.3) to send the
 Reconfigure message to a relay agent that will relay the message to
 the client. The server may obtain the address of the client (and the
 appropriate relay agent, if required) through the information the
 server has about clients that have been in contact with the server,
 or through some external agent.

 To reconfigure more than one client, the server unicasts a separate
 message to each client. The server may initiate the reconfiguration

Mrugalski, et al. Expires August 26, 2015 [Page 68]

Internet-Draft RFC 3315 bis February 2015

 of multiple clients concurrently; for example, a server may send a
 Reconfigure message to additional clients while previous
 reconfiguration message exchanges are still in progress.

 The Reconfigure message causes the client to initiate a Renew/Reply,
 a Rebind/Reply, or Information-request/Reply message exchange with
 the server. The server interprets the receipt of a Renew, a Rebind,
 or Information-request message (whichever was specified in the
 original Reconfigure message) from the client as satisfying the
 Reconfigure message request.

20.1.2. Time Out and Retransmission of Reconfigure Messages

 If the server does not receive a Renew, Rebind, or Information-
 request message from the client in REC_TIMEOUT milliseconds, the
 server retransmits the Reconfigure message, doubles the REC_TIMEOUT
 value and waits again. The server continues this process until
 REC_MAX_RC unsuccessful attempts have been made, at which point the
 server SHOULD abort the reconfigure process for that client.

 Default and initial values for REC_TIMEOUT and REC_MAX_RC are
 documented in Section 6.5.

20.2. Receipt of Renew or Rebind Messages

 In response to a Renew message, the server generates and sends a
 Reply message to the client as described in Section 19.2.3 and
 Section 19.2.8, including options for configuration parameters.

 In response to a Rebind message, the server generates and sends a
 Reply message to the client as described in Section 19.2.4 and
 Section 19.2.8, including options for configuration parameters.

 The server MAY include options containing the IAs and new values for
 other configuration parameters in the Reply message, even if those
 IAs and parameters were not requested in the Renew or Rebind message
 from the client.

20.3. Receipt of Information-request Messages

 The server generates and sends a Reply message to the client as
 described in Section 19.2.5 and Section 19.2.8, including options for
 configuration parameters.

 The server MAY include options containing new values for other
 configuration parameters in the Reply message, even if those
 parameters were not requested in the Information-request message from
 the client.

Mrugalski, et al. Expires August 26, 2015 [Page 69]

Internet-Draft RFC 3315 bis February 2015

20.4. Client Behavior

 A client receives Reconfigure messages sent to the UDP port 546 on
 interfaces for which it has acquired configuration information
 through DHCP. These messages may be sent at any time. Since the
 results of a reconfiguration event may affect application layer
 programs, the client SHOULD log these events, and MAY notify these
 programs of the change through an implementation-specific interface.

20.4.1. Receipt of Reconfigure Messages

 Upon receipt of a valid Reconfigure message, the client responds with
 either a Renew message, a Rebind message, or an Information-request
 message as indicated by the Reconfigure Message option (as defined in
 Section 23.19). The client ignores the transaction-id field in the
 received Reconfigure message. While the transaction is in progress,
 the client discards any Reconfigure messages it receives.

 DISCUSSION:

 The Reconfigure message acts as a trigger that signals the client
 to complete a successful message exchange. Once the client has
 received a Reconfigure, the client proceeds with the message
 exchange (retransmitting the Renew or Information-request message
 if necessary); the client ignores any additional Reconfigure
 messages until the exchange is complete. Subsequent Reconfigure
 messages cause the client to initiate a new exchange.

 How does this mechanism work in the face of duplicated or
 retransmitted Reconfigure messages? Duplicate messages will be
 ignored because the client will begin the exchange after the
 receipt of the first Reconfigure. Retransmitted messages will
 either trigger the exchange (if the first Reconfigure was not
 received by the client) or will be ignored. The server can
 discontinue retransmission of Reconfigure messages to the client
 once the server receives the Renew or Information-request message
 from the client.

 It might be possible for a duplicate or retransmitted Reconfigure
 to be sufficiently delayed (and delivered out of order) to arrive
 at the client after the exchange (initiated by the original
 Reconfigure) has been completed. In this case, the client would
 initiate a redundant exchange. The likelihood of delayed and out
 of order delivery is small enough to be ignored. The consequence
 of the redundant exchange is inefficiency rather than incorrect
 operation.

Mrugalski, et al. Expires August 26, 2015 [Page 70]

Internet-Draft RFC 3315 bis February 2015

20.4.2. Creation and Transmission of Renew or Rebind Messages

 When responding to a Reconfigure, the client creates and sends the
 Renew message in exactly the same manner as outlined in
 Section 19.1.3, with the exception that the client copies the Option
 Request option and any IA options from the Reconfigure message into
 the Renew message. The client MUST include a Server Identifier
 option in the Renew message, identifying the server with which the
 client most recently communicated.

 When responding to a Reconfigure, the client creates and sends the
 Rebind message in exactly the same manner as outlined in
 Section 19.1.4, with the exception that the client copies the Option
 Request option and any IA options from the Reconfigure message into
 the Rebind message.

 If a client is currently sending Rebind messages, as described in
 Section 19.1.3, the client ignores any received Reconfigure messages.

20.4.3. Creation and Transmission of Information-request Messages

 When responding to a Reconfigure, the client creates and sends the
 Information-request message in exactly the same manner as outlined in
 Section 19.1.5, with the exception that the client includes a Server
 Identifier option with the identifier from the Reconfigure message to
 which the client is responding.

20.4.4. Time Out and Retransmission of Renew, Rebind or Information-
 request Messages

 The client uses the same variables and retransmission algorithm as it
 does with Renew, Rebind, or Information-request messages generated as
 part of a client-initiated configuration exchange. See
 Section 19.1.3, Section 19.1.4, and Section 19.1.5 for details. If
 the client does not receive a response from the server by the end of
 the retransmission process, the client ignores and discards the
 Reconfigure message.

20.4.5. Receipt of Reply Messages

 Upon the receipt of a valid Reply message, the client processes the
 options and sets (or resets) configuration parameters appropriately.
 The client records and updates the lifetimes for any addresses
 specified in IAs in the Reply message.

Mrugalski, et al. Expires August 26, 2015 [Page 71]

Internet-Draft RFC 3315 bis February 2015

20.5. Prefix Delegation Reconfiguration

 This section describes prefix delegation in Reconfigure message
 exchanges.

20.5.1. Delegating Router Behavior

 The delegating router initiates a configuration message exchange with
 a requesting router, as described in Section 20, by sending a
 Reconfigure message (acting as a DHCP server) to the requesting
 router, as described in Section 20.1. The delegating router
 specifies the IA_PD option in the Option Request option to cause the
 requesting router to include an IA_PD option to obtain new
 information about delegated prefix(es).

20.5.2. Requesting Router Behavior

 The requesting router responds to a Reconfigure message, acting as a
 DHCP client, received from a delegating router as described in
 Section 20.4 The requesting router MUST include the IA_PD Prefix
 option(s) (in an IA_PD option) for prefix(es) that have been
 delegated to the requesting router by the delegating router from
 which the Reconfigure message was received.

21. Relay Agent Behavior

 The relay agent MAY be configured to use a list of destination
 addresses, which MAY include unicast addresses, the All_DHCP_Servers
 multicast address, or other addresses selected by the network
 administrator. If the relay agent has not been explicitly
 configured, it MUST use the All_DHCP_Servers multicast address as the
 default.

 If the relay agent relays messages to the All_DHCP_Servers multicast
 address or other multicast addresses, it sets the Hop Limit field to
 32.

 If the relay agent receives a message other than Relay-forward and
 Relay-reply and the relay agent does not recognize its message type,
 it MUST forward them as described in Section 21.1.1.

21.1. Relaying a Client Message or a Relay-forward Message

 A relay agent relays both messages from clients and Relay-forward
 messages from other relay agents. When a relay agent receives a
 valid message (for a definition of a valid message, see Section 4.1
 of [RFC7283]) to be relayed, it constructs a new Relay-forward
 message. The relay agent copies the source address from the header

Mrugalski, et al. Expires August 26, 2015 [Page 72]

Internet-Draft RFC 3315 bis February 2015

 of the IP datagram in which the message was received to the peer-
 address field of the Relay-forward message. The relay agent copies
 the received DHCP message (excluding any IP or UDP headers) into a
 Relay Message option in the new message. The relay agent adds to the
 Relay-forward message any other options it is configured to include.

 [RFC6221] defines a Lightweight DHCPv6 Relay Agent (LDRA) that allows
 Relay Agent Information to be inserted by an access node that
 performs a link- layer bridging (i.e., non-routing) function.

21.1.1. Relaying a Message from a Client

 If the relay agent received the message to be relayed from a client,
 the relay agent places a global, ULA [RFC4193] or site-scoped address
 with a prefix assigned to the link on which the client should be
 assigned an address in the link-address field. (It is possible for
 the relay to use link local address instead, but that is not
 recommended as it would require additional information to be provided
 in the server configuration. See Section 3.2 of
 [I-D.ietf-dhc-topo-conf] for detailed discussion.) This address will
 be used by the server to determine the link from which the client
 should be assigned an address and other configuration information.
 The hop-count in the Relay-forward message is set to 0.

 If the relay agent cannot use the address in the link-address field
 to identify the interface through which the response to the client
 will be relayed, the relay agent MUST include an Interface-id option
 (see Section 23.18) in the Relay-forward message. The server will
 include the Interface-id option in its Relay-reply message. The
 relay agent fills in the link-address field as described in the
 previous paragraph regardless of whether the relay agent includes an
 Interface-id option in the Relay-forward message.

21.1.2. Relaying a Message from a Relay Agent

 If the message received by the relay agent is a Relay-forward message
 and the hop-count in the message is greater than or equal to
 HOP_COUNT_LIMIT, the relay agent discards the received message.

 The relay agent copies the source address from the IP datagram in
 which the message was received from the relay agent into the peer-
 address field in the Relay-forward message and sets the hop-count
 field to the value of the hop-count field in the received message
 incremented by 1.

 If the source address from the IP datagram header of the received
 message is a global or site-scoped address (and the device on which
 the relay agent is running belongs to only one site), the relay agent

Mrugalski, et al. Expires August 26, 2015 [Page 73]

Internet-Draft RFC 3315 bis February 2015

 sets the link-address field to 0; otherwise the relay agent sets the
 link-address field to a global or site-scoped address assigned to the
 interface on which the message was received, or includes an
 Interface-ID option to identify the interface on which the message
 was received.

21.1.3. Relay Agent Behavior with Prefix Delegation

 A relay agent forwards messages containing Prefix Delegation options
 in the same way as described earlier in this section.

 If a delegating router communicates with a requesting router through
 a relay agent, the delegating router may need a protocol or other
 out-of-band communication to configure routing information for
 delegated prefixes on any router through which the requesting router
 may forward traffic.

21.2. Relaying a Relay-reply Message

 The relay agent processes any options included in the Relay-reply
 message in addition to the Relay Message option, and then discards
 those options.

 The relay agent extracts the message from the Relay Message option
 and relays it to the address contained in the peer-address field of
 the Relay-reply message. Relay agents MUST NOT modify the message.

 If the Relay-reply message includes an Interface-id option, the relay
 agent relays the message from the server to the client on the link
 identified by the Interface-id option. Otherwise, if the link-
 address field is not set to zero, the relay agent relays the message
 on the link identified by the link-address field.

 If the relay agent receives a Relay-reply message, it MUST process
 the message as defined above, regardless of the type of message
 encapsulated in the Relay Message option.

21.3. Construction of Relay-reply Messages

 A server uses a Relay-reply message to return a response to a client
 if the original message from the client was relayed to the server in
 a Relay-forward message or to send a Reconfigure message to a client
 if the server does not have an address it can use to send the message
 directly to the client.

 A response to the client MUST be relayed through the same relay
 agents as the original client message. The server causes this to
 happen by creating a Relay-reply message that includes a Relay

Mrugalski, et al. Expires August 26, 2015 [Page 74]

Internet-Draft RFC 3315 bis February 2015

 Message option containing the message for the next relay agent in the
 return path to the client. The contained Relay-reply message
 contains another Relay Message option to be sent to the next relay
 agent, and so on. The server must record the contents of the peer-
 address fields in the received message so it can construct the
 appropriate Relay-reply message carrying the response from the
 server.

 For example, if client C sent a message that was relayed by relay
 agent A to relay agent B and then to the server, the server would
 send the following Relay-Reply message to relay agent B:

 msg-type: RELAY-REPLY
 hop-count: 1
 link-address: 0
 peer-address: A
 Relay Message option, containing:
 msg-type: RELAY-REPLY
 hop-count: 0
 link-address: address from link to which C is attached
 peer-address: C
 Relay Message option: <response from server>

 Figure 8: Relay-reply Example

 When sending a Reconfigure message to a client through a relay agent,
 the server creates a Relay-reply message that includes a Relay
 Message option containing the Reconfigure message for the next relay
 agent in the return path to the client. The server sets the peer-
 address field in the Relay-reply message header to the address of the
 client, and sets the link-address field as required by the relay
 agent to relay the Reconfigure message to the client. The server
 obtains the addresses of the client and the relay agent through prior
 interaction with the client or through some external mechanism.

22. Authentication of DHCP Messages

 Some network administrators may wish to provide authentication of the
 source and contents of DHCP messages. For example, clients may be
 subject to denial of service attacks through the use of bogus DHCP
 servers, or may simply be misconfigured due to unintentionally
 instantiated DHCP servers. Network administrators may wish to
 constrain the allocation of addresses to authorized hosts to avoid
 denial of service attacks in "hostile" environments where the network
 medium is not physically secured, such as wireless networks or
 college residence halls.

Mrugalski, et al. Expires August 26, 2015 [Page 75]

Internet-Draft RFC 3315 bis February 2015

 The DHCP authentication mechanism is based on the design of
 authentication for DHCPv4 [RFC3118].

22.1. Security of Messages Sent Between Servers and Relay Agents

 Relay agents and servers that exchange messages securely use the
 IPsec mechanisms for IPv6 [RFC4301]. If a client message is relayed
 through multiple relay agents, each of the relay agents must have
 established independent, pairwise trust relationships. That is, if
 messages from client C will be relayed by relay agent A to relay
 agent B and then to the server, relay agents A and B must be
 configured to use IPsec for the messages they exchange, and relay
 agent B and the server must be configured to use IPsec for the
 messages they exchange.

 Relay agents and servers that support secure relay agent to server or
 relay agent to relay agent communication use IPsec under the
 following conditions:

 Selectors Relay agents are manually configured with the
 addresses of the relay agent or server to
 which DHCP messages are to be forwarded.
 Each relay agent and server that will be
 using IPsec for securing DHCP messages must
 also be configured with a list of the relay
 agents to which messages will be returned.
 The selectors for the relay agents and
 servers will be the pairs of addresses
 defining relay agents and servers that
 exchange DHCP messages on DHCPv6 UDP port
 547.

 Mode Relay agents and servers use transport mode
 and ESP. The information in DHCP messages is
 not generally considered confidential, so
 encryption need not be used (i.e., NULL
 encryption can be used).

 Key management Because the relay agents and servers are used
 within an organization, public key schemes
 are not necessary. Because the relay agents
 and servers must be manually configured,
 manually configured key management may
 suffice, but does not provide defense against
 replayed messages. Accordingly, IKE with
 preshared secrets SHOULD be supported. IKE
 with public keys MAY be supported.

Mrugalski, et al. Expires August 26, 2015 [Page 76]

Internet-Draft RFC 3315 bis February 2015

 Security policy DHCP messages between relay agents and
 servers should only be accepted from DHCP
 peers as identified in the local
 configuration.

 Authentication Shared keys, indexed to the source IP address
 of the received DHCP message, are adequate in
 this application.

 Availability Appropriate IPsec implementations are likely
 to be available for servers and for relay
 agents in more featureful devices used in
 enterprise and core ISP networks. IPsec is
 less likely to be available for relay agents
 in low end devices primarily used in the home
 or small office markets.

22.2. Summary of DHCP Authentication

 Authentication of DHCP messages is accomplished through the use of
 the Authentication option (see Section 23.11). The authentication
 information carried in the Authentication option can be used to
 reliably identify the source of a DHCP message and to confirm that
 the contents of the DHCP message have not been tampered with.

 The Authentication option provides a framework for multiple
 authentication protocols. Two such protocols are defined here.
 Other protocols defined in the future will be specified in separate
 documents.

 Any DHCP message MUST NOT include more than one Authentication
 option.

 The protocol field in the Authentication option identifies the
 specific protocol used to generate the authentication information
 carried in the option. The algorithm field identifies a specific
 algorithm within the authentication protocol; for example, the
 algorithm field specifies the hash algorithm used to generate the
 message authentication code (MAC) in the authentication option. The
 replay detection method (RDM) field specifies the type of replay
 detection used in the replay detection field.

22.3. Replay Detection

 The Replay Detection Method (RDM) field determines the type of replay
 detection used in the Replay Detection field.

Mrugalski, et al. Expires August 26, 2015 [Page 77]

Internet-Draft RFC 3315 bis February 2015

 If the RDM field contains 0x00, the replay detection field MUST be
 set to the value of a strictly monotonically increasing counter.
 Using a counter value, such as the current time of day (for example,
 an NTP-format timestamp [RFC5905]), can reduce the danger of replay
 attacks. This method MUST be supported by all protocols.

22.4. Delayed Authentication Protocol

 If the protocol field is 2, the message is using the "delayed
 authentication" mechanism. In delayed authentication, the client
 requests authentication in its Solicit message, and the server
 replies with an Advertise message that includes authentication
 information. This authentication information contains a nonce value
 generated by the source as a message authentication code (MAC) to
 provide message authentication and entity authentication.

 Note that the delayed authentication protocol cannot work with
 2-message exchange model. This protocol uses Solicit/Advertise
 exchange as the key and server selection process. So, real DHCPv6
 procedures can only be made in the follow-up messages.

 The use of a particular technique based on the HMAC protocol
 [RFC2104] using the MD5 hash [RFC1321] is defined here.

22.4.1. Use of the Authentication Option in the Delayed Authentication
 Protocol

 In a Solicit message, the client fills in the protocol, algorithm and
 RDM fields in the Authentication option with the client’s
 preferences. The client sets the replay detection field to zero and
 omits the authentication information field. The client sets the
 option-len field to 11.

 In all other messages, the protocol and algorithm fields identify the
 method used to construct the contents of the authentication
 information field. The RDM field identifies the method used to
 construct the contents of the replay detection field.

 The format of the Authentication information is:

Mrugalski, et al. Expires August 26, 2015 [Page 78]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | DHCP realm |
 | (variable length) |
 . .
 . .
 +-+
 | key ID (32 bits) |
 +-+
 | |
 | HMAC-MD5 |
 | (128 bits) |
 | |
 +-+

 Figure 9: Authentication information format

 DHCP realm The DHCP realm that identifies the key used
 to generate the HMAC-MD5 value. This is a
 domain name encoded as described in
 Section 9.

 key ID The key identifier that identified the key
 used to generate the HMAC-MD5 value.

 HMAC-MD5 The message authentication code generated by
 applying MD5 to the DHCP message using the
 key identified by the DHCP realm, client
 DUID, and key ID.

 The sender computes the MAC using the HMAC generation algorithm
 [RFC2104] and the MD5 hash function [RFC1321]. The entire DHCP
 message (setting the MAC field of the authentication option to zero),
 including the DHCP message header and the options field, is used as
 input to the HMAC-MD5 computation function.

 DISCUSSION:

 Algorithm 1 specifies the use of HMAC-MD5. Use of a different
 technique, such as HMAC-SHA, will be specified as a separate
 protocol.

 The DHCP realm used to identify authentication keys is chosen to
 be unique among administrative domains. Use of the DHCP realm
 allows DHCP administrators to avoid conflict in the use of key

Mrugalski, et al. Expires August 26, 2015 [Page 79]

Internet-Draft RFC 3315 bis February 2015

 identifiers, and allows a host using DHCP to use authenticated
 DHCP while roaming among DHCP administrative domains.

22.4.2. Message Validation

 Any DHCP message that includes more than one authentication option
 MUST be discarded.

 To validate an incoming message, the receiver first checks that the
 value in the replay detection field is acceptable according to the
 replay detection method specified by the RDM field. If no replay is
 detected, then the receiver computes the MAC as described in
 [RFC2104]. The entire DHCP message (setting the MAC field of the
 authentication option to 0) is used as input to the HMAC-MD5
 computation function. If the MAC computed by the receiver does not
 match the MAC contained in the authentication option, the receiver
 MUST discard the DHCP message.

22.4.3. Key Utilization

 Each DHCP client has a set of keys. Each key is identified by <DHCP
 realm, client DUID, key id>. Each key also has a lifetime. The key
 may not be used past the end of its lifetime. The client’s keys are
 initially distributed to the client through some out-of-band
 mechanism. The lifetime for each key is distributed with the key.
 Mechanisms for key distribution and lifetime specification are beyond
 the scope of this document.

 The client and server use one of the client’s keys to authenticate
 DHCP messages during a session (until the next Solicit message sent
 by the client).

22.4.4. Client Considerations for Delayed Authentication Protocol

 The client announces its intention to use DHCP authentication by
 including an Authentication option in its Solicit message. The
 server selects a key for the client based on the client’s DUID. The
 client and server use that key to authenticate all DHCP messages
 exchanged during the session.

22.4.4.1. Sending Solicit Messages

 When the client sends a Solicit message and wishes to use
 authentication, it includes an Authentication option with the desired
 protocol, algorithm and RDM as described in Section 22.4. The client
 does not include any replay detection or authentication information
 in the Authentication option.

Mrugalski, et al. Expires August 26, 2015 [Page 80]

Internet-Draft RFC 3315 bis February 2015

22.4.4.2. Receiving Advertise Messages

 The client validates any Advertise messages containing an
 Authentication option specifying the delayed authentication protocol
 using the validation test described in Section 22.4.2.

 The Client behavior is defined by local policy, as detailed below.

 If the client requires that Advertise messages be authenticated, then
 it MUST ignore Advertise messages that do not include authentication
 information, or for which the client has no matching key, or that do
 not pass the validation test.

 Local policy MAY also prefer authenticated Advertise messages, in
 which case the client SHOULD attempt to validate all Advertise
 messages for which the client has a matching key. Messages for which
 the client has a key, but which do not pass the validation test MUST
 be rejected, even if the client would otherwise accept the same
 message without the Authentication option.

 In all cases, messages for which the client does not have a matching
 key should be treated as if they have no Authentication option.

 When the decision to accept unauthenticated message is made, it
 should be made with care. Accepting an unauthenticated Advertise
 message can make the client vulnerable to spoofing and other attacks.
 Policies and actions which were depending upon Authentication MUST
 NOT be executed. Local users SHOULD be informed that the client has
 accepted an unauthenticated Advertise message.

 A client MUST be configurable to discard unauthenticated messages,
 and SHOULD be configured by default to discard unauthenticated
 messages if the client has been configured with an authentication key
 or other authentication information.

 A client MAY choose to differentiate between Advertise messages with
 no authentication information and Advertise messages that do not pass
 the validation test; for example, a client might accept the former
 and discard the latter. If a client does accept an unauthenticated
 message, the client SHOULD inform any local users and SHOULD log the
 event.

22.4.4.3. Sending Request, Confirm, Renew, Rebind, Decline or Release
 Messages

 If the client authenticated the Advertise message through which the
 client selected the server, the client MUST generate authentication
 information for subsequent Request, Confirm, Renew, Rebind or Release

Mrugalski, et al. Expires August 26, 2015 [Page 81]

Internet-Draft RFC 3315 bis February 2015

 messages sent to the server, as described in Section 22.4. When the
 client sends a subsequent message, it MUST use the same key used by
 the server to generate the authentication information.

22.4.4.4. Sending Information-request Messages

 If the server has selected a key for the client in a previous message
 exchange (see Section 22.4.5.1), the client MUST use the same key to
 generate the authentication information throughout the session.

22.4.4.5. Receiving Reply Messages

 If the client authenticated the Advertise it accepted, the client
 MUST validate the associated Reply message from the server. The
 client MUST ignore and discard the Reply if the message fails to pass
 the validation test and MAY log the validation failure.

 If the client accepted an Advertise message that did not include
 authentication information or did not pass the validation test, the
 client MAY accept an unauthenticated Reply message from the server.

22.4.4.6. Receiving Reconfigure Messages

 The client MUST discard the Reconfigure if the message fails to pass
 the validation test and MAY log the validation failure.

22.4.5. Server Considerations for Delayed Authentication Protocol

 After receiving a Solicit message that contains an Authentication
 option, the server selects a key for the client, based on the
 client’s DUID and key selection policies with which the server has
 been configured. The server identifies the selected key in the
 Advertise message and uses the key to validate subsequent messages
 between the client and the server.

22.4.5.1. Receiving Solicit Messages and Sending Advertise Messages

 The server selects a key for the client and includes authentication
 information in the Advertise message returned to the client as
 specified in Section 22.4. The server MUST record the identifier of
 the key selected for the client and use that same key for validating
 subsequent messages with the client.

Mrugalski, et al. Expires August 26, 2015 [Page 82]

Internet-Draft RFC 3315 bis February 2015

22.4.5.2. Receiving Request, Confirm, Renew, Rebind or Release Messages
 and Sending Reply Messages

 The server uses the key identified in the message and validates the
 message as specified in Section 22.4.2. If the message fails to pass
 the validation test or the server does not know the key identified by
 the ’key ID’ field, the server MUST discard the message and MAY
 choose to log the validation failure. If the server receives a
 client message without an authentication option while the server has
 previously sent authentication information in the same session, it
 MUST discard the message and MAY choose to log the validation
 failure, because the client violates the definition in
 Section 22.4.4.3.

 If the message passes the validation test, the server responds to the
 specific message as described in Section 19.2. The server MUST
 include authentication information generated using the key identified
 in the received message, as specified in Section 22.4.

22.5. Reconfigure Key Authentication Protocol

 The Reconfigure key authentication protocol provides protection
 against misconfiguration of a client caused by a Reconfigure message
 sent by a malicious DHCP server. In this protocol, a DHCP server
 sends a Reconfigure Key to the client in the initial exchange of DHCP
 messages. The client records the Reconfigure Key for use in
 authenticating subsequent Reconfigure messages from that server. The
 server then includes an HMAC computed from the Reconfigure Key in
 subsequent Reconfigure messages.

 Both the Reconfigure Key sent from the server to the client and the
 HMAC in subsequent Reconfigure messages are carried as the
 Authentication information in an Authentication option. The format
 of the Authentication information is defined in the following
 section.

 The Reconfigure Key protocol is used (initiated by the server) only
 if the client and server are not using any other authentication
 protocol and the client and server have negotiated to use Reconfigure
 messages.

22.5.1. Use of the Authentication Option in the Reconfigure Key
 Authentication Protocol

 The following fields are set in an Authentication option for the
 Reconfigure Key Authentication Protocol:

 protocol 3

Mrugalski, et al. Expires August 26, 2015 [Page 83]

Internet-Draft RFC 3315 bis February 2015

 algorithm 1

 RDM 0

 The format of the Authentication information for the Reconfigure Key
 Authentication Protocol is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Value (128 bits) |
 +-+-+-+-+-+-+-+-+ |
 . .
 . .
 . +-+-+-+-+-+-+-+-+
 | |
 +-+

 Figure 10: RKAP Authentication Information

 Type Type of data in Value field carried in this
 option:

 1 Reconfigure Key value (used in Reply
 message).

 2 HMAC-MD5 digest of the message (used in
 Reconfigure message).

 Value Data as defined by the Type field.

22.5.2. Server considerations for Reconfigure Key protocol

 The server selects a Reconfigure Key for a client during the Request/
 Reply, Solicit/Reply or Information-request/Reply message exchange.
 The server records the Reconfigure Key and transmits that key to the
 client in an Authentication option in the Reply message.

 The Reconfigure Key is 128 bits long, and MUST be a cryptographically
 strong random or pseudo-random number that cannot easily be
 predicted.

 To provide authentication for a Reconfigure message, the server
 selects a replay detection value according to the RDM selected by the
 server, and computes an HMAC-MD5 of the Reconfigure message using the
 Reconfigure Key for the client. The server computes the HMAC-MD5
 over the entire DHCP Reconfigure message, including the

Mrugalski, et al. Expires August 26, 2015 [Page 84]

Internet-Draft RFC 3315 bis February 2015

 Authentication option; the HMAC-MD5 field in the Authentication
 option is set to zero for the HMAC-MD5 computation. The server
 includes the HMAC-MD5 in the authentication information field in an
 Authentication option included in the Reconfigure message sent to the
 client.

22.5.3. Client considerations for Reconfigure Key protocol

 The client will receive a Reconfigure Key from the server in the
 initial Reply message from the server. The client records the
 Reconfigure Key for use in authenticating subsequent Reconfigure
 messages.

 To authenticate a Reconfigure message, the client computes an HMAC-
 MD5 over the DHCP Reconfigure message, using the Reconfigure Key
 received from the server. If this computed HMAC-MD5 matches the
 value in the Authentication option, the client accepts the
 Reconfigure message.

23. DHCP Options

 Options are used to carry additional information and parameters in
 DHCP messages. Every option shares a common base format, as
 described in Section 23.1. All values in options are represented in
 network byte order.

 This document describes the DHCP options defined as part of the base
 DHCP specification. Other options may be defined in the future in
 separate documents. See [RFC7227] for guidelines regarding new
 options definition.

 Unless otherwise noted, each option may appear only in the options
 area of a DHCP message and may appear only once. If an option does
 appear multiple times, each instance is considered separate and the
 data areas of the options MUST NOT be concatenated or otherwise
 combined.

 Options that are allowed to appear only once are called singleton
 options. The only non-singleton options defined in this document are
 IA_NA (see Section 23.4), IA_TA (see Section 23.5), and IA_PD (see
 Section 23.21) options. Also, IAAddress (see Section 23.6) and
 IAPrefix (see Section 23.22) may appear in their respective IA
 options more than once.

Mrugalski, et al. Expires August 26, 2015 [Page 85]

Internet-Draft RFC 3315 bis February 2015

23.1. Format of DHCP Options

 The format of DHCP options is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | option-code | option-len |
 +-+
 | option-data |
 | (option-len octets) |
 +-+

 Figure 11: Option Format

 option-code An unsigned integer identifying the specific
 option type carried in this option.

 option-len An unsigned integer giving the length of the
 option-data field in this option in octets.

 option-data The data for the option; the format of this
 data depends on the definition of the option.

 DHCPv6 options are scoped by using encapsulation. Some options apply
 generally to the client, some are specific to an IA, and some are
 specific to the addresses within an IA. These latter two cases are
 discussed in Section 23.4 and Section 23.6.

23.2. Client Identifier Option

 The Client Identifier option is used to carry a DUID (see Section 10)
 identifying a client between a client and a server. The format of
 the Client Identifier option is:

Mrugalski, et al. Expires August 26, 2015 [Page 86]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_CLIENTID | option-len |
 +-+
 . .
 . DUID .
 . (variable length) .
 . .
 +-+

 Figure 12: Client Identifier Option Format

 option-code OPTION_CLIENTID (1).

 option-len Length of DUID in octets.

 DUID The DUID for the client.

23.3. Server Identifier Option

 The Server Identifier option is used to carry a DUID (see Section 10)
 identifying a server between a client and a server. The format of
 the Server Identifier option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_SERVERID | option-len |
 +-+
 . .
 . DUID .
 . (variable length) .
 . .
 +-+

 Figure 13: Server Identifier Option Format

 option-code OPTION_SERVERID (2).

 option-len Length of DUID in octets.

 DUID The DUID for the server.

Mrugalski, et al. Expires August 26, 2015 [Page 87]

Internet-Draft RFC 3315 bis February 2015

23.4. Identity Association for Non-temporary Addresses Option

 The Identity Association for Non-temporary Addresses option (IA_NA
 option) is used to carry an IA_NA, the parameters associated with the
 IA_NA, and the non-temporary addresses associated with the IA_NA.

 Addresses appearing in an IA_NA option are not temporary addresses
 (see Section 23.5).

 The format of the IA_NA option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_IA_NA | option-len |
 +-+
 | IAID (4 octets) |
 +-+
 | T1 |
 +-+
 | T2 |
 +-+
 | |
 . IA_NA-options .
 . .
 +-+

 Figure 14: Identity Association for Non-temporary Addresses Option
 Format

 option-code OPTION_IA_NA (3).

 option-len 12 + length of IA_NA-options field.

 IAID The unique identifier for this IA_NA; the
 IAID must be unique among the identifiers for
 all of this client’s IA_NAs. The number
 space for IA_NA IAIDs is separate from the
 number space for IA_TA IAIDs.

 T1 The time at which the client contacts the
 server from which the addresses in the IA_NA
 were obtained to extend the lifetimes of the
 addresses assigned to the IA_NA; T1 is a time
 duration relative to the current time
 expressed in units of seconds.

Mrugalski, et al. Expires August 26, 2015 [Page 88]

Internet-Draft RFC 3315 bis February 2015

 T2 The time at which the client contacts any
 available server to extend the lifetimes of
 the addresses assigned to the IA_NA; T2 is a
 time duration relative to the current time
 expressed in units of seconds.

 IA_NA-options Options associated with this IA_NA.

 The IA_NA-options field encapsulates those options that are specific
 to this IA_NA. For example, all of the IA Address Options carrying
 the addresses associated with this IA_NA are in the IA_NA-options
 field.

 Each IA_NA carries one "set" of non-temporary addresses; that is, at
 most one address from each prefix assigned to the link to which the
 client is attached.

 An IA_NA option may only appear in the options area of a DHCP
 message. A DHCP message may contain multiple IA_NA options.

 The status of any operations involving this IA_NA is indicated in a
 Status Code option in the IA_NA-options field.

 Note that an IA_NA has no explicit "lifetime" or "lease length" of
 its own. When the valid lifetimes of all of the addresses in an
 IA_NA have expired, the IA_NA can be considered as having expired.
 T1 and T2 are included to give servers explicit control over when a
 client recontacts the server about a specific IA_NA.

 In a message sent by a client to a server, values in the T1 and T2
 fields indicate the client’s preference for those parameters. The
 client sets T1 and T2 to 0 if it has no preference for those values.
 In a message sent by a server to a client, the client MUST use the
 values in the T1 and T2 fields for the T1 and T2 parameters, unless
 those values in those fields are 0. The values in the T1 and T2
 fields are the number of seconds until T1 and T2.

 The server selects the T1 and T2 times to allow the client to extend
 the lifetimes of any addresses in the IA_NA before the lifetimes
 expire, even if the server is unavailable for some short period of
 time. Recommended values for T1 and T2 are .5 and .8 times the
 shortest preferred lifetime of the addresses in the IA that the
 server is willing to extend, respectively. If the "shortest"
 preferred lifetime is 0xffffffff ("infinity"), the recommended T1 and
 T2 values are also 0xffffffff. If the time at which the addresses in
 an IA_NA are to be renewed is to be left to the discretion of the
 client, the server sets T1 and T2 to 0.

Mrugalski, et al. Expires August 26, 2015 [Page 89]

Internet-Draft RFC 3315 bis February 2015

 If a server receives an IA_NA with T1 greater than T2, and both T1
 and T2 are greater than 0, the server ignores the invalid values of
 T1 and T2 and processes the IA_NA as though the client had set T1 and
 T2 to 0.

 If a client receives an IA_NA with T1 greater than T2, and both T1
 and T2 are greater than 0, the client discards the IA_NA option and
 processes the remainder of the message as though the server had not
 included the invalid IA_NA option.

 Care should be taken in setting T1 or T2 to 0xffffffff ("infinity").
 A client will never attempt to extend the lifetimes of any addresses
 in an IA with T1 set to 0xffffffff. A client will never attempt to
 use a Rebind message to locate a different server to extend the
 lifetimes of any addresses in an IA with T2 set to 0xffffffff.

 This option MAY appear in a Confirm message if the lifetimes on the
 non-temporary addresses in the associated IA have not expired.

23.5. Identity Association for Temporary Addresses Option

 The Identity Association for the Temporary Addresses (IA_TA) option
 is used to carry an IA_TA, the parameters associated with the IA_TA
 and the addresses associated with the IA_TA. All of the addresses in
 this option are used by the client as temporary addresses, as defined
 in [RFC4941]. The format of the IA_TA option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_IA_TA | option-len |
 +-+
 | IAID (4 octets) |
 +-+
 | |
 . IA_TA-options .
 . .
 +-+

 Figure 15: Identity Association for Temporary Addresses Option Format

 option-code OPTION_IA_TA (4).

 option-len 4 + length of IA_TA-options field.

 IAID The unique identifier for this IA_TA; the
 IAID must be unique among the identifiers for

Mrugalski, et al. Expires August 26, 2015 [Page 90]

Internet-Draft RFC 3315 bis February 2015

 all of this client’s IA_TAs. The number
 space for IA_TA IAIDs is separate from the
 number space for IA_NA IAIDs.

 IA_TA-options Options associated with this IA_TA.

 The IA_TA-Options field encapsulates those options that are specific
 to this IA_TA. For example, all of the IA Address Options carrying
 the addresses associated with this IA_TA are in the IA_TA-options
 field.

 Each IA_TA carries one "set" of temporary addresses.

 An IA_TA option may only appear in the options area of a DHCP
 message. A DHCP message may contain multiple IA_TA options.

 The status of any operations involving this IA_TA is indicated in a
 Status Code option in the IA_TA-options field.

 Note that an IA has no explicit "lifetime" or "lease length" of its
 own. When the valid lifetimes of all of the addresses in an IA_TA
 have expired, the IA can be considered as having expired.

 An IA_TA option does not include values for T1 and T2. A client MAY
 request that the lifetimes on temporary addresses be extended by
 including the addresses in a IA_TA option sent in a Renew or Rebind
 message to a server. For example, a client would request an
 extension on the lifetime of a temporary address to allow an
 application to continue to use an established TCP connection.

 The client obtains new temporary addresses by sending an IA_TA option
 with a new IAID to a server. Requesting new temporary addresses from
 the server is the equivalent of generating new temporary addresses as
 described in [RFC4941]. The server will generate new temporary
 addresses and return them to the client. The client should request
 new temporary addresses before the lifetimes on the previously
 assigned addresses expire.

 A server MUST return the same set of temporary address for the same
 IA_TA (as identified by the IAID) as long as those addresses are
 still valid. After the lifetimes of the addresses in an IA_TA have
 expired, the IAID may be reused to identify a new IA_TA with new
 temporary addresses.

 This option MAY appear in a Confirm message if the lifetimes on the
 temporary addresses in the associated IA have not expired.

Mrugalski, et al. Expires August 26, 2015 [Page 91]

Internet-Draft RFC 3315 bis February 2015

23.6. IA Address Option

 The IA Address option is used to specify IPv6 addresses associated
 with an IA_NA or an IA_TA. The IA Address option must be
 encapsulated in the Options field of an IA_NA or IA_TA option. The
 Options fields of the IA_NA or IA_TA option encapsulates those
 options that are specific to this address.

 The format of the IA Address option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_IAADDR | option-len |
 +-+
 | |
 | IPv6 address |
 | |
 | |
 +-+
 | preferred-lifetime |
 +-+
 | valid-lifetime |
 +-+
 . .
 . IAaddr-options .
 . .
 +-+

 Figure 16: IA Address Option Format

 option-code OPTION_IAADDR (5).

 option-len 24 + length of IAaddr-options field.

 IPv6 address An IPv6 address.

 preferred-lifetime The preferred lifetime for the IPv6 address
 in the option, expressed in units of seconds.

 valid-lifetime The valid lifetime for the IPv6 address in
 the option, expressed in units of seconds.

 IAaddr-options Options associated with this address.

 In a message sent by a client to a server, values in the preferred
 and valid lifetime fields indicate the client’s preference for those

Mrugalski, et al. Expires August 26, 2015 [Page 92]

Internet-Draft RFC 3315 bis February 2015

 parameters. The client may send 0 if it has no preference for the
 preferred and valid lifetimes. If a client wishes to express its
 lifetimes preferences and does not have the knowledge to populate the
 IPv6 address field, it can use unspecified address (::). It is up to
 a server to honor or ignore these preferences.

 In a message sent by a server to a client, the client MUST use the
 values in the preferred and valid lifetime fields for the preferred
 and valid lifetimes. The values in the preferred and valid lifetimes
 are the number of seconds remaining in each lifetime.

 A client discards any addresses for which the preferred lifetime is
 greater than the valid lifetime. A server ignores the lifetimes set
 by the client if the preferred lifetime is greater than the valid
 lifetime and ignores the values for T1 and T2 set by the client if
 those values are greater than the preferred lifetime.

 Care should be taken in setting the valid lifetime of an address to
 0xffffffff ("infinity"), which amounts to a permanent assignment of
 an address to a client.

 More than one IA Address Option can appear in an IA_NA option or an
 IA_TA option.

 The status of any operations involving this IA Address is indicated
 in a Status Code option in the IAaddr-options field, as specified in
 Section 23.13.

23.7. Option Request Option

 The Option Request option is used to identify a list of options in a
 message between a client and a server. The format of the Option
 Request option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_ORO | option-len |
 +-+
 | requested-option-code-1 | requested-option-code-2 |
 +-+
 | ... |
 +-+

 Figure 17: Option Request Option Format

 option-code OPTION_ORO (6).

Mrugalski, et al. Expires August 26, 2015 [Page 93]

Internet-Draft RFC 3315 bis February 2015

 option-len 2 * number of requested options.

 requested-option-code-n The option code for an option requested
 by the client.

 A client MAY include an Option Request option in a Solicit, Request,
 Renew, Rebind, Confirm or Information-request message to inform the
 server about options the client wants the server to send to the
 client. A server MAY include an Option Request option in a
 Reconfigure message to indicate which options the client should
 request from the server. If there is a need to request encapsulated
 options, top-level Option Request option MUST be used for that
 purpose. There is no need request IAADDR or IAPREFIX.

23.8. Preference Option

 The Preference option is sent by a server to a client to affect the
 selection of a server by the client.

 The format of the Preference option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_PREFERENCE | option-len |
 +-+
 | pref-value |
 +-+-+-+-+-+-+-+-+

 Figure 18: Preference Option Format

 option-code OPTION_PREFERENCE (7).

 option-len 1.

 pref-value The preference value for the server in this
 message.

 A server MAY include a Preference option in an Advertise message to
 control the selection of a server by the client. See Section 18.1.3
 for the use of the Preference option by the client and the
 interpretation of Preference option data value.

Mrugalski, et al. Expires August 26, 2015 [Page 94]

Internet-Draft RFC 3315 bis February 2015

23.9. Elapsed Time Option

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_ELAPSED_TIME | option-len |
 +-+
 | elapsed-time |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 19: Elapsed Time Option Format

 option-code OPTION_ELAPSED_TIME (8).

 option-len 2.

 elapsed-time The amount of time since the client began its
 current DHCP transaction. This time is
 expressed in hundredths of a second (10^-2
 seconds).

 A client MUST include an Elapsed Time option in messages to indicate
 how long the client has been trying to complete a DHCP message
 exchange. The elapsed time is measured from the time at which the
 client sent the first message in the message exchange, and the
 elapsed-time field is set to 0 in the first message in the message
 exchange. Servers and Relay Agents use the data value in this option
 as input to policy controlling how a server responds to a client
 message. For example, the elapsed time option allows a secondary
 DHCP server to respond to a request when a primary server has not
 answered in a reasonable time. The elapsed time value is an
 unsigned, 16 bit integer. The client uses the value 0xffff to
 represent any elapsed time values greater than the largest time value
 that can be represented in the Elapsed Time option.

23.10. Relay Message Option

 The Relay Message option carries a DHCP message in a Relay-forward or
 Relay-reply message.

 The format of the Relay Message option is:

Mrugalski, et al. Expires August 26, 2015 [Page 95]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_RELAY_MSG | option-len |
 +-+
 | |
 . DHCP-relay-message .
 . .
 . .
 +-+

 Figure 20: Relay Message Option Format

 option-code OPTION_RELAY_MSG (9)

 option-len Length of DHCP-relay-message

 DHCP-relay-message In a Relay-forward message, the received
 message, relayed verbatim to the next relay
 agent or server; in a Relay-reply message,
 the message to be copied and relayed to the
 relay agent or client whose address is in the
 peer-address field of the Relay-reply message

23.11. Authentication Option

 The Authentication option carries authentication information to
 authenticate the identity and contents of DHCP messages. The use of
 the Authentication option is described in Section 22. The format of
 the Authentication option is:

Mrugalski, et al. Expires August 26, 2015 [Page 96]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_AUTH | option-len |
 +-+
 | protocol | algorithm | RDM | |
 +-+ |
 | |
 | replay detection (64 bits) +-+-+-+-+-+-+-+-+
 | | auth-info |
 +-+ |
 . authentication information .
 . (variable length) .
 +-+

 Figure 21: Authentication Option Format

 option-code OPTION_AUTH (11).

 option-len 11 + length of authentication information
 field.

 protocol The authentication protocol used in this
 authentication option.

 algorithm The algorithm used in the authentication
 protocol.

 RDM The replay detection method used in this
 authentication option.

 Replay detection The replay detection information for the RDM.

 authentication information The authentication information, as
 specified by the protocol and algorithm used
 in this authentication option.

23.12. Server Unicast Option

 The server sends this option to a client to indicate to the client
 that it is allowed to unicast messages to the server. The format of
 the Server Unicast option is:

Mrugalski, et al. Expires August 26, 2015 [Page 97]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_UNICAST | option-len |
 +-+
 | |
 | server-address |
 | |
 | |
 +-+

 Figure 22: Server Unicast Option Format

 option-code OPTION_UNICAST (12).

 option-len 16.

 server-address The IP address to which the client should
 send messages delivered using unicast.

 The server specifies the IPv6 address to which the client is to send
 unicast messages in the server-address field. When a client receives
 this option, where permissible and appropriate, the client sends
 messages directly to the server using the IPv6 address specified in
 the server-address field of the option.

 When the server sends a Unicast option to the client, some messages
 from the client will not be relayed by Relay Agents, and will not
 include Relay Agent options from the Relay Agents. Therefore, a
 server should only send a Unicast option to a client when Relay
 Agents are not sending Relay Agent options. A DHCP server rejects
 any messages sent inappropriately using unicast to ensure that
 messages are relayed by Relay Agents when Relay Agent options are in
 use.

 Details about when the client may send messages to the server using
 unicast are in Section 19.

23.13. Status Code Option

 This option returns a status indication related to the DHCP message
 or option in which it appears. The format of the Status Code option
 is:

Mrugalski, et al. Expires August 26, 2015 [Page 98]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_STATUS_CODE | option-len |
 +-+
 | status-code | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 . .
 . status-message .
 . .
 +-+

 Figure 23: Status Code Option Format

 option-code OPTION_STATUS_CODE (13).

 option-len 2 + length of status-message.

 status-code The numeric code for the status encoded in
 this option.

 status-message A UTF-8 encoded text string suitable for
 display to an end user, which MUST NOT be
 null-terminated.

 A Status Code option may appear in the options field of a DHCP
 message and/or in the options field of another option. If the Status
 Code option does not appear in a message in which the option could
 appear, the status of the message is assumed to be Success.

 The status-codes values previously defined by [RFC3315] and [RFC3633]
 are:

Mrugalski, et al. Expires August 26, 2015 [Page 99]

Internet-Draft RFC 3315 bis February 2015

 +---------------+------+--+
 | Name | Code | Description |
 +---------------+------+--+
Success	0	Success.
UnspecFail	1	Failure, reason unspecified; this status
		code is sent by either a client or a
		server to indicate a failure not
		explicitly specified in this document.
NoAddrsAvail	2	Server has no addresses available to
		assign to the IA(s).
NoBinding	3	Client record (binding) unavailable.
NotOnLink	4	The prefix for the address is not
		appropriate for the link to which the
		client is attached.
UseMulticast	5	Sent by a server to a client to force the
		client to send messages to the server
		using the
		All_DHCP_Relay_Agents_and_Servers address.
NoPrefixAvail	6	Delegating router has no prefixes
		available to assign to the IAPD(s).
 +---------------+------+--+

23.14. Rapid Commit Option

 The Rapid Commit option is used to signal the use of the two message
 exchange for address assignment. The format of the Rapid Commit
 option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_RAPID_COMMIT | 0 |
 +-+

 Figure 24: Rapid Commit Option Format

 option-code OPTION_RAPID_COMMIT (14).

 option-len 0.

 A client MAY include this option in a Solicit message if the client
 is prepared to perform the Solicit-Reply message exchange described
 in Section 18.1.1.

 A server MUST include this option in a Reply message sent in response
 to a Solicit message when completing the Solicit-Reply message
 exchange.

Mrugalski, et al. Expires August 26, 2015 [Page 100]

Internet-Draft RFC 3315 bis February 2015

 DISCUSSION:

 Each server that responds with a Reply to a Solicit that includes
 a Rapid Commit option will commit the assigned addresses in the
 Reply message to the client, and will not receive any confirmation
 that the client has received the Reply message. Therefore, if
 more than one server responds to a Solicit that includes a Rapid
 Commit option, some servers will commit addresses that are not
 actually used by the client.

 The problem of unused addresses can be minimized, for example, by
 designing the DHCP service so that only one server responds to the
 Solicit or by using relatively short lifetimes for assigned
 addresses, or the DHCP client initiatively releases unused
 addresses using the Release message.

23.15. User Class Option

 The User Class option is used by a client to identify the type or
 category of user or applications it represents.

 The format of the User Class option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_USER_CLASS | option-len |
 +-+
 . .
 . user-class-data .
 . .
 +-+

 Figure 25: User Class Option Format

 option-code OPTION_USER_CLASS (15).

 option-len Length of user class data field.

 user-class-data The user classes carried by the client.

 The information contained in the data area of this option is
 contained in one or more opaque fields that represent the user class
 or classes of which the client is a member. A server selects
 configuration information for the client based on the classes
 identified in this option. For example, the User Class option can be
 used to configure all clients of people in the accounting department

Mrugalski, et al. Expires August 26, 2015 [Page 101]

Internet-Draft RFC 3315 bis February 2015

 with a different printer than clients of people in the marketing
 department. The user class information carried in this option MUST
 be configurable on the client.

 The data area of the user class option MUST contain one or more
 instances of user class data. Each instance of the user class data
 is formatted as follows:

 +-...-+-+-+-+-+-+-+
 | user-class-len | opaque-data |
 +-...-+-+-+-+-+-+-+

 Figure 26: User Class Data Format

 The user-class-len is two octets long and specifies the length of the
 opaque user class data in network byte order.

 A server interprets the classes identified in this option according
 to its configuration to select the appropriate configuration
 information for the client. A server may use only those user classes
 that it is configured to interpret in selecting configuration
 information for a client and ignore any other user classes. In
 response to a message containing a User Class option, a server
 includes a User Class option containing those classes that were
 successfully interpreted by the server, so that the client can be
 informed of the classes interpreted by the server.

23.16. Vendor Class Option

 This option is used by a client to identify the vendor that
 manufactured the hardware on which the client is running. The
 information contained in the data area of this option is contained in
 one or more opaque fields that identify details of the hardware
 configuration. The format of the Vendor Class option is:

Mrugalski, et al. Expires August 26, 2015 [Page 102]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_VENDOR_CLASS | option-len |
 +-+
 | enterprise-number |
 +-+
 . .
 . vendor-class-data .

 +-+

 Figure 27: Vendor Class Option Format

 option-code OPTION_VENDOR_CLASS (16).

 option-len 4 + length of vendor class data field.

 enterprise-number The vendor’s registered Enterprise Number as
 registered with IANA [IANA-PEN].

 vendor-class-data The hardware configuration of the host on
 which the client is running.

 The vendor-class-data is composed of a series of separate items, each
 of which describes some characteristic of the client’s hardware
 configuration. Examples of vendor-class-data instances might include
 the version of the operating system the client is running or the
 amount of memory installed on the client.

 Each instance of the vendor-class-data is formatted as follows:

 +-...-+-+-+-+-+-+-+
 | vendor-class-len | opaque-data |
 +-...-+-+-+-+-+-+-+

 Figure 28: Vendor Class Data Format

 The vendor-class-len is two octets long and specifies the length of
 the opaque vendor class data in network byte order.

 Servers and clients MUST NOT include more than one instance of
 OPTION_VENDOR_CLASS with the same Enterprise Number. Each instance
 of OPTION_VENDOR_CLASS can carry multiple sub-options.

Mrugalski, et al. Expires August 26, 2015 [Page 103]

Internet-Draft RFC 3315 bis February 2015

23.17. Vendor-specific Information Option

 This option is used by clients and servers to exchange vendor-
 specific information.

 The format of the Vendor-specific Information option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_VENDOR_OPTS | option-len |
 +-+
 | enterprise-number |
 +-+
 . .
 . option-data .
 . .
 +-+

 Figure 29: Vendor-specific Information Option Format

 option-code OPTION_VENDOR_OPTS (17).

 option-len 4 + length of option-data field.

 enterprise-number The vendor’s registered Enterprise Number as
 registered with IANA [IANA-PEN].

 option-data An opaque object, interpreted by vendor-
 specific code on the clients and servers.

 The definition of the information carried in this option is vendor
 specific. The vendor is indicated in the enterprise-number field.
 Use of vendor-specific information allows enhanced operation,
 utilizing additional features in a vendor’s DHCP implementation. A
 DHCP client that does not receive requested vendor-specific
 information will still configure the host device’s IPv6 stack to be
 functional.

 The encapsulated vendor-specific options field MUST be encoded as a
 sequence of code/length/value fields of identical format to the DHCP
 options field. The option codes are defined by the vendor identified
 in the enterprise-number field and are not managed by IANA. Each of
 the encapsulated options is formatted as follows:

Mrugalski, et al. Expires August 26, 2015 [Page 104]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | opt-code | option-len |
 +-+
 . .
 . option-data .
 . .
 +-+

 Figure 30: Vendor-specific Options Format

 opt-code The code for the encapsulated option.

 option-len An unsigned integer giving the length of the
 option-data field in this encapsulated option
 in octets.

 option-data The data area for the encapsulated option.

 Multiple instances of the Vendor-specific Information option may
 appear in a DHCP message. Each instance of the option is interpreted
 according to the option codes defined by the vendor identified by the
 Enterprise Number in that option. Servers and clients MUST NOT send
 more than one instance of Vendor-specific Information option with the
 same Enterprise Number. Each instanf of Vendor-specific Information
 option MAY contain multiple encapsulated options.

 A client that is interested in receiving a Vendor-specific
 Information Option:

 - MUST specify the Vendor-specific Information Option in an Option
 Request Option.

 - MAY specify an associated Vendor Class Option.

 - MAY specify the Vendor-specific Information Option with any data.

 Severs only return the Vendor-specific Information Options if
 specified in Option Request Options from clients and:

 - MAY use the Enterprise Numbers in the associated Vendor Class
 Options to restrict the set of Enterprise Numbers in the Vendor-
 specific Information Options returned.

 - MAY return all configured Vendor-specific Information Options.

Mrugalski, et al. Expires August 26, 2015 [Page 105]

Internet-Draft RFC 3315 bis February 2015

 - MAY use other information in the packet or in its configuration to
 determine which set of Enterprise Numbers in the Vendor-specific
 Information Options to return.

23.18. Interface-Id Option

 The relay agent MAY send the Interface-id option to identify the
 interface on which the client message was received. If a relay agent
 receives a Relay-reply message with an Interface-id option, the relay
 agent relays the message to the client through the interface
 identified by the option.

 The format of the Interface ID option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_INTERFACE_ID | option-len |
 +-+
 . .
 . interface-id .
 . .
 +-+

 Figure 31: Interface-ID Option Format

 option-code OPTION_INTERFACE_ID (18).

 option-len Length of interface-id field.

 interface-id An opaque value of arbitrary length generated
 by the relay agent to identify one of the
 relay agent’s interfaces.

 The server MUST copy the Interface-Id option from the Relay-forward
 message into the Relay-reply message the server sends to the relay
 agent in response to the Relay-forward message. This option MUST NOT
 appear in any message except a Relay-forward or Relay-reply message.

 Servers MAY use the Interface-ID for parameter assignment policies.
 The Interface-ID SHOULD be considered an opaque value, with policies
 based on exact match only; that is, the Interface-ID SHOULD NOT be
 internally parsed by the server. The Interface-ID value for an
 interface SHOULD be stable and remain unchanged, for example, after
 the relay agent is restarted; if the Interface-ID changes, a server
 will not be able to use it reliably in parameter assignment policies.

Mrugalski, et al. Expires August 26, 2015 [Page 106]

Internet-Draft RFC 3315 bis February 2015

23.19. Reconfigure Message Option

 A server includes a Reconfigure Message option in a Reconfigure
 message to indicate to the client whether the client responds with a
 Renew message, a Rebind message, or an Information-request message.
 The format of this option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_RECONF_MSG | option-len |
 +-+
 | msg-type |
 +-+-+-+-+-+-+-+-+

 Figure 32: Reconfigure Message Option Format

 option-code OPTION_RECONF_MSG (19).

 option-len 1.

 msg-type 5 for Renew message, 6 for Rebind, 11 for
 Information-request message.

 The Reconfigure Message option can only appear in a Reconfigure
 message.

23.20. Reconfigure Accept Option

 A client uses the Reconfigure Accept option to announce to the server
 whether the client is willing to accept Reconfigure messages, and a
 server uses this option to tell the client whether or not to accept
 Reconfigure messages. The default behavior, in the absence of this
 option, means unwillingness to accept Reconfigure messages, or
 instruction not to accept Reconfigure messages, for the client and
 server messages, respectively. The following figure gives the format
 of the Reconfigure Accept option:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_RECONF_ACCEPT | 0 |
 +-+

 Figure 33: Reconfigure Accept Option Format

Mrugalski, et al. Expires August 26, 2015 [Page 107]

Internet-Draft RFC 3315 bis February 2015

 option-code OPTION_RECONF_ACCEPT (20).

 option-len 0.

23.21. Identity Association for Prefix Delegation Option

 The IA_PD option is used to carry a prefix delegation identity
 association, the parameters associated with the IA_PD and the
 prefixes associated with it.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_IA_PD | option-length |
 +-+
 | IAID (4 octets) |
 +-+
 | T1 |
 +-+
 | T2 |
 +-+
 . .
 . IA_PD-options .
 . .
 +-+

 Figure 34: Identity Association for Prefix Delegation Option Format

 option-code OPTION_IA_PD (25).

 option-length 12 + length of IA_PD-options field.

 IAID The unique identifier for this IA_PD; the
 IAID must be unique among the identifiers for
 all of this requesting router’s IA_PDs.

 T1 The time at which the requesting router
 should contact the delegating router from
 which the prefixes in the IA_PD were obtained
 to extend the lifetimes of the prefixes
 delegated to the IA_PD; T1 is a time duration
 relative to the current time expressed in
 units of seconds.

 T2 The time at which the requesting router
 should contact any available delegating
 router to extend the lifetimes of the

Mrugalski, et al. Expires August 26, 2015 [Page 108]

Internet-Draft RFC 3315 bis February 2015

 prefixes assigned to the IA_PD; T2 is a time
 duration relative to the current time
 expressed in units of seconds.

 IA_PD-options Options associated with this IA_PD.

 The IA_PD-options field encapsulates those options that are specific
 to this IA_PD. For example, all of the IA_PD Prefix Options carrying
 the prefixes associated with this IA_PD are in the IA_PD-options
 field.

 An IA_PD option may only appear in the options area of a DHCP
 message. A DHCP message may contain multiple IA_PD options.

 The status of any operations involving this IA_PD is indicated in a
 Status Code option in the IA_PD-options field.

 Note that an IA_PD has no explicit "lifetime" or "lease length" of
 its own. When the valid lifetimes of all of the prefixes in a IA_PD
 have expired, the IA_PD can be considered as having expired. T1 and
 T2 are included to give delegating routers explicit control over when
 a requesting router should contact the delegating router about a
 specific IA_PD.

 In a message sent by a requesting router to a delegating router,
 values in the T1 and T2 fields indicate the requesting router’s
 preference for those parameters. The requesting router sets T1 and
 T2 to zero if it has no preference for those values. In a message
 sent by a delegating router to a requesting router, the requesting
 router MUST use the values in the T1 and T2 fields for the T1 and T2
 parameters. The values in the T1 and T2 fields are the number of
 seconds until T1 and T2.

 The delegating router selects the T1 and T2 times to allow the
 requesting router to extend the lifetimes of any prefixes in the
 IA_PD before the lifetimes expire, even if the delegating router is
 unavailable for some short period of time. Recommended values for T1
 and T2 are .5 and .8 times the shortest preferred lifetime of the
 prefixes in the IA_PD that the delegating router is willing to
 extend, respectively. If the time at which the prefixes in an IA_PD
 are to be renewed is to be left to the discretion of the requesting
 router, the delegating router sets T1 and T2 to 0.

 If a delegating router receives an IA_PD with T1 greater than T2, and
 both T1 and T2 are greater than 0, the delegating router ignores the
 invalid values of T1 and T2 and processes the IA_PD as though the
 requesting router had set T1 and T2 to 0.

Mrugalski, et al. Expires August 26, 2015 [Page 109]

Internet-Draft RFC 3315 bis February 2015

 If a requesting router receives an IA_PD with T1 greater than T2, and
 both T1 and T2 are greater than 0, the requesting router discards the
 IA_PD option and processes the remainder of the message as though the
 requesting router had not included the IA_PD option.

23.22. IA Prefix Option

 The IA_PD Prefix option is used to specify IPv6 address prefixes
 associated with an IA_PD. The IA_PD Prefix option must be
 encapsulated in the IA_PD-options field of an IA_PD option.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_IAPREFIX | option-length |
 +-+
 | preferred-lifetime |
 +-+
 | valid-lifetime |
 +-+
 | prefix-length | |
 +-+-+-+-+-+-+-+-+ IPv6 prefix |
 | (16 octets) |
 | |
 | |
 | |
 | +-+
 | | .
 +-+-+-+-+-+-+-+-+ .
 . IAprefix-options .
 . .
 +-+

 Figure 35: IA Prefix Option Format

 option-code OPTION_IAPREFIX (26).

 option-length 25 + length of IAprefix-options field.

 preferred-lifetime The recommended preferred lifetime for the
 IPv6 prefix in the option, expressed in units
 of seconds. A value of 0xFFFFFFFF represents
 infinity.

 valid-lifetime The valid lifetime for the IPv6 prefix in the
 option, expressed in units of seconds. A
 value of 0xFFFFFFFF represents infinity.

Mrugalski, et al. Expires August 26, 2015 [Page 110]

Internet-Draft RFC 3315 bis February 2015

 prefix-length Length for this prefix in bits.

 IPv6-prefix An IPv6 prefix.

 IAprefix-options Options associated with this prefix.

 In a message sent by a requesting router to a delegating router, the
 values in the fields can be used to indicate the requesting router’s
 preference for those values. The requesting router may send a value
 of zero to indicate no preference. A requesting router may set the
 IPv6 prefix field to zero and a given value in the prefix-length
 field to indicate a preference for the size of the prefix to be
 delegated.

 In a message sent by a delegating router the preferred and valid
 lifetimes should be set to the values of AdvPreferredLifetime and
 AdvValidLifetime as specified in section 6.2.1, "Router Configuration
 Variables" of [RFC2461], unless administratively configured.

 A requesting router discards any prefixes for which the preferred
 lifetime is greater than the valid lifetime. A delegating router
 ignores the lifetimes set by the requesting router if the preferred
 lifetime is greater than the valid lifetime and ignores the values
 for T1 and T2 set by the requesting router if those values are
 greater than the preferred lifetime.

 The values in the preferred and valid lifetimes are the number of
 seconds remaining for each lifetime.

 An IA_PD Prefix option may appear only in an IA_PD option. More than
 one IA_PD Prefix Option can appear in a single IA_PD option.

 The status of any operations involving this IA_PD Prefix option is
 indicated in a Status Code option in the IAprefix-options field.

23.23. SOL_MAX_RT Option

 A DHCP server sends the SOL_MAX_RT option to a client to override the
 default value of SOL_MAX_RT. The value of SOL_MAX_RT in the option
 replaces the default value defined in Section 6.5. One use for the
 SOL_MAX_RT option is to set a longer value for SOL_MAX_RT, which
 reduces the Solicit traffic from a client that has not received a
 response to its Solicit messages.

 The format of the SOL_MAX_RT option is:

Mrugalski, et al. Expires August 26, 2015 [Page 111]

Internet-Draft RFC 3315 bis February 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | option-code | option-len |
 +-+
 | SOL_MAX_RT value |
 +-+

 Figure 36: SOL_MAX_RT Option Format

 option-code OPTION_SOL_MAX_RT (82).

 option-len 4.

 SOL_MAX_RT value Overriding value for SOL_MAX_RT in seconds;
 MUST be in range: 60 <= "value" <= 86400 (1
 day).

 A DHCP client MUST include the SOL_MAX_RT option code in any Option
 Request option (see Section 23.7) it sends.

 The DHCP server MAY include the SOL_MAX_RT option in any response it
 sends to a client that has included the SOL_MAX_RT option code in an
 Option Request option. The SOL_MAX_RT option is sent in the main
 body of the message to client, not as an encapsulated option in,
 e.g., an IA_NA, IA_TA, or IA_PD option.

 A DHCP client MUST ignore any SOL_MAX_RT option values that are less
 than 60 or more than 86400.

 If a DHCP client receives a message containing a SOL_MAX_RT option
 that has a valid value for SOL_MAX_RT, the client MUST set its
 internal SOL_MAX_RT parameter to the value contained in the
 SOL_MAX_RT option. This value of SOL_MAX_RT is then used by the
 retransmission mechanism defined in Section 15 and Section 18.1.2.

 Updated SOL_MAX_RT value applies only to the network interface on
 which the client received SOL_MAX_RT option.

23.24. INF_MAX_RT Option

 A DHCP server sends the INF_MAX_RT option to a client to override the
 default value of INF_MAX_RT. The value of INF_MAX_RT in the option
 replaces the default value defined in Section 6.5. One use for the
 INF_MAX_RT option is to set a longer value for INF_MAX_RT, which
 reduces the Information-request traffic from a client that has not
 received a response to its Information-request messages.

Mrugalski, et al. Expires August 26, 2015 [Page 112]

Internet-Draft RFC 3315 bis February 2015

 The format of the INF_MAX_RT option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | option-code | option-len |
 +-+
 | INF_MAX_RT value |
 +-+

 Figure 37: INF_MAX_RT Option Format

 option-code OPTION_INF_MAX_RT (83).

 option-len 4.

 SOL_MAX_RT value Overriding value for INF_MAX_RT in seconds;
 MUST be in range: 60 <= "value" <= 86400 (1
 day).

 A DHCP client MUST include the INF_MAX_RT option code in any Option
 Request option (see Section 23.7) it sends.

 The DHCP server MAY include the INF_MAX_RT option in any response it
 sends to a client that has included the INF_MAX_RT option code in an
 Option Request option. The INF_MAX_RT option is sent in the main
 body of the message to client, not as an encapsulated option in,
 e.g., an IA_NA, IA_TA, or IA_PD option.

 A DHCP client MUST ignore any INF_MAX_RT option values that are less
 than 60 or more than 86400.

 If a DHCP client receives a message containing an INF_MAX_RT option
 that has a valid value for INF_MAX_RT, the client MUST set its
 internal INF_MAX_RT parameter to the value contained in the
 INF_MAX_RT option. This value of INF_MAX_RT is then used by the
 retransmission mechanism defined in Section 15 and Section 19.1.5.

 Updated INF_MAX_RT value applies only to the network interface on
 which the client received INF_MAX_RT option.

24. Security Considerations

 The threat to DHCP is inherently an insider threat (assuming a
 properly configured network where DHCPv6 ports are blocked on the
 perimeter gateways of the enterprise). Regardless of the gateway

Mrugalski, et al. Expires August 26, 2015 [Page 113]

Internet-Draft RFC 3315 bis February 2015

 configuration, however, the potential attacks by insiders and
 outsiders are the same.

 Use of manually configured preshared keys for IPsec between relay
 agents and servers does not defend against replayed DHCP messages.
 Replayed messages can represent a DOS attack through exhaustion of
 processing resources, but not through mis-configuration or exhaustion
 of other resources such as assignable addresses.

 One attack specific to a DHCP client is the establishment of a
 malicious server with the intent of providing incorrect configuration
 information to the client. The motivation for doing so may be to
 mount a "man in the middle" attack that causes the client to
 communicate with a malicious server instead of a valid server for
 some service such as DNS or NTP. The malicious server may also mount
 a denial of service attack through misconfiguration of the client
 that causes all network communication from the client to fail.

 A malicious DHCP server might cause a client to set its SOL_MAX_RT
 and INF_MAX_RT parameters to an unreasonably high value with the
 SOL_MAX_RT and INF_MAX_RT options, which may cause an undue delay in
 a client completing its DHCP protocol transaction in the case no
 other valid response is received. Assuming the client also receives
 a response from a valid DHCP server, large values for SOL_MAX_RT and
 INF_MAX_RT will not have any effect.

 There is another threat to DHCP clients from mistakenly or
 accidentally configured DHCP servers that answer DHCP client requests
 with unintentionally incorrect configuration parameters.

 A DHCP client may also be subject to attack through the receipt of a
 Reconfigure message from a malicious server that causes the client to
 obtain incorrect configuration information from that server. Note
 that although a client sends its response (Renew or Information-
 request message) through a relay agent and, therefore, that response
 will only be received by servers to which DHCP messages are relayed,
 a malicious server could send a Reconfigure message to a client,
 followed (after an appropriate delay) by a Reply message that would
 be accepted by the client. Thus, a malicious server that is not on
 the network path between the client and the server may still be able
 to mount a Reconfigure attack on a client. The use of transaction
 IDs that are cryptographically sound and cannot easily be predicted
 will also reduce the probability that such an attack will be
 successful.

 The threat specific to a DHCP server is an invalid client
 masquerading as a valid client. The motivation for this may be for

Mrugalski, et al. Expires August 26, 2015 [Page 114]

Internet-Draft RFC 3315 bis February 2015

 theft of service, or to circumvent auditing for any number of
 nefarious purposes.

 The threat common to both the client and the server is the resource
 "denial of service" (DoS) attack. These attacks typically involve
 the exhaustion of available addresses, or the exhaustion of CPU or
 network bandwidth, and are present anytime there is a shared
 resource.

 In the case where relay agents add additional options to Relay
 Forward messages, the messages exchanged between relay agents and
 servers may be used to mount a "man in the middle" or denial of
 service attack.

 This threat model does not consider the privacy of the contents of
 DHCP messages to be important. DHCP is not used to exchange
 authentication or configuration information that must be kept secret
 from other networks nodes.

 DHCP authentication provides for authentication of the identity of
 DHCP clients and servers, and for the integrity of messages delivered
 between DHCP clients and servers. DHCP authentication does not
 provide any privacy for the contents of DHCP messages.

 The Delayed Authentication protocol described in Section 22.4 uses a
 secret key that is shared between a client and a server. The use of
 a "DHCP realm" in the shared key allows identification of
 administrative domains so that a client can select the appropriate
 key or keys when roaming between administrative domains. However,
 the Delayed Authentication protocol does not define any mechanism for
 sharing of keys, so a client may require separate keys for each
 administrative domain it encounters. The use of shared keys may not
 scale well and does not provide for repudiation of compromised keys.
 This protocol is focused on solving the intradomain problem where the
 out-of-band exchange of a shared key is feasible.

 Because of the opportunity for attack through the Reconfigure
 message, a DHCP client MUST discard any Reconfigure message that does
 not include authentication or that does not pass the validation
 process for the authentication protocol.

 The Reconfigure Key protocol described in Section 22.5 provides
 protection against the use of a Reconfigure message by a malicious
 DHCP server to mount a denial of service or man-in-the-middle attack
 on a client. This protocol can be compromised by an attacker that
 can intercept the initial message in which the DHCP server sends the
 key to the client.

Mrugalski, et al. Expires August 26, 2015 [Page 115]

Internet-Draft RFC 3315 bis February 2015

 Communication between a server and a relay agent, and communication
 between relay agents, can be secured through the use of IPsec, as
 described in Section 22.1. The use of manual configuration and
 installation of static keys are acceptable in this instance because
 relay agents and the server will belong to the same administrative
 domain and the relay agents will require other specific configuration
 (for example, configuration of the DHCP server address) as well as
 the IPsec configuration.

 A rogue delegating router can issue bogus prefixes to a requesting
 router. This may cause denial of service due to unreachability.

 A malicious requesting router may be able to mount a denial of
 service attack by repeated requests for delegated prefixes that
 exhaust the delegating router’s available prefixes.

 To guard against attacks through prefix delegation, requesting
 routers and delegating routers SHOULD use DHCP authentication as
 described in Section 22. For point to point links, where one trusts
 that there is no man in the middle, or one trusts layer two
 authentication, DHCP authentication or IPsec may not be necessary.
 Because a requesting router and delegating routers must each have at
 least one assigned IPv6 address, the routers may be able to use IPsec
 for authentication of DHCPv6 messages. The details of using IPsec
 for DHCPv6 are under development.

 Networks configured with delegated prefixes should be configured to
 preclude intentional or inadvertent inappropriate advertisement of
 these prefixes.

25. IANA Considerations

 This document does not define any new DHCPv6 name spaces or
 definitions.

 IANA is requested to update the http://www.iana.org/assignments/
 dhcpv6-parameters/dhcpv6-parameters.xhtml page to add a reference to
 this document for definitions previously created by [RFC3315],
 [RFC3633], and [RFC7083].

26. Acknowledgments

 The following people are authors of the original RFC 3315: Ralph
 Droms, Jim Bound, Bernie Volz, Ted Lemon, Charles Perkins, and Mike
 Carney. The following people are authors of the original RFC 3633:
 Ole Troan and Ralph Droms. This document is merely a refinement of
 their work and would not be possible without their original work.

Mrugalski, et al. Expires August 26, 2015 [Page 116]

Internet-Draft RFC 3315 bis February 2015

 A number of additional people have contributed to identifying issues
 with RFC 3315 and RFC 3633 and proposed resolutions to these issues
 as reflected in this document (in no particular order): Ole Troan,
 Robert Marks, Leaf Yeh, Tim Winters, Michelle Cotton, Pablo Armando,
 John Brzozowski, Suresh Krishnan, Hideshi Enokihara, Alexandru
 Petrescu, Yukiyo Akisada, Tatuya Jinmei, Fred Templin. With special
 thanks to Ralph Droms for answering many questions related to the
 original RFC 3315 work.

 The following acknowledgements are from the original RFC 3315 and RFC
 3633:

 Thanks to the DHC Working Group and the members of the IETF for their
 time and input into the specification. In particular, thanks also
 for the consistent input, ideas, and review by (in alphabetical
 order) Bernard Aboba, Bill Arbaugh, Thirumalesh Bhat, Steve Bellovin,
 A. K. Vijayabhaskar, Brian Carpenter, Matt Crawford, Steve Deering,
 Francis Dupont, Dave Forster, Brian Haberman, Richard Hussong, Tatuya
 Jinmei, Kim Kinnear, Fredrik Lindholm, Tony Lindstrom, Josh
 Littlefield, Gerald Maguire, Jack McCann, Shin Miyakawa, Thomas
 Narten, Erik Nordmark, Jarno Rajahalme, Yakov Rekhter, Pekka Savola,
 Mark Stapp, Matt Thomas, Sue Thomson, Tatuya Jinmei, Bernie Volz,
 Trevor Warwick, Phil Wells and Toshi Yamasaki.

 Thanks to Steve Deering and Bob Hinden, who have consistently taken
 the time to discuss the more complex parts of the IPv6
 specifications.

 And, thanks to Steve Deering for pointing out at IETF 51 in London
 that the DHCPv6 specification has the highest revision number of any
 Internet Draft.

27. References

27.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0826] Plummer, D., "Ethernet Address Resolution Protocol: Or
 converting network protocol addresses to 48.bit Ethernet
 address for transmission on Ethernet hardware", STD 37,
 RFC 826, November 1982.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

Mrugalski, et al. Expires August 26, 2015 [Page 117]

Internet-Draft RFC 3315 bis February 2015

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC
 2131, March 1997.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, March 1997.

 [RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, April 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2461] Narten, T., Nordmark, E., and W. Simpson, "Neighbor
 Discovery for IP Version 6 (IPv6)", RFC 2461, December
 1998.

 [RFC2464] Crawford, M., "Transmission of IPv6 Packets over Ethernet
 Networks", RFC 2464, December 1998.

 [RFC2526] Johnson, D. and S. Deering, "Reserved IPv6 Subnet Anycast
 Addresses", RFC 2526, March 1999.

 [RFC3118] Droms, R. and W. Arbaugh, "Authentication for DHCP
 Messages", RFC 3118, June 2001.

 [RFC3646] Droms, R., "DNS Configuration options for Dynamic Host
 Configuration Protocol for IPv6 (DHCPv6)", RFC 3646,
 December 2003.

 [RFC4075] Kalusivalingam, V., "Simple Network Time Protocol (SNTP)
 Configuration Option for DHCPv6", RFC 4075, May 2005.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

Mrugalski, et al. Expires August 26, 2015 [Page 118]

Internet-Draft RFC 3315 bis February 2015

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, September 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
 Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

 [RFC6221] Miles, D., Ooghe, S., Dec, W., Krishnan, S., and A.
 Kavanagh, "Lightweight DHCPv6 Relay Agent", RFC 6221, May
 2011.

 [RFC6355] Narten, T. and J. Johnson, "Definition of the UUID-Based
 DHCPv6 Unique Identifier (DUID-UUID)", RFC 6355, August
 2011.

 [RFC6724] Thaler, D., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, September 2012.

 [RFC7083] Droms, R., "Modification to Default Values of SOL_MAX_RT
 and INF_MAX_RT", RFC 7083, November 2013.

 [RFC7227] Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
 S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
 BCP 187, RFC 7227, May 2014.

 [RFC7283] Cui, Y., Sun, Q., and T. Lemon, "Handling Unknown DHCPv6
 Messages", RFC 7283, July 2014.

27.2. Informative References

 [I-D.ietf-dhc-topo-conf]
 Lemon, T. and T. Mrugalski, "Customizing DHCP
 Configuration on the Basis of Network Topology", draft-
 ietf-dhc-topo-conf-04 (work in progress), January 2015.

 [IANA-PEN]
 IANA, "Private Enterprise Numbers registry
 http://www.iana.org/assignments/enterprise-numbers", .

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

Mrugalski, et al. Expires August 26, 2015 [Page 119]

Internet-Draft RFC 3315 bis February 2015

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RFC2462] Thomson, S. and T. Narten, "IPv6 Stateless Address
 Autoconfiguration", RFC 2462, December 1998.

 [RFC3041] Narten, T. and R. Draves, "Privacy Extensions for
 Stateless Address Autoconfiguration in IPv6", RFC 3041,
 January 2001.

 [RFC3162] Aboba, B., Zorn, G., and D. Mitton, "RADIUS and IPv6", RFC
 3162, August 2001.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 December 2003.

 [RFC3736] Droms, R., "Stateless Dynamic Host Configuration Protocol
 (DHCP) Service for IPv6", RFC 3736, April 2004.

 [RFC3769] Miyakawa, S. and R. Droms, "Requirements for IPv6 Prefix
 Delegation", RFC 3769, June 2004.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, October 2005.

 [RFC7084] Singh, H., Beebee, W., Donley, C., and B. Stark, "Basic
 Requirements for IPv6 Customer Edge Routers", RFC 7084,
 November 2013.

 [RFC7341] Sun, Q., Cui, Y., Siodelski, M., Krishnan, S., and I.
 Farrer, "DHCPv4-over-DHCPv6 (DHCP 4o6) Transport", RFC
 7341, August 2014.

Appendix A. Changes since RFC3315

 1. Incorporated RFC3315 errata (ids: 294, 1373, 2928, 1815, 3577,
 2509, 295).

 2. Partially incorporated RFC3315 errata id 2472 (place other IA
 options if NoAddrsAvail is sent in Advertise).

Mrugalski, et al. Expires August 26, 2015 [Page 120]

Internet-Draft RFC 3315 bis February 2015

 3. Clarified section 21.4.1 of RFC3315 by defining length of "key
 ID" field and specifying that ’DHCP realm’ is Domain Name
 encoded as per section 8 of RFC3315. Ticket #43.

 4. Added DUID-UUID and reference to RFC6355. Ticket #54.

 5. Specified a minimum length for the DUID in section "9.1. DUID
 Contents". Ticket #39.

 6. Removed the use of term "sub-options" from section "19.1.1.
 Creation and Transmission of Reconfigure Messages". Ticket #40.

 7. Added text to section 22.6 "IA Address Option" about the usage
 of unspecified address to express the client hints for Preferred
 and Valid lifetimes. Ticket #45.

 8. Updated text in 21.4.2 of RFC3315 ("Message Validation") as
 suggested in section 3.1 of draft-ietf-dhc-dhcpv6-clarify-auth-
 01. Ticket #87.

 9. Merged RFC7083, "Modification to Default Values of SOL_MAX_RT
 and INF_MAX_RT", into this document. Ticket #51.

 10. Incorporated RFC3315 errata (id 2471), into section 17.1.3.
 Ticket #25.

 11. Added text that relay agents MUST NOT modify the relayed message
 to section 20.1.2. Ticket #57.

 12. Modified the text in section 21.4.4.5, Receiving Reply Messages,
 to remove special treatment of a Reply validation failure
 (client ignores message). Ticket #89.

 13. Appendix C updated: Authentication option is no longer allowed
 in Relay-forward and Relay-reply messages, ORO is no longer
 allowed in Confirm, Release and Decline messages; Preference
 option is no longer allowed in Reply messages (only in
 Advertise). Ticket #10.

 14. Removed "silently" from several instances of "silently ignores"
 or "silently" discards. It is up to software vendor if and how
 to log such events (debug log message, event log, message pop-up
 etc.). Ticket #50.

 15. Clarified that: there should be no more that one instance of
 Vendor Class option with a given Enterprise Number; that one
 instance of Vendor Class can contain multiple encapsulated

Mrugalski, et al. Expires August 26, 2015 [Page 121]

Internet-Draft RFC 3315 bis February 2015

 options; the same applies to Vendor Specific Information option.
 Ticket #22.

 16. Clarified relay agent definition. Ticket #12.

 17. Changed REL_MAX_RC and DEC_MAX_RC defaults from 5 to 4 and added
 retry to parameter description. Ticket #84.

 18. Clarify handling process for Vendor-specific Information Option
 and Vendor Class Option. Ticket #20.

 19. Replace "monotonic" with "strictly monotonic" in Section 21.3.
 Ticket #11.

 20. Incorporate everything of RFC 6644, except for Security
 Considerations Section, which has already covered in a more
 abstracted way. Ticket #55 & #56.

 21. Clarify the server behavior process when a client violates
 Delayed Authentication Protocol, in Section 21.4. Ticket #90.

 22. Updated titles of sections 19.4.2. and 19.4.4. to include Rebind
 messages.

 23. Applied many of the review comments from a review done by Fred
 Templin in August 2006. Ticket #14.

 24. Reworded the first paragraph of Section 15 to relax the "SHOULD"
 requirement to drop the messages which contain the options not
 expected in the current message. Ticket #17.

 25. Changed WG to DHC, added keywords

 26. Loosened requirements for DUID-EN, so that DUID type can be used
 for virtual machines. Ticket #16.

 27. Clarified that IA may contain other resources than just address.
 Ticket #93.

 28. Clarified that most options are singletons (i.e. can appear only
 once). Ticket #83.

 29. Merged sections 1 (Ticket #96), 2 (Ticket #97), 3 (Ticket #98),
 4 (Ticket #99), 6 (Ticket #101), 8 (Ticket #103), 9 (Ticket
 #104), 10 (Ticket #105), 11 (Ticket #106), 13 (Ticket #108), 14
 (Ticket #109), 15 (Ticket #110), 16 (Ticket #111), 17 (Ticket
 #112) and 19 (Ticket #113) from RFC3633 (Prefix Delegation).

Mrugalski, et al. Expires August 26, 2015 [Page 122]

Internet-Draft RFC 3315 bis February 2015

 30. Clarified that encapsulated options must be requested using top
 level ORO (ticket #38).

 31. Clarified that configuration for interface X should be requested
 over interface X (ticket #48).

 32. CONFIRM is now an optional message (MUST send Confirm eased to
 SHOULD) (ticket #120).

 33. Added reference to RFC7227: DHCPv6 Option Guidelines (ticket
 #121).

 34. Added new section 5 providing an overview of DHCPv6 operational
 modes and removed two prefix delegation sections from section 1.
 See tickets #53, #100, and #102.

 35. Addressed ticket #115 - don’t use DHCPv6 for DHCPv4
 configuration.

 36. Revised IANA Considerations based on ticket #117.

 37. Updated IAID description in the terminology with the
 clarification that the IAID is unique among IAs of a specific
 type, rather than globally unique among all IAs (ticket #94).

 38. Merged Section 12 from RFC3633 (ticket #107)

 39. Clarified behavior for unknown messages (RFC7283), ticket #58.

 40. Addressed tickets #123 and #126, and clarified that the client
 SHOULD abandon its bindings when restarts the server
 solicitation.

 41. Clarified link-address field usage, ticket #73.

Appendix B. Changes since RFC3633

 1. Incorporated RFC3633 errata (ids: 248, 1880, 2468, 2469, 2470,
 3736)

 2. ...

Appendix C. Appearance of Options in Message Types

 The following table indicates with a "*" the options are allowed in
 each DHCP message type:

Mrugalski, et al. Expires August 26, 2015 [Page 123]

Internet-Draft RFC 3315 bis February 2015

 Client Server IA_NA IA_PD Option Pref Elap. Relay Auth. Server
 ID ID IA_TA Request Time Msg. Unicast
 Solicit * * * * * *
 Advert. * * * * * *
 Request * * * * * * *
 Confirm * * * *
 Renew * * * * * * *
 Rebind * * * * * *
 Decline * * * * * *
 Release * * * * * *
 Reply * * * * * *
 Reconf. * * * *
 Inform. * (see note) * * *
 R-forw. *
 R-repl. *

 NOTE:

 Only included in Information-request messages that are sent in
 response to a Reconfigure (see Section 20.4.3).

 Status Rap. User Vendor Vendor Inter. Recon. Recon. SOL_MAX_RT
 Code Comm. Class Class Spec. ID Msg. Accept INF_MAX_RT
Solicit * * * * *
Advert. * * * * * *
Request * * * *
Confirm * * *
Renew * * * *
Rebind * * * *
Decline * * *
Release * * *
Reply * * * * * * *
Reconf. *
Inform. * * * *
R-forw. * * * *
R-repl. * * * *

Appendix D. Appearance of Options in the Options Field of DHCP Options

 The following table indicates with a "*" where options can appear in
 the options field of other options:

Mrugalski, et al. Expires August 26, 2015 [Page 124]

Internet-Draft RFC 3315 bis February 2015

 Option IA_NA/ Relay Relay
 Field IA_TA IAADDR IA_PD IAPREFIX Forw. Reply
 Client ID *
 Server ID *
 IA_NA/IA_TA *
 IAADDR *
 IA_PD *
 IAPREFIX *
 ORO *
 Preference *
 Elapsed Time *
 Relay Message * *
 Authentic. *
 Server Uni. *
 Status Code * * *
 Rapid Comm. *
 User Class *
 Vendor Class *
 Vendor Info. * * *
 Interf. ID * *
 Reconf. MSG. *
 Reconf. Accept *

 Note: "Relay Forw" / "Relay Reply" options appear in the options
 field of the message but may only appear in these messages.

Authors’ Addresses

 Tomek Mrugalski (editor)
 Internet Systems Consortium, Inc.
 950 Charter Street
 Redwood City, CA 94063
 USA

 Email: tomasz.mrugalski@gmail.com

 Marcin Siodelski
 Internet Systems Consortium, Inc.
 950 Charter St.
 Redwood City, CA 94063
 USA

 Email: msiodelski@gmail.com

Mrugalski, et al. Expires August 26, 2015 [Page 125]

Internet-Draft RFC 3315 bis February 2015

 Bernie Volz (editor)
 Cisco Systems, Inc.
 1414 Massachusetts Ave
 Boxborough, MA 01719
 USA

 Email: volz@cisco.com

 Andrew Yourtchenko
 Cisco Systems, Inc.
 De Kleetlaan, 7
 Diegem B-1831
 Belgium

 Email: ayourtch@cisco.com

 Michael C. Richardson
 Sandelman Software Works
 470 Dawson Avenue
 Ottawa, ON K1Z 5V7
 CA

 Email: mcr+ietf@sandelman.ca
 URI: http://www.sandelman.ca/

 Sheng Jiang
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 Beiqing Road
 Hai-Dian District, Beijing, 100095
 P.R. China

 Email: jiangsheng@huawei.com

 Ted Lemon
 Nominum, Inc.
 950 Charter St.
 Redwood City, CA 94043
 USA

 Email: Ted.Lemon@nominum.com

Mrugalski, et al. Expires August 26, 2015 [Page 126]

Network Working Group O. Troan
Internet-Draft B. Volz
Updates: 3315,3633 (if approved) Cisco Systems, Inc.
Intended status: Standards Track M. Siodelski
Expires: September 21, 2015 ISC
 March 20, 2015

 Issues and Recommendations with Multiple Stateful DHCPv6 Options
 draft-ietf-dhc-dhcpv6-stateful-issues-12.txt

Abstract

 The Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
 specification defined two stateful options, IA_NA and IA_TA, but did
 not anticipate the development of additional stateful options.
 DHCPv6 Prefix Delegation added the IA_PD option, which is stateful.
 Applications that use IA_NA and IA_PD together have revealed issues
 that need to be addressed. This document updates RFC 3315 and RFC
 3633 to address these issues.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 21, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Troan, et al. Expires September 21, 2015 [Page 1]

Internet-Draft Multiple Stateful Options March 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 2. Conventions . 3
 3. Terminology . 3
 4. Handling of Multiple IA Option Types 4
 4.1. Placement of Status Codes in an Advertise Message 5
 4.2. Advertise Message Processing by a Client 7
 4.3. T1/T2 Timers . 8
 4.4. Renew and Rebind Messages 9
 4.4.1. Renew Message . 9
 4.4.2. Rebind Message 10
 4.4.3. Updates to section 18.1.3 of RFC 3315 10
 4.4.4. Updates to Section 18.1.4 of RFC 3315 12
 4.4.5. Updates to Section 18.1.8 of RFC 3315 13
 4.4.6. Updates to Section 18.2.3 of RFC 3315 15
 4.4.7. Updates to Section 18.2.4 of RFC 3315 17
 4.4.8. Updates to RFC 3633 18
 4.5. Confirm Message . 19
 4.6. Decline Should Not Necessarily Trigger a Release 20
 4.7. Multiple Provisioning Domains 21
 5. IANA Considerations . 21
 6. Security Considerations 21
 7. Acknowledgements . 21
 8. References . 21
 8.1. Normative References 21
 8.2. Informative References 22
 Authors’ Addresses . 22

Troan, et al. Expires September 21, 2015 [Page 2]

Internet-Draft Multiple Stateful Options March 2015

1. Introduction

 DHCPv6 [RFC3315] was written without the expectation that additional
 stateful DHCPv6 options would be developed. DHCPv6 Prefix Delegation
 [RFC3633] since added a new stateful option for Prefix Delegation to
 DHCPv6. Implementation experience of the Customer Edge Router (CER)
 model described in [RFC7084] has shown issues with the DHCPv6
 protocol in supporting multiple stateful option types, in particular
 IA_NA (non-temporary addresses) and IA_PD (delegated prefixes).

 This document describes a number of problems encountered with
 coexistence of the IA_NA and IA_PD option types and specifies changes
 to the DHCPv6 protocol to address these problems.

 The intention of this work is to clarify and, where needed, modify
 the DHCPv6 protocol specification to support IA_NA and IA_PD option
 types within a single DHCPv6 session.

 Note that while IA_TA (temporary addresses) options may be included
 with other IA option type requests, these generally are not renewed
 (there are no T1/T2 times) and have a separate life cycle from IA_NA
 and IA_PD option types. Therefore, the IA_TA option type is mostly
 out of scope for this document.

 The changes described in this document are intended to be
 incorporated in a new revision of the DHCPv6 protocol specification
 ([I-D.dhcwg-dhc-rfc3315bis]).

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Terminology

 In addition to the terminology defined in [RFC3315], [RFC3633], and
 [RFC7227], the following terminology is used in this document:

 Identity association (IA): Throughout this document, "IA" is
 used to refer to the Identity
 Association containing addresses or
 prefixes assigned to a client and
 carried in the IA_NA or IA_PD options
 respectively.

 IA option types: This is used to generally mean an
 IA_NA and/or IA_PD option.

Troan, et al. Expires September 21, 2015 [Page 3]

Internet-Draft Multiple Stateful Options March 2015

 Stateful options: Options that require dynamic binding
 state per client on the server.

 Top-level options: Top-level options are DHCPv6 options
 that are not encapsulated within
 other options, excluding the Relay-
 Message option. Options encapsulated
 by Relay-message options, but not by
 any other option, are still top-level
 options, whether they appear in a
 relay agent message or a server
 message. See [RFC7227].

4. Handling of Multiple IA Option Types

 The DHCPv6 specification [RFC3315] was written with the assumption
 that the only stateful options were for assigning addresses. DHCPv6
 Prefix Delegation [RFC3633] describes how to extend the DHCPv6
 protocol to handle prefix delegation, but does not clearly specify
 how the DHCP address assignment and prefix delegation co-exist.

 If a client requests multiple IA option types, but the server is
 configured to only offer a subset of them, the client could react in
 several ways:

 1. Reset the state machine and continue to send Solicit messages,

 2. Create separate DHCP sessions for each IA option type and
 continue to Solicit for the unfulfilled IA options, or

 3. The client could continue with the single session, and include
 the unfulfilled IA options in subsequent messages to the server.

 Resetting the state machine and continuing to send Solicit messages
 may result in the client never completing DHCP and is generally not
 considered a good solution. It can also result in a packet storm if
 the client does not appropriately rate limit its sending of Solicit
 messages or there are many clients on the network. Client
 implementors that follow this approach, SHOULD implement the updates
 to RFC-3315 specified in [RFC7083].

 Creating a separate DHCP session (separate instances of the client
 state machine) per IA option type, while conceptually simple, causes
 a number of issues: additional host resources required to create and
 maintain multiple instances of the state machine in clients,
 additional DHCP protocol traffic, unnecessary duplication of other
 configuration options and the potential for conflict, divergence in

Troan, et al. Expires September 21, 2015 [Page 4]

Internet-Draft Multiple Stateful Options March 2015

 that each IA option type specification specifies its ’own’ version of
 the DHCP protocol.

 The single session and state machine allows the client to use the
 best configuration it is able to obtain from a single DHCP server
 during the configuration exchange. Note, however, that the server
 may not be configured to deliver the entire configuration requested
 by the client. In that case the client could continue to operate
 only using the configuration received, even if other servers can
 provide the missing configuration. In practice, especially in the
 case of handling IA_NA and IA_PD, this situation should be rare or a
 temporary operational error. So, it is more likely for the client to
 get all configuration if it continues, in each subsequent
 configuration exchange, to request all the configuration information
 it is programmed to try to obtain, including any stateful
 configuration options for which no results were returned in previous
 exchanges.

 One major issue of this last approach is that it is difficult to
 allow it with the current DHCPv6 specifications; in some cases they
 are not clear enough, and in other cases existing restrictions can
 make it impossible. This document introduces some clarifications and
 small modifications to the current specifications to address these
 concerns.

 While all approaches have their own pros and cons, approach 3 SHOULD
 be used and is the focus of this document because it is deemed to
 work best for common cases of the mixed use of IA_NA and IA_PD. But
 this document does not exclude other approaches. Also, in some
 corner cases it may not be feasible to maintain a single DHCPv6
 session for both IA_NA and IA_PD. These corner cases are beyond the
 scope of this document and may depend on the network in which the
 client (CER) is designed to operate and on the functions the client
 is required to perform.

 The sections which follow update RFC 3315 and RFC 3633 to accommodate
 the recommendation, though many of the changes are also applicable
 even if other approaches are used.

4.1. Placement of Status Codes in an Advertise Message

 In Reply messages IA specific status codes (i.e., NoAddrsAvail,
 NotOnLink, NoBinding, NoPrefixAvail) are encapsulated in the IA
 option. In Advertise messages though, the NoAddrsAvail code is
 returned at in the top level. This makes sense if the client is only
 interested in the assignment of the addresses and the failure case is
 fatal. However, if the client sends both IA_NA and IA_PD options in
 a Solicit message, it is possible that the server offers no addresses

Troan, et al. Expires September 21, 2015 [Page 5]

Internet-Draft Multiple Stateful Options March 2015

 but it offers some prefixes, and the client may choose to send a
 Request message to obtain the offered prefixes. In this case, it is
 better if the Status Code option for IA specific status codes is
 encapsulated in the IA option to indicate that the failure occurred
 for the specific IA. This also makes the NoAddrsAvail and
 NoPrefixAvail Status Code option placement for Advertise messages
 identical to Reply messages.

 In addition, how a server formats the Advertise message when
 addresses are not available has been a point of some confusion and
 implementations seem to vary (some strictly follow RFC 3315 while
 others assumed it was encapsulated in the IA option as for Reply
 messages).

 We have chosen the following solution:

 Clients MUST handle each of the following Advertise messages formats
 when there are no addresses available (even when no other IA option
 types were in the Solicit):

 1. Advertise containing the IA_NAs and/or IA_TAs with encapsulated
 Status Code option of NoAddrsAvail and no top-level Status Code
 option.

 2. Advertise containing just a top-level Status Code option of
 NoAddrsAvail and no IA_NAs/IA_TAs.

 3. Advertise containing a top-level Status Code option of
 NoAddrsAvail and IA_NAs and/or IA_TAs with a Status Code option
 of NoAddrsAvail.

 Note: Clients MUST handle the last two formats listed above to
 facilitate backward compatibility with the servers which have not
 been updated to this specification.

 See Section 4.2 for updated text for Section 17.1.3 of RFC 3315 and
 Section 11.1 of RFC 3633.

 Servers MUST return the Status Code option of NoAddrsAvail
 encapsulated in IA_NA/IA_TA options and MUST NOT return a top-level
 Status Code option of NoAddrsAvail when no addresses will be assigned
 (1 in the above list). This means that the Advertise response
 matches the Reply response with respect to the handling of the
 NoAddrsAvail status.

 Replace the following paragraph in RFC 3315, section 17.2.2:

Troan, et al. Expires September 21, 2015 [Page 6]

Internet-Draft Multiple Stateful Options March 2015

 If the server will not assign any addresses to any IAs in a
 subsequent Request from the client, the server MUST send an
 Advertise message to the client that includes only a Status
 Code option with code NoAddrsAvail and a status message for
 the user, a Server Identifier option with the server’s DUID,
 and a Client Identifier option with the client’s DUID.

 With:

 If the server will not assign any addresses to an IA in a
 subsequent Request from the client, the server MUST include
 the IA in the Advertise message with no addresses in the IA
 and a Status Code option encapsulated in the IA containing
 status code NoAddrsAvail.

4.2. Advertise Message Processing by a Client

 [RFC3315] specifies that a client must ignore an Advertise message if
 a server will not assign any addresses to a client, and [RFC3633]
 specifies that a client must ignore an Advertise message if a server
 returns the NoPrefixAvail status to a requesting router. Thus, a
 client requesting both IA_NA and IA_PD, with a server that only
 offers either addresses or delegated prefixes, is not supported by
 the current protocol specifications.

 Solution: a client SHOULD accept Advertise messages, even when not
 all IA option types are being offered. And, in this case, the client
 SHOULD include the not offered IA option types in its Request. A
 client SHOULD only ignore an Advertise message when none of the
 requested IA options include offered addresses or delegated prefixes.
 Note that ignored messages MUST still be processed for SOL_MAX_RT and
 INF_MAX_RT options as specified in [RFC7083].

 Replace Section 17.1.3 of RFC 3315: (existing errata)

 The client MUST ignore any Advertise message that includes a Status
 Code option containing the value NoAddrsAvail, with the exception
 that the client MAY display the associated status message(s) to the
 user.

 With (this includes the changes made by [RFC7083]):

Troan, et al. Expires September 21, 2015 [Page 7]

Internet-Draft Multiple Stateful Options March 2015

 The client MUST ignore any Advertise message that contains no
 addresses (IAADDR options encapsulated in IA_NA or IA_TA options)
 and no delegated prefixes (IAPREFIX options encapsulated in IA_PD
 options, see RFC 3633) with the exception that the client:
 - MUST process an included SOL_MAX_RT option (RFC 7083) and
 - MUST process an included INF_MAX_RT option (RFC 7083).
 A client can display any associated status message(s) to the user
 or activity log.

 The client ignoring this Advertise message MUST NOT restart the
 Solicit retransmission timer.

 And, replace:

 - The client MAY choose a less-preferred server if that server
 has a better set of advertised parameters, such as the
 available addresses advertised in IAs.

 With:

 - The client MAY choose a less-preferred server if that server has
 a better set of advertised parameters, such as the available set
 of IAs, as well as the set of other configuration options
 advertised.

 And, replace the last paragraph of Section 11.1 of RFC 3633 with:

 The requesting router MUST ignore any Advertise message that
 contains no addresses (IAADDR options encapsulated in IA_NA or
 IA_TA options) and no delegated prefixes (IAPREFIX options
 encapsulated in IA_PD options, see RFC 3633) with the exception
 that the requesting router:
 - MUST process an included SOL_MAX_RT option (RFC 7083) and
 - MUST process an included INF_MAX_RT option (RFC 7083).
 A client can display any associated status message(s) to the user
 or activity log.

 The requesting router ignoring this Advertise message MUST NOT
 restart the Solicit retransmission timer.

4.3. T1/T2 Timers

 The T1 and T2 times determine when the client will contact the server
 to extend lifetimes of information received in an IA. How should a
 client handle the case where multiple IA options have different T1
 and T2 times?

Troan, et al. Expires September 21, 2015 [Page 8]

Internet-Draft Multiple Stateful Options March 2015

 In a multiple IA option type model, the T1/T2 times are protocol
 timers, that should be independent of the IA options themselves. If
 we were to redo the DHCP protocol from scratch the T1/T2 times should
 be carried in a separate DHCP option.

 Solution: The server MUST set the T1/T2 times in all IA options in a
 Reply or Advertise message to the same value. To deal with the case
 where servers have not yet been updated to do that, the client MUST
 select a T1 and T2 time from all IA options which will guarantee that
 the client will send Renew/Rebind messages not later than at the T1/
 T2 times associated with any of the client’s bindings.

 As an example, if the client receives a Reply with T1_NA of 3600 /
 T2_NA of 5760 and T1_PD of 0 / T2_PD of 1800, the client SHOULD use
 the T1_PD of 0 / T2_PD of 1800. The reason for this is that a T1 of
 0 means that the Renew time is at the client’s discretion, but this
 value cannot be greater than the T2 value (1800).

 The following paragraph should be added to Sections 18.2.1, 18.2.3,
 and 18.2.4 of RFC 3315:

 The T1/T2 times set in each applicable IA option for a Reply MUST
 be the same values across all IAs. The server MUST determine the
 T1/T2 times across all of the applicable client’s bindings in the
 Reply. This facilitates the client being able to renew all of the
 bindings at the same time.

 Note: This additional paragraph has also been included in the revised
 text later for Sections 18.2.3 and 18.2.4 of RFC 3315.

 Changes for client T1/T2 handling are included in Section 4.4.3 and
 Section 4.4.4.

4.4. Renew and Rebind Messages

 This section presents issues with handling multiple IA option types
 in the context of creation and processing the Renew and Rebind
 messages. It also introduces relevant updates to the [RFC3315] and
 [RFC3633].

4.4.1. Renew Message

 In multiple IA option type model, the client may include multiple IA
 options in the Request message, and the server may create bindings
 only for a subset of the IA options included by the client. For the
 IA options in the Request message for which the server does not
 create the bindings, the server sends the IA options in the Reply
 message with the NoAddrsAvail or NoPrefixAvail status codes.

Troan, et al. Expires September 21, 2015 [Page 9]

Internet-Draft Multiple Stateful Options March 2015

 The client may accept the bindings created by the server, but may
 desire the other bindings to be created once they become available,
 e.g. when the server configuration is changed. The client which
 accepted the bindings created by the server will periodically send a
 Renew message to extend their lifetimes. However, the Renew message,
 as described in the [RFC3315], does not support the ability for the
 client to extend the lifetimes of the bindings for some IAs, while
 requesting bindings for other IAs.

 Solution: The client, which sends a Renew message to extend the
 lifetimes of the bindings assigned to the client, SHOULD include IA
 options for these bindings as well as IA options for all other
 bindings that the client desires but has been unable to obtain. The
 client and server processing need to be modified. Note that this
 change makes the server’s IA processing of Renew similar to the
 Request processing.

4.4.2. Rebind Message

 According to the Section 4.4.1, the client includes IA options in a
 Renew message for the bindings it desires but has been unable to
 obtain by sending a Request message, apart from the IA options for
 the existing bindings.

 At time T2, the client stops sending Renew messages to the server and
 initiates the Rebind/Reply message exchange with any available
 server. In this case, it should be possible to continue trying to
 obtain new bindings using the Rebind message if the client failed to
 get the response from the server to the Renew message.

 Solution: The client SHOULD continue to include the IA options
 received from the server and it MAY include additional IA options to
 request creation of the additional bindings.

4.4.3. Updates to section 18.1.3 of RFC 3315

 Replace Section 18.1.3 of RFC 3315 with the following text:

 To extend the valid and preferred lifetimes for the addresses
 assigned to an IA, the client sends a Renew message to the server
 from which the addresses were obtained, which includes an IA option
 for the IA whose address lifetimes are to be extended. The client
 includes IA Address options within the IA option for the addresses
 assigned to the IA. The server determines new lifetimes for these
 addresses according to the administrative configuration of the
 server. The server may also add new addresses to the IA. The
 server can remove addresses from the IA by returning IA Address

Troan, et al. Expires September 21, 2015 [Page 10]

Internet-Draft Multiple Stateful Options March 2015

 options for such addresses with preferred and valid lifetimes set
 to zero.

 The server controls the time at which the client contacts the
 server to extend the lifetimes on assigned addresses through the T1
 and T2 parameters assigned to an IA. However, as the client
 Renews/Rebinds all IAs from the server at the same time, the client
 MUST select a T1 and T2 time from all IA options which will
 guarantee that the client will send Renew/Rebind messages not later
 than at the T1/T2 times associated with any of the client’s
 bindings.

 At time T1, the client initiates a Renew/Reply message exchange to
 extend the lifetimes on any addresses in the IA.

 If T1 or T2 had been set to 0 by the server (for an IA_NA) or there
 are no T1 or T2 times (for an IA_TA) in a previous Reply, the
 client may send a Renew or Rebind message, respectively, at the
 client’s discretion.

 The client sets the "msg-type" field to RENEW. The client
 generates a transaction ID and inserts this value in the
 "transaction-id" field.

 The client places the identifier of the destination server in a
 Server Identifier option.

 The client MUST include a Client Identifier option to identify
 itself to the server. The client adds any appropriate options,
 including one or more IA options.

 For IAs to which addresses have been assigned, the client includes
 a corresponding IA option containing an IA Address option for each
 address assigned to the IA. The client MUST NOT include addresses
 in any IA option that the client did not obtain from the server or
 that are no longer valid (that have a zero valid lifetime).

 The client MAY include an IA option for each binding it desires but
 has been unable to obtain. This IA option MUST NOT contain any
 addresses. However, it MAY contain the IA Address option with IPv6
 address field set to 0 to indicate the client’s preference for the
 preferred and valid lifetimes for any newly assigned addresses.

 The client MUST include an Option Request option (see section 22.7)
 to indicate the options the client is interested in receiving. The
 client MAY include options with data values as hints to the server
 about parameter values the client would like to have returned.

Troan, et al. Expires September 21, 2015 [Page 11]

Internet-Draft Multiple Stateful Options March 2015

 The client transmits the message according to section 14, using the
 following parameters:

 IRT REN_TIMEOUT

 MRT REN_MAX_RT

 MRC 0

 MRD Remaining time until T2

 The message exchange is terminated when time T2 is reached (see
 section 18.1.4), at which time the client begins a Rebind message
 exchange.

4.4.4. Updates to Section 18.1.4 of RFC 3315

 Replace Section 18.1.4 of RFC 3315 with the following text:

 At time T2 (which will only be reached if the server to which the
 Renew message was sent at time T1 has not responded), the client
 initiates a Rebind/Reply message exchange with any available
 server.

 The client constructs the Rebind message as described in 18.1.3
 with the following differences:

 - The client sets the "msg-type" field to REBIND.

 - The client does not include the Server Identifier option in the
 Rebind message.

 The client transmits the message according to section 14, using the
 following parameters:

 IRT REB_TIMEOUT

 MRT REB_MAX_RT

 MRC 0

 MRD Remaining time until valid lifetimes of all addresses in
 all IAs have expired

 If all addresses for an IA have expired the client may choose to
 include this IA without any addresses (or with only a hint for
 lifetimes) in subsequent Rebind messages to indicate that the
 client is interested in assignment of the addresses to this IA.

Troan, et al. Expires September 21, 2015 [Page 12]

Internet-Draft Multiple Stateful Options March 2015

 The message exchange is terminated when the valid lifetimes of all
 addresses across all IAs have expired, at which time the client
 uses Solicit message to locate a new DHCP server and sends a
 Request for the expired IAs to the new server.

4.4.5. Updates to Section 18.1.8 of RFC 3315

 Replace Section 18.1.8 of RFC 3315 with the following text:

 Upon the receipt of a valid Reply message in response to a Solicit
 (with a Rapid Commit option), Request, Confirm, Renew, Rebind or
 Information-request message, the client extracts the configuration
 information contained in the Reply. The client MAY choose to
 report any status code or message from the status code option in
 the Reply message.

 If the client receives a Reply message with a Status Code
 containing UnspecFail, the server is indicating that it was unable
 to process the message due to an unspecified failure condition. If
 the client retransmits the original message to the same server to
 retry the desired operation, the client MUST limit the rate at
 which it retransmits the message and limit the duration of the time
 during which it retransmits the message.

 When the client receives a Reply message with a Status Code option
 with the value UseMulticast, the client records the receipt of the
 message and sends subsequent messages to the server through the
 interface on which the message was received using multicast. The
 client resends the original message using multicast.

 When the client receives a NotOnLink status from the server in
 response to a Confirm message, the client performs DHCP server
 solicitation, as described in section 17, and client-initiated
 configuration as described in section 18. If the client receives
 any Reply messages that do not indicate a NotOnLink status, the
 client can use the addresses in the IA and ignore any messages that
 indicate a NotOnLink status.

 When the client receives a NotOnLink status from the server in
 response to a Request, the client can either re-issue the Request
 without specifying any addresses or restart the DHCP server
 discovery process (see section 17).

 The client SHOULD perform duplicate address detection [17] on each
 of the received addresses in any IAs, on which it has not performed
 duplicate address detection during processing of any of the
 previous Reply messages from the server. The client performs the
 duplicate address detection before using the received addresses for

Troan, et al. Expires September 21, 2015 [Page 13]

Internet-Draft Multiple Stateful Options March 2015

 the traffic. If any of the addresses are found to be in use on the
 link, the client sends a Decline message to the server for those
 addresses as described in section 18.1.7.

 If the Reply was received in response to a Solicit (with a Rapid
 Commit option), Request, Renew or Rebind message, the client
 updates the information it has recorded about IAs from the IA
 options contained in the Reply message:

 - Record T1 and T2 times.

 - Add any new addresses in the IA option to the IA as recorded by
 the client.

 - Update lifetimes for any addresses in the IA option that the
 client already has recorded in the IA.

 - Discard any addresses from the IA, as recorded by the client,
 that have a valid lifetime of 0 in the IA Address option.

 - Leave unchanged any information about addresses the client has
 recorded in the IA but that were not included in the IA from the
 server.

 Management of the specific configuration information is detailed in
 the definition of each option in section 22.

 The client examines the status code in each IA individually. If
 the client receives a NoAddrsAvail status code, the client has
 received no usable addresses in the IA.

 If the client can operate with the addresses obtained from the
 server the client uses addresses and other information from any IAs
 that do not contain a Status Code option with the NoAddrsAvail
 status code. The client MAY include the IAs for which it received
 the NoAddrsAvail status code, with no addresses, in subsequent
 Renew and Rebind messages sent to the server, to retry obtaining
 the addresses for these IAs.

 If the client cannot operate without the addresses for the IAs for
 which it received the NoAddrsAvail status code, the client may try
 another server (perhaps by restarting the DHCP server discovery
 process).

 If the client finds no usable addresses in any of the IAs, it may
 either try another server (perhaps restarting the DHCP server
 discovery process) or use the Information-request message to obtain
 other configuration information only.

Troan, et al. Expires September 21, 2015 [Page 14]

Internet-Draft Multiple Stateful Options March 2015

 When the client receives a Reply message in response to a Renew or
 Rebind message, the client:

 - sends a Request message if any of the IAs in the Reply message
 contains the NoBinding status code. The client places IA
 options in this message for only those IAs for which the server
 returned the NoBinding status code in the Reply message. The
 client continues to use other bindings for which the server did
 not return an error

 - sends a Renew/Rebind if any of the IAs is not in the Reply
 message, but in this case the client MUST limit the rate at
 which it sends these messages, to avoid the Renew/Rebind storm

 - otherwise accepts the information in the IA.

 When the client receives a valid Reply message in response to a
 Release message, the client considers the Release event completed,
 regardless of the Status Code option(s) returned by the server.

 When the client receives a valid Reply message in response to a
 Decline message, the client considers the Decline event completed,
 regardless of the Status Code option(s) returned by the server.

4.4.6. Updates to Section 18.2.3 of RFC 3315

 Replace Section 18.2.3 of RFC 3315 with the following text:

 When the server receives a Renew message via unicast from a client
 to which the server has not sent a unicast option, the server
 discards the Renew message and responds with a Reply message
 containing a Status Code option with the value UseMulticast, a
 Server Identifier option containing the server’s DUID, the Client
 Identifier option from the client message, and no other options.

 For each IA in the Renew message from a client, the server locates
 the client’s binding and verifies that the information in the IA
 from the client matches the information stored for that client.

 If the server finds the client entry for the IA the server sends
 back the IA to the client with new lifetimes and, if applicable,
 T1/T2 times. If the server is unable to extend the lifetimes of an
 address in the IA, the server MAY choose not to include the IA
 Address option for this address.

 The server may choose to change the list of addresses and the
 lifetimes of addresses in IAs that are returned to the client.

Troan, et al. Expires September 21, 2015 [Page 15]

Internet-Draft Multiple Stateful Options March 2015

 If the server finds that any of the addresses in the IA are not
 appropriate for the link to which the client is attached, the
 server returns the address to the client with lifetimes of 0.

 For each IA for which the server cannot find a client entry, the
 server has the following choices depending on the server’s policy
 and configuration information:

 - If the server is configured to create new bindings as a result
 of processing Renew messages, the server SHOULD create a binding
 and return the IA with allocated addresses with lifetimes and,
 if applicable, T1/T2 times and other information requested by
 the client. The server MAY use values in the IA Address option
 (if included) as a hint.

 - If the server is configured to create new bindings as a result
 of processing Renew messages, but the server will not assign any
 addresses to an IA, the server returns the IA option containing
 a Status Code option with the NoAddrsAvail status code and a
 status message for a user.

 - If the server does not support creation of new bindings for the
 client sending a Renew message, or if this behavior is disabled
 according to the server’s policy or configuration information,
 the server returns the IA option containing a Status code option
 with the NoBinding status code and a status message for a user.

 The server constructs a Reply message by setting the "msg-type"
 field to REPLY, and copying the transaction ID from the Renew
 message into the transaction-id field.

 The server MUST include a Server Identifier option containing the
 server’s DUID and the Client Identifier option from the Renew
 message in the Reply message.

 The server includes other options containing configuration
 information to be returned to the client as described in section
 18.2.

 The T1/T2 times set in each applicable IA option for a Reply MUST
 be the same values across all IAs. The server MUST determine the
 T1/T2 times across all of the applicable client’s bindings in the
 Reply. This facilitates the client being able to renew all of the
 bindings at the same time.

Troan, et al. Expires September 21, 2015 [Page 16]

Internet-Draft Multiple Stateful Options March 2015

4.4.7. Updates to Section 18.2.4 of RFC 3315

 Replace Section 18.2.4 of RFC 3315 with the following text:

 When the server receives a Rebind message that contains an IA
 option from a client, it locates the client’s binding and verifies
 that the information in the IA from the client matches the
 information stored for that client.

 If the server finds the client entry for the IA and the server
 determines that the addresses in the IA are appropriate for the
 link to which the client’s interface is attached according to the
 server’s explicit configuration information, the server SHOULD
 send back the IA to the client with new lifetimes and, if
 applicable, T1/T2 times. If the server is unable to extend the
 lifetimes of an address in the IA, the server MAY choose not to
 include the IA Address option for this address.

 If the server finds the client entry for the IA and any of the
 addresses are no longer appropriate for the link to which the
 client’s interface is attached according to the server’s explicit
 configuration information, the server returns the address to the
 client with lifetimes of 0.

 If the server cannot find a client entry for the IA, the IA
 contains addresses and the server determines that the addresses in
 the IA are not appropriate for the link to which the client’s
 interface is attached according to the server’s explicit
 configuration information, the server MAY send a Reply message to
 the client containing the client’s IA, with the lifetimes for the
 addresses in the IA set to 0. This Reply constitutes an explicit
 notification to the client that the addresses in the IA are no
 longer valid. In this situation, if the server does not send a
 Reply message it silently discards the Rebind message.

 Otherwise, for each IA for which the server cannot find a client
 entry, the server has the following choices depending on the
 server’s policy and configuration information:

 - If the server is configured to create new bindings as a result
 of processing Rebind messages (also see the note about the
 Rapid Commit option below), the server SHOULD create a binding
 and return the IA with allocated addresses with lifetimes and,
 if applicable, T1/T2 times and other information requested by
 the client. The server MAY use values in the IA Address option
 (if included) as a hint.

Troan, et al. Expires September 21, 2015 [Page 17]

Internet-Draft Multiple Stateful Options March 2015

 - If the server is configured to create new bindings as a result
 of processing Rebind messages, but the server will not assign
 any addresses to an IA, the server returns the IA option
 containing a Status Code option with the NoAddrsAvail status
 code and a status message for a user.

 - If the server does not support creation of new bindings for the
 client sending a Rebind message, or if this behavior is
 disabled according to the server’s policy or configuration
 information, the server returns the IA option containing a
 Status Code option with the NoBinding status code and a status
 message for a user.

 When the server creates new bindings for the IA it is possible
 that other servers also create bindings as a result of receiving
 the same Rebind message. This is the same issue as in the
 Discussion under the Rapid Commit option, see section 22.14.
 Therefore, the server SHOULD only create new bindings during
 processing of a Rebind message if the server is configured to
 respond with a Reply message to a Solicit message containing the
 Rapid Commit option.

 The server constructs a Reply message by setting the "msg-type"
 field to REPLY, and copying the transaction ID from the Rebind
 message into the transaction-id field.

 The server MUST include a Server Identifier option containing the
 server’s DUID and the Client Identifier option from the Rebind
 message in the Reply message.

 The server includes other options containing configuration
 information to be returned to the client as described in section
 18.2.

 The T1/T2 times set in each applicable IA option for a Reply MUST
 be the same values across all IAs. The server MUST determine the
 T1/T2 times across all of the applicable client’s bindings in the
 Reply. This facilitates the client being able to renew all of the
 bindings at the same time.

4.4.8. Updates to RFC 3633

 Replace the following text in Section 12.1 of RFC 3633:

 Each prefix has valid and preferred lifetimes whose durations are
 specified in the IA_PD Prefix option for that prefix. The
 requesting router uses Renew and Rebind messages to request the
 extension of the lifetimes of a delegated prefix.

Troan, et al. Expires September 21, 2015 [Page 18]

Internet-Draft Multiple Stateful Options March 2015

 With:

 Each prefix has valid and preferred lifetimes whose durations are
 specified in the IA_PD Prefix option for that prefix. The
 requesting router uses Renew and Rebind messages to request the
 extension of the lifetimes of a delegated prefix.

 The requesting router MAY include IA_PD options without any
 prefixes, i.e. without IA Prefix option or with IPv6 prefix field
 of IA Prefix option set to 0, in a Renew or Rebind message to
 obtain bindings it desires but has been unable to obtain. The
 requesting router MAY set the prefix-length field of the IA Prefix
 option as a hint to the server. As in [RFC3315], the requesting
 router MAY also provide lifetime hints in the IA Prefix option.

 Replace the following text in Section 12.2 of RFC 3633:

 The delegating router behaves as follows when it cannot find a
 binding for the requesting router’s IA_PD:

 With:

 For the Renew or Rebind, if the IA_PD contains no IA Prefix option
 or it contains an IA Prefix option with the IPv6 prefix field set
 to 0, the delegating router SHOULD assign prefixes to the IA_PD
 according to the delegating router’s explicit configuration
 information. In this case, if the IA_PD contains an IA Prefix
 option with the IPv6 prefix field set to 0, the delegating router
 MAY use the value in the prefix-length field of the IA Prefix
 option as a hint for the length of the prefixes to be assigned.
 The delegating router MAY also respect lifetime hints provided by
 the requesting router in the IA Prefix option.

 The delegating router behaves as follows when it cannot find a
 binding for the requesting router’s IA_PD containing prefixes:

4.5. Confirm Message

 The Confirm message, as described in [RFC3315], is specific to
 address assignment. It allows a server without a binding to reply to
 the message, under the assumption that the server only needs
 knowledge about the prefix(es) on the link, to inform the client that
 the address is likely valid or not. This message is sent when e.g.
 the client has moved and needs to validate its addresses. Not all
 bindings can be validated by servers and the Confirm message provides
 for this by specifying that a server that is unable to determine the
 on-link status MUST NOT send a Reply.

Troan, et al. Expires September 21, 2015 [Page 19]

Internet-Draft Multiple Stateful Options March 2015

 Note: Confirm has a specific meaning and does not overload Renew/
 Rebind. It also is lower processing cost as the server does NOT need
 to extend lease times or otherwise send back other configuration
 options.

 The Confirm message is used by the client to verify that it has not
 moved to a different link. For IAs with addresses, the mechanism
 used to verify if a client has moved or not, is by matching the
 link’s on-link prefix(es) (typically a /64) against the prefix-length
 first bits of the addresses provided by the client in the IA_NA or
 IA_TA IA-types. As a consequence Confirm can only be used when the
 client has an IA with address(es) (IA_NA or IA_TA).

 A client MUST have a binding including an IA with addresses to use
 the Confirm message. A client with IAs with addresses as well as
 other IA-types MAY, depending on the IA-type, use the Confirm message
 to detect if the client has moved to a different link. A client that
 does not have a binding with an IA with addresses MUST use the Rebind
 message instead.

 IA_PD requires verification that the delegating router (server) has
 the binding for the IAs. In that case a requesting router (client)
 MUST use the Rebind message in place of the Confirm message and it
 MUST include all of its bindings, even address IAs.

 Note that Section 18.1.2 of RFC 3315 states that a client MUST
 initiate a Confirm when it may have moved to a new link. This is
 relaxed to a SHOULD as a client may have determined whether it has or
 has not moved using other techniques, such as described in [RFC6059].
 And, as stated above, a client with delegated prefixes, MUST send a
 Rebind instead of a Confirm.

4.6. Decline Should Not Necessarily Trigger a Release

 Some client implementations have been found to send a Release message
 for other bindings they may have received after they determine a
 conflict and have correctly sent a Decline message for the
 conflicting address(es).

 A client SHOULD NOT send a Release message for other bindings it may
 have received just because it sent a Decline message. The client
 SHOULD retain the non-conflicting bindings. The client SHOULD treat
 the failure to acquire a binding as a result of the conflict, to be
 equivalent to not having received the binding, insofar as it behaves
 when sending Renew and Rebind messages.

Troan, et al. Expires September 21, 2015 [Page 20]

Internet-Draft Multiple Stateful Options March 2015

4.7. Multiple Provisioning Domains

 This document has assumed that all DHCP servers on a network are in a
 single provisioning domain and thus should be "equal" in the service
 that they offer. This was also assumed by [RFC3315] and [RFC3633].

 One could envision a network where the DHCP servers are in multiple
 provisioning domains, and it may be desirable to have the DHCP client
 obtain different IA types from different provisioning domains. How a
 client detects the multiple provisioning domains and how it would
 interact with the multiple servers in these different domains is
 outside the scope of this document (see [I-D.ietf-mif-mpvd-arch] and
 [I-D.ietf-mif-mpvd-dhcp-support]).

5. IANA Considerations

 This specification does not require any IANA actions.

6. Security Considerations

 There are no new security considerations pertaining to this document.

7. Acknowledgements

 Thanks to many people that contributed to identify the stateful
 issues addressed by this document and for reviewing drafts of the
 document, including Ralph Droms, John Brzozowski, Ted Lemon, Hemant
 Singh, Wes Beebee, Gaurau Halwasia, Bud Millword, Tim Winters, Rob
 Shakir, Jinmei Tatuya, Andrew Yourtchenko, Fred Templin, Tomek
 Mrugalski, Suresh Krishnan, and Ian Farrer.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 December 2003.

 [RFC7083] Droms, R., "Modification to Default Values of SOL_MAX_RT
 and INF_MAX_RT", RFC 7083, November 2013.

Troan, et al. Expires September 21, 2015 [Page 21]

Internet-Draft Multiple Stateful Options March 2015

8.2. Informative References

 [I-D.dhcwg-dhc-rfc3315bis]
 Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,
 Richardson, M., Jiang, S., and T. Lemon, "Dynamic Host
 Configuration Protocol for IPv6 (DHCPv6) bis", draft-
 dhcwg-dhc-rfc3315bis-04 (work in progress), February 2015.

 [I-D.ietf-mif-mpvd-arch]
 Anipko, D., "Multiple Provisioning Domain Architecture",
 draft-ietf-mif-mpvd-arch-11 (work in progress), March
 2015.

 [I-D.ietf-mif-mpvd-dhcp-support]
 Krishnan, S., Korhonen, J., and S. Bhandari, "Support for
 multiple provisioning domains in DHCPv6", draft-ietf-mif-
 mpvd-dhcp-support-01 (work in progress), March 2015.

 [RFC6059] Krishnan, S. and G. Daley, "Simple Procedures for
 Detecting Network Attachment in IPv6", RFC 6059, November
 2010.

 [RFC7084] Singh, H., Beebee, W., Donley, C., and B. Stark, "Basic
 Requirements for IPv6 Customer Edge Routers", RFC 7084,
 November 2013.

 [RFC7227] Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
 S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
 BCP 187, RFC 7227, May 2014.

Authors’ Addresses

 Ole Troan
 Cisco Systems, Inc.
 Philip Pedersens vei 20
 N-1324 Lysaker
 Norway

 Email: ot@cisco.com

 Bernie Volz
 Cisco Systems, Inc.
 1414 Massachusetts Ave
 Boxborough, MA 01719
 USA

 Email: volz@cisco.com

Troan, et al. Expires September 21, 2015 [Page 22]

Internet-Draft Multiple Stateful Options March 2015

 Marcin Siodelski
 ISC
 950 Charter Street
 Redwood City, CA 94063
 USA

 Email: msiodelski@gmail.com

Troan, et al. Expires September 21, 2015 [Page 23]

dhc S. Jiang
Internet-Draft Huawei Technologies Co., Ltd
Intended status: Standards Track S. Krishnan
Expires: April 30, 2015 Ericsson
 T. Mrugalski
 ISC
 October 27, 2014

 Privacy considerations for DHCP
 draft-jiang-dhc-dhcp-privacy-00

Abstract

 DHCP is a protocol that is used to provide addressing and
 configuration information to IPv4 hosts. This document discusses the
 various identifiers used by DHCP and the potential privacy issues.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Jiang, et al. Expires April 30, 2015 [Page 1]

Internet-Draft DHCP Privacy considerations October 2014

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Identifiers in DHCP . 3
 3.1. Client ID Option . 3
 3.2. Address Fields & Options 4
 3.3. Subscriber-ID Option 4
 3.4. Relay Agent Information Option and Sub-options 4
 3.5. Client FQDN Option 5
 3.6. Parameter Request List Option 5
 3.7. Vendor Class and Vendor-Identifying Vendor Class Options 5
 3.8. Civic Location Option 6
 3.9. Coordinate-Based Location Option 6
 3.10. Client System Architecture Type Option 6
 4. Existing Mechanisms That Affect Privacy 6
 4.1. DNS Updates . 6
 4.2. Allocation strategies 7
 5. Attacks . 8
 5.1. Device type discovery 8
 5.2. Operating system discovery 8
 5.3. Finding location information 8
 5.4. Finding previously visited networks 9
 5.5. Finding a stable identity 9
 5.6. Pervasive monitoring 9
 5.7. Finding client’s IP address or hostname 9
 5.8. Correlation of activities over time 9
 5.9. Location tracking . 9
 5.10. Leasequery & bulk leasequery 10
 6. Security Considerations 10
 7. Privacy Considerations 10
 8. IANA Considerations . 10
 9. Acknowledgements . 10
 10. References . 10
 10.1. Normative References 11
 10.2. Informative References 12
 Authors’ Addresses . 12

1. Introduction

 Dynamic Host Configuration Protocol (DHCP) [RFC2131] is a protocol
 that is used to provide addressing and configuration information to
 IPv4 hosts. The DHCP protocol uses several identifiers that could
 become a source for gleaning additional information about the IPv4
 host. This information may include device type, operating system

Jiang, et al. Expires April 30, 2015 [Page 2]

Internet-Draft DHCP Privacy considerations October 2014

 information, location(s) that the device may have previously visited,
 etc. This document discusses the various identifiers used by DHCP
 and the potential privacy issues [RFC6973].

 Future works may propose protocol changes to fix the privacy issues
 that have been analyzed in this document. It is out of scope for
 this document.

 Editor notes: for now, the document is mainly considering the privacy
 of DHCP client. The privacy of DHCP server and relay agent are
 considered less important because they are open for public services.
 However, this may be a subject to change if further study shows
 opposite result.

2. Terminology

 This section clarifies the terminology used throughout this document.

 Stable identifier - any property disclosed by a DHCP client that does
 not change over time or changes very infrequently and is unique for
 said client in a given context. Examples include MAC address,
 client-id that does not change or a hostname. Stable identifier may
 or may not be globally unique.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. When these
 words are not in ALL CAPS (such as "should" or "Should"), they have
 their usual English meanings, and are not to be interpreted as
 [RFC2119] key words.

3. Identifiers in DHCP

 There are several identifiers used in DHCP. This section provides an
 introduction to the various options that will be used further in the
 document.

3.1. Client ID Option

 The Client Identifier Option [RFC2131] is used to pass an explicit
 client identifier to a DHCP server. There is an analogous Server
 Identifier Option but it is not as interesting in the privacy context
 (unless a host can be convinced to start acting as a server).

 The client identifier is an opaque key, which must be unique to that
 client within the subnet to which the client is attached. It
 typically remains stable after it has been initially generated. It
 may contain a hardware address, identical to the contents of the

Jiang, et al. Expires April 30, 2015 [Page 3]

Internet-Draft DHCP Privacy considerations October 2014

 ’chaddr’ field, or another type of identifier, such as a DNS name.
 It is recommended that client identifiers be generated by using the
 permanent link-layer address of the network interface that the client
 is trying to configure. [RFC4361] updates the recommendation of
 Client Identifiers to be "consists of a type field whose value is
 normally 255, followed by a four-byte IA_ID field, followed by the
 DUID for the client as defined in RFC 3315, section 9". This does
 not change the lifecycle of the Client Identifiers. Clients are
 expected to generate their Client Identifiers once (during first
 operation) and store it in a non-volatile storage or use the same
 deterministic algorithm to generate the same Client Identifier values
 again.

3.2. Address Fields & Options

 The ’yiaddr’ field [RFC2131] in DHCP message is used to allocate
 address from the server to the client.

 The DHCPv4 specification [RFC2131] provides a way to specify the
 client link-layer address in the DHCPv4 message header. A DHCPv4
 message header has ’htype’ and ’chaddr’ fields to specify the client
 link-layer address type and the link-layer address, respectively.
 The ’chaddr’ field is used both as a hardware address for
 transmission of reply messages and as a client identifier.

 The ’requested IP address’ option [RFC2131] is used by client to
 suggest that a particular IP address be assigned.

3.3. Subscriber-ID Option

 A DHCP relay includes a Subscriber-ID option [RFC3993] to associate
 some provider-specific information with clients’ DHCP messages that
 is independent of the physical network configuration through which
 the subscriber is connected.

 The "subscriber-id" assigned by the provider is intended to be stable
 as customers connect through different paths, and as network changes
 occur. The Subscriber-ID is an ASCII string, which is assigned and
 configured by the network provider.

3.4. Relay Agent Information Option and Sub-options

 A DHCP relay agent includes a Relay Agent Information [RFC3046] to
 identify the remote host end of the circuit. It contains a "circuit
 ID" sub-option for the incoming circuit, which is an agent-local
 identifier of the circuit from which a DHCP client-to-server packet
 was received, and a "remote ID" sub-option which provides a trusted
 identifier for the remote high-speed modem.

Jiang, et al. Expires April 30, 2015 [Page 4]

Internet-Draft DHCP Privacy considerations October 2014

 Possible encoding of "circuit ID" sub-option includes: router
 interface number, switching hub port number, remote access server
 port number, frame relay DLCI, ATM virtual circuit number, cable data
 virtual circuit number, etc.

 Possible encoding of the "remote ID" sub-option includes: a "caller
 ID" telephone number for dial-up connection, a "user name" prompted
 for by a remote access server, a remote caller ATM address, a "modem
 ID" of a cable data modem, the remote IP address of a point-to-point
 link, a remote X.25 address for X.25 connections, etc.

 The link-selection sub-option [RFC3527] is used by any DHCP relay
 agent that desires to specify a subnet/link for a DHCP client request
 that it is relaying but needs the subnet/link specification to be
 different from the IP address the DHCP server should use when
 communicating with the relay agent. It contains an IP address, which
 can identify the client’s subnet/link.

3.5. Client FQDN Option

 The Client Fully Qualified Domain Name (FQDN) option [RFC4702] is
 used by DHCP clients and servers to exchange information about the
 client’s fully qualified domain name and about who has the
 responsibility for updating the DNS with the associated AAAA and PTR
 RRs.

 A client can use this option to convey all or part of its domain name
 to a DHCP server for the IP-address-to-FQDN mapping. In most case a
 client sends its hostname as a hint for the server. The DHCP server
 MAY be configured to modify the supplied name or to substitute a
 different name. The server should send its notion of the complete
 FQDN for the client in the Domain Name field.

3.6. Parameter Request List Option

 The Parameter Request List option [RFC2131] is used to inform the
 server about options the client wants the server to send to the
 client. The content of a Parameter Request List option are the
 option codes for an option requested by the client.

3.7. Vendor Class and Vendor-Identifying Vendor Class Options

 The Vendor Class option [RFC2131] and the Vendor-Identifying Vendor
 Class option [RFC3925] is used by a DHCP client to identify the
 vendor that manufactured the hardware on which the client is running.

 The information contained in the data area of this option is
 contained in one or more opaque fields that identify the details of

Jiang, et al. Expires April 30, 2015 [Page 5]

Internet-Draft DHCP Privacy considerations October 2014

 the hardware configuration of the host on which the client is
 running, or of industry consortium compliance, for example, the
 version of the operating system the client is running or the amount
 of memory installed on the client.

3.8. Civic Location Option

 DHCP servers use the Civic Location Option [RFC4776] to delivery of
 the location information (the civic and postal addresses) to the DHCP
 clients. It may refer to three locations: the location of the DHCP
 server, the location of the network element believed to be closest to
 the client, or the location of the client, identified by the "what"
 element within the option.

3.9. Coordinate-Based Location Option

 The GeoConf and GeoLoc options [RFC6225] is used by DHCP server to
 provide the coordinate-based geographic location information to the
 DHCP clients. It enables a DHCP client to obtain its geographic
 location.

 After the relevant DHCP exchanges have taken place, the location
 information is stored on the end device rather than somewhere else,
 where retrieving it might be difficult in practice.

3.10. Client System Architecture Type Option

 The Client System Architecture Type Option [RFC4578] is used by DHCP
 client to send a list of supported architecture types to the DHCP
 server. It is used to provide configuration information for a node
 that must be booted using the network rather than from local storage.

4. Existing Mechanisms That Affect Privacy

 This section describes available DHCP mechanisms that one can use to
 protect or enhance one’s privacy.

4.1. DNS Updates

 DNS Updates [RFC4704] defines a mechanism that allows both clients
 and server to insert into DNS domain information about clients. Both
 forward (AAAA) and reverse (PTR) resource records can be updated.
 This allows other nodes to conveniently refer to a host, despite the
 fact that its IP address may be changing.

 This mechanism exposes two important pieces of information: current
 address (which can be mapped to current location) and client’s
 hostname. The stable hostname can then by used to correlate the

Jiang, et al. Expires April 30, 2015 [Page 6]

Internet-Draft DHCP Privacy considerations October 2014

 client across different network attachments even when its IP
 addresses keep changing.

4.2. Allocation strategies

 A DHCP server running in typical, stateful mode is given a task of
 managing one or more pools of IP address resources. When a client
 requests a resource, server must pick a resource out of configured
 pool. Depending on the server’s implementation, various allocation
 strategies are possible. Choices in this regard may have privacy
 implications.

 Iterative allocation - a server may choose to allocate addresses one
 by one. That strategy has the benefit of being very fast, thus can
 be favored in deployments that prefer performance. However, it makes
 the resources very predictable. Also, since the resources allocated
 tend to be clustered at the beginning of available pool, it makes
 scanning attacks much easier.

 Identifier-based allocation - a server may choose to allocate an
 address that is based on one of available identifiers, e.g. client
 identifier or MAC address. It is also convenient, as returning
 client is very likely to get the same address. Those properties are
 convenient for system administrators, so DHCP server implementors are
 often requested to implement it. On the other hand, the downside of
 such allocation is that the client has a very stable IP address.
 That means that correlation of activities over time, location
 tracking, address scanning and OS/vendor discovery apply.

 Hash allocation - it’s an extension of identifier based allocation.
 Instead of using the identifier directly, it is being hashed first.
 If the hash is implemented correctly, it removes the flaw of
 disclosing the identifier, a property that eliminates susceptibility
 to address scanning and OS/vendor discovery. If the hash is poorly
 implemented (e.g. can be reverted), it introduces no improvement over
 identifier-based allocation.

 Random allocation - a server can pick a resource randomly out of
 available pool. That strategy works well in scenarios where pool
 utilization is small, as the likelihood of collision (resulting in
 the server needing to repeat randomization) is small. With the pool
 allocation increasing, the collision is disproportionally large, due
 to birthday paradox. With high pool utilization (e.g. when 90% of
 available resources being allocated already), the server will use
 most computational resources to repeatedly pick a random resource,
 which will degrade its performance. This allocation scheme
 essentially prevents returning clients from getting the same address
 again. On the other hand, it is beneficial from privacy perspective

Jiang, et al. Expires April 30, 2015 [Page 7]

Internet-Draft DHCP Privacy considerations October 2014

 as addresses generated that way are not susceptible to correlation
 attacks, OS/vendor discovery attacks or identity discovery attacks.
 Note that even though the address itself may be resilient to a given
 attack, the client may still be susceptible if additional information
 is disclosed other way, e.g. client’s address can be randomized, but
 it still can leak its MAC address in client-id option.

 Other allocation strategies may be implemented.

 However, giving the limited resource of IPv4 public address pool,
 allocation mechanism in IPv4 may not provide much protection, while
 in IPv6, the network has very large address space to distribute the
 address allocation.

5. Attacks

5.1. Device type discovery

 The type of device used by the client can be guessed by the attacker
 using the Vendor Class Option, the ’chaddr’ field, and by parsing the
 Client ID Option. All of those options may contain OUI
 (Organizationally Unique Identifier) that represents the device’s
 vendor. That knowledge can be used for device-specific vulnerability
 exploitation attacks.

5.2. Operating system discovery

 The operating system running on a client can be guessed using the
 Vendor Class option, the Client System Architecture Type option, or
 by using fingerprinting techniques on the combination of options
 requested using the Parameter Request List option.

5.3. Finding location information

 The location information can be obtained by the attacker by many
 means. The most direct way to obtain this information is by looking
 into a server initiated message that contains the Civic Location,
 GeoConf, or GeoLoc options. It can also be indirectly inferred using
 the Relay Agent Information option, with the remote ID sub-option
 (e.g. using a telephone number), the circuit ID option (e.g. if an
 access circuit on an Access Node corresponds to a civic location), or
 the Subscriber ID Option (if the attacker has access to subscriber
 info).

Jiang, et al. Expires April 30, 2015 [Page 8]

Internet-Draft DHCP Privacy considerations October 2014

5.4. Finding previously visited networks

 When DHCP clients connect to a network, they attempt to obtain the
 same address they had used before they attached to the network. They
 do this by putting the previously assigned address in the requested
 IP address option. By observing these addresses, an attacker can
 identify the network the client had previously visited.

5.5. Finding a stable identity

 An attacker might use a stable identity gleaned from DHCP messages to
 correlate activities of a given client on unrelated networks. The
 Client FQDN option, the Subscriber ID Option and the Client ID
 options can serve as long lived identifiers of DHCP clients. The
 Client FQDN option can also provide an identity that can easily be
 correlated with web server activity logs.

5.6. Pervasive monitoring

 This is an enhancement, or a combination of most aforementioned
 mechanisms. Operator who controls non-trivial number of access
 points or network segments, may use obtained information about a
 single client and observer client’s habits.

5.7. Finding client’s IP address or hostname

 Many DHCP deployments use DNS Updates [RFC4702] that put client’s
 information (current IP address, client’s hostname). Client ID is
 also disclosed, able it in not easily accessible form (SHA-256 digest
 of the client-id). Although SHA-256 is irreversible, so DHCID can’t
 be converted back to client-id. However, SHA-256 digest can be used
 as a unique identifier that is accessible by any host.

5.8. Correlation of activities over time

 As with other identifiers, an IP address can be used to correlate the
 activities of a host for at least as long as the lifetime of the
 address. If that address was generated from some other, stable
 identifier and that generation scheme can be deducted by an attacker,
 the duration of correlation attack extends to that identifier. In
 many cases, its lifetime is equal to the lifetime of the device
 itself.

5.9. Location tracking

 If a stable identifier is used for assigning an address and such
 mapping is discovered by an attacker. In particular both passive (a
 service that the client connects to can log client’s address and draw

Jiang, et al. Expires April 30, 2015 [Page 9]

Internet-Draft DHCP Privacy considerations October 2014

 conclusions regarding its location and movement patterns based on
 address it is connecting from) and active (attacker can send ICMP
 echo requests or other probe packets to networks of suspected client
 locations).

5.10. Leasequery & bulk leasequery

 Attackers may pretend as an access concentrator, either DHCP relay
 agent or DHCP client, to obtain location information directly from
 the DHCP server(s) using the DHCP Leasequery [RFC4388], [RFC6148]
 mechanism.

 Location information is information needed by the access concentrator
 to forward traffic to a broadband-accessible host. This information
 includes knowledge of the host hardware address, the port or virtual
 circuit that leads to the host, and/or the hardware address of the
 intervening subscriber modem.

 Furthermore, the attackers may use DHCP bulk leasequery [RFC6926]
 mechanism to obtain bulk information about DHCP bindings, even
 without knowing the target bindings.

6. Security Considerations

 TBD

7. Privacy Considerations

 This document at its entirety discusses privacy considerations in
 DHCP. As such, no separate section about this is needed.

8. IANA Considerations

 This draft does not request any IANA action.

9. Acknowledgements

 The authors would like to thanks the valuable comments made by
 Stephen Farrell, Ted Lemon, Ines Robles, Russ White, Christian
 Schaefer and other members of DHC WG.

 This document was produced using the xml2rfc tool [RFC2629].

10. References

Jiang, et al. Expires April 30, 2015 [Page 10]

Internet-Draft DHCP Privacy considerations October 2014

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC
 2131, March 1997.

 [RFC3046] Patrick, M., "DHCP Relay Agent Information Option", RFC
 3046, January 2001.

 [RFC3527] Kinnear, K., Stapp, M., Johnson, R., and J. Kumarasamy,
 "Link Selection sub-option for the Relay Agent Information
 Option for DHCPv4", RFC 3527, April 2003.

 [RFC3925] Littlefield, J., "Vendor-Identifying Vendor Options for
 Dynamic Host Configuration Protocol version 4 (DHCPv4)",
 RFC 3925, October 2004.

 [RFC3993] Johnson, R., Palaniappan, T., and M. Stapp, "Subscriber-ID
 Suboption for the Dynamic Host Configuration Protocol
 (DHCP) Relay Agent Option", RFC 3993, March 2005.

 [RFC4361] Lemon, T. and B. Sommerfeld, "Node-specific Client
 Identifiers for Dynamic Host Configuration Protocol
 Version Four (DHCPv4)", RFC 4361, February 2006.

 [RFC4388] Woundy, R. and K. Kinnear, "Dynamic Host Configuration
 Protocol (DHCP) Leasequery", RFC 4388, February 2006.

 [RFC4702] Stapp, M., Volz, B., and Y. Rekhter, "The Dynamic Host
 Configuration Protocol (DHCP) Client Fully Qualified
 Domain Name (FQDN) Option", RFC 4702, October 2006.

 [RFC4704] Volz, B., "The Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6) Client Fully Qualified Domain Name (FQDN)
 Option", RFC 4704, October 2006.

 [RFC4776] Schulzrinne, H., "Dynamic Host Configuration Protocol
 (DHCPv4 and DHCPv6) Option for Civic Addresses
 Configuration Information", RFC 4776, November 2006.

 [RFC6148] Kurapati, P., Desetti, R., and B. Joshi, "DHCPv4 Lease
 Query by Relay Agent Remote ID", RFC 6148, February 2011.

 [RFC6225] Polk, J., Linsner, M., Thomson, M., and B. Aboba, "Dynamic
 Host Configuration Protocol Options for Coordinate-Based
 Location Configuration Information", RFC 6225, July 2011.

Jiang, et al. Expires April 30, 2015 [Page 11]

Internet-Draft DHCP Privacy considerations October 2014

 [RFC6926] Kinnear, K., Stapp, M., Desetti, R., Joshi, B., Russell,
 N., Kurapati, P., and B. Volz, "DHCPv4 Bulk Leasequery",
 RFC 6926, April 2013.

10.2. Informative References

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

 [RFC4578] Johnston, M. and S. Venaas, "Dynamic Host Configuration
 Protocol (DHCP) Options for the Intel Preboot eXecution
 Environment (PXE)", RFC 4578, November 2006.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973, July
 2013.

Authors’ Addresses

 Sheng Jiang
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 Beiqing Road
 Hai-Dian District, Beijing, 100095
 P.R. China

 Email: jiangsheng@huawei.com

 Suresh Krishnan
 Ericsson
 8400 Decarie Blvd.
 Town of Mount Royal, QC
 Canada

 Phone: +1 514 345 7900 x42871
 Email: suresh.krishnan@ericsson.com

 Tomek Mrugalski
 Internet Systems Consortium, Inc.
 950 Charter Street
 Redwood City, CA 94063
 USA

 Phone: +1 650 423 1345
 Email: tomasz.mrugalski@gmail.com

Jiang, et al. Expires April 30, 2015 [Page 12]

dhc S. Krishnan
Internet-Draft Ericsson
Intended status: Standards Track T. Mrugalski
Expires: April 30, 2015 ISC
 S. Jiang
 Huawei Technologies Co., Ltd
 October 27, 2014

 Privacy considerations for DHCPv6
 draft-krishnan-dhc-dhcpv6-privacy-00

Abstract

 DHCPv6 is a protocol that is used to provide addressing and
 configuration information to IPv6 hosts. This document discusses the
 various identifiers used by DHCPv6 and the potential privacy issues.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Krishnan, et al. Expires April 30, 2015 [Page 1]

Internet-Draft DHCPv6 Privacy considerations October 2014

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 3. Identifiers in DHCPv6 . 3
 3.1. DUID . 4
 3.2. Client ID Option . 4
 3.3. IA_NA, IA_TA, IA_PD, IA Address and IA Prefix Options . . 4
 3.4. Interface ID . 5
 3.5. Subscriber ID . 5
 3.6. Remote ID . 5
 3.7. Client FQDN Option 6
 3.8. Client Link-layer Address Option 6
 3.9. Option Request Option 6
 3.10. Vendor Class Option 6
 3.11. Civic Location Option 7
 3.12. Coordinate-Based Location Option 7
 3.13. Client System Architecture Type Option 7
 4. Existing Mechanisms That Affect Privacy 7
 4.1. Temporary addresses 7
 4.2. DNS Updates . 8
 4.3. Allocation strategies 8
 5. Attacks . 9
 5.1. Device type discovery (fingerprinting) 9
 5.2. Operating system discovery (fingerprinting) 10
 5.3. Finding location information 10
 5.4. Finding previously visited networks 10
 5.5. Finding a stable identity 10
 5.6. Pervasive monitoring 10
 5.7. Finding client’s IP address or hostname 11
 5.8. Correlation of activities over time 11
 5.9. Location tracking . 11
 5.10. Leasequery & bulk leasequery 11
 6. Security Considerations 12
 7. Privacy Considerations 12
 8. IANA Considerations . 12
 9. Acknowledgements . 12
 10. References . 12
 10.1. Normative References 12
 10.2. Informative References 12
 Authors’ Addresses . 14

Krishnan, et al. Expires April 30, 2015 [Page 2]

Internet-Draft DHCPv6 Privacy considerations October 2014

1. Introduction

 DHCPv6 [RFC3315] is a protocol that is used to provide addressing and
 configuration information to IPv6 hosts. The DHCPv6 protocol uses
 several identifiers that could become a source for gleaning
 additional information about the IPv6 host. This information may
 include device type, operating system information, location(s) that
 the device may have previously visited, etc. This document discusses
 the various identifiers used by DHCPv6 and the potential privacy
 issues [RFC6973].

 Future works may propose protocol changes to fix the privacy issues
 that have been analyzed in this document. It is out of scope for
 this document.

 Editor notes: for now, the document is mainly considering the privacy
 of DHCPv6 client. The privacy of DHCPv6 server and relay agent are
 considered less important because they are open for public services.
 However, this may be a subject to change if further study shows
 opposite result.

2. Terminology

 This section clarifies the terminology used throughout this document.

 Stable identifier - any property disclosed by a DHCPv6 client that
 does not change over time or changes very infrequently and is unique
 for said client in a given context. Examples include MAC address,
 client-id that does not change or a hostname. Stable identifier may
 or may not be globally unique.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. When these
 words are not in ALL CAPS (such as "should" or "Should"), they have
 their usual English meanings, and are not to be interpreted as
 [RFC2119] key words.

3. Identifiers in DHCPv6

 There are several identifiers used in DHCPv6. This section provides
 an introduction to the various options that will be used further in
 the document.

Krishnan, et al. Expires April 30, 2015 [Page 3]

Internet-Draft DHCPv6 Privacy considerations October 2014

3.1. DUID

 Each DHCPv6 client and server has a DHCPv6 Unique Identifier (DUID)
 [RFC3315]. The DUID is designed to be unique across all DHCPv6
 clients and servers, and to remain stable after it has been initially
 generated. The DUID can be of different forms. Commonly used forms
 are based on the link-layer address of one of the device’s network
 interfaces (with or without a timestamp), on the Universally Unique
 IDentifier (UUID) [RFC6355]. The default type, recommended by
 [RFC3315], is DUID-LLT that is based on link-layer address, which is
 commonly implemented in most popular clients.

 It is important to understand DUID lifecycle. Clients and servers
 are expected to generate their DUID once (during first operation) and
 store it in a non-volatile storage or use the same deterministic
 algorithm to generate the same DUID value again. This means that
 most implementations will use the available link-layer address during
 its first boot. Even if the administrator enables privacy extensions
 (see [RFC4941]) and its equivalent for link-layer address
 randomization, it is likely that those privacy mechanisms were
 disabled during the first device boot. Hence the original,
 unobfuscated link-layer address will likely end up being announced as
 client DUID, even if the link-layer address has changed (or even if
 being changed on a periodic basis).

3.2. Client ID Option

 The Client Identifier Option (OPTION_CLIENTID) [RFC3315] is used to
 carry the DUID of a DHCPv6 client between a client and a server.
 There is an analogous Server Identifier Option but it is not as
 interesting in the privacy context (unless a host can be convinced to
 start acting as a server). Client ID is an example of DUID. See
 Section 3.1 for relevant discussion about DUIDs.

3.3. IA_NA, IA_TA, IA_PD, IA Address and IA Prefix Options

 The Identity Association for Non-temporary Addresses (IA_NA) option
 [RFC3315] is used to carry the parameters and any non-temporary
 addresses associated with the given IA_NA. The Identity Association
 for Temporary Addresses (IA_TA) option [RFC3315] is analogous to the
 IA_NA option but for temporary addresses. The IA Address option
 [RFC3315] is used to specify IPv6 addresses associated with an IA_NA
 or an IA_TA and is encapsulated within the Options field of such an
 IA_NA or IA_TA option. The Identity Association for Prefix
 Delegation (IA_PD) [RFC3633] option is used to carry the prefixes
 that are assigned to the requesting router. IA Prefix option
 [RFC3633] is used to specify IPv6 prefixes associated with an IA_PD
 and is encapsulated within the Options field of such an IA_PD option.

Krishnan, et al. Expires April 30, 2015 [Page 4]

Internet-Draft DHCPv6 Privacy considerations October 2014

 To differentiate between instances of the same type of IA containers,
 each IA_NA, IA_TA and IA_PD options have an IAID field that is unique
 for each client/option type pair. It is up to the client to pick
 unique IAID values. At least one popular implementation uses last
 four octets of the link-layer address. In most cases, that means
 that merely two bytes are missing for a full link-layer address
 reconstruction. However, the first three octets in a typical link-
 layer address are vendor identifier. That can be determined with
 high level of certainty using other means, thus allowing full link-
 layer address discovery.

3.4. Interface ID

 A DHCPv6 relay includes the Interface ID [RFC3315] option to identify
 the interface on which it received the client message that is being
 relayed.

 Although in principle Interface ID can be arbitrarily long with
 completely random values, it is often a text string that includes the
 relay agent name followed by interface name. This can be used for
 fingerprinting the relay or determining client’s point of attachment.

3.5. Subscriber ID

 A DHCPv6 relay includes a Subscriber ID option [RFC4580] to associate
 some provider-specific information with clients’ DHCPv6 messages that
 is independent of the physical network configuration.

 In many deployments, the relay agent that inserts this option is
 configured to use client’s link-layer address as Subscriber ID.

3.6. Remote ID

 A DHCPv6 relay includes a Remote ID option [RFC4649] to identify the
 remote host end of the circuit.

 The remote-id is vendor specific, for which the vendor is indicated
 in the enterprise-number field. The remote-id field may encode the
 information that identified the DHCPv6 clients:

 o a "caller ID" telephone number for dial-up connection

 o a "user name" prompted for by a Remote Access Server

 o a remote caller ATM address o a "modem ID" of a cable data modem

 o the remote IP address of a point-to-point link

Krishnan, et al. Expires April 30, 2015 [Page 5]

Internet-Draft DHCPv6 Privacy considerations October 2014

 o an interface or port identifier

3.7. Client FQDN Option

 The Client Fully Qualified Domain Name (FQDN) option [RFC4704] is
 used by DHCPv6 clients and servers to exchange information about the
 client’s fully qualified domain name and about who has the
 responsibility for updating the DNS with the associated AAAA and PTR
 RRs.

 A client can use this option to convey all or part of its domain name
 to a DHCPv6 server for the IPv6-address-to-FQDN mapping. In most
 case a client sends its hostname as a hint for the server. The
 DHCPv6 server MAY be configured to modify the supplied name or to
 substitute a different name. The server should send its notion of
 the complete FQDN for the client in the Domain Name field.

3.8. Client Link-layer Address Option

 The Client link-layer address option [RFC6939] is used by first-hop
 DHCPv6 relays to provide the client’s link-layer address towards the
 server.

 DHCPv6 relay agents that receive messages originating from clients
 may include the link-layer source address of the received DHCPv6
 message in the Client Link-Layer Address option, in relayed DHCPv6
 Relay-Forward messages.

3.9. Option Request Option

 DHCPv6 clients include an Option Request option [RFC3315] in DHCPv6
 messages to inform the server about options the client wants the
 server to send to the client.

 The content of an Option Request option are the option codes for an
 option requested by the client. The client may additionally include
 instances of those options that are identified in the Option Request
 option, with data values as hints to the server about parameter
 values the client would like to have returned.

3.10. Vendor Class Option

 This Vendor Class option [RFC3315] is used by a DHCPv6 client to
 identify the vendor that manufactured the hardware on which the
 client is running.

 The information contained in the data area of this option is
 contained in one or more opaque fields that identify details of the

Krishnan, et al. Expires April 30, 2015 [Page 6]

Internet-Draft DHCPv6 Privacy considerations October 2014

 hardware configuration, for example, the version of the operating
 system the client is running or the amount of memory installed on the
 client.

3.11. Civic Location Option

 DHCPv6 servers use the Civic Location option [RFC4776] to delivery of
 location information (the civic and postal addresses) from the DHCPv6
 server to the DHCPv6 clients. It may refer to three locations: the
 location of the DHCPv6 server, the location of the network element
 believed to be closest to the client, or the location of the client,
 identified by the "what" element within the option.

3.12. Coordinate-Based Location Option

 The GeoLoc options [RFC6225] is used by DHCPv6 server to provide the
 coordinate- based geographic location information to the DHCPv6
 clients. It enable a DHCPv6 client to obtain its location.

 After the relevant DHCPv6 exchanges have taken place, the location
 information is stored on the end device rather than somewhere else,
 where retrieving it might be difficult in practice.

3.13. Client System Architecture Type Option

 The Client System Architecture Type option [RFC5970] is used by
 DHCPv6 client to send a list of supported architecture types to the
 DHCPv6 server. It is used to provide configuration information for a
 node that must be booted using the network rather than from local
 storage.

4. Existing Mechanisms That Affect Privacy

 This section describes available DHCPv6 mechanisms that one can use
 to protect or enhance one’s privacy.

4.1. Temporary addresses

 [RFC3315] defines a mechanism for a client to request temporary
 addresses. The idea behind temporary addresses is that a client can
 request a temporary address for a specific purpose, use it, and then
 never renew it. i.e. let it expire.

 There are number of serious issues, both protocolar and
 implementational, that make them nearly useless for their original
 goal. First, [RFC3315] does not include T1 and T2 renewal timers in
 IA_TA (a container for temporary addresses). However, it mentions
 that temporary addresses can be renewed. Many client implementations

Krishnan, et al. Expires April 30, 2015 [Page 7]

Internet-Draft DHCPv6 Privacy considerations October 2014

 renew those addresses during a renewal procedure initiated by other
 resources (non-temporary addresses or prefixes), thus forfeiting
 shortliveness. Second, [RFC4704] allows servers to update DNS for
 assigned temporary addresses. Publishing client’s IPv6 address in
 DNS that is publicly available is a major privacy breach.

4.2. DNS Updates

 DNS Updates [RFC4704] defines a mechanism that allows both clients
 and server to insert into DNS domain information about clients. Both
 forward (AAAA) and reverse (PTR) resource records can be updated.
 This allows other nodes to conveniently refer to a host, despite the
 fact that its IPv6 address may be changing.

 This mechanism exposes two important pieces of information: current
 address (which can be mapped to current location) and client’s
 hostname. The stable hostname can then by used to correlate the
 client across different network attachments even when its IPv6
 address keeps changing.

4.3. Allocation strategies

 A DHCPv6 server running in typical, stateful mode is given a task of
 managing one or more pools of IPv6 resources (currently non-temporary
 addresses, temporary addresses and/or prefixes, but more resource
 types may be defined in the future). When a client requests a
 resource, server must pick a resource out of configured pool.
 Depending on the server’s implementation, various allocation
 strategies are possible. Choices in this regard may have privacy
 implications.

 Iterative allocation - a server may choose to allocate addresses one
 by one. That strategy has the benefit of being very fast, thus can
 be favored in deployments that prefer performance. However, it makes
 the resources very predictable. Also, since the resources allocated
 tend to be clustered at the beginning of available pool, it makes
 scanning attacks much easier.

 Identifier-based allocation - a server may choose to allocate an
 address that is based on one of available identifiers, e.g. IID or
 MAC address. This has a property of being convenient for converting
 IP address to/from other identifiers, especially if the identifier is
 or contains MAC address. It is also convenient, as returning client
 is very likely to get the same address, even if the server does not
 store previous client’s address. Those properties are convenient for
 system administrators, so DHCPv6 server implementors are sometimes
 requested to implement it. There is at least one implementation that
 supports it. On the other hand, the downside of such allocation is

Krishnan, et al. Expires April 30, 2015 [Page 8]

Internet-Draft DHCPv6 Privacy considerations October 2014

 that the client now discloses its identifier in its IPv6 address to
 all services it connects to. That means that correlation of
 activities over time, location tracking, address scanning and OS/
 vendor discovery apply.

 Hash allocation - it’s an extension of identifier based allocation.
 Instead of using the identifier directly, it is being hashed first.
 If the hash is implemented correctly, it removes the flaw of
 disclosing the identifier, a property that eliminates susceptibility
 to address scanning and OS/vendor discovery. If the hash is poorly
 implemented (e.g. can be reverted), it introduces no improvement over
 identifier-based allocation.

 Random allocation - a server can pick a resource randomly out of
 available pool. That strategy works well in scenarios where pool
 utilization is small, as the likelihood of collision (resulting in
 the server needing to repeat randomization) is small. With the pool
 allocation increasing, the collision is disproportionally large, due
 to birthday paradox. With high pool utilization (e.g. when 90% of
 available resources being allocated already), the server will use
 most computational resources to repeatedly pick a random resource,
 which will degrade its performance. This allocation scheme
 essentially prevents returning clients from getting the same address
 or prefix again. On the other hand, it is beneficial from privacy
 perspective as addresses and prefixes generated that way are not
 susceptible to correlation attacks, OS/vendor discovery attacks or
 identity discovery attacks. Note that even though the address or
 prefix itself may be resilient to a given attack, the client may
 still be susceptible if additional information is disclosed other
 way, e.g. client’s address can be randomized, but it still can leak
 its MAC address in client-id option.

 Other allocation strategies may be implemented.

5. Attacks

5.1. Device type discovery (fingerprinting)

 The type of device used by the client can be guessed by the attacker
 using the Vendor Class option, the Client Link-layer Address option,
 and by parsing the Client ID option. All of those options may
 contain OUI (Organizationally Unique Identifier) that represents the
 device’s vendor. That knowledge can be used for device-specific
 vulnerability exploitation attacks. See Section 3.4 of
 [I-D.ietf-6man-ipv6-address-generation-privacy] for a discussion
 about this type of attack.

Krishnan, et al. Expires April 30, 2015 [Page 9]

Internet-Draft DHCPv6 Privacy considerations October 2014

5.2. Operating system discovery (fingerprinting)

 The operating system running on a client can be guessed using the
 Vendor Class option, the Client System Architecture Type option, or
 by using fingerprinting techniques on the combination of options
 requested using the Option Request option. See Section 3.4 of
 [I-D.ietf-6man-ipv6-address-generation-privacy] for a discussion
 about this type of attack.

5.3. Finding location information

 The location information can be obtained by the attacker by many
 means. The most direct way to obtain this information is by looking
 into a server initiated message that contains the Civic Location or
 GeoLoc option. It can also be indirectly inferred using the Remote
 ID Option (e.g. using a telephone number), the Interface ID option
 (e.g. if an access circuit on an Access Node corresponds to a civic
 location), or the Subscriber ID Option (if the attacker has access to
 subscriber info).

5.4. Finding previously visited networks

 When DHCPv6 clients connect to a network, they attempt to obtain the
 same address they had used before they attached to the network. They
 do this by putting the previously assigned address(es) in the IA
 Address Option(s) inside the IA_NA, IA_TA. By observing these
 addresses, an attacker can identify the network the client had
 previously visited.

5.5. Finding a stable identity

 An attacker might use a stable identity gleaned from DHCPv6 messages
 to correlate activities of a given client on unrelated networks. The
 Client FQDN option, the Subscriber ID Option and the Client ID
 options can serve as long lived identifiers of DHCPv6 clients. The
 Client FQDN option can also provide an identity that can easily be
 correlated with web server activity logs.

5.6. Pervasive monitoring

 This is an enhancement, or a combination of most aforementioned
 mechanisms. Operator, who controls non-trivial number of access
 points or network segments, may use obtained information about a
 single client and observer client’s habits.

Krishnan, et al. Expires April 30, 2015 [Page 10]

Internet-Draft DHCPv6 Privacy considerations October 2014

5.7. Finding client’s IP address or hostname

 Many DHCPv6 deployments use DNS Updates [RFC4704] that put client’s
 information (current IP address, client’s hostname). Client ID is
 also disclosed, able it in not easily accessible form (SHA-256 digest
 of the client-id). Although SHA-256 is irreversible, so DHCPv6
 client ID can’t be converted back to client-id. However, SHA-256
 digest can be used as a unique identifier that is accessible by any
 host.

5.8. Correlation of activities over time

 As with other identifiers, an IPv6 address can be used to correlate
 the activities of a host for at least as long as the lifetime of the
 address. If that address was generated from some other, stable
 identifier and that generation scheme can be deducted by an attacker,
 the duration of correlation attack extends to that identifier. In
 many cases, its lifetime is equal to the lifetime of the device
 itself. See Section 3.1 of
 [I-D.ietf-6man-ipv6-address-generation-privacy] for detailed
 discussion.

5.9. Location tracking

 If a stable identifier is used for assigning an address and such
 mapping is discovered by an attacker (e.g. a server that uses IEEE-
 identifier-based IID to generate IPv6 address), all scenarios
 discussed in Section 3.2 of
 [I-D.ietf-6man-ipv6-address-generation-privacy] apply. In particular
 both passive (a service that the client connects to can log client’s
 address and draw conclusions regarding its location and movement
 patterns based on prefix it is connecting from) and active (attacker
 can send ICMPv6 echo requests or other probe packets to networks of
 suspected client locations).

5.10. Leasequery & bulk leasequery

 Attackers may pretend as an access concentrator, either DHCPv6 relay
 agent or DHCPv6 client, to obtain location information directly from
 the DHCP server(s) using the DHCPv6 Leasequery [RFC5007] mechanism.

 Location information is information needed by the access concentrator
 to forward traffic to a broadband-accessible host. This information
 includes knowledge of the host hardware address, the port or virtual
 circuit that leads to the host, and/or the hardware address of the
 intervening subscriber modem.

Krishnan, et al. Expires April 30, 2015 [Page 11]

Internet-Draft DHCPv6 Privacy considerations October 2014

 Furthermore, the attackers may use DHCPv6 bulk leasequery [RFC5460]
 mechanism to obtain bulk information about DHCPv6 bindings, even
 without knowing the target bindings.

6. Security Considerations

 TBD

7. Privacy Considerations

 This document at its entirety discusses privacy considerations in
 DHCPv6. As such, no separate section about this is needed.

8. IANA Considerations

 This draft does not request any IANA action.

9. Acknowledgements

 The authors would like to thanks the valuable comments made by
 Stephen Farrell, Ted Lemon, Ines Robles, Russ White, Christian
 Schaefer and other members of DHC WG.

 This document was produced using the xml2rfc tool [RFC2629].

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

10.2. Informative References

 [I-D.ietf-6man-ipv6-address-generation-privacy]
 Cooper, A., Gont, F., and D. Thaler, "Privacy
 Considerations for IPv6 Address Generation Mechanisms",
 draft-ietf-6man-ipv6-address-generation-privacy-02 (work
 in progress), October 2014.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

Krishnan, et al. Expires April 30, 2015 [Page 12]

Internet-Draft DHCPv6 Privacy considerations October 2014

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 December 2003.

 [RFC4580] Volz, B., "Dynamic Host Configuration Protocol for IPv6
 (DHCPv6) Relay Agent Subscriber-ID Option", RFC 4580, June
 2006.

 [RFC4649] Volz, B., "Dynamic Host Configuration Protocol for IPv6
 (DHCPv6) Relay Agent Remote-ID Option", RFC 4649, August
 2006.

 [RFC4704] Volz, B., "The Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6) Client Fully Qualified Domain Name (FQDN)
 Option", RFC 4704, October 2006.

 [RFC4776] Schulzrinne, H., "Dynamic Host Configuration Protocol
 (DHCPv4 and DHCPv6) Option for Civic Addresses
 Configuration Information", RFC 4776, November 2006.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, September 2007.

 [RFC5007] Brzozowski, J., Kinnear, K., Volz, B., and S. Zeng,
 "DHCPv6 Leasequery", RFC 5007, September 2007.

 [RFC5460] Stapp, M., "DHCPv6 Bulk Leasequery", RFC 5460, February
 2009.

 [RFC5970] Huth, T., Freimann, J., Zimmer, V., and D. Thaler, "DHCPv6
 Options for Network Boot", RFC 5970, September 2010.

 [RFC6225] Polk, J., Linsner, M., Thomson, M., and B. Aboba, "Dynamic
 Host Configuration Protocol Options for Coordinate-Based
 Location Configuration Information", RFC 6225, July 2011.

 [RFC6355] Narten, T. and J. Johnson, "Definition of the UUID-Based
 DHCPv6 Unique Identifier (DUID-UUID)", RFC 6355, August
 2011.

 [RFC6939] Halwasia, G., Bhandari, S., and W. Dec, "Client Link-Layer
 Address Option in DHCPv6", RFC 6939, May 2013.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973, July
 2013.

Krishnan, et al. Expires April 30, 2015 [Page 13]

Internet-Draft DHCPv6 Privacy considerations October 2014

Authors’ Addresses

 Suresh Krishnan
 Ericsson
 8400 Decarie Blvd.
 Town of Mount Royal, QC
 Canada

 Phone: +1 514 345 7900 x42871
 Email: suresh.krishnan@ericsson.com

 Tomek Mrugalski
 Internet Systems Consortium, Inc.
 950 Charter Street
 Redwood City, CA 94063
 USA

 Phone: +1 650 423 1345
 Email: tomasz.mrugalski@gmail.com

 Sheng Jiang
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 BeiQing Road
 Hai-Dian District, Beijing 100095
 P.R. China

 Email: jiangsheng@huawei.com

Krishnan, et al. Expires April 30, 2015 [Page 14]

Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Obsoletes: rfc5320, rfc5558, rfc5720, May 10, 2018
 rfc6179, rfc6706 (if
 approved)
Intended status: Standards Track
Expires: November 11, 2018

 Asymmetric Extended Route Optimization (AERO)
 draft-templin-aerolink-82.txt

Abstract

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). Nodes attached
 to AERO links can exchange packets via trusted intermediate routers
 that provide forwarding services to reach off-link destinations and
 route optimization services for improved performance. AERO provides
 an IPv6 link-local address format that supports operation of the IPv6
 Neighbor Discovery (ND) protocol and links ND to IP forwarding.
 Dynamic link selection, mobility management, quality of service (QoS)
 signaling and route optimization are naturally supported through
 dynamic neighbor cache updates, while IPv6 Prefix Delegation (PD) is
 supported by network services such as the Dynamic Host Configuration
 Protocol for IPv6 (DHCPv6). AERO is a widely-applicable tunneling
 solution especially well-suited to aviation services, mobile Virtual
 Private Networks (VPNs) and other applications as described in this
 document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 11, 2018.

Templin Expires November 11, 2018 [Page 1]

Internet-Draft AERO May 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Asymmetric Extended Route Optimization (AERO) 7
 3.1. AERO Link Reference Model 7
 3.2. AERO Node Types . 9
 3.3. AERO Routing System 10
 3.4. AERO Interface Link-local Addresses 11
 3.5. AERO Interface Characteristics 13
 3.6. AERO Interface Initialization 16
 3.6.1. AERO Relay Behavior 16
 3.6.2. AERO Server Behavior 16
 3.6.3. AERO Client Behavior 17
 3.6.4. AERO Proxy Behavior 17
 3.7. AERO Interface Neighbor Cache Maintenance 18
 3.8. AERO Interface Forwarding Algorithm 19
 3.8.1. Client Forwarding Algorithm 20
 3.8.2. Proxy Forwarding Algorithm 21
 3.8.3. Server Forwarding Algorithm 21
 3.8.4. Relay Forwarding Algorithm 22
 3.8.5. Processing Return Packets 22
 3.9. AERO Interface Encapsulation and Re-encapsulation 23
 3.10. AERO Interface Decapsulation 24
 3.11. AERO Interface Data Origin Authentication 24
 3.12. AERO Interface Packet Size Issues 25
 3.13. AERO Interface Error Handling 27
 3.14. AERO Router Discovery, Prefix Delegation and
 Autoconfiguration . 30
 3.14.1. AERO ND/PD Service Model 30
 3.14.2. AERO Client Behavior 31
 3.14.3. AERO Server Behavior 33
 3.15. AERO Interface Route Optimization 35

Templin Expires November 11, 2018 [Page 2]

Internet-Draft AERO May 2018

 3.15.1. Reference Operational Scenario 35
 3.15.2. Concept of Operations 37
 3.15.3. Sending NS Messages 37
 3.15.4. Re-encapsulating and Relaying the NS 38
 3.15.5. Processing NSs and Sending NAs 39
 3.15.6. Re-encapsulating and Relaying NAs 40
 3.15.7. Processing NAs 41
 3.15.8. Server and Proxy Extended Route Optimization 41
 3.16. Neighbor Unreachability Detection (NUD) 43
 3.17. Mobility Management and Quality of Service (QoS) 44
 3.17.1. Forwarding Packets on Behalf of Departed Clients . . 44
 3.17.2. Announcing Link-Layer Address and QoS Preference
 Changes . 44
 3.17.3. Bringing New Links Into Service 45
 3.17.4. Removing Existing Links from Service 45
 3.17.5. Implicit Mobility Management 45
 3.17.6. Moving to a New Server 46
 3.18. Multicast Considerations 46
 4. The AERO Proxy . 47
 5. Direct Underlying Interfaces 49
 6. Operation on AERO Links with /64 ASPs 50
 7. Implementation Status . 50
 8. IANA Considerations . 51
 9. Security Considerations 51
 10. Acknowledgements . 52
 11. References . 53
 11.1. Normative References 53
 11.2. Informative References 55
 Appendix A. AERO Alternate Encapsulations 60
 Appendix B. When to Insert an Encapsulation Fragment Header . . 62
 Appendix C. Autoconfiguration for Constrained Platforms 62
 Appendix D. Operational Deployment Alternatives 63
 D.1. Operation on AERO Links Without DHCPv6 Services 63
 D.2. Operation on Server-less AERO Links 64
 D.3. Operation on Client-less AERO Links 64
 D.4. Manually-Configured AERO Tunnels 64
 D.5. Encapsulation Avoidance on Relay-Server Dedicated Links . 65
 D.6. Encapsulation Protocol Version Considerations 65
 D.7. Extending AERO Links Through Security Gateways 65
 Appendix E. Change Log . 67
 Author’s Address . 68

1. Introduction

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). The AERO link
 can be used for tunneling between neighboring nodes over either IPv6
 or IPv4 networks, i.e., AERO views the IPv6 and IPv4 networks as

Templin Expires November 11, 2018 [Page 3]

Internet-Draft AERO May 2018

 equivalent links for tunneling. Nodes attached to AERO links can
 exchange packets via trusted intermediate routers that provide
 forwarding services to reach off-link destinations and route
 optimization services for improved performance [RFC5522].

 AERO provides an IPv6 link-local address format that supports
 operation of the IPv6 Neighbor Discovery (ND) [RFC4861] protocol and
 links ND to IP forwarding. Dynamic link selection, mobility
 management, quality of service (QoS) signaling and route optimization
 are naturally supported through dynamic neighbor cache updates, while
 IPv6 Prefix Delegation (PD) is supported by network services such as
 the Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
 [RFC3315][RFC3633].

 A node’s AERO interface can be configured over multiple underlying
 interfaces. From the standpoint of ND, AERO interface neighbors
 therefore may appear to have multiple link-layer addresses (i.e., the
 addresses assigned to underlying interfaces). Each link-layer
 address is subject to change due to mobility and/or QoS fluctuations,
 and link-layer address changes are signaled by ND messaging the same
 as for any IPv6 link.

 AERO is applicable to a wide variety of use cases. For example, it
 can be used to coordinate the Virtual Private Network (VPN) links of
 mobile nodes (e.g., cellphones, tablets, laptop computers, etc.) that
 connect into a home enterprise network via public access networks
 using services such as OpenVPN [OVPN]. AERO is also applicable to
 aviation services for both manned and unmanned aircraft where the
 aircraft is treated as a mobile node that can connect an Internet of
 Things (IoT). Other applicable use cases are also in scope.

 The remainder of this document presents the AERO specification.

2. Terminology

 The terminology in the normative references applies; the following
 terms are defined within the scope of this document:

 IPv6 Neighbor Discovery (ND)
 an IPv6 control message service for coordinating neighbor
 relationships between nodes connected to a common link. The ND
 service used by AERO is specified in [RFC4861].

 IPv6 Prefix Delegation (PD)
 a networking service for delegating IPv6 prefixes to nodes on the
 link. The nominal PD service is DHCPv6 [RFC3315] [RFC3633],
 however other services (e.g., alternate ND options, network
 management, static configuration, etc.) are also possible.

Templin Expires November 11, 2018 [Page 4]

Internet-Draft AERO May 2018

 (native) Internetwork
 a connected IPv6 or IPv4 network topology over which the AERO link
 virtual overlay is configured and native peer-to-peer
 communications are supported. Example Internetworks include the
 global public Internet, private enterprise networks, aviation
 networks, etc.

 AERO link
 a Non-Broadcast, Multiple Access (NBMA) tunnel virtual overlay
 configured over an underlying Internetwork. All nodes on the AERO
 link appear as single-hop neighbors from the perspective of the
 virtual overlay even though they may be separated by many
 underlying Internetwork hops. The AERO mechanisms can also
 operate over native link types (e.g., Ethernet, WiFi etc.) when a
 tunnel virtual overlay is not needed.

 AERO interface
 a node’s attachment to an AERO link. Since the addresses assigned
 to an AERO interface are managed for uniqueness, AERO interfaces
 do not require Duplicate Address Detection (DAD) and therefore set
 the administrative variable DupAddrDetectTransmits to zero
 [RFC4862].

 AERO address
 an IPv6 link-local address constructed as specified in
 Section 3.4.

 AERO node
 a node that is connected to an AERO link.

 AERO Client ("Client")
 a node that requests IP PDs from one or more AERO Servers.
 Following PD, the Client assigns an AERO address to the AERO
 interface for use in ND exchanges with other AERO nodes. A node
 that acts as an AERO Client on one AERO interface can also act as
 an AERO Server on a different AERO interface.

 AERO Server ("Server")
 a node that configures an AERO interface to provide default
 forwarding services for AERO Clients. The Server assigns an
 administratively-provisioned IPv6 link-local address to the AERO
 interface to support the operation of the ND/PD services. An AERO
 Server can also act as an AERO Relay.

 AERO Relay ("Relay")
 a node that configures an AERO interface to relay IP packets
 between nodes on the same AERO link and/or forward IP packets
 between the AERO link and the native Internetwork. The Relay

Templin Expires November 11, 2018 [Page 5]

Internet-Draft AERO May 2018

 assigns an administratively-provisioned IPv6 link-local address to
 the AERO interface the same as for a Server. An AERO Relay can
 also act as an AERO Server.

 AERO Proxy ("Proxy")
 a node that provides proxying services for Clients that cannot
 associate directly with Servers, e.g., when the Client is located
 in a secured internal enclave and the Server is located in the
 external Internetwork. The AERO Proxy is a conduit between the
 secured enclave and the external Internetwork in the same manner
 as for common web proxies, and behaves in a similar fashion as for
 ND proxies [RFC4389].

 ingress tunnel endpoint (ITE)
 an AERO interface endpoint that injects encapsulated packets into
 an AERO link.

 egress tunnel endpoint (ETE)
 an AERO interface endpoint that receives encapsulated packets from
 an AERO link.

 underlying network
 the same as defined for Internetwork.

 underlying link
 a link that connects an AERO node to the underlying network.

 underlying interface
 an AERO node’s interface point of attachment to an underlying
 link.

 link-layer address
 an IP address assigned to an AERO node’s underlying interface.
 When UDP encapsulation is used, the UDP port number is also
 considered as part of the link-layer address. Packets transmitted
 over an AERO interface use link-layer addresses as encapsulation
 header source and destination addresses. Destination link-layer
 addresses can be either "reachable" or "unreachable" based on
 dynamically-changing network conditions.

 network layer address
 the source or destination address of an encapsulated IP packet.

 end user network (EUN)
 an internal virtual or external edge IP network that an AERO
 Client connects to the rest of the network via the AERO interface.
 The Client sees each EUN as a "downstream" network and sees the

Templin Expires November 11, 2018 [Page 6]

Internet-Draft AERO May 2018

 AERO interface as its point of attachment to the "upstream"
 network.

 AERO Service Prefix (ASP)
 an IP prefix associated with the AERO link and from which more-
 specific AERO Client Prefixes (ACPs) are derived.

 AERO Client Prefix (ACP)
 an IP prefix derived from an ASP and delegated to a Client, where
 the ACP prefix length must be no shorter than the ASP prefix
 length and must be no longer than 64 for IPv6 or 32 for IPv4.

 base AERO address
 the lowest-numbered AERO address from the first ACP delegated to
 the Client (see Section 3.4).

 Throughout the document, the simple terms "Client", "Server", "Relay"
 and "Proxy" refer to "AERO Client", "AERO Server", "AERO Relay" and
 "AERO Proxy", respectively. Capitalization is used to distinguish
 these terms from DHCPv6 client/server/relay [RFC3315].

 The terminology of DHCPv6 [RFC3315][RFC3633] and IPv6 ND [RFC4861]
 (including the names of node variables, messages and protocol
 constants) is used throughout this document. Also, the term "IP" is
 used to generically refer to either Internet Protocol version, i.e.,
 IPv4 [RFC0791] or IPv6 [RFC8200].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. Lower case
 uses of these words are not to be interpreted as carrying RFC2119
 significance.

3. Asymmetric Extended Route Optimization (AERO)

 The following sections specify the operation of IP over Asymmetric
 Extended Route Optimization (AERO) links:

3.1. AERO Link Reference Model

Templin Expires November 11, 2018 [Page 7]

Internet-Draft AERO May 2018

 .-(::::::::)
 .-(::::::::::::)-.
 (:: Internetwork ::)
 ‘-(::::::::::::)-’
 ‘-(::::::)-’
 |
 +--------------+ +--------+-------+ +--------------+
 |AERO Server S1| | AERO Relay R1 | |AERO Server S2|
 | Nbr: C1, R1 | | Nbr: S1, S2 | | Nbr: C2, R1 |
 | default->R1 | |(X1->S1; X2->S2)| | default->R1 |
 | X1->C1 | | ASP A1 | | X2->C2 |
 +-------+------+ +--------+-------+ +------+-------+
 | AERO Link | |
 X---+---+-------------------+-+----------------+---+---X
 | | |
 +-----+--------+ +----------+------+ +--------+-----+
 |AERO Client C1| | AERO Proxy P1 | |AERO Client C2|
 | Nbr: S1 | |(Proxy Nbr Cache)| | Nbr: S2 |
 | default->S1 | +--------+--------+ | default->S2 |
 | ACP X1 | | | ACP X2 |
 +------+-------+ .--------+------. +-----+--------+
 | (- Proxyed Clients -) |
 .-. ‘---------------’ .-.
 ,-(_)-. ,-(_)-.
 .-(_ IP)-. +-------+ +-------+ .-(_ IP)-.
 (__ EUN)--|Host H1| |Host H2|--(__ EUN)
 ‘-(______)-’ +-------+ +-------+ ‘-(______)-’

 Figure 1: AERO Link Reference Model

 Figure 1 presents the AERO link reference model. In this model:

 o AERO Relay R1 aggregates AERO Service Prefix (ASP) A1, acts as a
 default router for its associated Servers (S1 and S2), and
 connects the AERO link to the rest of the Internetwork.

 o AERO Servers S1 and S2 associate with Relay R1 and also act as
 default routers for their associated Clients C1 and C2.

 o AERO Clients C1 and C2 associate with Servers S1 and S2,
 respectively. They receive AERO Client Prefix (ACP) delegations
 X1 and X2, and also act as default routers for their associated
 physical or internal virtual EUNs. Simple hosts H1 and H2 attach
 to the EUNs served by Clients C1 and C2, respectively.

 o AERO Proxy P1 provides proxy services for AERO Clients in secured
 enclaves that cannot associate directly with other AERO link
 neighbors.

Templin Expires November 11, 2018 [Page 8]

Internet-Draft AERO May 2018

 Each node on the AERO link maintains an AERO interface neighbor cache
 and an IP forwarding table the same as for any link. Although the
 figure shows a limited deployment, in common operational practice
 there may be many additional Relays, Servers, Clients and Proxies.

3.2. AERO Node Types

 AERO Relays provide default forwarding services to AERO Servers.
 Each Relay also peers with Servers and other Relays in a dynamic
 routing protocol instance to discover the list of active ACPs (see
 Section 3.3). Relays forward packets between neighbors connected to
 the same AERO link and also forward packets between the AERO link and
 the native Internetwork. Relays present the AERO link to the native
 Internetwork as a set of one or more AERO Service Prefixes (ASPs) and
 serve as a gateway between the AERO link and the Internetwork.
 Relays maintain AERO interface neighbor cache entries for Servers,
 and maintain an IP forwarding table entry for each AERO Client Prefix
 (ACP). AERO Relays can also be configured to act as AERO Servers.

 AERO Servers provide default forwarding services to AERO Clients.
 Each Server also peers with Relays in a dynamic routing protocol
 instance to advertise its list of associated ACPs (see Section 3.3).
 Servers facilitate PD exchanges with Clients, where each delegated
 prefix becomes an ACP taken from an ASP. Servers forward packets
 between AERO interface neighbors, and maintain AERO interface
 neighbor cache entries for Relays. They also maintain both neighbor
 cache entries and IP forwarding table entries for each of their
 associated Clients. AERO Servers can also be configured to act as
 AERO Relays.

 AERO Clients act as requesting routers to receive ACPs through PD
 exchanges with AERO Servers over the AERO link. Each Client can
 associate with a single Server or with multiple Servers, e.g., for
 fault tolerance, load balancing, etc. Each IPv6 Client receives at
 least a /64 IPv6 ACP, and may receive even shorter prefixes.
 Similarly, each IPv4 Client receives at least a /32 IPv4 ACP (i.e., a
 singleton IPv4 address), and may receive even shorter prefixes.
 Clients maintain an AERO interface neighbor cache entry for each of
 their associated Servers as well as for each of their correspondent
 Clients.

 AERO Proxies provide a conduit for AERO Clients connected to secured
 enclaves to associate with AERO link Servers. The Proxy can either
 be explicit or transparent. In the explicit case, the Client sends
 all of its control plane messages addressed to the Server to the
 link-layer address of the Proxy. In the transparent case, the Client
 sends all of its control plane messages to the Server’s link-layer
 address and the Proxy intercepts them before they leave the secured

Templin Expires November 11, 2018 [Page 9]

Internet-Draft AERO May 2018

 enclave. In both cases, the Proxy forwards the Client’s control and
 data plane messages to and from the Client’s current Server(s). The
 Proxy may also discover a more direct route toward a target
 destination via AERO route optimization, in which case future
 outbound data packets would be forwarded via the more direct route.
 The Proxy function is specified in Section 4.

3.3. AERO Routing System

 The AERO routing system comprises a private instance of the Border
 Gateway Protocol (BGP) [RFC4271] that is coordinated between Relays
 and Servers and does not interact with either the public Internet BGP
 routing system or the native Internetwork routing system. Relays
 advertise only a small and unchanging set of ASPs to the native
 Internetwork routing system instead of the full dynamically changing
 set of ACPs.

 In a reference deployment, each AERO Server is configured as an
 Autonomous System Border Router (ASBR) for a stub Autonomous System
 (AS) using an AS Number (ASN) that is unique within the BGP instance,
 and each Server further uses eBGP to peer with one or more Relays but
 does not peer with other Servers. All Relays are members of the same
 hub AS using a common ASN, and use iBGP to maintain a consistent view
 of all active ACPs currently in service.

 Each Server maintains a working set of associated ACPs, and
 dynamically announces new ACPs and withdraws departed ACPs in its
 eBGP updates to Relays. Clients are expected to remain associated
 with their current Servers for extended timeframes, however Servers
 SHOULD selectively suppress updates for impatient Clients that
 repeatedly associate and disassociate with them in order to dampen
 routing churn.

 Each Relay configures a black-hole route for each of its ASPs. By
 black-holing the ASPs, the Relay will maintain forwarding table
 entries only for the ACPs that are currently active, and packets
 destined to all other ACPs will correctly incur Destination
 Unreachable messages due to the black hole route. Relays do not send
 eBGP updates for ACPs to Servers, but instead only originate a
 default route. In this way, Servers have only partial topology
 knowledge (i.e., they know only about the ACPs of their directly
 associated Clients) and they forward all other packets to Relays
 which have full topology knowledge.

 Scaling properties of the AERO routing system are limited by the
 number of BGP routes that can be carried by Relays. At the time of
 this writing, the global public Internet BGP routing system manages
 more than 500K routes with linear growth and no signs of router

Templin Expires November 11, 2018 [Page 10]

Internet-Draft AERO May 2018

 resource exhaustion [BGP]. Network emulation studies have also shown
 that a single Relay can accommodate at least 1M dynamically changing
 BGP routes even on a lightweight virtual machine, i.e., and without
 requiring high-end dedicated router hardware.

 Therefore, assuming each Relay can carry 1M or more routes, this
 means that at least 1M Clients can be serviced by a single set of
 Relays. A means of increasing scaling would be to assign a different
 set of Relays for each set of ASPs. In that case, each Server still
 peers with one or more Relays, but the Server institutes route
 filters so that it only sends BGP updates to the specific set of
 Relays that aggregate the ASP. For example, if the ASP for the AERO
 link is 2001:db8::/32, a first set of Relays could service the ASP
 segment 2001:db8::/40, a second set of Relays could service
 2001:db8:0100::/40, a third set could service 2001:db8:0200::/40,
 etc.

 Assuming up to 1K sets of Relays, the AERO routing system can then
 accommodate 1B or more ACPs with no additional overhead for Servers
 and Relays (for example, it should be possible to service 1B /64 ACPs
 taken from a /34 ASP and even more for shorter prefixes). In this
 way, each set of Relays services a specific set of ASPs that they
 advertise to the native Internetwork routing system, and each Server
 configures ASP-specific routes that list the correct set of Relays as
 next hops. This arrangement also allows for natural incremental
 deployment, and can support small scale initial deployments followed
 by dynamic deployment of additional Clients, Servers and Relays
 without disturbing the already-deployed base.

 Note that in an alternate routing arrangement each set of Relays
 could advertise an aggregated ASP for the link into the native
 Internetwork routing system even though each Relay services only
 smaller segments of the ASP. In that case, a Relay upon receiving a
 packet with a destination address covered by the ASP segment of
 another Relay can simply tunnel the packet to the other Relay. The
 tradeoff then is the penalty for Relay-to-Relay tunneling compared
 with reduced routing information in the native routing system.

 A full discussion of the BGP-based routing system used by AERO is
 found in [I-D.templin-atn-bgp].

3.4. AERO Interface Link-local Addresses

 AERO interface link-local address types include administratively-
 provisioned addresses and AERO addresses.

 Administratively-provisioned addresses are allocated from the range
 fe80::/96 and assigned to a Server or Relay’s AERO interface.

Templin Expires November 11, 2018 [Page 11]

Internet-Draft AERO May 2018

 Administratively-provisioned addresses MUST be managed for uniqueness
 by the administrative authority for the AERO link. The address
 fe80:: is reserved as the IPv6 link-local subnet router anycast
 address, and the address fe80::ffff:ffff is reserved as the "prefix-
 solicitation" address used by Clients to bootstrap AERO address
 autoconfiguration. These reserved addresses are therefore not
 available for general assignment.

 An AERO address is an IPv6 link-local address with an embedded prefix
 based on an ACP and associated with a Client’s AERO interface. AERO
 addresses remain stable as the Client moves between topological
 locations, i.e., even if its link-layer addresses change.

 For IPv6, AERO addresses begin with the prefix fe80::/64 and include
 in the interface identifier (i.e., the lower 64 bits) a 64-bit prefix
 taken from one of the Client’s IPv6 ACPs. For example, if the AERO
 Client receives the IPv6 ACP:

 2001:db8:1000:2000::/56

 it constructs its corresponding AERO addresses as:

 fe80::2001:db8:1000:2000

 fe80::2001:db8:1000:2001

 fe80::2001:db8:1000:2002

 ... etc. ...

 fe80::2001:db8:1000:20ff

 For IPv4, AERO addresses are based on an IPv4-mapped IPv6 address
 [RFC4291] formed from an IPv4 ACP and with a Prefix Length of 96 plus
 the ACP prefix length. For example, for the IPv4 ACP 192.0.2.32/28
 the IPv4-mapped IPv6 ACP is:

 0:0:0:0:0:FFFF:192.0.2.16/124

 The Client then constructs its AERO addresses with the prefix
 fe80::/64 and with the lower 64 bits of the IPv4-mapped IPv6 address
 in the interface identifier as:

 fe80::FFFF:192.0.2.16

 fe80::FFFF:192.0.2.17

 fe80::FFFF:192.0.2.18

Templin Expires November 11, 2018 [Page 12]

Internet-Draft AERO May 2018

 ... etc. ...

 fe80:FFFF:192.0.2.31

 When the Server delegates ACPs to the Client, both the Server and
 Client use the lowest-numbered AERO address from the first ACP
 delegation as the "base" AERO address (for example, for the ACP
 2001:db8:1000:2000::/56 the base AERO address is
 fe80::2001:db8:1000:2000). The Client then assigns the base AERO
 address to the AERO interface and uses it for the purpose of
 maintaining the neighbor cache entry. The Server likewise uses the
 AERO address as its index into the neighbor cache for this Client.

 If the Client has multiple AERO addresses (i.e., when there are
 multiple ACPs and/or ACPs with short prefix lengths), the Client
 originates ND messages using the base AERO address as the source
 address and accepts and responds to ND messages destined to any of
 its AERO addresses as equivalent to the base AERO address. In this
 way, the Client maintains a single neighbor cache entry that may be
 indexed by multiple AERO addresses.

3.5. AERO Interface Characteristics

 AERO interfaces use encapsulation (see: Section 3.9) to exchange
 packets with neighbors attached to the AERO link.

 AERO interfaces maintain a neighbor cache for tracking per-neighbor
 state the same as for any interface. AERO interfaces use ND messages
 including Neighbor Solicitation (NS), Neighbor Advertisement (NA),
 Router Solicitation (RS), Router Advertisement (RA) and Redirect for
 neighbor cache management. AERO interfaces use RS/RA messages with
 an embedded PD message (e.g., see: [I-D.templin-6man-dhcpv6-ndopt]).
 AERO interfaces include routing information in ND messages to support
 route optimization.

 AERO interface ND messages include one or more Source/Target Link-
 Layer Address Options (S/TLLAOs) formatted as shown in Figure 2:

Templin Expires November 11, 2018 [Page 13]

Internet-Draft AERO May 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length = 5 |X| Reserved |
 +-+
 | Interface ID | UDP Port Number |
 +-+
 | |
 + +
 | |
 + IP Address +
 | |
 + +
 | |
 +-+
 |P00|P01|P02|P03|P04|P05|P06|P07|P08|P09|P10|P11|P12|P13|P14|P15|
 +-+
 |P16|P17|P18|P19|P20|P21|P22|P23|P24|P25|P26|P27|P28|P29|P30|P31|
 +-+
 |P32|P33|P34|P35|P36|P37|P38|P39|P40|P41|P42|P43|P44|P45|P46|P47|
 +-+
 |P48|P49|P50|P51|P52|P53|P54|P55|P56|P57|P58|P59|P60|P61|P62|P63|
 +-+

 Figure 2: AERO Source/Target Link-Layer Address Option (S/TLLAO)
 Format

 In this format:

 o Type is set to ’1’ for SLLAO or ’2’ for TLLAO.

 o Length is set to the constant value ’5’ (i.e., 5 units of 8
 octets).

 o X (proXy) is set to ’1’ in an S/TLLAO if the address corresponds
 to a Proxy; otherwise, X is set to ’0’.

 o Reserved is set to the value ’0’ on transmission and ignored on
 receipt.

 o Interface ID is set to a 16-bit integer value corresponding to an
 underlying interface of the AERO node. The value 255 is reserved
 for Server-based route optimization (see: Section 3.15.8).

 o UDP Port Number and IP Address are set to the addresses used by
 the AERO node when it sends encapsulated packets over the
 specified underlying interface (or to ’0’ when the addresses are
 left unspecified). When UDP is not used as part of the

Templin Expires November 11, 2018 [Page 14]

Internet-Draft AERO May 2018

 encapsulation, UDP Port Number is set to ’0’. When the
 encapsulation IP address family is IPv4, IP Address is formed as
 an IPv4-mapped IPv6 address as specified in Section 3.4.

 o P(i) is a set of 64 Preference values that correspond to the 64
 Differentiated Service Code Point (DSCP) values [RFC2474]. Each
 P(i) is set to the value ’0’ ("disabled"), ’1’ ("low"), ’2’
 ("medium") or ’3’ ("high") to indicate a QoS preference level for
 packet forwarding purposes.

 AERO interfaces may be configured over multiple underlying interface
 connections to underlying links. For example, common mobile handheld
 devices have both wireless local area network ("WLAN") and cellular
 wireless links. These links are typically used "one at a time" with
 low-cost WLAN preferred and highly-available cellular wireless as a
 standby. In a more complex example, aircraft frequently have many
 wireless data link types (e.g. satellite-based, cellular,
 terrestrial, air-to-air directional, etc.) with diverse performance
 and cost properties.

 A Client’s underlying interfaces are classified as follows:

 o Native interfaces connect to the open Internetwork, and have a
 global IP address that is reachable from any open Internetwork
 correspondent.

 o NAT’ed interfaces connect to a closed network that is separated
 from the open Internetwork by a Network Address Translator (NAT).
 The NAT does not participate in any AERO control message
 signaling, but the AERO Server can issue AERO control messages on
 behalf of the Client.

 o VPN’ed interfaces use security encapsulation over the Internetwork
 to a Virtual Private Network (VPN) gateway that also acts as an
 AERO Server. As with NAT’ed links, the AERO Server can issue
 control messages on behalf of the Client.

 o Proxy’ed interfaces connect to a closed network that is separated
 from the open Internetwork by an AERO Proxy. Unlike NAT’ed and
 VPN’ed interfaces, the AERO Proxy (rather than the Server) can
 issue control message on behalf of the Client.

 o Direct interfaces connect the Client directly to a peer without
 crossing any networked paths. An example is a line-of-sight link
 between a remote pilot and an unmanned aircraft.

 If a Client’s multiple underlying interfaces are used "one at a time"
 (i.e., all other interfaces are in standby mode while one interface

Templin Expires November 11, 2018 [Page 15]

Internet-Draft AERO May 2018

 is active), then ND messages include only a single S/TLLAO with
 Interface ID set to a constant value. In that case, the Client would
 appear to have a single underlying interface but with a dynamically
 changing link-layer address.

 If the Client has multiple active underlying interfaces, then from
 the perspective of ND it would appear to have multiple link-layer
 addresses. In that case, ND messages MAY include multiple S/TLLAOs
 -- each with an Interface ID that corresponds to a specific
 underlying interface of the AERO node.

 When the Client includes an S/TLLAO for an underlying interface for
 which it is aware that there is a NAT or Proxy on the path to the
 Server, or when a node includes an S/TLLAO solely for the purpose of
 announcing new QoS preferences, the node sets both UDP Port Number
 and IP Address to 0 to indicate that the addresses are unspecified.

 When an ND message includes multiple S/TLLAOs, the first S/TLLAO MUST
 correspond to the AERO node’s underlying interface used to transmit
 the message.

3.6. AERO Interface Initialization

3.6.1. AERO Relay Behavior

 When a Relay enables an AERO interface, it first assigns an
 administratively-provisioned link-local address fe80::ID to the
 interface. Each fe80::ID address MUST be unique among all AERO nodes
 on the link. The Relay then engages in a dynamic routing protocol
 session with one or more Servers and all other Relays on the link
 (see: Section 3.3), and advertises its assigned ASPs into the native
 Internetwork.

 Each Relay subsequently maintains an IP forwarding table entry for
 each active ACP covered by its ASP(s), and maintains neighbor cache
 entries for all Servers on the link. Relays exchange NS/NA messages
 with AERO link neighbors the same as for any AERO node. However,
 Neighbor Unreachability Detection (NUD) (see: Section 3.16) is
 optional since the dynamic routing protocol already provides
 reachability confirmation.

3.6.2. AERO Server Behavior

 When a Server enables an AERO interface, it assigns an
 administratively-provisioned link-local address fe80::ID the same as
 for Relays. The Server further configures a service to facilitate PD
 exchanges with AERO Clients. The Server maintains neighbor cache
 entries for one or more Relays on the link, and manages per-Client

Templin Expires November 11, 2018 [Page 16]

Internet-Draft AERO May 2018

 neighbor cache entries and IP forwarding table entries based on
 control message exchanges. Each Server also engages in a dynamic
 routing protocol with their neighboring Relays (see: Section 3.3).

 When the Server receives an NS/RS message from a Client on the AERO
 interface it authenticates the message and returns an NA/RA message.
 The Server further provides a simple link-layer conduit between AERO
 interface neighbors. In particular, when a packet sent by a source
 Client arrives on the Server’s AERO interface and is destined to
 another AERO node, the Server forwards the packet from within the
 AERO interface driver at the link layer without ever disturbing the
 network layer.

3.6.3. AERO Client Behavior

 When a Client enables an AERO interface, it sends RS messages with PD
 "Solicit" options over an underlying interface using the prefix-
 solicitation address as the source network layer address and all-
 routers [RFC4861] as the destination network layer address to obtain
 ACPs from one or more AERO Servers. Each Server processes the
 message and returns an RA message with a PD "Reply" option with the
 Server’s link-layer address as the source and the base AERO address
 as the destination network layer addresses. In this way, the ND/PD
 control messages securely perform all autoconfiguration operations in
 a single request/response exchange.

 After the initial ND/PD message exchange, the Client can register
 additional underlying interfaces with the Server by sending an RS
 message over each underlying interface using its base AERO address as
 the source network layer address and without including a PD option.
 The Server will update its neighbor cache entry for the Client and
 return an RA message.

 The Client maintains a neighbor cache entry for each of its Servers
 and each of its active correspondent Clients. When the Client
 receives ND messages on the AERO interface it updates or creates
 neighbor cache entries, including link-layer address and QoS
 preferences.

3.6.4. AERO Proxy Behavior

 When a Proxy enables an AERO interface, it maintains per-Client proxy
 neighbor cache entries based on control message exchanges. Proxies
 forward packets between their associated Clients and the Clients’
 associated Servers.

 When the Proxy receives an RS message from a Client in the secured
 enclave, it creates an incomplete proxy neighbor cache entry and

Templin Expires November 11, 2018 [Page 17]

Internet-Draft AERO May 2018

 forwards the message to a Server selected by the Client while using
 its own link-layer address as the source address. When the Server
 returns an RA message, the Proxy completes the proxy neighbor cache
 entry based on autoconfiguration information in the RA and forwards
 the RA to the Client while using its own link-layer address as the
 source address. The Client, Server and Proxy will then have the
 necessary state for managing the proxyed neighbor association.

3.7. AERO Interface Neighbor Cache Maintenance

 Each AERO interface maintains a conceptual neighbor cache that
 includes an entry for each neighbor it communicates with on the AERO
 link, the same as for any IPv6 interface [RFC4861]. AERO interface
 neighbor cache entries are said to be one of "permanent", "static",
 "proxy" or "dynamic".

 Permanent neighbor cache entries are created through explicit
 administrative action; they have no timeout values and remain in
 place until explicitly deleted. AERO Relays maintain permanent
 neighbor cache entries for Servers on the link, and AERO Servers
 maintain permanent neighbor cache entries for Relays. Each entry
 maintains the mapping between the neighbor’s fe80::ID network-layer
 address and corresponding link-layer address.

 Static neighbor cache entries are created and maintained through ND/
 PD exchanges as specified in Section 3.14, and remain in place for
 durations bounded by ND/PD lifetimes. AERO Servers maintain static
 neighbor cache entries for each of their associated Clients, and AERO
 Clients maintain static neighbor cache entries for each of their
 associated Servers.

 Proxy neighbor cache entries are created and maintained by AERO
 Proxies by gleaning information from Client/Server ND/PD exchanges,
 and remain in place for durations bounded by ND/PD lifetimes. AERO
 Proxies maintain proxy neighbor cache entries for each of their
 associated Clients, and include pointers to the Client’s current set
 of Servers.

 Dynamic neighbor cache entries are created or updated based on
 receipt of route optimization messages as specified in Section 3.15,
 and are garbage-collected when keepalive timers expire. AERO nodes
 maintain dynamic neighbor cache entries for each of their active
 correspondents with lifetimes based on ND messaging constants.

 When a target AERO node receives a valid NS message with an AERO
 source address, it returns an NA message and also creates or updates
 a dynamic neighbor cache entry for the source network-layer and link-
 layer addresses. The node then sets an "AcceptTime" variable in the

Templin Expires November 11, 2018 [Page 18]

Internet-Draft AERO May 2018

 neighbor cache entry to ACCEPT_TIME seconds and uses this value to
 determine whether packets received from the correspondent can be
 accepted. The node resets AcceptTime when it receives a new ND
 message, and otherwise decrements AcceptTime while no ND messages
 have been received. It is RECOMMENDED that ACCEPT_TIME be set to the
 default constant value 40 seconds to allow a 10 second window so that
 the AERO route optimization procedure can converge before AcceptTime
 decrements below FORWARD_TIME (see below).

 When a source AERO node receives a valid NA message with an AERO
 source address that matches its NS message, it creates or updates a
 dynamic neighbor cache entry for the target network-layer and link-
 layer addresses. The node then sets a "ForwardTime" variable in the
 neighbor cache entry to FORWARD_TIME seconds and uses this value to
 determine whether packets can be forwarded directly to the
 correspondent, i.e., instead of via a default route. The node resets
 ForwardTime when it receives a new NA, and otherwise decrements
 ForwardTime while no further NA messages have been received. It is
 RECOMMENDED that FORWARD_TIME be set to the default constant value 30
 seconds to match the default REACHABLE_TIME value specified in
 [RFC4861].

 The node also sets a "MaxRetry" variable to MAX_RETRY to limit the
 number of keepalives sent when a correspondent may have gone
 unreachable. It is RECOMMENDED that MAX_RETRY be set to 3 the same
 as described for address resolution in Section 7.3.3 of [RFC4861].

 Different values for ACCEPT_TIME, FORWARD_TIME and MAX_RETRY MAY be
 administratively set, if necessary, to better match the AERO link’s
 performance characteristics; however, if different values are chosen,
 all nodes on the link MUST consistently configure the same values.
 Most importantly, ACCEPT_TIME SHOULD be set to a value that is
 sufficiently longer than FORWARD_TIME to allow the AERO route
 optimization procedure to converge.

 When there may be a NAT between the Client and the Server, or if the
 path from the Client to the Server should be tested for reachability,
 the Client can send periodic RS messages to the Server without a PD
 option to receive RA replies. The RS/RA messaging will keep NAT
 state alive and test Server reachability without disturbing the PD
 service.

3.8. AERO Interface Forwarding Algorithm

 IP packets enter a node’s AERO interface either from the network
 layer (i.e., from a local application or the IP forwarding system) or
 from the link layer (i.e., from the AERO tunnel virtual link).
 Packets that enter the AERO interface from the network layer are

Templin Expires November 11, 2018 [Page 19]

Internet-Draft AERO May 2018

 encapsulated and forwarded into the AERO link, i.e., they are
 tunneled to an AERO interface neighbor. Packets that enter the AERO
 interface from the link layer are either re-admitted into the AERO
 link or forwarded to the network layer where they are subject to
 either local delivery or IP forwarding. In all cases, the AERO
 interface itself MUST NOT decrement the network layer TTL/Hop-count
 since its forwarding actions occur below the network layer.

 AERO interfaces may have multiple underlying interfaces and/or
 neighbor cache entries for neighbors with multiple Interface ID
 registrations (see Section 3.5). The AERO node uses each packet’s
 DSCP value to select an outgoing underlying interface based on the
 node’s own QoS preferences, and also to select a destination link-
 layer address based on the neighbor’s underlying interface with the
 highest preference. If multiple outgoing interfaces and/or neighbor
 interfaces have a preference of "high", the AERO node sends one copy
 of the packet via each of the (outgoing / neighbor) interface pairs;
 otherwise, the node sends a single copy of the packet via the
 interface with the highest preference. AERO nodes keep track of
 which underlying interfaces are currently "reachable" or
 "unreachable", and only use "reachable" interfaces for forwarding
 purposes.

 The following sections discuss the AERO interface forwarding
 algorithms for Clients, Proxies, Servers and Relays. In the
 following discussion, a packet’s destination address is said to
 "match" if it is a non-link-local address with a prefix covered by an
 ASP/ACP, or if it is an AERO address that embeds an ACP, or if it is
 the same as an administratively-provisioned link-local address.

3.8.1. Client Forwarding Algorithm

 When an IP packet enters a Client’s AERO interface from the network
 layer the Client searches for a dynamic neighbor cache entry that
 matches the destination. If there is a match, the Client uses one or
 more "reachable" link-layer addresses in the entry as the link-layer
 addresses for encapsulation and admits the packet into the AERO link.
 Otherwise, the Client uses the link-layer address in a static
 neighbor cache entry for a Server as the encapsulation address
 (noting that there may be a Proxy on the path to the real Server).

 When an IP packet enters a Client’s AERO interface from the link-
 layer, if the destination matches one of the Client’s ACPs or link-
 local addresses the Client decapsulates the packet and delivers it to
 the network layer. Otherwise, the Client drops the packet and MAY
 return a network-layer ICMP Destination Unreachable message subject
 to rate limiting (see: Section 3.13).

Templin Expires November 11, 2018 [Page 20]

Internet-Draft AERO May 2018

3.8.2. Proxy Forwarding Algorithm

 When the Proxy receives a packet from a Client within the secured
 enclave, the Proxy searches for a dynamic neighbor cache entry that
 matches the destination. If there is a match, the Proxy uses one or
 more "reachable" link-layer addresses in the entry as the link-layer
 addresses for encapsulation and admits the packet into the AERO link.
 Otherwise, the Proxy uses the link-layer address for one of the
 Client’s Servers as the encapsulation address.

 When the Proxy receives a packet from an AERO interface neighbor, it
 searches for a proxy neighbor cache entry for a Client within the
 secured enclave that matches the destination. If there is a match,
 the Proxy forwards the packet to the Client. Otherwise, the Proxy
 returns the packet to the neighbor, i.e., by reversing the source and
 destination link-layer addresses.

3.8.3. Server Forwarding Algorithm

 When an IP packet enters a Server’s AERO interface from the network
 layer, the Server searches for a static neighbor cache entry for a
 Client that matches the destination. If there is a match, the Server
 uses one or more link-layer addresses in the entry as the link-layer
 addresses for encapsulation and admits the packet into the AERO link.
 Otherwise, the Server uses the link-layer address in a permanent
 neighbor cache entry for a Relay (selected through longest-prefix
 match) as the link-layer address for encapsulation.

 When an IP packet enters a Server’s AERO interface from the link
 layer, the Server processes the packet according to the network-layer
 destination address as follows:

 o if the destination matches one of the Server’s own addresses the
 Server decapsulates the packet and forwards it to the network
 layer for local delivery.

 o else, if the destination matches a static neighbor cache entry for
 a Client the Server first determines whether the neighbor is the
 same as the one it received the packet from. If so, the Server
 drops the packet silently to avoid looping; otherwise, the Server
 uses the neighbor’s link-layer address(es) as the destination for
 encapsulation and re-admits the packet into the AERO link.

 o else, the Server uses the link-layer address in a neighbor cache
 entry for a Relay (selected through longest-prefix match) as the
 link-layer address for encapsulation.

Templin Expires November 11, 2018 [Page 21]

Internet-Draft AERO May 2018

3.8.4. Relay Forwarding Algorithm

 When an IP packet enters a Relay’s AERO interface from the network
 layer, the Relay searches its IP forwarding table for an ACP entry
 that matches the destination and otherwise searches for a neighbor
 cache entry that matches the destination (e.g., for administratively-
 provisioned link-local addresses). If there is a match, the Relay
 uses the link-layer address in the corresponding neighbor cache entry
 as the link-layer address for encapsulation and forwards the packet
 into the AERO link. Otherwise, the Relay drops the packet and (for
 non-link-local addresses) returns a network-layer ICMP Destination
 Unreachable message subject to rate limiting (see: Section 3.13).

 When an IP packet enters a Relay’s AERO interface from the link-
 layer, the Relay processes the packet as follows:

 o if the destination does not match an ASP, or if the destination
 matches one of the Relay’s own addresses, the Relay decapsulates
 the packet and forwards it to the network layer where it will be
 subject to either IP forwarding or local delivery.

 o else, if the destination matches an ACP entry in the IP forwarding
 table, or if the destination matches the link-local address in a
 permanent neighbor cache entry, the Relay first determines whether
 the neighbor is the same as the one it received the packet from.
 If so the Relay MUST drop the packet silently to avoid looping;
 otherwise, the Relay uses the neighbor’s link-layer address as the
 destination for encapsulation and re-admits the packet into the
 AERO link.

 o else, the Relay drops the packet and (for non-link-local
 addresses) returns an ICMP Destination Unreachable message subject
 to rate limiting (see: Section 3.13).

3.8.5. Processing Return Packets

 When an AERO node receives a return packet such as generated by an
 AERO Proxy (see Section 3.8.2), it proceeds according to the AERO
 link trust basis. Namely, the return packets have the same trust
 profile as for link-layer Destination Unreachable messages. If the
 node has sufficient trust basis to accept link-layer Destination
 Unreachable messages, it can then process the return packet as
 described in the following paragraph. Otherwise, the node SHOULD
 drop the packet and treat it as an indication that a path may be
 failing, and MAY use NUD to test the path for reachability.

 If the node has sufficient trust basis to accept return packets, it
 searches for a dynamic neighbor cache entry that matches the

Templin Expires November 11, 2018 [Page 22]

Internet-Draft AERO May 2018

 destination. If there is a match, the neighbor marks the
 corresponding link-layer address as "unreachable", selects the next-
 highest priority "reachable" link-layer address in the entry as the
 link-layer address for encapsulation then (re)admits the packet into
 the AERO link. If there are no "reachable" link-layer addresses, the
 neighbor instead sets FowardTime in the dynamic neighbor cache entry
 to 0. If the source address corresponds to one of the neighbor’s own
 addresses, the neighbor also forwards the packet to the corresponding
 Server; otherwise, it drops the packet.

3.9. AERO Interface Encapsulation and Re-encapsulation

 AERO interfaces encapsulate IP packets according to whether they are
 entering the AERO interface from the network layer or if they are
 being re-admitted into the same AERO link they arrived on. This
 latter form of encapsulation is known as "re-encapsulation".

 The AERO interface encapsulates packets per the Generic UDP
 Encapsulation (GUE) procedures in
 [I-D.ietf-intarea-gue][I-D.ietf-intarea-gue-extensions], or through
 an alternate encapsulation format (see: Appendix A). For packets
 entering the AERO interface from the network layer, the AERO
 interface copies the "TTL/Hop Limit", "Type of Service/Traffic Class"
 [RFC2983], "Flow Label"[RFC6438] (for IPv6) and "Congestion
 Experienced" [RFC3168] values in the packet’s IP header into the
 corresponding fields in the encapsulation IP header. For packets
 undergoing re-encapsulation, the AERO interface instead copies these
 values from the original encapsulation IP header into the new
 encapsulation header, i.e., the values are transferred between
 encapsulation headers and *not* copied from the encapsulated packet’s
 network-layer header. (Note especially that by copying the TTL/Hop
 Limit between encapsulation headers the value will eventually
 decrement to 0 if there is a (temporary) routing loop.) For IPv4
 encapsulation/re-encapsulation, the AERO interface sets the DF bit as
 discussed in Section 3.12.

 When GUE encapsulation is used, the AERO interface next sets the UDP
 source port to a constant value that it will use in each successive
 packet it sends, and sets the UDP length field to the length of the
 encapsulated packet plus 8 bytes for the UDP header itself plus the
 length of the GUE header (or 0 if GUE direct IP encapsulation is
 used). For packets sent to a Server or Relay, the AERO interface
 sets the UDP destination port to 8060, i.e., the IANA-registered port
 number for AERO. For packets sent to a Client, the AERO interface
 sets the UDP destination port to the port value stored in the
 neighbor cache entry for this Client. The AERO interface then either
 includes or omits the UDP checksum according to the GUE
 specification.

Templin Expires November 11, 2018 [Page 23]

Internet-Draft AERO May 2018

 Clients normally use the IP address of the underlying interface as
 the encapsulation source address. If the underlying interface does
 not have an IP address, however, the Client uses an IP address taken
 from an ACP as the encapsulation source address (assuming the node
 has some way of injecting the ACP into the underlying network routing
 system). For IPv6 addresses, the Client normally uses the ACP Subnet
 Router Anycast address [RFC4291].

3.10. AERO Interface Decapsulation

 AERO interfaces decapsulate packets destined either to the AERO node
 itself or to a destination reached via an interface other than the
 AERO interface the packet was received on. Decapsulation is per the
 procedures specified for the appropriate encapsulation format.

3.11. AERO Interface Data Origin Authentication

 AERO nodes employ simple data origin authentication procedures for
 encapsulated packets they receive from other nodes on the AERO link.
 In particular:

 o AERO Relays and Servers accept encapsulated packets with a link-
 layer source address that matches a permanent neighbor cache
 entry.

 o AERO Servers accept authentic encapsulated ND messages from
 Clients, and create or update a static neighbor cache entry for
 the Client based on the specific message type.

 o AERO Clients and Servers accept encapsulated packets if there is a
 static neighbor cache entry with a link-layer address that matches
 the packet’s link-layer source address.

 o AERO Clients and Servers accept encapsulated packets if there is a
 dynamic neighbor cache entry with an AERO address that matches the
 packet’s network-layer source address, with a link-layer address
 that matches the packet’s link-layer source address, and with a
 non-zero AcceptTime.

 o AERO Proxies accept encapsulated packets if there is a proxy
 neighbor cache entry that matches the packet’s network-layer
 destination address (i.e., the address of the Client) and link-
 layer source address (i.e., the address of one of the Client’s
 Servers). When the proxy is configured to accept packets
 originating from any address in the open Internetwork however
 (e.g., from another Proxy), it omits the source address check.

Templin Expires November 11, 2018 [Page 24]

Internet-Draft AERO May 2018

 Note that this simple data origin authentication is effective in
 environments in which link-layer addresses cannot be spoofed. In
 other environments, each AERO message must include a signature that
 the recipient can use to authenticate the message origin, e.g., as
 for common VPN systems such as OpenVPN [OVPN]. In environments where
 end systems use end-to-end security, however, it may be sufficient to
 require signatures only for ND and ICMP control plane messages and
 omit signatures for data plane messages.

3.12. AERO Interface Packet Size Issues

 The AERO interface is the node’s attachment to the AERO link. The
 AERO interface acts as a tunnel ingress when it sends a packet to an
 AERO link neighbor and as a tunnel egress when it receives a packet
 from an AERO link neighbor. AERO interfaces observe the packet
 sizing considerations for tunnels discussed in
 [I-D.ietf-intarea-tunnels] and as specified below.

 The Internet Protocol expects that IP packets will either be
 delivered to the destination or a suitable Packet Too Big (PTB)
 message returned to support the process known as IP Path MTU
 Discovery (PMTUD) [RFC1191][RFC1981]. However, PTB messages may be
 crafted for malicious purposes such as denial of service, or lost in
 the network [RFC2923]. This can be especially problematic for
 tunnels, where a condition known as a PMTUD "black hole" can result.
 For these reasons, AERO interfaces employ operational procedures that
 avoid interactions with PMTUD, including the use of fragmentation
 when necessary.

 AERO interfaces observe two different types of fragmentation. Source
 fragmentation occurs when the AERO interface (acting as a tunnel
 ingress) fragments the encapsulated packet into multiple fragments
 before admitting each fragment into the tunnel. Network
 fragmentation occurs when an encapsulated packet admitted into the
 tunnel by the ingress is fragmented by an IPv4 router on the path to
 the egress. Note that a packet that incurs source fragmentation may
 also incur network fragmentation.

 IPv6 specifies a minimum link Maximum Transmission Unit (MTU) of 1280
 bytes [RFC8200]. Although IPv4 specifies a smaller minimum link MTU
 of 68 bytes [RFC0791], AERO interfaces also observe the IPv6 minimum
 for IPv4 even if encapsulated packets may incur network
 fragmentation.

 IPv6 specifies a minimum Maximum Reassembly Unit (MRU) of 1500 bytes
 [RFC8200], while the minimum MRU for IPv4 is only 576 bytes [RFC1122]
 (note that common IPv6 over IPv4 tunnels already assume a larger MRU
 than the IPv4 minimum).

Templin Expires November 11, 2018 [Page 25]

Internet-Draft AERO May 2018

 AERO interfaces therefore configure an MTU that MUST NOT be smaller
 than 1280 bytes, MUST NOT be larger than the minimum MRU among all
 nodes on the AERO link minus the encapsulation overhead ("ENCAPS"),
 and SHOULD NOT be smaller than 1500 bytes. AERO interfaces also
 configure a Maximum Segment Unit (MSU) as the maximum-sized
 encapsulated packet that the ingress can inject into the tunnel
 without source fragmentation. The MSU value MUST NOT be larger than
 (MTU+ENCAPS) and MUST NOT be larger than 1280 bytes unless there is
 operational assurance that a larger size can traverse the link along
 all paths.

 All AERO nodes MUST configure the same MTU/MSU values for reasons
 cited in [RFC3819][RFC4861]; in particular, multicast support
 requires a common MTU value among all nodes on the link. All AERO
 nodes MUST configure an MRU large enough to reassemble packets up to
 (MTU+ENCAPS) bytes in length; nodes that cannot configure a large-
 enough MRU MUST NOT enable an AERO interface.

 The network layer proceeds as follow when it presents an IP packet to
 the AERO interface. For each IPv4 packet that is larger than the
 AERO interface MTU and with the DF bit set to 0, the network layer
 uses IPv4 fragmentation to break the packet into a minimum number of
 non-overlapping fragments where the first fragment is no larger than
 the MTU and the remaining fragments are no larger than the first.
 For all other IP packets, if the packet is larger than the AERO
 interface MTU, the network layer drops the packet and returns a PTB
 message to the original source. Otherwise, the network layer admits
 each IP packet or fragment into the AERO interface.

 For each IP packet admitted into the AERO interface, the interface
 (acting as a tunnel ingress) encapsulates the packet. If the
 encapsulated packet is larger than the AERO interface MSU the ingress
 source-fragments the encapsulated packet into a minimum number of
 non-overlapping fragments where the first fragment is no larger than
 the MSU and the remaining fragments are no larger than the first.
 The ingress then admits each encapsulated packet or fragment into the
 tunnel, and for IPv4 sets the DF bit to 0 in the IP encapsulation
 header in case any network fragmentation is necessary. The
 encapsulated packets will be delivered to the egress, which
 reassembles them into a whole packet if necessary.

 Several factors must be considered when fragmentation is needed. For
 AERO links over IPv4, the IP ID field is only 16 bits in length,
 meaning that fragmentation at high data rates could result in data
 corruption due to reassembly misassociations [RFC6864][RFC4963]. For
 AERO links over both IPv4 and IPv6, studies have also shown that IP
 fragments are dropped unconditionally over some network paths [I-
 D.taylor-v6ops-fragdrop]. In environments where IP fragmentation

Templin Expires November 11, 2018 [Page 26]

Internet-Draft AERO May 2018

 issues could result in operational problems, the ingress SHOULD
 employ intermediate-layer source fragmentation (see: [RFC2764] and
 [I-D.ietf-intarea-gue-extensions]) before appending the outer
 encapsulation headers to each fragment. Since the encapsulation
 fragment header reduces the room available for packet data, but the
 original source has no way to control its insertion, the ingress MUST
 include the fragment header length in the ENCAPS length even for
 packets in which the header is absent.

3.13. AERO Interface Error Handling

 When an AERO node admits encapsulated packets into the AERO
 interface, it may receive link-layer or network-layer error
 indications.

 A link-layer error indication is an ICMP error message generated by a
 router in the underlying network on the path to the neighbor or by
 the neighbor itself. The message includes an IP header with the
 address of the node that generated the error as the source address
 and with the link-layer address of the AERO node as the destination
 address.

 The IP header is followed by an ICMP header that includes an error
 Type, Code and Checksum. Valid type values include "Destination
 Unreachable", "Time Exceeded" and "Parameter Problem"
 [RFC0792][RFC4443]. (AERO interfaces ignore all link-layer IPv4
 "Fragmentation Needed" and IPv6 "Packet Too Big" messages since they
 only emit packets that are guaranteed to be no larger than the IP
 minimum link MTU as discussed in Section 3.12.)

 The ICMP header is followed by the leading portion of the packet that
 generated the error, also known as the "packet-in-error". For
 ICMPv6, [RFC4443] specifies that the packet-in-error includes: "As
 much of invoking packet as possible without the ICMPv6 packet
 exceeding the minimum IPv6 MTU" (i.e., no more than 1280 bytes). For
 ICMPv4, [RFC0792] specifies that the packet-in-error includes:
 "Internet Header + 64 bits of Original Data Datagram", however
 [RFC1812] Section 4.3.2.3 updates this specification by stating: "the
 ICMP datagram SHOULD contain as much of the original datagram as
 possible without the length of the ICMP datagram exceeding 576
 bytes".

 The link-layer error message format is shown in Figure 3 (where, "L2"
 and "L3" refer to link-layer and network-layer, respectively):

Templin Expires November 11, 2018 [Page 27]

Internet-Draft AERO May 2018

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ˜ ˜
 | L2 IP Header of |
 | error message |
 ˜ ˜
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | L2 ICMP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
 ˜ ˜ P
 | IP and other encapsulation | a
 | headers of original L3 packet | c
 ˜ ˜ k
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ e
 ˜ ˜ t
 | IP header of |
 | original L3 packet | i
 ˜ ˜ n
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ˜ ˜ e
 | Upper layer headers and | r
 | leading portion of body | r
 | of the original L3 packet | o
 ˜ ˜ r
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---

 Figure 3: AERO Interface Link-Layer Error Message Format

 The AERO node rules for processing these link-layer error messages
 are as follows:

 o When an AERO node receives a link-layer Parameter Problem message,
 it processes the message the same as described as for ordinary
 ICMP errors in the normative references [RFC0792][RFC4443].

 o When an AERO node receives persistent link-layer Time Exceeded
 messages, the IP ID field may be wrapping before earlier fragments
 awaiting reassembly have been processed. In that case, the node
 SHOULD begin including integrity checks and/or institute rate
 limits for subsequent packets.

 o When an AERO node receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its dynamic neighbor correspondents, the node
 SHOULD process the message as an indication that a path may be
 failing, and MAY initiate NUD over that path. If it receives
 Destination Unreachable messages on many or all paths, the node
 SHOULD set ForwardTime for the corresponding dynamic neighbor

Templin Expires November 11, 2018 [Page 28]

Internet-Draft AERO May 2018

 cache entry to 0 and allow future packets destined to the
 correspondent to flow through a default route.

 o When an AERO Client receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its static neighbor Servers, the Client SHOULD
 math the path as unusable and use another path. If it receives
 Destination Unreachable messages on many or all paths, the Client
 SHOULD associate with a new Server and send a PD "Release" message
 to the old Server as specified in Section 3.17.6.

 o When an AERO Server receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its static neighbor Clients, the Server SHOULD
 mark the path as unusable and use another path. If it receives
 Destination Unreachable messages on multiple paths, the Server
 should take no further actions unless it receives a PD "Release"
 message or if the PD lifetime expires. In that case, the Server
 MUST release the Client’s delegated ACP, withdraw the ACP from the
 AERO routing system and delete the neighbor cache entry.

 o When an AERO Relay or Server receives link-layer Destination
 Unreachable messages in response to an encapsulated packet that it
 sends to one of its permanent neighbors, it treats the messages as
 an indication that the path to the neighbor may be failing.
 However, the dynamic routing protocol should soon reconverge and
 correct the temporary outage.

 When an AERO Relay receives a packet for which the network-layer
 destination address is covered by an ASP, if there is no more-
 specific routing information for the destination the Relay drops the
 packet and returns a network-layer Destination Unreachable message
 subject to rate limiting. The Relay first writes the network-layer
 source address of the original packet as the destination address of
 the message and determines the next hop to the destination. If the
 next hop is reached via the AERO interface, the Relay uses the IPv6
 address "::" or the IPv4 address "0.0.0.0" as the source address of
 the message, then encapsulates the message and forwards it to the
 next hop within the AERO interface. Otherwise, the Relay uses one of
 its non link-local addresses as the source address of the message and
 forwards it via a link outside the AERO interface.

 When an AERO node receives an encapsulated packet for which the
 reassembly buffer it too small, it drops the packet and returns a
 network-layer Packet Too Big (PTB) message. The node first writes
 the MRU value into the PTB message MTU field, writes the network-
 layer source address of the original packet as the destination
 address of the message and determines the next hop to the

Templin Expires November 11, 2018 [Page 29]

Internet-Draft AERO May 2018

 destination. If the next hop is reached via the AERO interface, the
 node uses the IPv6 address "::" or the IPv4 address "0.0.0.0" as the
 source address of the message, then encapsulates the message and
 forwards it to the next hop within the AERO interface. Otherwise,
 the node uses one of its non link-local addresses as the source
 address of the message and forwards it via a link outside the AERO
 interface.

 When an AERO node receives any network-layer error message via the
 AERO interface, it examines the network-layer destination address.
 If the next hop toward the destination is via the AERO interface, the
 node re-encapsulates and forwards the message to the next hop within
 the AERO interface. Otherwise, if the network-layer source address
 is the IPv6 address "::" or the IPv4 address "0.0.0.0", the node
 writes one of its non link-local addresses as the source address,
 recalculates the IP and/or ICMP checksums then forwards the message
 via a link outside the AERO interface.

3.14. AERO Router Discovery, Prefix Delegation and Autoconfiguration

 AERO Router Discovery, Prefix Delegation and Autoconfiguration are
 coordinated as discussed in the following Sections.

3.14.1. AERO ND/PD Service Model

 Each AERO Server configures a PD service to facilitate Client
 requests. Each Server is provisioned with a database of ACP-to-
 Client ID mappings for all Clients enrolled in the AERO system, as
 well as any information necessary to authenticate each Client. The
 Client database is maintained by a central administrative authority
 for the AERO link and securely distributed to all Servers, e.g., via
 the Lightweight Directory Access Protocol (LDAP) [RFC4511], via
 static configuration, etc. Therefore, no Server-to-Server PD state
 synchronization is necessary, and Clients can optionally hold
 separate PDs for the same ACPs from multiple Servers. In this way,
 Clients can associate with multiple Servers, and can receive new PDs
 from new Servers before releasing PDs received from existing Servers.
 This provides the Client with a natural fault-tolerance and/or load
 balancing profile.

 AERO Clients and Servers use ND messages to maintain neighbor cache
 entries. AERO Servers configure their AERO interfaces as advertising
 interfaces, and therefore send unicast RA messages with configuration
 information in response to a Client’s RS message. The RS/RA
 messaging is conducted in the same fashion as specified in [RFC5214].

 AERO Clients and Servers include PD messages as options in the RS/RA
 messages they exchange (see: [I-D.templin-6man-dhcpv6-ndopt]).

Templin Expires November 11, 2018 [Page 30]

Internet-Draft AERO May 2018

 Client-initiated PD options are included in RS messages, and Server-
 initiated PD options are included in RA messages. The unified ND/PD
 messages are exchanged between Client and Server according to the
 prefix management schedule determined by the PD service. The unified
 messages can be protected using SEcure Neighbor Discovery (SEND)
 [RFC3971].

 On Some AERO links, PD arrangements may be through some out-of-band
 service such as network management, static configuration, etc. In
 those cases, AERO nodes can use simple RS/RA message exchanges with
 no explicit PD options. Instead, the RS/RA messages use AERO
 addresses as a means of representing the delegated prefixes, e.g., if
 a message includes a source address of "fe80::2001:db8:1:2" then the
 recipient can infer that the sender holds the prefix delegation
 "2001:db8:1:2::/64".

 The following sections specify the Client and Server behavior.

3.14.2. AERO Client Behavior

 AERO Clients discover the link-layer addresses of AERO Servers via
 static configuration (e.g., from a flat-file map of Server addresses
 and locations), or through an automated means such as Domain Name
 System (DNS) name resolution [RFC1035]. In the absence of other
 information, the Client resolves the DNS Fully-Qualfied Domain Name
 (FQDN) "linkupnetworks.[domainname]" where "linkupnetworks" is a
 constant text string and "[domainname]" is a DNS suffix for the
 Client’s underlying interface (e.g., "example.com"). After
 discovering the link-layer addresses, the Client associates with one
 or more of the corresponding Servers.

 To associate with a Server, the Client acts as a requesting router to
 request ACPs through a combined ND/PD message exchange. The Client
 includes a PD "Solicit" message as an ND option in an RS message with
 the prefix-solicitation address as the IPv6 source address, all-
 routers multicast as the IPv6 destination address, the address of the
 Client’s underlying interface as the link-layer source address and
 the link-layer address of the Server as the link-layer destination
 address. (If the Client’s underlying interface does not have an IP
 address, the Client can use the ACP Subnet Router Anycast address as
 the link-layer source address.)

 The Client next includes a "Client Identifier" and an "IA_PD" (i.e.,
 prefix request) code in the PD "Solicit" message. If the Client is
 pre-provisioned with ACPs associated with the AERO service, it MAY
 also include the ACPs in the "IA_PD" option to indicate its
 preferences to the Server. The Client finally includes any
 additional PD codes (e.g., "Rapid Commit").

Templin Expires November 11, 2018 [Page 31]

Internet-Draft AERO May 2018

 The Client next includes one or more SLLAOs in the RS message
 formatted as described in Section 3.5 to register its link-layer
 address(es) with the Server. The first SLLAO MUST correspond to the
 underlying interface over which the Client will send the RS message.
 The Client MAY include additional SLLAOs specific to other underlying
 interfaces, but if so it MUST have assurance that there will be no
 NATs or Proxies on the paths to the Server via those interfaces.
 (Otherwise, the Client can register additional link-layer addresses
 with the Server by sending subsequent NS/RS messages via different
 underlying interfaces after the initial RS/RA exchange).

 The Client then sends the RS message to the AERO Server and waits for
 an RA message reply (see Section 3.14.3) while retrying MAX_RETRY
 times until an RA is received. If no RA is received, or if it
 receives an RA with Router Lifetime set to 0 and/or a "Reply" with no
 ACPs, the Client SHOULD discontinue autoconfiguration attempts
 through this Server and try another Server. Otherwise, the Client
 processes the ACPs in the embedded "Reply" message.

 Next, the Client creates a static neighbor cache entry with the
 Server’s link-local address as the network-layer address and the
 Server’s encapsulation source address as the link-layer address. The
 Client then autoconfigures AERO addresses for each of the delegated
 ACPs and assigns them to the AERO interface.

 The Client next examines the P bit in the RA message flags field
 [RFC5175]. If the P bit value was 1, the Client assumes that there
 is a NAT or Proxy on the path to the Server via the interface over
 which it sent the RS message. In that case, the Client sets UDP Port
 Number and IP Address to 0 in the S/TLLAOs of any subsequent ND
 messages it sends to the Server over that link.

 The Client also caches any ASPs included in Route Information Options
 (RIOs) [RFC4191] as ASPs to associate with the AERO link, and assigns
 the MTU/MSU values in the MTU options to its AERO interface while
 configuring an appropriate MRU. This configuration information
 applies to the AERO link as a whole, and all AERO nodes will receive
 the same values.

 Following autoconfiguration, the Client sub-delegates the ACPs to its
 attached EUNs and/or the Client’s own internal virtual interfaces as
 described in [I-D.templin-v6ops-pdhost]. The Client subsequently
 maintains its ACP delegations through each of its Servers by sending
 RS "Renew", "Rebind", and/or "Release" messages. The Server will in
 turn send RA "Reply" messages.

 After the Client registers its Interface IDs and their associated
 UDP/IP addresses and ’P(i)’ values, it may wish to change one or more

Templin Expires November 11, 2018 [Page 32]

Internet-Draft AERO May 2018

 Interface ID registrations, e.g., if an underlying interface changes
 address or becomes unavailable, if QoS preferences change, etc. To
 do so, the Client prepares an unsolicited NA message to send over any
 available underlying interface. The source and target address of the
 NA message are set to the Client’s AERO address, and the destination
 address is set to all-nodes multicast. The NA MUST include a TLLAO
 specific to the selected available underlying interface as the first
 TLLAO and MAY include any additional TLLAOs specific to other
 underlying interfaces. The Client includes fresh ’P(i)’ values in
 each TLLAO to update the Server’s neighbor cache entry. If the
 Client wishes to update ’P(i)’ values without updating the link-layer
 address, it sets the UDP Port Number and IP Address fields to 0. If
 the Client wishes to disable the interface, it sets all ’P(i)’ values
 to ’0’ ("disabled").

 If the Client wishes to discontinue use of a Server it issues an RS
 "Release" message. When the Server processes the message, it
 releases the ACP, deletes its neighbor cache entry for the Client,
 withdraws the IP route from the routing system and returns an RA
 "Reply".

3.14.3. AERO Server Behavior

 AERO Servers act as IPv6 routers and support a PD service on their
 AERO links. AERO Servers arrange to add their encapsulation layer IP
 addresses (i.e., their link-layer addresses) to a static map of
 Server addresses for the link and/or the DNS resource records for the
 FQDN "linkupnetworks.[domainname]" before entering service.

 When an AERO Server receives a prospective Client’s RS "Solicit"
 message on its AERO interface, and the Server is too busy, it SHOULD
 return an immediate RA "Reply" message with no ACPs and with Router
 Lifetime set to 0. Otherwise, the Server authenticates the RS
 message and processes the embedded "Solicit" option. The Server
 first determines the correct ACPs to delegate to the Client by
 searching the Client database. When the Server delegates the ACPs,
 it also creates an IP forwarding table entry for each ACP so that the
 AERO BGP-based routing system will propagate the ACPs to the Relays
 that aggregate the corresponding ASP (see: Section 3.3).

 Next, the Server prepares an RA "Reply" message that includes the
 delegated ACPs. For IPv4 ACPs, the ACP is in IPv4-mapped IPv6
 address format and with prefix length set as specified in
 Section 3.4. The Server then prepares an RA "Reply" message using
 its link-local address (i.e., fe80::ID) as the network-layer source
 address, the Client’s base AERO address from the first ACP as the
 network-layer destination address, the Server’s link-layer address as
 the source link-layer address, and the source link-layer address of

Templin Expires November 11, 2018 [Page 33]

Internet-Draft AERO May 2018

 the RS message as the destination link-layer address. The Server
 next sets the P flag in the RA message flags field [RFC5175] to 1 if
 the source link-layer address in the RS message was different than
 the address in the first SLLAO to indicate that there is a NAT or
 Proxy on the path; otherwise it sets P to 0. The Server then
 includes one or more RIOs that encode the ASPs for the AERO link.
 The Server also includes two MTU options - the first MTU option
 includes the MTU for the link and the second MTU option includes the
 MSU for the link (see Section 3.12). The Server finally sends the RA
 "Reply" message to the Client.

 The Server next creates a static neighbor cache entry for the Client
 using the base AERO address as the network-layer address and with
 lifetime set to no more than the smallest PD lifetime. Next, the
 Server updates the neighbor cache entry link-layer address(es) by
 recording the information in each SLLAO option indexed by the
 Interface ID and including the UDP port number, IP address and P(i)
 values. For the first SLLAO in the list, however, the Server records
 the actual encapsulation source UDP and IP addresses instead of those
 that appear in the SLLAO in case there was a NAT or Proxy in the
 path.

 After the initial RS/RA exchange, the AERO Server maintains the
 neighbor cache entry for the Client until the PD lifetimes expire.
 If the Client issues an RS "Renew", the Server extends the PD
 lifetimes. If the Client issues an RS "Release", or if the Client
 does not issue a "Renew" before the lifetime expires, the Server
 deletes the neighbor cache entry for the Client and withdraws the IP
 routes from the AERO routing system. The Server processes these and
 any other Client PD messages, and returns an RA "Reply". The Server
 may also issue an unsolicited RA "Reconfigure" message to inform the
 Client that it needs to renegotiate its PDs.

3.14.3.1. Lightweight DHCPv6 Relay Agent (LDRA)

 When DHCPv6 is used as the PD service, AERO Clients and Servers are
 always on the same link (i.e., the AERO link) from the perspective of
 DHCPv6. However, in some implementations the DHCPv6 server and ND
 function may be located in separate modules. In that case, the
 Server’s AERO interface driver module can act as a Lightweight DHCPv6
 Relay Agent (LDRA)[RFC6221] to relay PD messages to and from the
 DHCPv6 server module.

 When the LDRA receives an authentic RS message, it extracts the PD
 message option and wraps it in IPv6/UDP headers. It sets the IPv6
 source address to the source address of the RS message, sets the IPv6
 destination address to ’All_DHCP_Relay_Agents_and_Servers’ and sets

Templin Expires November 11, 2018 [Page 34]

Internet-Draft AERO May 2018

 the UDP fields to values that will be understood by the DHCPv6
 server.

 The LDRA then wraps the message in a Relay-Forward message header and
 includes an Interface-ID option that includes enough information to
 allow the LDRA to forward the resulting Reply message back to the
 Client (e.g., the Client’s link-layer addresses, a security
 association identifier, etc.). The LDRA also wraps the information
 in all of the SLLAO options from the RS message into the Interface-ID
 option, then forwards the message to the DHCPv6 server.

 When the DHCPv6 server prepares a Reply message, it wraps the message
 in a Relay-Reply message and echoes the Interface-ID option. The
 DHCPv6 server then delivers the Relay-Reply message to the LDRA,
 which discards the Relay-Reply wrapper and IPv6/UDP headers, then
 delivers the DHCPv6 message to be wrapped into an RA response to the
 Client. The Server uses the information in the Interface ID option
 to prepare the RA message and to cache the link-layer addresses taken
 from the SLLAOs echoed in the Interface-ID option.

3.15. AERO Interface Route Optimization

 When a source Client forwards packets to a prospective correspondent
 Client within the same AERO link domain (i.e., one for which the
 packet’s destination address is covered by an ASP), the source Client
 MAY initiate an AERO link route optimization procedure on behalf of
 any of its native underlying interfaces. The procedure is based on
 an exchange of IPv6 ND messages using a chain of AERO Servers and
 Relays as a trust basis.

 Although the Client is responsible for initiating route optimization,
 the Server is the policy enforcement point that determines whether
 route optimization is permitted. For example, on some AERO links
 route optimization would allow traffic to circumvent critical
 network-based traffic inspection points. In those cases, the Server
 can simply discard any route optimization messages instead of
 forwarding them.

 The following sections specify the AERO link route optimization
 procedure.

3.15.1. Reference Operational Scenario

 Figure 4 depicts the AERO link route optimization reference
 operational scenario, using IPv6 addressing as the example (while not
 shown, a corresponding example for IPv4 addressing can be easily
 constructed). The figure shows an AERO Relay (’R1’), two AERO

Templin Expires November 11, 2018 [Page 35]

Internet-Draft AERO May 2018

 Servers (’S1’, ’S2’), two AERO Clients (’C1’, ’C2’) and two ordinary
 IPv6 hosts (’H1’, ’H2’):

 +--------------+ +--------------+ +--------------+
 | Server S1 | | Relay R1 | | Server S2 |
 +--------------+ +--------------+ +--------------+
 fe80::2 fe80::1 fe80::3
 L2(S1) L2(R1) L2(S2)
 | | |
 X-----+-----+------------------+-----------------+----+----X
 | AERO Link |
 L2(C1) L2(C2)
 fe80::2001:db8:0:0 fe80::2001:db8:1:0
 +--------------+ +--------------+
 |AERO Client C1| |AERO Client C2|
 +--------------+ +--------------+
 2001:DB8:0::/48 2001:DB8:1::/48
 | |
 .-. .-.
 ,-(_)-. 2001:db8:0::1 2001:db8:1::1 ,-(_)-.
 .-(_ IP)-. +-------+ +-------+ .-(_ IP)-.
 (__ EUN)--|Host H1| |Host H2|--(__ EUN)
 ‘-(______)-’ +-------+ +-------+ ‘-(______)-’

 Figure 4: AERO Reference Operational Scenario

 In Figure 4, Relay (’R1’) assigns the administratively-provisioned
 link-local address fe80::1 to its AERO interface with link-layer
 address L2(R1), Server (’S1’) assigns the address fe80::2 with link-
 layer address L2(S1),and Server (’S2’) assigns the address fe80::3
 with link-layer address L2(S2). Servers (’S1’) and (’S2’) next
 arrange to add their link-layer addresses to a published list of
 valid Servers for the AERO link.

 AERO Client (’C1’) receives the ACP 2001:db8:0::/48 in an ND/PD
 exchange via AERO Server (’S1’) then assigns the address
 fe80::2001:db8:0:0 to its AERO interface with link-layer address
 L2(C1). Client (’C1’) configures a default route and neighbor cache
 entry via the AERO interface with next-hop address fe80::2 and link-
 layer address L2(S1), then sub-delegates the ACP to its attached
 EUNs. IPv6 host (’H1’) connects to the EUN, and configures the
 address 2001:db8:0::1.

 AERO Client (’C2’) receives the ACP 2001:db8:1::/48 in an ND/PD
 exchange via AERO Server (’S2’) then assigns the address
 fe80::2001:db8:1:0 to its AERO interface with link-layer address
 L2(C2). Client (’C2’) configures a default route and neighbor cache
 entry via the AERO interface with next-hop address fe80::3 and link-

Templin Expires November 11, 2018 [Page 36]

Internet-Draft AERO May 2018

 layer address L2(S2), then sub-delegates the ACP to its attached
 EUNs. IPv6 host (’H2’) connects to the EUN, and configures the
 address 2001:db8:1::1.

3.15.2. Concept of Operations

 Again, with reference to Figure 4, when source host (’H1’) sends a
 packet to destination host (’H2’), the packet is first forwarded over
 the source host’s attached EUN to Client (’C1’). Client (’C1’) then
 forwards the packet via its AERO interface to Server (’S1’) and also
 sends an NS message toward Client (’C2’) via Server (’S1’).

 Server (’S1’) then re-encapsulates and forwards both the packet and
 the NS message out the same AERO interface toward Client (’C2’) via
 Relay (’R1’). When Relay (’R1’) receives the packet and NS message,
 it consults its forwarding table to discover Server (’S2’) as the
 next hop toward Client (’C2’). Relay (’R1’) then forwards both the
 packet and the NS message to Server (’S2’), which then forwards them
 to Client (’C2’).

 After Client (’C2’) receives the NS message, it process the message
 and creates or updates a dynamic neighbor cache entry for Client
 (’C1’), then sends the NA response to the link-layer address of
 Server (’S2’). When Server (’S2’) receives the NA message it re-
 encapsulates the message and forwards it on to Relay (’R1’), which
 re-encapsulates and forwards the message on to Server (’S1’) which
 re-encapsulates and forwards the message on to Client (’C1’).

 After Client (’C1’) receives the NA message, it processes the message
 and creates or updates a dynamic neighbor cache entry for Client
 (’C2’). Thereafter, forwarding of packets from Client (’C1’) to
 Client (’C2’) without involving any intermediate nodes is enabled.
 The mechanisms that support this exchange are specified in the
 following sections.

3.15.3. Sending NS Messages

 When a Client forwards a packet with a source address from one of its
 ACPs toward a destination address covered by an ASP (i.e., toward
 another AERO Client connected to the same AERO link), the source
 Client MAY send an NS message forward toward the destination Client
 via the Server.

 In the reference operational scenario, when Client (’C1’) forwards a
 packet toward Client (’C2’), it MAY also send an NS message forward
 toward Client (’C2’), subject to rate limiting (see Section 8.2 of
 [RFC4861]). Client (’C1’) prepares the NS message as follows:

Templin Expires November 11, 2018 [Page 37]

Internet-Draft AERO May 2018

 o the link-layer source address is set to ’L2(C1)’ (i.e., the link-
 layer address of Client (’C1’)).

 o the link-layer destination address is set to ’L2(S1)’ (i.e., the
 link-layer address of Server (’S1’)).

 o the network-layer source address is set to fe80::2001:db8:0:0
 (i.e., the base AERO address of Client (’C1’)).

 o the network-layer destination address is set to the AERO address
 corresponding to the destination address of Client (’C2’).

 o the Type is set to 135.

 o the Target Address is set to the destination address of the packet
 that triggered route optimization.

 o the message includes one or more SLLAOs set to appropriate values
 for Client (’C1’)’s native underlying interfaces.

 o the message includes one or more RIOs that include Client (’C1’)’s
 ACPs [I-D.templin-6man-rio-redirect].

 o the message SHOULD include a Timestamp option and a Nonce option.

 Note that the act of sending NS messages is cited as "MAY", since
 Client (’C1’) may have advanced knowledge that the direct path to
 Client (’C2’) would be unusable or otherwise undesirable. If the
 direct path later becomes unusable after the initial route
 optimization, Client (’C1’) simply allows packets to again flow
 through Server (’S1’).

3.15.4. Re-encapsulating and Relaying the NS

 When Server (’S1’) receives an NS message from Client (’C1’), it
 first verifies that the SLLAOs in the NS are a proper subset of the
 link-layer addresses in Client (’C1’)’s neighbor cache entry. If the
 Client’s SLLAOs are not acceptable, Server (’S1’) discards the
 message. Otherwise, Server (’S1’) verifies that Client (’C1’) is
 authorized to use the ACPs encoded in the RIOs of the NS and discards
 the NS if verification fails.

 Server (’S1’) then examines the network-layer destination address of
 the NS to determine the next hop toward Client (’C2’) by searching
 for the AERO address in the neighbor cache. Since Client (’C2’) is
 not one of its neighbors, Server (’S1’) re-encapsulates the NS and
 relays it via Relay (’R1’) by changing the link-layer source address
 of the message to ’L2(S1)’ and changing the link-layer destination

Templin Expires November 11, 2018 [Page 38]

Internet-Draft AERO May 2018

 address to ’L2(R1)’. Server (’S1’) finally forwards the re-
 encapsulated message to Relay (’R1’) without decrementing the
 network-layer TTL/Hop Limit field.

 When Relay (’R1’) receives the NS message from Server (’S1’) it
 determines that Server (’S2’) is the next hop toward Client (’C2’) by
 consulting its forwarding table. Relay (’R1’) then re-encapsulates
 the NS while changing the link-layer source address to ’L2(R1)’ and
 changing the link-layer destination address to ’L2(S2)’. Relay
 (’R1’) then relays the NS via Server (’S2’).

 When Server (’S2’) receives the NS message from Relay (’R1’) it
 determines that Client (’C2’) is a neighbor by consulting its
 neighbor cache. Server (’S2’) then re-encapsulates the NS while
 changing the link-layer source address to ’L2(S2)’ and changing the
 link-layer destination address to ’L2(C2)’. Server (’S2’) then
 forwards the message to Client (’C2’).

3.15.5. Processing NSs and Sending NAs

 When Client (’C2’) receives the NS message, it accepts the NS only if
 the message has a link-layer source address of one of its Servers
 (e.g., L2(S2)). Client (’C2’) further accepts the message only if it
 is willing to serve as a route optimization target.

 In the reference operational scenario, when Client (’C2’) receives a
 valid NS message, it either creates or updates a dynamic neighbor
 cache entry that stores the source address of the message as the
 network-layer address of Client (’C1’) , stores the link-layer
 addresses found in the SLLAOs as the link-layer addresses of Client
 (’C1’), and stores the ACPs encoded in the RIOs of the NS as the ACPs
 for Client (’C1’). Client (’C2’) then sets AcceptTime for the
 neighbor cache entry to ACCEPT_TIME.

 After processing the message, Client (’C2’) prepares an NA message
 response as follows:

 o the link-layer source address is set to ’L2(C2)’ (i.e., the link-
 layer address of Client (’C2’)).

 o the link-layer destination address is set to ’L2(S2)’ (i.e., the
 link-layer address of Server (’S2’)).

 o the network-layer source address is set to fe80::2001:db8:1:0
 (i.e., the base AERO address of Client (’C2’)).

 o the network-layer destination address is set to fe80::2001:db8:0:0
 (i.e., the base AERO address of Client (’C1’)).

Templin Expires November 11, 2018 [Page 39]

Internet-Draft AERO May 2018

 o the Type is set to 136.

 o The Target Address is set to the Target Address field in the NS
 message.

 o the message includes one or more TLLAOs set to appropriate values
 for Client (’C2’)’s native underlying interfaces.

 o the message includes one or more RIOs that include Client (’C2’)’s
 ACPs [I-D.templin-6man-rio-redirect].

 o the message SHOULD include a Timestamp option and MUST echo the
 Nonce option received in the NS (i.e., if a Nonce option is
 included).

 Client (’C2’) then sends the NA message to Server (’S2’).

3.15.6. Re-encapsulating and Relaying NAs

 When Server (’S2’) receives an NA message from Client (’C2’), it
 first verifies that the TLLAOs in the NA are a proper subset of the
 Interface IDs in Client (’C2’)’s neighbor cache entry. If the
 Client’s TLLAOs are not acceptable, Server (’S2’) discards the
 message. Otherwise, Server (’S2’) verifies that Client (’C2’) is
 authorized to use the ACPs encoded in the RIOs of the NA message. If
 validation fails, Server (’S2’) discards the NA.

 Server (’S2’) then examines the network-layer destination address of
 the NA to determine the next hop toward Client (’C1’) by searching
 for the AERO address in the neighbor cache. Since Client (’C1’) is
 not a neighbor, Server (’S2’) re-encapsulates the NA and relays it
 via Relay (’R1’) by changing the link-layer source address of the
 message to ’L2(S2)’ and changing the link-layer destination address
 to ’L2(R1)’. Server (’S2’) finally forwards the re-encapsulated
 message to Relay (’R1’) without decrementing the network-layer TTL/
 Hop Limit field.

 When Relay (’R1’) receives the NA message from Server (’S2’) it
 determines that Server (’S1’) is the next hop toward Client (’C1’) by
 consulting its forwarding table. Relay (’R1’) then re-encapsulates
 the NA while changing the link-layer source address to ’L2(R1)’ and
 changing the link-layer destination address to ’L2(S1)’. Relay
 (’R1’) then relays the NA via Server (’S1’).

 When Server (’S1’) receives the NA message from Relay (’R1’) it
 determines that Client (’C1’) is a neighbor by consulting its
 neighbor cache. Server (’S1’) then re-encapsulates the NA while
 changing the link-layer source address to ’L2(S1)’ and changing the

Templin Expires November 11, 2018 [Page 40]

Internet-Draft AERO May 2018

 link-layer destination address to ’L2(C1)’. Server (’S1’) then
 forwards the message to Client (’C1’).

3.15.7. Processing NAs

 When Client (’C1’) receives the NA message, it first verifies the
 Nonce value matches the value that it included in its NS message (if
 any). If the Nonce values match, Client (’C1’) then processes the
 message as follows.

 In the reference operational scenario, when Client (’C1’) receives
 the NA message, it either creates or updates a dynamic neighbor cache
 entry that stores the source address of the message as the network-
 layer address of Client (’C2’), stores the link-layer addresses found
 in the TLLAOs as the link-layer addresses of Client (’C2’) and stores
 the ACPs encoded in the RIOs of the NA as the ACPs for Client (’C2’).
 Client (’C1’) then sets ForwardTime for the neighbor cache entry to
 FORWARD_TIME.

 Now, Client (’C1’) has a neighbor cache entry with a valid
 ForwardTime value, while Client (’C2’) has a neighbor cache entry
 with a valid AcceptTime value. Thereafter, Client (’C1’) may forward
 ordinary network-layer data packets directly to Client (’C2’) without
 involving any intermediate nodes, and Client (’C2’) can verify that
 the packets came from an acceptable source. (In order for Client
 (’C2’) to forward packets to Client (’C1’), a corresponding NS/NA
 message exchange is required in the reverse direction; hence, the
 mechanism is asymmetric.)

3.15.8. Server and Proxy Extended Route Optimization

 Route optimization may be initiated by the source Client by sending
 NS messages with SLLAOs corresponding to its native underlying
 interfaces. Route optimization for the source Client’s other
 interfaces may be initiated by Servers and/or Proxies. Each node
 initiates route optimization by sending NS messages with SLLAOs only
 for those underlying interfaces they are authoritative for. Each
 node MUST consistently use the same Interface ID values to denote the
 same interfaces. The Interface IDs are established and maintained by
 the source Client’s RS/RA exchanges.

 The target Client’s Server serves as a route optimization target if
 some or all of the target Client’s underlying interfaces connect via
 NATs, Proxies and/or VPNs. In that case, when the source sends an NS
 message the target Server both forwards the NS toward a native
 underlying interface of the target Client (if any) and prepares an NA
 response the same as if it were the target Client (see:
 Section 3.15.5). (This means that the source may receive two

Templin Expires November 11, 2018 [Page 41]

Internet-Draft AERO May 2018

 separate NA messages - one from the target Server and one from the
 target Client. The source must accept the union of the information
 from both messages.)

 For non-native underlying interfaces, the target Server includes a
 first TLLAO option in the NA with Interface ID set to 255 and
 includes any additional TLLAOs corresponding to the Client’s NATed,
 Proxyed and/or VPNed underlying interfaces. The Server writes its
 own link-layer address in TLLAOs corresponding to NATed and VPNed
 underlying interfaces, and writes the link-layer address of the Proxy
 in TLLAOs corresponding to Proxyed underlying interfaces (while also
 setting the X flag). The Interface ID and QoS Preference values in
 the TLLAOs are those supplied by the Client during the initial RS/RA
 exchange and updated by any ensuing unsolicited NA messages. The
 target Server must then maintain a dynamic neighbor cache entry for
 the Client, but MUST NOT send BGP updates for Clients discovered
 through dynamic route optimization.

 Thereafter, if the target Client moves to a new Server, the old
 Server sends unsolicited NA messages with no TLLAOs (subject to rate
 limiting) back to the source in response to data packets received
 from a correspondent node while forwarding the packets themselves to
 a Relay. The Relay will then either forward the packets to the new
 Server if the target Client has moved, or drop the packets if the
 target Client is no longer in the network. The source then allows
 future packets destined to the target Client to again flow through
 its own Server (or Relay). Note however that the old Server retains
 the neighbor cache entry with its associated AcceptTime since there
 may be many packets in flight. AcceptTime will then eventually
 decrement to 0 once the correspondent node processes and acts on the
 unsolicited NAs.

 When the target Client (or Proxy) sends unsolicited NA messages to
 the target Server to update link-layer address and/or QoS
 preferences, the target Server repeats the messages to any of its
 dynamic neighbors while using its own link-layer and link-local
 addresses as the source addresses. In this way, the target Server
 acts as a link-scoped multicast repeater on behalf of the target
 Client (or Proxy).

 (Note that instead of serving as the route optimization target for
 Proxy interfaces, the target Server could instead forward the
 source’s NS messages and allow the Proxies to return NA messages,
 i.e., the same as for Clients on native interfaces. That would mean
 that the source could receive multiple NA messages from multiple
 Proxies and, if some or all NA messages are lost, the source would
 not be able to determine the full picture of the Client’s Proxy
 affiliations. If this alternate architecture is deemed appropriate

Templin Expires November 11, 2018 [Page 42]

Internet-Draft AERO May 2018

 in some use cases, then the AERO Proxies could be employed to serve
 as route optimization targets instead of depending on the Servers to
 do so.)

3.16. Neighbor Unreachability Detection (NUD)

 AERO nodes perform Neighbor Unreachability Detection (NUD) by sending
 NS messages to elicit solicited NA messages from neighbors the same
 as described in [RFC4861]. NUD is performed either reactively in
 response to persistent link-layer errors (see Section 3.13) or
 proactively to update neighbor cache entry timers and/or link-layer
 address information.

 When an AERO node sends an NS/NA message, it uses one of its link-
 local addresses as the IPv6 source address and a link-local address
 of the neighbor as the IPv6 destination address. When route
 optimization directs a source AERO node to a target AERO node, the
 source node SHOULD proactively test the direct path by sending an
 initial NS message to elicit a solicited NA response. While testing
 the path, the source node can optionally continue sending packets via
 its default router, maintain a small queue of packets until target
 reachability is confirmed, or (optimistically) allow packets to flow
 directly to the target.

 While data packets are still flowing, the source node thereafter
 periodically tests the direct path to the target node (see
 Section 7.3 of [RFC4861]) in order to keep dynamic neighbor cache
 entries alive. When the target node receives a valid NS message, it
 resets AcceptTime to ACCEPT_TIME and updates its cached link-layer
 addresses (if necessary). When the source node receives a solicited
 NA message, it resets ForwardTime to FORWARD_TIME and updates its
 cached link-layer addresses (if necessary). If the source node is
 unable to elicit a solicited NA response from the target node after
 MaxRetry attempts, it SHOULD set ForwardTime to 0. Otherwise, the
 source node considers the path usable and SHOULD thereafter process
 any link-layer errors as an indication that the direct path to the
 target node has either failed or has become intermittent.

 When ForwardTime for a dynamic neighbor cache entry expires, the
 source node resumes sending any subsequent packets via a Server (or
 Relay) and may (eventually) attempt to re-initiate the AERO route
 optimization process. When AcceptTime for a dynamic neighbor cache
 entry expires, the target node discards any subsequent packets
 received directly from the source node. When both ForwardTime and
 AcceptTime for a dynamic neighbor cache entry expire, the node
 deletes the neighbor cache entry.

Templin Expires November 11, 2018 [Page 43]

Internet-Draft AERO May 2018

 Note that an AERO node may have multiple underlying interface paths
 toward the target neighbor. In that case, the node SHOULD perform
 NUD over each underlying interface and only consider the neighbor
 unreachable if NUD fails over multiple underlying interface paths.

3.17. Mobility Management and Quality of Service (QoS)

 AERO is an example of a Distributed Mobility Management (DMM)
 service. Each AERO Server is responsible for only a subset of the
 Clients on the AERO link, as opposed to a Centralized Mobility
 Management (CMM) service where there is a single network service for
 all Clients. AERO Clients coordinate with their regional Servers via
 RS/RA exchanges to maintain the DMM profile, and the AERO routing
 system tracks the current AERO Client/Server peering relationships.

 Mobility management for AERO interfaces is accommodated by sending
 unsolicited NA messages the same as for announcing link-layer address
 changes for any interface that implements IPv6 ND [RFC4861]. When a
 node sends an unsolicited NA message, it sets the IPv6 source to its
 own link-local address, sets the IPv6 destination address to all-
 nodes multicast, sets the link-layer source address to its own
 address and sets the link-layer destination address to either a
 multicast address or the unicast link-layer address of a neighbor.
 If the unsolicited NA message must be received by multiple neighbors,
 the node sends multiple copies of the NA using a different unicast
 link-layer destination address for each neighbor. Mobility
 management considerations are specified in the following sections.

3.17.1. Forwarding Packets on Behalf of Departed Clients

 When a Server receives packets with destination addresses that do not
 match one of its static neighbor cache Clients, it forwards the
 packets to a Relay and also returns an unsolicited NA message to the
 sender with no TLLAOs. The packets will be delivered to the target
 Client’s new location, and the sender will realize that it needs to
 deprecate its routing information that associated the target with
 this Server.

3.17.2. Announcing Link-Layer Address and QoS Preference Changes

 When a Client needs to change its link-layer addresses, e.g., due to
 a mobility event, it sends unsolicited NAs to its neighbors using the
 new link-layer address as the source address and with TLLAOs that
 include the new Client UDP Port Number, IP Address and P(i) values.
 If the Client sends the NA solely for the purpose of updating QoS
 preferences without updating the link-layer address, the Client sets
 the UDP Port Number and IP Address to 0.

Templin Expires November 11, 2018 [Page 44]

Internet-Draft AERO May 2018

 The Client MAY send up to MaxRetry unsolicited NA messages in
 parallel with sending actual data packets in case one or more NAs are
 lost. If all NAs are lost, the neighbor will eventually invoke NUD
 by sending NS messages that include SLLAOs.

3.17.3. Bringing New Links Into Service

 When a Client needs to bring new underlying interfaces into service
 (e.g., when it activates a new data link), it sends unsolicited NAs
 to its neighbors using the new link-layer address as the source
 address and with TLLAOs that include the new Client link-layer
 information.

3.17.4. Removing Existing Links from Service

 When a Client needs to remove existing underlying interfaces from
 service (e.g., when it de-activates an existing data link), it sends
 unsolicited NAs to its neighbors with TLLAOs with all P(i) values set
 to 0.

 If the Client needs to send the unsolicited NAs over an underlying
 interface other than the one being removed from service, it MUST
 include a current TLLAO for the sending interface as the first TLLAO
 and include TLLAOs for any underlying interface being removed from
 service as additional TLLAOs.

3.17.5. Implicit Mobility Management

 AERO interface neighbors MAY provide a configuration option that
 allows them to perform implicit mobility management in which no ND
 messaging is used. In that case, the Client only transmits packets
 over a single interface at a time, and the neighbor always observes
 packets arriving from the Client from the same link-layer source
 address.

 If the Client’s underlying interface address changes (either due to a
 readdressing of the original interface or switching to a new
 interface) the neighbor immediately updates the neighbor cache entry
 for the Client and begins accepting and sending packets to the
 Client’s new link-layer address. This implicit mobility method
 applies to use cases such as cellphones with both WiFi and Cellular
 interfaces where only one of the interfaces is active at a given
 time, and the Client automatically switches over to the backup
 interface if the primary interface fails.

Templin Expires November 11, 2018 [Page 45]

Internet-Draft AERO May 2018

3.17.6. Moving to a New Server

 When a Client associates with a new Server, it performs the Client
 procedures specified in Section 3.14.2.

 When a Client disassociates with an existing Server, it sends an RS
 "Release" message via a new Server with its base AERO address as the
 network-layer source address and the (administratively-provisioned)
 link-local address of the old Server as the network-layer destination
 address. The new Server then caches the Client’s AERO address and
 "Release" message parameters (e.g., "transaction ID") and writes its
 own administratively-provisioned link-local address as the network-
 layer source address. The new Server then forwards the message to a
 Relay, which forwards the message to the old Server.

 When the old Server receives the "Release", it releases the Client’s
 ACP prefix delegations and routes. The old Server then deletes the
 Client’s neighbor cache entry so that any in-flight packets will be
 forwarded via a Relay to the new Server, which will forward them to
 the Client. The old Server finally returns a "Reply" message via a
 Relay to the new Server, which will decapsulate the "Reply" message
 and forward it as an RA "Reply" to the Client.

 When the new Server forwards the "Reply" message, the Client can
 delete both the default route and the neighbor cache entry for the
 old Server. (Note that since messages may be lost in the network the
 Client SHOULD retry until it gets an RA "Reply" indicating that the
 RS "Release" was successful. If the Client does not receive a
 "Reply" after MaxRetry attempts, the old Server may have failed and
 the Client should discontinue its "Release" attempts.)

 Finally, Clients SHOULD NOT move rapidly between Servers in order to
 avoid causing excessive oscillations in the AERO routing system.
 Such oscillations could result in intermittent reachability for the
 Client itself, while causing little harm to the network. Examples of
 when a Client might wish to change to a different Server include a
 Server that has gone unreachable, topological movements of
 significant distance, etc.

3.18. Multicast Considerations

 When the underlying network does not support multicast, AERO Clients
 map link-scoped multicast addresses to the link-layer address of a
 Server, which acts as a multicast forwarding agent. The AERO Client
 also serves as an IGMP/MLD Proxy for its EUNs and/or hosted
 applications per [RFC4605] while using the link-layer address of the
 Server as the link-layer address for all multicast packets.

Templin Expires November 11, 2018 [Page 46]

Internet-Draft AERO May 2018

 When the underlying network supports multicast, AERO nodes use the
 multicast address mapping specification found in [RFC2529] for IPv4
 underlying networks and use a TBD site-scoped multicast mapping for
 IPv6 underlying networks. In that case, border routers must ensure
 that the encapsulated site-scoped multicast packets do not leak
 outside of the site spanned by the AERO link.

4. The AERO Proxy

 In some deployments, AERO Clients may be located in secured enclaves
 (e.g., a corporate enterprise network, a radio access network, etc.)
 that do not allow direct communications from the Client to a Server
 in the outside Internetwork. In that case, the secured enclave can
 employ an AERO Proxy.

 The AERO Proxy is located at the secured enclave perimeter and
 listens for RS messages originating from or RA messages destined to
 AERO Clients located within the enclave. The Proxy acts on these
 control messages as follows:

 o when the Proxy receives an RS message from a Client within the
 secured enclave, it first authenticates the message then creates a
 proxy neighbor cache entry for the Client in the INCOMPLETE State
 and caches the Client and Server link-layer address along with any
 identifying information including PD "transaction IDs", "Client
 Identifiers", etc. and/or ND Nonce values. The Proxy then re-
 encapsulates the message and forwards it to the Server indicated
 by the destination link-layer address in the packet while
 substituting its own external address as the source link-layer
 address.

 o when the Proxy receives an RA message from the Server, it matches
 the message with the (INCOMPLETE) proxy neighbor cache entry. The
 Proxy then caches the route information in the message as a
 mapping from the Client’s ACPs to the Client’s address within the
 secured enclave, and sets the neighbor cache entry state to
 REACHABLE. The Proxy then re-encapsulates the message and
 forwards it to the Client. At the same time, the Proxy sends an
 unsolicited NA message including a TLLAO with the X flag set back
 to the Server to assert that it is indeed a Proxy as opposed to an
 ordinary NAT. (In environments where spoofing is a threat, the
 Proxy signs the NA using SEND.)

 After the initial RS/RA handshake, the Proxy can send unsolicited NA
 messages to the Client’s Server(s) to update Server neighbor cache
 entries on behalf of the Client. (For example, the Proxy can send NA
 messages with a TLLAO with UDP Port Number and IP Address set to 0
 and with valid P(i) values to update the Server(s) with the Client’s

Templin Expires November 11, 2018 [Page 47]

Internet-Draft AERO May 2018

 new QoS preferences for that link). The Proxy also forwards any
 unsolicited NA messages originating from the Client to the Client’s
 Server(s) (e.g. if the Client needs to announce new QoS preferences
 on its own behalf), and forwards any data packets originating from
 the Client to the Client’s primary Server.

 At the same time, for data packets originating from a Client within
 the enclave with destination addresses that match an ASP, the Proxy
 can initiate route optimization by sending an NS message via the
 Server to solicit an NA message from a target node on the path to the
 destination Client the same as discussed in Section 3.15. The target
 must deliver the NA message directly to the Proxy, i.e., instead of
 relaying through the backward chain of Relays and Servers, since the
 backward chain could deliver the NA to a different Proxy besides the
 one that produced the NS. For this reason, the Proxy prepares an NS
 message as specified in Section 3.15.3, but with its own link-layer
 address as the link-layer source address and with a single SLLAO
 containing its link-layer address and with the X flag set to indicate
 that direct delivery is required.

 When the target receives the NS message, it creates a dynamic
 neighbor cache entry in the ACCEPT state and returns an NA message
 directly to the Proxy. When the target is a Client, it includes
 TLLAOs in the NA message with link-layer addresses corresponding to
 its native underling interfaces. When the target is a Server, it
 includes a first TLLAO in the NA message with Interface ID set to 255
 and with its own link-layer address information, and also includes
 additional TLLAOs corresponding to the destination Client’s Proxyed,
 NATed or VPNed underlying interfaces. (For NATed or VPNed underlying
 interfaces the server writes its own link-layer address in the TLLAO,
 and for Proxyed interfaces it writes the link-layer address of the
 Proxy.) When the source Proxy receives the NA message, it creates a
 dynamic neighbor cache entry in the FORWARD state that associates the
 TLLAOs of the NA message as the next-hop toward the routes advertised
 in the NA RIOs.

 When a source Proxy sends route optimization NS messages toward the
 target, it can include RIOs to assert specific routes, and the target
 will only accept packets from the source Proxy with matching source
 addresses. If the source Proxy wishes to assert a "wildcard" route,
 it includes an RIO in the NS message with Prefix and Prefix Length
 set to 0. In that case, the target will either accept or ignore the
 NS based on its configured trust policy. If the target accepts the
 NS, it will accept all packets originating from the source Proxy
 regardless of their source address.

 After the initial NS/NA exchange, the target may need to update the
 neighbor cache entries for any source Proxies for which it holds a

Templin Expires November 11, 2018 [Page 48]

Internet-Draft AERO May 2018

 dynamic neighbor cache entry in the ACCEPT state. The target
 therefore sends unsolicited NA messages to announce any link layer
 changes. As a result:

 o the source Proxy may receive unsolicited NA messages with TLLAOs
 with new UDP Port Number, IP Address and/or QoS preferences from
 the target. In that case, the Proxy updates its neighbor cache
 entry and forwards future outbound packets based on the new link
 layer information.

 o the source Proxy may receive reflected packets destined to the
 link-layer address of a departed Client. In that case, the Proxy
 proceeds as discussed in Section 3.8.5.

 o the source Proxy may receive link-layer Destination Unreachable
 messages in response to data packets it sends to one of the target
 link-layer addresses. In that case, the Proxy processes the link-
 layer error messages as an indication that the path may be failing
 and proceeds as discussed in Section 3.13.

 After the NS/NA exchange, while data packets are still flowing the
 source Proxy sends additional NS messages to the target using the
 address in the target’s first TLLAO as the destination. The NS
 message will update the target’s AcceptTime timer, and the resulting
 NA reply will update the source Proxy’s ForwardTime timer in their
 respective neighbor cache entries.

 If at some later time the target Client departs from its secured
 enclave, the Proxy sends unsolicited NAs to the Client’s Servers to
 announce the departure.

5. Direct Underlying Interfaces

 When a Client’s AERO interface is configured over a direct underlying
 interface, the neighbor at the other end of the direct link can
 receive packets without any encapsulation. In that case, the Client
 sends packets over the direct link according to the QoS preferences
 associated with its underling interfaces. If the direct underlying
 interface has the highest QoS preference, then the Client’s IP
 packets are transmitted directly to the peer without going through an
 underlying network. If other underlying interfaces have higher QoS
 preferences, then the Client’s IP packets are transmitted via a
 different underlying interface, which may result in the inclusion of
 AERO Proxies, Servers and Relays in the communications path. Direct
 underlying interfaces must be tested periodically for reachability,
 e.g., via NUD, via periodic unsolicited NAs, etc.

Templin Expires November 11, 2018 [Page 49]

Internet-Draft AERO May 2018

6. Operation on AERO Links with /64 ASPs

 IPv6 AERO links typically have ASPs that cover many candidate ACPs of
 length /64 or shorter. However, in some cases it may be desirable to
 use AERO over links that have only a /64 ASP. This can be
 accommodated by treating all Clients on the AERO link as simple hosts
 that receive /128 prefix delegations.

 In that case, the Client sends an RS message to the Server the same
 as for ordinary AERO links. The Server responds with an RA message
 that includes one or more /128 prefixes (i.e., singleton addresses)
 that include the /64 ASP prefix along with an interface identifier
 portion to be assigned to the Client. The Client and Server then
 configure their AERO addresses based on the interface identifier
 portions of the /128s (i.e., the lower 64 bits) and not based on the
 /64 prefix (i.e., the upper 64 bits).

 For example, if the ASP for the host-only IPv6 AERO link is
 2001:db8:1000:2000::/64, each Client will receive one or more /128
 IPv6 prefix delegations such as 2001:db8:1000:2000::1/128,
 2001:db8:1000:2000::2/128, etc. When the Client receives the prefix
 delegations, it assigns the AERO addresses fe80::1, fe80::2, etc. to
 the AERO interface, and assigns the global IPv6 addresses (i.e., the
 /128s) to either the AERO interface or an internal virtual interface
 such as a loopback. In this arrangement, the Client conducts route
 optimization in the same sense as discussed in Section 3.15.

 This specification has applicability for nodes that act as a Client
 on an "upstream" AERO link, but also act as a Server on "downstream"
 AERO links. More specifically, if the node acts as a Client to
 receive a /64 prefix from the upstream AERO link it can then act as a
 Server to provision /128s to Clients on downstream AERO links.

7. Implementation Status

 An AERO implementation based on OpenVPN (https://openvpn.net/) was
 announced on the v6ops mailing list on January 10, 2018. The latest
 version is available at: http://linkupnetworks.net/aero/AERO-OpenVPN-
 1.0.tgz.

 An initial public release of the AERO proof-of-concept source code
 was announced on the intarea mailing list on August 21, 2015. The
 latest version is available at: http://linkupnetworks.net/aero/aero-
 3.0.3a.tgz.

Templin Expires November 11, 2018 [Page 50]

Internet-Draft AERO May 2018

8. IANA Considerations

 The IANA has assigned a 4-octet Private Enterprise Number "45282" for
 AERO in the "enterprise-numbers" registry.

 The IANA has assigned the UDP port number "8060" for an earlier
 experimental version of AERO [RFC6706]. This document obsoletes
 [RFC6706] and claims the UDP port number "8060" for all future use.

 No further IANA actions are required.

9. Security Considerations

 AERO link security considerations are the same as for standard IPv6
 Neighbor Discovery [RFC4861] except that AERO improves on some
 aspects. In particular, AERO uses a trust basis between Clients and
 Servers, where the Clients only engage in the AERO mechanism when it
 is facilitated by a trusted Server.

 NS and NA messages SHOULD include a Timestamp option (see Section 5.3
 of [RFC3971]) that other AERO nodes can use to verify the message
 time of origin. NS and RS messages SHOULD include a Nonce option
 (see Section 5.3 of [RFC3971]) that recipients echo back in
 corresponding responses. In cases where spoofing cannot be mitigated
 through other means, however, all AERO IPv6 ND messages should employ
 SEND [RFC3971], which also protects the PD information embedded in
 RS/RA message options.

 AERO links must be protected against link-layer address spoofing
 attacks in which an attacker on the link pretends to be a trusted
 neighbor. Links that provide link-layer securing mechanisms (e.g.,
 IEEE 802.1X WLANs) and links that provide physical security (e.g.,
 enterprise network wired LANs) provide a first line of defense,
 however AERO nodes SHOULD also use securing services such as SEND for
 Client authentication and network admission control. Following
 authenticated Client admission and prefix delegation procedures, AERO
 nodes MUST ensure that the source of data packets corresponds to the
 node to which the prefixes were delegated.

 AERO Clients MUST ensure that their connectivity is not used by
 unauthorized nodes on their EUNs to gain access to a protected
 network, i.e., AERO Clients that act as routers MUST NOT provide
 routing services for unauthorized nodes. (This concern is no
 different than for ordinary hosts that receive an IP address
 delegation but then "share" the address with other nodes via some
 form of Internet connection sharing such as tethering.)

Templin Expires November 11, 2018 [Page 51]

Internet-Draft AERO May 2018

 AERO Clients, Servers and Relays on the open Internet are susceptible
 to the same attack profiles as for any Internet nodes. For this
 reason, IP security SHOULD be used when AERO is employed over
 unmanaged/unsecured links using securing mechanisms such as IPsec
 [RFC4301], IKE [RFC5996] and/or TLS [RFC5246]. In some environments,
 however, the use of end-to-end security from Clients to correspondent
 nodes (i.e., other Clients and/or Internet nodes) could obviate the
 need for IP security between AERO Clients, Servers and Relays.

 AERO Servers and Relays present targets for traffic amplification DoS
 attacks. This concern is no different than for widely-deployed VPN
 security gateways in the Internet, where attackers could send spoofed
 packets to the gateways at high data rates. This can be mitigated by
 connecting Relays and Servers over dedicated links with no
 connections to the Internet and/or when connections to the Internet
 are only permitted through well-managed firewalls.

 Traffic amplification DoS attacks can also target an AERO Client’s
 low data rate links. This is a concern not only for Clients located
 on the open Internet but also for Clients in secured enclaves. AERO
 Servers can institute rate limits that protect Clients from receiving
 packet floods that could DoS low data rate links.

 Security considerations for accepting link-layer ICMP messages and
 reflected packets are discussed throughout the document.

10. Acknowledgements

 Discussions in the IETF, aviation standards communities and private
 exchanges helped shape some of the concepts in this work.
 Individuals who contributed insights include Mikael Abrahamsson, Mark
 Andrews, Fred Baker, Bob Braden, Stewart Bryant, Brian Carpenter,
 Wojciech Dec, Ralph Droms, Adrian Farrel, Sri Gundavelli, Brian
 Haberman, Bernhard Haindl, Joel Halpern, Tom Herbert, Sascha Hlusiak,
 Lee Howard, Andre Kostur, Ted Lemon, Andy Malis, Satoru Matsushima,
 Tomek Mrugalski, Alexandru Petrescu, Behcet Saikaya, Michal Skorepa,
 Joe Touch, Bernie Volz, Ryuji Wakikawa, Lloyd Wood and James
 Woodyatt. Members of the IESG also provided valuable input during
 their review process that greatly improved the document. Special
 thanks go to Stewart Bryant, Joel Halpern and Brian Haberman for
 their shepherding guidance during the publication of the AERO first
 edition.

 This work has further been encouraged and supported by Boeing
 colleagues including Kyle Bae, M. Wayne Benson, Dave Bernhardt, Cam
 Brodie, Balaguruna Chidambaram, Irene Chin, Bruce Cornish, Claudiu
 Danilov, Wen Fang, Anthony Gregory, Jeff Holland, Ed King, Gene
 MacLean III, Rob Muszkiewicz, Sean O’Sullivan, Kent Shuey, Brian

Templin Expires November 11, 2018 [Page 52]

Internet-Draft AERO May 2018

 Skeen, Mike Slane, Carrie Spiker, Brendan Williams, Julie Wulff,
 Yueli Yang, Eric Yeh and other members of the BR&T and BIT mobile
 networking teams. Wayne Benson, Kyle Bae and Eric Yeh are especially
 acknowledged for implementing the AERO functions as extensions to the
 public domain OpenVPN distribution.

 Earlier works on NBMA tunneling approaches are found in
 [RFC2529][RFC5214][RFC5569].

 Many of the constructs presented in this second edition of AERO are
 based on the author’s earlier works, including:

 o The Internet Routing Overlay Network (IRON)
 [RFC6179][I-D.templin-ironbis]

 o Virtual Enterprise Traversal (VET)
 [RFC5558][I-D.templin-intarea-vet]

 o The Subnetwork Encapsulation and Adaptation Layer (SEAL)
 [RFC5320][I-D.templin-intarea-seal]

 o AERO, First Edition [RFC6706]

 Note that these works cite numerous earlier efforts that are not also
 cited here due to space limitations. The authors of those earlier
 works are acknowledged for their insights.

 This work is aligned with the NASA Safe Autonomous Systems Operation
 (SASO) program under NASA contract number NNA16BD84C.

 This work is aligned with the FAA as per the SE2025 contract number
 DTFAWA-15-D-00030.

 This work is aligned with the Boeing Information Technology (BIT)
 MobileNet program.

 This work is aligned with the Boeing Research and Technology (BR&T)
 autonomous systems networking program.

11. References

11.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

Templin Expires November 11, 2018 [Page 53]

Internet-Draft AERO May 2018

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, DOI 10.17487/RFC0792, September 1981,
 <https://www.rfc-editor.org/info/rfc792>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <https://www.rfc-editor.org/info/rfc3315>.

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 DOI 10.17487/RFC3633, December 2003,
 <https://www.rfc-editor.org/info/rfc3633>.

 [RFC3971] Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
 "SEcure Neighbor Discovery (SEND)", RFC 3971,
 DOI 10.17487/RFC3971, March 2005,
 <https://www.rfc-editor.org/info/rfc3971>.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, DOI 10.17487/RFC4191,
 November 2005, <https://www.rfc-editor.org/info/rfc4191>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <https://www.rfc-editor.org/info/rfc4861>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

Templin Expires November 11, 2018 [Page 54]

Internet-Draft AERO May 2018

 [RFC5175] Haberman, B., Ed. and R. Hinden, "IPv6 Router
 Advertisement Flags Option", RFC 5175,
 DOI 10.17487/RFC5175, March 2008,
 <https://www.rfc-editor.org/info/rfc5175>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

11.2. Informative References

 [BGP] Huston, G., "BGP in 2015, http://potaroo.net", January
 2016.

 [I-D.ietf-intarea-gue]
 Herbert, T., Yong, L., and O. Zia, "Generic UDP
 Encapsulation", draft-ietf-intarea-gue-05 (work in
 progress), December 2017.

 [I-D.ietf-intarea-gue-extensions]
 Herbert, T., Yong, L., and F. Templin, "Extensions for
 Generic UDP Encapsulation", draft-ietf-intarea-gue-
 extensions-04 (work in progress), March 2018.

 [I-D.ietf-intarea-tunnels]
 Touch, J. and M. Townsley, "IP Tunnels in the Internet
 Architecture", draft-ietf-intarea-tunnels-08 (work in
 progress), January 2018.

 [I-D.templin-6man-dhcpv6-ndopt]
 Templin, F., "IPv6 Neighbor Discovery Extensions for
 Prefix Delegation", draft-templin-6man-dhcpv6-ndopt-04
 (work in progress), March 2018.

 [I-D.templin-6man-rio-redirect]
 Templin, F. and j. woodyatt, "Route Information Options in
 IPv6 Neighbor Discovery", draft-templin-6man-rio-
 redirect-06 (work in progress), May 2018.

 [I-D.templin-atn-bgp]
 Templin, F., Saccone, G., Dawra, G., and A. Lindem, "A
 Simple BGP-based Mobile Routing System for the
 Aeronautical Telecommunications Network", draft-templin-
 atn-bgp-06 (work in progress), March 2018.

Templin Expires November 11, 2018 [Page 55]

Internet-Draft AERO May 2018

 [I-D.templin-intarea-grefrag]
 Templin, F., "GRE Tunnel Level Fragmentation", draft-
 templin-intarea-grefrag-04 (work in progress), July 2016.

 [I-D.templin-intarea-seal]
 Templin, F., "The Subnetwork Encapsulation and Adaptation
 Layer (SEAL)", draft-templin-intarea-seal-68 (work in
 progress), January 2014.

 [I-D.templin-intarea-vet]
 Templin, F., "Virtual Enterprise Traversal (VET)", draft-
 templin-intarea-vet-40 (work in progress), May 2013.

 [I-D.templin-ironbis]
 Templin, F., "The Interior Routing Overlay Network
 (IRON)", draft-templin-ironbis-16 (work in progress),
 March 2014.

 [I-D.templin-v6ops-pdhost]
 Templin, F., "IPv6 Prefix Delegation Models", draft-
 templin-v6ops-pdhost-19 (work in progress), March 2018.

 [OVPN] OpenVPN, O., "http://openvpn.net", October 2016.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
 RFC 1812, DOI 10.17487/RFC1812, June 1995,
 <https://www.rfc-editor.org/info/rfc1812>.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <https://www.rfc-editor.org/info/rfc1981>.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 DOI 10.17487/RFC2003, October 1996,
 <https://www.rfc-editor.org/info/rfc2003>.

Templin Expires November 11, 2018 [Page 56]

Internet-Draft AERO May 2018

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
 RFC 2131, DOI 10.17487/RFC2131, March 1997,
 <https://www.rfc-editor.org/info/rfc2131>.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <https://www.rfc-editor.org/info/rfc2473>.

 [RFC2529] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
 Domains without Explicit Tunnels", RFC 2529,
 DOI 10.17487/RFC2529, March 1999,
 <https://www.rfc-editor.org/info/rfc2529>.

 [RFC2764] Gleeson, B., Lin, A., Heinanen, J., Armitage, G., and A.
 Malis, "A Framework for IP Based Virtual Private
 Networks", RFC 2764, DOI 10.17487/RFC2764, February 2000,
 <https://www.rfc-editor.org/info/rfc2764>.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 DOI 10.17487/RFC2784, March 2000,
 <https://www.rfc-editor.org/info/rfc2784>.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
 RFC 2890, DOI 10.17487/RFC2890, September 2000,
 <https://www.rfc-editor.org/info/rfc2890>.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
 RFC 2923, DOI 10.17487/RFC2923, September 2000,
 <https://www.rfc-editor.org/info/rfc2923>.

 [RFC2983] Black, D., "Differentiated Services and Tunnels",
 RFC 2983, DOI 10.17487/RFC2983, October 2000,
 <https://www.rfc-editor.org/info/rfc2983>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",
 RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC3819] Karn, P., Ed., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,
 RFC 3819, DOI 10.17487/RFC3819, July 2004,
 <https://www.rfc-editor.org/info/rfc3819>.

Templin Expires November 11, 2018 [Page 57]

Internet-Draft AERO May 2018

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213,
 DOI 10.17487/RFC4213, October 2005,
 <https://www.rfc-editor.org/info/rfc4213>.

 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

 [RFC4389] Thaler, D., Talwar, M., and C. Patel, "Neighbor Discovery
 Proxies (ND Proxy)", RFC 4389, DOI 10.17487/RFC4389, April
 2006, <https://www.rfc-editor.org/info/rfc4389>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,
 RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access
 Protocol (LDAP): The Protocol", RFC 4511,
 DOI 10.17487/RFC4511, June 2006,
 <https://www.rfc-editor.org/info/rfc4511>.

 [RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick,
 "Internet Group Management Protocol (IGMP) / Multicast
 Listener Discovery (MLD)-Based Multicast Forwarding
 ("IGMP/MLD Proxying")", RFC 4605, DOI 10.17487/RFC4605,
 August 2006, <https://www.rfc-editor.org/info/rfc4605>.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963,
 DOI 10.17487/RFC4963, July 2007,
 <https://www.rfc-editor.org/info/rfc4963>.

 [RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
 Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
 DOI 10.17487/RFC5214, March 2008,
 <https://www.rfc-editor.org/info/rfc5214>.

Templin Expires November 11, 2018 [Page 58]

Internet-Draft AERO May 2018

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5320] Templin, F., Ed., "The Subnetwork Encapsulation and
 Adaptation Layer (SEAL)", RFC 5320, DOI 10.17487/RFC5320,
 February 2010, <https://www.rfc-editor.org/info/rfc5320>.

 [RFC5522] Eddy, W., Ivancic, W., and T. Davis, "Network Mobility
 Route Optimization Requirements for Operational Use in
 Aeronautics and Space Exploration Mobile Networks",
 RFC 5522, DOI 10.17487/RFC5522, October 2009,
 <https://www.rfc-editor.org/info/rfc5522>.

 [RFC5558] Templin, F., Ed., "Virtual Enterprise Traversal (VET)",
 RFC 5558, DOI 10.17487/RFC5558, February 2010,
 <https://www.rfc-editor.org/info/rfc5558>.

 [RFC5569] Despres, R., "IPv6 Rapid Deployment on IPv4
 Infrastructures (6rd)", RFC 5569, DOI 10.17487/RFC5569,
 January 2010, <https://www.rfc-editor.org/info/rfc5569>.

 [RFC5720] Templin, F., "Routing and Addressing in Networks with
 Global Enterprise Recursion (RANGER)", RFC 5720,
 DOI 10.17487/RFC5720, February 2010,
 <https://www.rfc-editor.org/info/rfc5720>.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",
 RFC 5996, DOI 10.17487/RFC5996, September 2010,
 <https://www.rfc-editor.org/info/rfc5996>.

 [RFC6179] Templin, F., Ed., "The Internet Routing Overlay Network
 (IRON)", RFC 6179, DOI 10.17487/RFC6179, March 2011,
 <https://www.rfc-editor.org/info/rfc6179>.

 [RFC6221] Miles, D., Ed., Ooghe, S., Dec, W., Krishnan, S., and A.
 Kavanagh, "Lightweight DHCPv6 Relay Agent", RFC 6221,
 DOI 10.17487/RFC6221, May 2011,
 <https://www.rfc-editor.org/info/rfc6221>.

 [RFC6422] Lemon, T. and Q. Wu, "Relay-Supplied DHCP Options",
 RFC 6422, DOI 10.17487/RFC6422, December 2011,
 <https://www.rfc-editor.org/info/rfc6422>.

Templin Expires November 11, 2018 [Page 59]

Internet-Draft AERO May 2018

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, DOI 10.17487/RFC6438, November 2011,
 <https://www.rfc-editor.org/info/rfc6438>.

 [RFC6706] Templin, F., Ed., "Asymmetric Extended Route Optimization
 (AERO)", RFC 6706, DOI 10.17487/RFC6706, August 2012,
 <https://www.rfc-editor.org/info/rfc6706>.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
 RFC 6864, DOI 10.17487/RFC6864, February 2013,
 <https://www.rfc-editor.org/info/rfc6864>.

 [TUNTAP] Wikipedia, W., "http://en.wikipedia.org/wiki/TUN/TAP",
 October 2014.

Appendix A. AERO Alternate Encapsulations

 When GUE encapsulation is not needed, AERO can use common
 encapsulations such as IP-in-IP [RFC2003][RFC2473][RFC4213], Generic
 Routing Encapsulation (GRE) [RFC2784][RFC2890] and others. The
 encapsulation is therefore only differentiated from non-AERO tunnels
 through the application of AERO control messaging and not through,
 e.g., a well-known UDP port number.

 As for GUE encapsulation, alternate AERO encapsulation formats may
 require encapsulation layer fragmentation. For simple IP-in-IP
 encapsulation, an IPv6 fragment header is inserted directly between
 the inner and outer IP headers when needed, i.e., even if the outer
 header is IPv4. The IPv6 Fragment Header is identified to the outer
 IP layer by its IP protocol number, and the Next Header field in the
 IPv6 Fragment Header identifies the inner IP header version. For GRE
 encapsulation, a GRE fragment header is inserted within the GRE
 header [I-D.templin-intarea-grefrag].

 Figure 5 shows the AERO IP-in-IP encapsulation format before any
 fragmentation is applied:

Templin Expires November 11, 2018 [Page 60]

Internet-Draft AERO May 2018

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Outer IPv4 Header | | Outer IPv6 Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |IPv6 Frag Header (optional)| |IPv6 Frag Header (optional)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header | | Inner IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | |
 ˜ ˜ ˜ ˜
 ˜ Inner Packet Body ˜ ˜ Inner Packet Body ˜
 ˜ ˜ ˜ ˜
 | | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Minimal Encapsulation in IPv4 Minimal Encapsulation in IPv6

 Figure 5: Minimal Encapsulation Format using IP-in-IP

 Figure 6 shows the AERO GRE encapsulation format before any
 fragmentation is applied:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Outer IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | GRE Header |
 | (with checksum, key, etc..) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | GRE Fragment Header (optional)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 ˜ ˜
 ˜ Inner Packet Body ˜
 ˜ ˜
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 6: Minimal Encapsulation Using GRE

 Alternate encapsulation may be preferred in environments where GUE
 encapsulation would add unnecessary overhead. For example, certain
 low-bandwidth wireless data links may benefit from a reduced
 encapsulation overhead.

Templin Expires November 11, 2018 [Page 61]

Internet-Draft AERO May 2018

 GUE encapsulation can traverse network paths that are inaccessible to
 non-UDP encapsulations, e.g., for crossing Network Address
 Translators (NATs). More and more, network middleboxes are also
 being configured to discard packets that include anything other than
 a well-known IP protocol such as UDP and TCP. It may therefore be
 necessary to determine the potential for middlebox filtering before
 enabling alternate encapsulation in a given environment.

 In addition to IP-in-IP, GRE and GUE, AERO can also use security
 encapsulations such as IPsec and SSL/TLS. In that case, AERO control
 messaging and route determination occur before security encapsulation
 is applied for outgoing packets and after security decapsulation is
 applied for incoming packets.

 AERO is especially well suited for use with VPN system encapsulations
 such as OpenVPN [OVPN].

Appendix B. When to Insert an Encapsulation Fragment Header

 An encapsulation fragment header is inserted when the AERO tunnel
 ingress needs to apply fragmentation to accommodate packets that must
 be delivered without loss due to a size restriction. Fragmentation
 is performed on the inner packet while encapsulating each inner
 packet fragment in outer IP and encapsulation layer headers that
 differ only in the fragment header fields.

 The fragment header can also be inserted in order to include a
 coherent Identification value with each packet, e.g., to aid in
 Duplicate Packet Detection (DPD). In this way, network nodes can
 cache the Identification values of recently-seen packets and use the
 cached values to determine whether a newly-arrived packet is in fact
 a duplicate. The Identification value within each packet could
 further provide a rough indicator of packet reordering, e.g., in
 cases when the tunnel egress wishes to discard packets that are
 grossly out of order.

 In some use cases, there may be operational assurance that no
 fragmentation of any kind will be necessary, or that only occasional
 large control messages will require fragmentation. In that case, the
 encapsulation fragment header can be omitted and ordinary
 fragmentation of the outer IP protocol version can be applied when
 necessary.

Appendix C. Autoconfiguration for Constrained Platforms

 On some platforms (e.g., popular cell phone operating systems), the
 act of assigning a default IPv6 route and/or assigning an address to
 an interface may not be permitted from a user application due to

Templin Expires November 11, 2018 [Page 62]

Internet-Draft AERO May 2018

 security policy. Typically, those platforms include a TUN/TAP
 interface [TUNTAP] that acts as a point-to-point conduit between user
 applications and the AERO interface. In that case, the Client can
 instead generate a "synthesized RA" message. The message conforms to
 [RFC4861] and is prepared as follows:

 o the IPv6 source address is the Client’s AERO address

 o the IPv6 destination address is all-nodes multicast

 o the Router Lifetime is set to a time that is no longer than the
 ACP DHCPv6 lifetime

 o the message does not include a Source Link Layer Address Option
 (SLLAO)

 o the message includes a Prefix Information Option (PIO) with a /64
 prefix taken from the ACP as the prefix for autoconfiguration

 The Client then sends the synthesized RA message via the TUN/TAP
 interface, where the operating system kernel will interpret it as
 though it were generated by an actual router. The operating system
 will then install a default route and use StateLess Address
 AutoConfiguration (SLAAC) to configure an IPv6 address on the TUN/TAP
 interface. Methods for similarly installing an IPv4 default route
 and IPv4 address on the TUN/TAP interface are based on synthesized
 DHCPv4 messages [RFC2131].

Appendix D. Operational Deployment Alternatives

 AERO can be used in many different variations based on the specific
 use case. The following sections discuss variations that adhere to
 the AERO principles while allowing selective application of AERO
 components.

D.1. Operation on AERO Links Without DHCPv6 Services

 When Servers on the AERO link do not provide DHCPv6 services,
 operation can still be accommodated through administrative
 configuration of ACPs on AERO Clients. In that case, administrative
 configurations of AERO interface neighbor cache entries on both the
 Server and Client are also necessary. However, this may interfere
 with the ability for Clients to dynamically change to new Servers,
 and can expose the AERO link to misconfigurations unless the
 administrative configurations are carefully coordinated.

Templin Expires November 11, 2018 [Page 63]

Internet-Draft AERO May 2018

D.2. Operation on Server-less AERO Links

 In some AERO link scenarios, there may be no Servers on the link and/
 or no need for Clients to use a Server as an intermediary trust
 anchor. In that case, each Client acts as a Server unto itself to
 establish neighbor cache entries by performing direct Client-to-
 Client IPv6 ND message exchanges, and some other form of trust basis
 must be applied so that each Client can verify that the prospective
 neighbor is authorized to use its claimed ACP.

 When there is no Server on the link, Clients must arrange to receive
 ACPs and publish them via a secure alternate PD authority through
 some means outside the scope of this document.

D.3. Operation on Client-less AERO Links

 In some environments, the AERO service may be useful for mobile nodes
 that do not implement the AERO Client function and do not perform
 encapsulation. For example, if the mobile node has a way of
 injecting its ACP into the access subnetwork routing system an AERO
 Server connected to the same access network can accept the ACP prefix
 injection as an indication that a new mobile node has come onto the
 subnetwork. The Server can then inject the ACP into the BGP routing
 system the same as if an AERO Client/Server DHCPv6 PD exchange had
 occurred. If the mobile node subsequently withdraws the ACP from the
 access network routing system, the Server can then withdraw the ACP
 from the BGP routing system.

 In this arrangement, AERO Servers and Relays are used in exactly the
 same ways as for environments where DHCPv6 Client/Server exchanges
 are supported. However, the access subnetwork routing systems must
 be capable of accommodating rapid ACP injections and withdrawals from
 mobile nodes with the understanding that the information must be
 propagated to all routers in the system. Operational experience has
 shown that this kind of routing system "churn" can lead to overall
 instability and routing system inconsistency.

D.4. Manually-Configured AERO Tunnels

 In addition to the dynamic neighbor discovery procedures for AERO
 link neighbors described above, AERO encapsulation can be applied to
 manually-configured tunnels. In that case, the tunnel endpoints use
 an administratively-provisioned link-local address and exchange NS/NA
 messages the same as for dynamically-established tunnels.

Templin Expires November 11, 2018 [Page 64]

Internet-Draft AERO May 2018

D.5. Encapsulation Avoidance on Relay-Server Dedicated Links

 In some environments, AERO Servers and Relays may be connected by
 dedicated point-to-point links, e.g., high speed fiberoptic leased
 lines. In that case, the Servers and Relays can participate in the
 AERO link the same as specified above but can avoid encapsulation
 over the dedicated links. In that case, however, the links would be
 dedicated for AERO and could not be multiplexed for both AERO and
 non-AERO communications.

D.6. Encapsulation Protocol Version Considerations

 A source Client may connect only to an IPvX underlying network, while
 the target Client connects only to an IPvY underlying network. In
 that case, the target and source Clients have no means for reaching
 each other directly (since they connect to underlying networks of
 different IP protocol versions) and so must ignore any route
 optimization messages and continue to send packets via their Servers.

D.7. Extending AERO Links Through Security Gateways

 When an enterprise mobile node moves from a campus LAN connection to
 a public Internet link, it must re-enter the enterprise via a
 security gateway that has both a physical interface connection to the
 Internet and a physical interface connection to the enterprise
 internetwork. This most often entails the establishment of a Virtual
 Private Network (VPN) link over the public Internet from the mobile
 node to the security gateway. During this process, the mobile node
 supplies the security gateway with its public Internet address as the
 link-layer address for the VPN. The mobile node then acts as an AERO
 Client to negotiate with the security gateway to obtain its ACP.

 In order to satisfy this need, the security gateway also operates as
 an AERO Server with support for AERO Client proxying. In particular,
 when a mobile node (i.e., the Client) connects via the security
 gateway (i.e., the Server), the Server provides the Client with an
 ACP in a DHCPv6 PD exchange the same as if it were attached to an
 enterprise campus access link. The Server then replaces the Client’s
 link-layer source address with the Server’s enterprise-facing link-
 layer address in all AERO messages the Client sends toward neighbors
 on the AERO link. The AERO messages are then delivered to other
 nodes on the AERO link as if they were originated by the security
 gateway instead of by the AERO Client. In the reverse direction, the
 AERO messages sourced by nodes within the enterprise network can be
 forwarded to the security gateway, which then replaces the link-layer
 destination address with the Client’s link-layer address and replaces
 the link-layer source address with its own (Internet-facing) link-
 layer address.

Templin Expires November 11, 2018 [Page 65]

Internet-Draft AERO May 2018

 After receiving the ACP, the Client can send IP packets that use an
 address taken from the ACP as the network layer source address, the
 Client’s link-layer address as the link-layer source address, and the
 Server’s Internet-facing link-layer address as the link-layer
 destination address. The Server will then rewrite the link-layer
 source address with the Server’s own enterprise-facing link-layer
 address and rewrite the link-layer destination address with the
 target AERO node’s link-layer address, and the packets will enter the
 enterprise network as though they were sourced from a node located
 within the enterprise. In the reverse direction, when a packet
 sourced by a node within the enterprise network uses a destination
 address from the Client’s ACP, the packet will be delivered to the
 security gateway which then rewrites the link-layer destination
 address to the Client’s link-layer address and rewrites the link-
 layer source address to the Server’s Internet-facing link-layer
 address. The Server then delivers the packet across the VPN to the
 AERO Client. In this way, the AERO virtual link is essentially
 extended *through* the security gateway to the point at which the VPN
 link and AERO link are effectively grafted together by the link-layer
 address rewriting performed by the security gateway. All AERO
 messaging services (including route optimization and mobility
 signaling) are therefore extended to the Client.

 In order to support this virtual link grafting, the security gateway
 (acting as an AERO Server) must keep static neighbor cache entries
 for all of its associated Clients located on the public Internet.
 The neighbor cache entry is keyed by the AERO Client’s AERO address
 the same as if the Client were located within the enterprise
 internetwork. The neighbor cache is then managed in all ways as
 though the Client were an ordinary AERO Client. This includes the
 AERO IPv6 ND messaging signaling for Route Optimization and Neighbor
 Unreachability Detection.

 Note that the main difference between a security gateway acting as an
 AERO Server and an enterprise-internal AERO Server is that the
 security gateway has at least one enterprise-internal physical
 interface and at least one public Internet physical interface.
 Conversely, the enterprise-internal AERO Server has only enterprise-
 internal physical interfaces. For this reason security gateway
 proxying is needed to ensure that the public Internet link-layer
 addressing space is kept separate from the enterprise-internal link-
 layer addressing space. This is afforded through a natural extension
 of the security association caching already performed for each VPN
 client by the security gateway.

Templin Expires November 11, 2018 [Page 66]

Internet-Draft AERO May 2018

Appendix E. Change Log

 Changes from -81 to -82:

 o Make DHCPv6 the default (but not exclusive) PD service

 o Support operation with no PD services nor ND Route Information
 Options

 o Updates to AERO Proxy function

 Changes from -80 to -81:

 o Updates to Server and Proxy Extended Route Optimization

 o Updates to AERO Proxy section

 o Cleanups and clarifications

 Changes from -79 to -80:

 o Substantial updates to AERO Proxy function

 o Removed ’V’ bit from SLLAO and replaced with ’X’ bit

 o Added concept of Direct, Proxyed, NATed, VPNed and Native
 underlying interfaces

 o Adjusted route optimization text according to underrlying
 interface types

 Changes from -78 to -79:

 o Neighbors now set UDP Port Number and IP Address in S/TLLAOs to 0
 if the node is behind a NAT or otherwise does not wish to update
 its link-layer address for this underlying interface

 o Introduced "proxy" as a new neighbor cache entry type

 o updated GUE references

 o multipath considerations for error message handling and NUD

 Changes from -77 to -78:

 o Added "V" bit to SLLAO flags field for NS messages. V=1 indicates
 that the NA response must go through the reverse chain of Servers
 and Relays

Templin Expires November 11, 2018 [Page 67]

Internet-Draft AERO May 2018

 o Now including DHCPv6 PD messages as IPv6 ND message options

 o Clarified the use of the "P" bit in the RA flags field

 o Use of SEND to protect the combined DHCPv6/IPv6ND messages

 o Proxy now treats a Client’s Servers as the default routers (i.e.,
 instead of using a Relay as the default).

 Changes from -76 to -77:

 o Now using IPv6 ND NS/NA messaging for route optimization (no
 longer using Predirect/Redirect)

 o Now using combined IPv6 ND/DHCPv6 messaging so autoconfiguration
 can be conducted in a single message exchange

 o Introduced the AERO Proxy construct. Critical for applications
 such as ATN/IPS

 Changes from -75 to -76:

 o Bumped version number ahead of expiration deadline

 Changes from -74 to -75:

 o Bumped version number ahead of expiration deadline

Author’s Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

Templin Expires November 11, 2018 [Page 68]

	draft-cui-dhc-dhcp4o6-active-leasequery-00
	draft-dhcwg-dhc-rfc3315bis-04
	draft-ietf-dhc-dhcpv6-stateful-issues-12
	draft-jiang-dhc-dhcp-privacy-00
	draft-krishnan-dhc-dhcpv6-privacy-00
	draft-templin-aerolink-82

