
KITTEN                                                        R. Harwood

Internet-Draft                                                   Red Hat

Updates: 2743, 2744 (if approved)                            N. Williams

Intended status: Standards Track                            Cryptonector

Expires: August 9, 2019                                 February 5, 2019

Channel Binding Signalling for the Generic Security Services Application

                         Programming Interface

                draft-ietf-kitten-channel-bound-flag-04

Abstract

   Channel binding is a technique that allows applications to use a

   secure channel at a lower layer without having to use authentication

   at that lower layer.  The concept of channel binding comes from the

   Generic Security Services Application Programming Interface (GSS-

   API).  It turns out that the semantics commonly implemented are

   different than those specified in the base GSS-API RFC (RFC2743), and

   that that specification has a serious bug.  This document addresses

   both the inconsistency as-implemented and the specification bug.

   This Internet-Draft proposes the addition of a "channel bound" return

   flag for the GSS_Init_sec_context() and GSS_Accept_sec_context()

   functions.  Two behaviors are specified: a default, safe behavior

   reflecting existing implementation deployments, and a behavior that

   is only safe when the application specifically tells the GSS-API that

   it (the application) supports the new behavior.  Additional API

   elements related to this are also added, including a new security

   context establishment API.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 9, 2019.

Harwood & Williams       Expires August 9, 2019                 [Page 1]



Internet-Draft           GSS Channel Bound Flag            February 2019

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents

   (https://trustee.ietf.org/license-info) in effect on the date of

   publication of this document.  Please review these documents

   carefully, as they describe your rights and restrictions with respect

   to this document.  Code Components extracted from this document must

   include Simplified BSD License text as described in Section 4.e of

   the Trust Legal Provisions and are provided without warranty as

   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2

   1.1.  Design and Future directions  . . . . . . . . . . . . . . .   3

   1.2.  Conventions used in this document . . . . . . . . . . . . .   3

   2.  Channel Binding State Extension . . . . . . . . . . . . . . .   4

   2.1.  GSS_Create_sec_context()  . . . . . . . . . . . . . . . . .   4

   2.1.1.  C-Bindings  . . . . . . . . . . . . . . . . . . . . . . .   4

   2.2.  GSS_Set_context_flags() . . . . . . . . . . . . . . . . . .   5

   2.2.1.  C-Bindings  . . . . . . . . . . . . . . . . . . . . . . .   5

   2.3.  Return Flag for Channel Binding State Signalling  . . . . .   6

   2.3.1.  C-Bindings  . . . . . . . . . . . . . . . . . . . . . . .   6

   2.4.  New Mechanism Attribute . . . . . . . . . . . . . . . . . .   6

   2.5.  Request Flag for Acceptor Confirmation of Channel Binding .   6

   2.5.1.  C-Bindings  . . . . . . . . . . . . . . . . . . . . . . .   6

   2.6.  Handling Empty Contexts in Other GSS-API Functions  . . . .   6

   3.  Modified Channel Binding Semantics  . . . . . . . . . . . . .   7

   4.  Security Considerations . . . . . . . . . . . . . . . . . . .   8

   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8

   6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   8

   6.1.  Normative References  . . . . . . . . . . . . . . . . . . .   8

   6.2.  Informative References  . . . . . . . . . . . . . . . . . .   8

   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

1.  Introduction

   The GSS-API [RFC2743] supports "channel binding" [RFC5056], a

   technique for detection of man-in-the-middle (MITM) attacks in secure

   channels at lower network layers.  This facility is meant to be all-

   or-nothing: either both the initiator and acceptor use it and it

   succeeds, or both must not use it.  This has created a negotiation

   problem when retrofitting the use of channel binding into existing

   application protocols.

Harwood & Williams       Expires August 9, 2019                 [Page 2]



Internet-Draft           GSS Channel Bound Flag            February 2019

   However, GSS-APIv2u1 [RFC2743] does not specify channel binding

   behavior when only one party provides provides none.  In practice,

   some mechanisms (such as Kerberos [RFC4121]) ignore channel bindings

   when the acceptor provides none, but not when the initiator provides

   none.  Note that it would be useless to allow security context

   establishment to succeed when the initiator does not provide channel

   bindings but the acceptor does, at least as long as there’s no

   outward indication of whether channel binding was used!  Since the

   GSS-APIv2u1 does not provide any such indication, this document

   corrects that flaw.

   Allowing the connection to succeed when an initiator provides

   bindings but an acceptor does not has helped deployment of channel

   binding in existing applications: first fix all the initiators, then

   fix all the acceptors.  But even this technique is insufficient when

   there are many clients to fix, such that fixing them all will take a

   long time.  Additionally, it limits the usefulness of channel

   bindings, while allowing the acceptor to provide but not enforce

   would protect against man in the middle attacks (for channel binding

   aware initiators).

   This document proposes a new method for deployment of channel binding

   that allows the feature to be enabled on the acceptor side before

   fixing all initiators.  If the GSS-API had always had a return flag

   by which to indicate channel binding state then we could have had a

   simpler method of deploying channel binding: applications check that

   return flag and act accordingly (e.g., fail when channel binding is

   required).  We cannot safely introduce this behavior now without an

   indication of support by the application.

   Additionally, there may be applications where it is important for

   initiators to know that acceptors did use channel binding, and even

   to know whether a mechanism is capable of indicating as much.  We add

   a request flag and a mechanism attribute for such applications.

1.1.  Design and Future directions

   The design for signalling application flag support and empty contexts

   is based on the Java Bindings of the GSS-API [RFC5653].  This

   document begins introduction of additional context inquiry and

   mutation functions, which eventually will also allow for simplified

   stepping to replace the GSS_Init/Accept_sec_context() loop.

1.2.  Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

   document are to be interpreted as described in [RFC2119].

Harwood & Williams       Expires August 9, 2019                 [Page 3]



Internet-Draft           GSS Channel Bound Flag            February 2019

2.  Channel Binding State Extension

   We propose a new return flag for GSS_Init_sec_context() and

   GSS_Accept_sec_context(), as well as a pair of functions for a)

   creating "empty" security context handles, b) requesting flags and

   indicating which flags the application understands.  We also add a

   new mechanism attribute for supporting channel binding confirmation.

   C bindings of these extensions are provided along the lines of

   [RFC2744] and [RFC5587].

   In the future we might move more of the many input (and output)

   arguments to GSS_Init_sec_context() and GSS_Accept_sec_context() into

   mutators on empty security context handles.

2.1.  GSS_Create_sec_context()

   Inputs:

   o  <none>

   Outputs:

   o  major_status INTEGER

   o  minor_status INTEGER -- note: mostly useless, but we should keep

      it

   o  context SECURITY CONTEXT -- "empty" security context

   Return major status codes:

   o  GSS_S_COMPLETE indicates success.

   o  GSS_S_UNAVAILABLE indicates that memory is not available, for

      example.

   o  GSS_S_FAILURE indicates a general failure.

   This function creates an "empty" security context handle that can be

   passed to GSS_Init_sec_context() or GSS_Accept_sec_context() where

   they expect GSS_C_NO_CONTEXT.

2.1.1.  C-Bindings

    OM_uint32

    gss_create_sec_context(OM_uint32 *minor_status,

                           gss_ctx_id_t *context);

Harwood & Williams       Expires August 9, 2019                 [Page 4]



Internet-Draft           GSS Channel Bound Flag            February 2019

2.2.  GSS_Set_context_flags()

   Inputs:

   context CONTEXT HANDLE

   req_flags FLAGS  Requested flags.  Applicable to acceptors and

      initiators.

   ret_flags_understood FLAGS  The set of return flags understood by the

      caller.

   Outputs:

   o  major_status INTEGER

   o  minor_status INTEGER

   Return major status codes:

   o  GSS_S_COMPLETE indicates success.

   o  GSS_S_FAILURE indicates a general failure.

   This function tells the mechanism (when one is eventually chosen and

   invoked) that the application requests the given req_flags and is

   prepared to check the flags in the given ret_flags_understood.

   Mechanisms SHOULD NOT limit flags returned to those in

   ret_flags_understood, but MAY alter behavior accordingly.  Initiators

   can override the req_flags in their GSS_Init_sec_context() call, but

   if no flags are requested there then the req_flags set on the empty

   context will be used.  GSS_Accept_sec_context() is not required to

   perform any action based on req_flags at this time.

   NOTE: The abstract GSS-API [RFC2743] uses individual elements--one

   per-flag--instead of a "FLAGS" type.  This is unwieldy, therefore we

   introduce an abstract type named "FLAGS" to act as a set of all the

   request/return flags defined for the abstract GSS-API.

2.2.1.  C-Bindings

    OM_uint32

    gss_set_context_flags(OM_uint32 *minor_status,

                          gss_ctx_id_t context,

                          uint64_t req_flags,

                          uint64_t ret_flags_understood);

Harwood & Williams       Expires August 9, 2019                 [Page 5]



Internet-Draft           GSS Channel Bound Flag            February 2019

2.3.  Return Flag for Channel Binding State Signalling

   Whenever both the initiator and the acceptor provide matching channel

   bindings to GSS_Init_sec_context() and GSS_Accept_sec_context(),

   respectively, then the mechanism SHALL indicate that the context is

   channel bound via an output flag, ret_channel_bound_flag, for the

   established context.  Note that some mechanisms have no way for the

   acceptor to signal CB success to the initiator, in which case

   GSS_Init_sec_context() MUST NOT output the ret_channel_bound_flag.

2.3.1.  C-Bindings

    #define GSS_C_CHANNEL_BOUND_FLAG 2048 /* 0x00000800 */

2.4.  New Mechanism Attribute

   o  We add a new mechanism attribute, GSS_C_MA_CBINDING_CONFIRM, to

      indicate that the initiator can and always does learn whether the

      acceptor application supplied channel bindings (assuming mutual

      auth has been requested).  Mechanisms advertising this attribute

      MUST always indicate acceptor channel bound state to the

      initiator.

   OID assignments TBD.

2.5.  Request Flag for Acceptor Confirmation of Channel Binding

   We add a new request flag for GSS_Init_sec_context(),

   req_cb_confirmation_flag, to be used by initiators that insist on

   acceptors providing channel bindings.  If set, the mechanism MUST

   prefer establishment of contexts which provide channel binding

   confirmation.  It SHOULD NOT fail to negotiate just because it cannot

   provide the GSS_C_MA_CBINDING_CONFIRM attribute.

2.5.1.  C-Bindings

   Because GSS_C_CHANNEL_BOUND_FLAG is a return flag only, and this flag

   is a request flag only, and to save on precious flag bits, we use the

   same flag bit assignment for both flags:

    #define GSS_C_CB_CONFIRM_FLAG 2048 /* 0x00000800 */

2.6.  Handling Empty Contexts in Other GSS-API Functions

   GSS_Init_sec_context() and GSS_Accept_sec_context() operate on empty

   security contexts as specified above (i.e., examining flags).

Harwood & Williams       Expires August 9, 2019                 [Page 6]



Internet-Draft           GSS Channel Bound Flag            February 2019

   All other GSS-API functions MUST treat empty contexts as they would

   GSS_C_NO_CONTEXT as well.  For most functions, this will result in

   returning GSS status code GSS_S_NO_CONTEXT.

   GSS_Delete_sec_context() MUST NOT output a context deletion token

   when applied to empty security contexts.

3.  Modified Channel Binding Semantics

   The channel binding semantics of the base GSS-API are modified as

   follows:

   o  Whenever both the initiator and acceptor have provided

      input_channel_bindings to GSS_Init/Accept_sec_context() and the

      channel bindings do not match, then the mechanism MUST fail to

      establish a security context token.  (This is a restatement of an

      existing requirement in the base specification.)

   o  Whenever the acceptor application has a) provided channel bindings

      to GSS_Accept_sec_context(), and b) not indicated support for the

      ret_channel_bound_flag flag, then the mechanism MUST fail to

      establish a security context if the initiator did not provide

      channel bindings data.  This requirement is critical for security

      purposes, to make applications predating this document secure, and

      this requirement reflects actual implementations as deployed.

   o  Whenever the initiator application has a) provided channel

      bindings to GSS_Init_sec_context(), and b) not indicated support

      for the ret_channel_bound_flag flag, then the mechanism SHOULD NOT

      fail to establish a security context just because the acceptor

      failed to provide channel bindings data.  This strong sugestion is

      for interoperability purposes, and reflects actual implementations

      that have been deployed.

   o  Whenever the application has a) provided channel bindings to

      GSS_Init_sec_context() or GSS_Accept_sec_context(), and b)

      indicated support for the ret_channel_bound_flag flag, then the

      mechanism SHOULD NOT fail to establish a security context just

      because the peer did not provide channel bindings data.  The

      mechanism MUST output the ret_channel_bound_flag if both peers

      provided the same input_channel_bindings to GSS_Init_sec_context()

      and GSS_Accept_sec_context().  The mechanism MUST NOT output the

      ret_channel_bound_flag if either (or both) peer did not provide

      input_channel_bindings to GSS_Init/Accept_sec_context().  This

      requirement restores the original base GSS-API specified behavior,

      with the addition of the ret_channel_bound_flag flag.

Harwood & Williams       Expires August 9, 2019                 [Page 7]



Internet-Draft           GSS Channel Bound Flag            February 2019

4.  Security Considerations

   This document deals with security.  There are no security

   considerations that should be documented separately in this section.

   To recap, this document fixes a significant flaw in the base GSS-API

   [RFC2743] specification that fortunately has not been implemented,

   and it adds a feature (that should have been in the base

   specification) for improved negotiation of use of channel binding

   [RFC5056].

5.  IANA Considerations

   The GSS-API mechanism attribute is to be added to the "SMI Security

   for Mechanism gsscma Codes" registry established by RFC5587

   [RFC5587].  See Section 2.4.

6.  References

6.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate

              Requirement Levels", BCP 14, RFC 2119,

              DOI 10.17487/RFC2119, March 1997,

              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2743]  Linn, J., "Generic Security Service Application Program

              Interface Version 2, Update 1", RFC 2743,

              DOI 10.17487/RFC2743, January 2000,

              <https://www.rfc-editor.org/info/rfc2743>.

   [RFC2744]  Wray, J., "Generic Security Service API Version 2 :

              C-bindings", RFC 2744, DOI 10.17487/RFC2744, January 2000,

              <https://www.rfc-editor.org/info/rfc2744>.

   [RFC5056]  Williams, N., "On the Use of Channel Bindings to Secure

              Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,

              <https://www.rfc-editor.org/info/rfc5056>.

   [RFC5587]  Williams, N., "Extended Generic Security Service Mechanism

              Inquiry APIs", RFC 5587, DOI 10.17487/RFC5587, July 2009,

              <https://www.rfc-editor.org/info/rfc5587>.

6.2.  Informative References

Harwood & Williams       Expires August 9, 2019                 [Page 8]



Internet-Draft           GSS Channel Bound Flag            February 2019

   [RFC4121]  Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos

              Version 5 Generic Security Service Application Program

              Interface (GSS-API) Mechanism: Version 2", RFC 4121,

              DOI 10.17487/RFC4121, July 2005,

              <https://www.rfc-editor.org/info/rfc4121>.

   [RFC5653]  Upadhyay, M. and S. Malkani, "Generic Security Service API

              Version 2: Java Bindings Update", RFC 5653,

              DOI 10.17487/RFC5653, August 2009,

              <https://www.rfc-editor.org/info/rfc5653>.

Authors’ Addresses

   Robbie Harwood

   Red Hat, Inc.

   Email: rharwood@redhat.com

   Nicolas Williams

   Cryptonector, LLC

   Email: nico@cryptonector.com

Harwood & Williams       Expires August 9, 2019                 [Page 9]


