
Network Working Group B. Kaduk
Internet-Draft MIT
Intended status: Informational February 19, 2015
Expires: August 23, 2015

 Structure of the GSS Negotiation Loop
 draft-ietf-kitten-gss-loop-05

Abstract

 This document specifies the generic structure of the negotiation loop
 to establish a GSS security context between initiator and acceptor.
 The control flow of the loop is indicated for both parties, including
 error conditions, and indications are given for where application-
 specific behavior must be specified.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 23, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Kaduk Expires August 23, 2015 [Page 1]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

Table of Contents

 1. Introduction . 2
 2. Application Protocol Requirements 3
 3. Loop Structure . 4
 3.1. Anonymous Initiators 4
 3.2. GSS_Init_sec_context 5
 3.3. Sending from Initiator to Acceptor 6
 3.4. Acceptor Sanity Checking 6
 3.5. GSS_Accept_sec_context 7
 3.6. Sending from Acceptor to Initiator 8
 3.7. Initiator input validation 8
 3.8. Continue the Loop . 9
 4. After Security Context Negotiation 9
 4.1. Authorization Checks 10
 4.2. Using Partially Complete Security Contexts 10
 4.3. Additional Context Tokens 10
 5. Sample Code . 12
 5.1. GSS Application Sample Code 12
 6. IANA Considerations . 18
 7. Security Considerations 19
 8. References . 20
 8.1. Normative References 20
 8.2. Informational References 20
 Appendix A. Acknowledgements 21
 Author’s Address . 21

1. Introduction

 The Generic Security Service Application Program Interface version 2
 [RFC2743] provides a generic interface for security services, in the
 form of an abstraction layer over the underlying security mechanisms
 that an application may use. A GSS initiator and acceptor exchange
 messages, called tokens, until a security context is established.
 Such a security context allows for each party to authenticate the
 other, the passing of confidential and/or integrity-protected
 messages between the initiator and acceptor, the generation of
 identical pseudo-random bit strings by both participants [RFC4401],
 and more.

 During context establishment, security context tokens are exchanged
 synchronously, one at a time; the initiator sends the first context
 token. The number of tokens which must be exchanged between
 initiator and acceptor in order to establish the security context is
 dependent on the underlying mechanism as well as the desired
 properties of the security context, and is in general not known to
 the application. Accordingly, the application’s control flow must
 include a loop within which GSS security context tokens are

Kaduk Expires August 23, 2015 [Page 2]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 exchanged, which terminates upon successful establishment of a
 security context or an error condition. The GSS-API, together with
 its security mechanisms, specifies the format and encoding of the
 context tokens themselves, but the application protocol must specify
 the necessary framing for the application to determine what octet
 strings constitute GSS security context tokens and pass them into the
 GSS-API implementation as appropriate.

 The GSS-API C bindings [RFC2744] provide some example code for such a
 negotiation loop, but this code does not specify the application’s
 behavior on unexpected or error conditions. As such, individual
 application protocol specifications have had to specify the structure
 of their GSS negotiation loops, including error handling, on a per-
 protocol basis. [RFC4462], [RFC3645], [RFC5801], [RFC4752],
 [RFC2203] This represents a substantial duplication of effort, and
 the various specifications go into different levels of detail and
 describe different possible error conditions. It is therefore
 preferable to have the structure of the GSS negotiation loop,
 including error conditions and token passing, described in a single
 specification, which can then be referred to from other documents in
 lieu of repeating the structure of the loop each time. This document
 will perform that role.

 The necessary requirements for correctly performing a GSS negotiation
 loop are essentially all included in [RFC2743], but they are
 scattered in many different places. This document brings all the
 requirements together into one place for the convenience of
 implementors, even though the normative requirements remain in
 [RFC2743]. In a few places, this document notes additional behavior
 which is useful for applications but is not mandated by [RFC2743].

2. Application Protocol Requirements

 Part of the purpose of this document is to guide the development of
 new application protocols using the GSS-API, as well as the
 development of new application software using such protocols. The
 following list is features which are necessary or useful in such an
 application protocol:

 o A way to frame and identify security context negotiation tokens in
 the loop.

 o Error tokens should generally also get special framing, as the
 recipient may have no other way to distinguish unexpected error
 context tokens from per-message tokens.

 o Failing that, a way to indicate error status from one peer to the
 other, possibly accompanied by a descriptive string.

Kaduk Expires August 23, 2015 [Page 3]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 o A protocol may use the negotiated GSS security context for per-
 message operations; in such cases, the protocol will need a way to
 frame and identify those per-message tokens and the nature of
 their contents. For example, a protocol message may be
 accompanied by the output of GSS_GetMIC() over that message; the
 protocol must identify the location and size of that MIC token,
 and indicate that it is a MIC token and what cleartext it
 corresponds to.

 o Applications are responsible for authorization of the
 authenticated peer principal names which are supplied by the GSS-
 API. Such names are mechanism-specific, and may come from a
 different portion of a federated identity scheme. Application
 protocols may need to supply additional information to support the
 authorization of access to a given resource, such as the SSHv2
 "username" parameter.

3. Loop Structure

 The loop is begun by the appropriately named initiator, which calls
 GSS_Init_sec_context() with an empty (zero-length) input_token and a
 fixed set of input flags containing the desired attributes for the
 security context. The initiator should not change any of the input
 parameters to GSS_Init_sec_context() between calls to it during the
 loop, with the exception of the input_token parameter, which will
 contain a message from the acceptor after the initial call, and the
 input_context_handle, which must be the result returned in the
 output_context_handle of the previous call to GSS_Init_sec_context()
 (GSS_C_NO_CONTEXT for the first call). (In the C bindings, there is
 only a single read/modify context_handle argument, so the same
 variable should be passed for each call in the loop.) RFC 2743 only
 requires that the claimant_cred_handle argument remain constant over
 all calls in the loop, but the other non-excepted arguments should
 also remain fixed for reliable operation.

 The following subsections will describe the various steps of the
 loop, without special consideration to whether a call to
 GSS_Init_sec_context() or GSS_Accept_sec_context() is the first such
 call in the loop.

3.1. Anonymous Initiators

 If the initiator is requesting anonymity by setting the anon_req_flag
 input to GSS_Init_sec_context(), then on non-error returns from
 GSS_Init_sec_context() (that is, when the major status is
 GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED), the initiator must verify
 that the output value of anon_state from GSS_Init_sec_context() is
 true before sending the security context token to the acceptor.

Kaduk Expires August 23, 2015 [Page 4]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 Failing to perform this check could cause the initiator to lose
 anonymity.

3.2. GSS_Init_sec_context

 The initiator calls GSS_Init_sec_context(), using the
 input_context_handle for the current security context being
 established and its fixed set of input parameters, and the
 input_token received from the acceptor (if this is not the first
 iteration of the loop). The presence or absence of a nonempty
 output_token and the value of the major status code are the
 indicators for how to proceed:

 o If the major status code is GSS_S_COMPLETE and the output_token is
 empty, then the context negotiation is fully complete and ready
 for use by the initiator with no further actions.

 o If the major status code is GSS_S_COMPLETE and the output_token is
 nonempty, then the initiator’s portion of the security context
 negotiation is complete but the acceptor’s is not. The initiator
 must send the output_token to the acceptor so that the acceptor
 can establish its half of the security context.

 o If the major status code is GSS_S_CONTINUE_NEEDED and the
 output_token is nonempty, the context negotiation is incomplete.
 The initiator must send the output_token to the acceptor and await
 another input_token from the acceptor.

 o If the major status code is GSS_S_CONTINUE_NEEDED and the
 output_token is empty, the mechanism has produced an output which
 is not compliant with [RFC2743]. However, there are some known
 implementations of certain mechanisms such as NTLMSSP [NTLMSSP]
 which do produce empty context negotiation tokens. For maximum
 interoperability, applications should be prepared to accept such
 tokens, and should transmit them to the acceptor if they are
 generated.

 o If the major status code is any other value, the context
 negotiation has failed. If the output_token is nonempty, it is an
 error token, and the initiator should send it to the acceptor. If
 the output_token is empty, then the initiator should indicate the
 failure to the acceptor if an appropriate application-protocol
 channel to do so is available.

Kaduk Expires August 23, 2015 [Page 5]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

3.3. Sending from Initiator to Acceptor

 The establishment of a GSS security context between initiator and
 acceptor requires some communication channel by which to exchange the
 context negotiation tokens. The nature of this channel is not
 specified by the GSS specification -- it could be a dedicated TCP
 channel, a UDP-based RPC protocol, or any other sort of channel. In
 many cases, the channel will be multiplexed with non-GSS application
 data; the application protocol must always provide some means by
 which the GSS context tokens can be identified (e.g., length and
 start location) and passed through to the mechanism accordingly. The
 application protocol may also include a facility for indicating
 errors from one party to the other, which can be used to convey
 errors resulting from GSS-API calls, when appropriate (such as when
 no error token was generated by the GSS-API implementation). Note
 that GSS major and minor status codes are specified by language
 bindings, not the abstract API; sending a major status code and
 optionally the display form of the two error codes may be the best
 that can be done in this case.

 However, even the presence of a communication channel does not
 necessarily indicate that it is appropriate for the initiator to
 indicate such errors. For example, if the acceptor is a stateless or
 near-stateless UDP server, there is probably no need for the
 initiator to explicitly indicate its failure to the acceptor.
 Conditions such as this can be treated in individual application
 protocol specifications.

 If a regular security context output_token is produced by the call to
 GSS_Init_sec_context(), the initiator must transmit this token to the
 acceptor over the application’s communication channel. If the call
 to GSS_Init_sec_context() returns an error token as output_token, it
 is recommended that the initiator transmit this token to the acceptor
 over the application’s communication channel.

3.4. Acceptor Sanity Checking

 The acceptor’s half of the negotiation loop is triggered by the
 receipt of a context token from the initiator. Before calling
 GSS_Accept_sec_context(), the acceptor may find it useful to perform
 some sanity checks on the state of the negotiation loop.

 If the acceptor receives a context token but was not expecting such a
 token (for example, if the acceptor’s previous call to
 GSS_Accept_sec_context() returned GSS_S_COMPLETE), this is probably
 an error condition indicating that the initiator’s state is invalid.
 See Section 4.3 for some exceptional cases. It is likely appropriate

Kaduk Expires August 23, 2015 [Page 6]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 for the acceptor to report this error condition to the initiator via
 the application’s communication channel.

 If the acceptor is expecting a context token (e.g., if the previous
 call to GSS_Accept_sec_context() returned GSS_S_CONTINUE_NEEDED), but
 does not receive such a token within a reasonable amount of time
 after transmitting the previous output_token to the initiator, the
 acceptor should assume that the initiator’s state is invalid (time
 out) and fail the GSS negotiation. Again, it is likely appropriate
 for the acceptor to report this error condition to the initiator via
 the application’s communication channel.

3.5. GSS_Accept_sec_context

 The GSS acceptor responds to the actions of an initiator; as such,
 there should always be a nonempty input_token to calls to
 GSS_Accept_sec_context(). The input_context_handle parameter will
 always be given as the output_context_handle from the previous call
 to GSS_Accept_sec_context() in a given negotiation loop, or
 GSS_C_NO_CONTEXT on the first call, but the acceptor_cred_handle and
 chan_bindings arguments should remain fixed over the course of a
 given GSS negotiation loop. [RFC2743] only requires that the
 acceptor_cred_handle remain fixed throughout the loop, but the
 chan_bindings argument should also remain fixed for reliable
 operation.

 The GSS acceptor calls GSS_Accept_sec_context(), using the
 input_context_handle for the current security context being
 established and the input_token received from the initiator. The
 presence or absence of a nonempty output_token and the value of the
 major status code are the indicators for how to proceed:

 o If the major status code is GSS_S_COMPLETE and the output_token is
 empty, then the context negotiation is fully complete and ready
 for use by the acceptor with no further actions.

 o If the major status code is GSS_S_COMPLETE and the output_token is
 nonempty, then the acceptor’s portion of the security context
 negotiation is complete but the initiator’s is not. The acceptor
 must send the output_token to the initiator so that the initiator
 can establish its half of the security context.

 o If the major status code is GSS_S_CONTINUE_NEEDED and the
 output_token is nonempty, the context negotiation is incomplete.
 The acceptor must send the output_token to the initiator and await
 another input_token from the initiator.

Kaduk Expires August 23, 2015 [Page 7]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 o If the major status code is GSS_S_CONTINUE_NEEDED and the
 output_token is empty, the mechanism has produced an output which
 is not compliant with [RFC2743]. However, there are some known
 implementations of certain mechanisms such as NTLMSSP [NTLMSSP]
 which do produce empty context negotiation tokens. For maximum
 interoperability, applications should be prepared to accept such
 tokens, and should transmit them to the initiator if they are
 generated.

 o If the major status code is any other value, the context
 negotiation has failed. If the output_token is nonempty, it is an
 error token, and the acceptor should send it to the initiator. If
 the output_token is empty, then the acceptor should indicate the
 failure to the initiator if an appropriate application-protocol
 channel to do so is available.

3.6. Sending from Acceptor to Initiator

 The mechanism for sending the context token from acceptor to
 initiator will depend on the nature of the communication channel
 between the two parties. For a synchronous bidirectional channel, it
 can be just another piece of data sent over the link, but for a
 stateless UDP RPC acceptor, the token will probably end up being sent
 as an RPC output parameter. Application protocol specifications will
 need to specify the nature of this behavior.

 If the application protocol has the initiator driving the
 application’s control flow, it is particularly helpful for the
 acceptor to indicate a failure to the initiator, as mentioned in some
 of the above cases conditional on "an appropriate application-
 protocol channel to do so".

 If a regular security context output_token is produced by the call to
 GSS_Accept_sec_context(), the acceptor must transmit this token to
 the initiator over the application’s communication channel. If the
 call to GSS_Accept_sec_context() returns an error token as
 output_token, it is recommended that the acceptor transmit this token
 to the initiator over the application’s communication channel.

3.7. Initiator input validation

 The initiator’s half of the negotiation loop is triggered (after the
 first call) by receipt of a context token from the acceptor. Before
 calling GSS_Init_sec_context(), the initiator may find it useful to
 perform some sanity checks on the state of the negotiation loop.

 If the initiator receives a context token but was not expecting such
 a token (for example, if the initiator’s previous call to

Kaduk Expires August 23, 2015 [Page 8]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 GSS_Init_sec_context() returned GSS_S_COMPLETE), this is probably an
 error condition indicating that the acceptor’s state is invalid. See
 Section 4.3 for some exceptional cases. It may be appropriate for
 the initiator to report this error condition to the acceptor via the
 application’s communication channel.

 If the initiator is expecting a context token (that is, the previous
 call to GSS_Init_sec_context() returned GSS_S_CONTINUE_NEEDED), but
 does not receive such a token within a reasonable amount of time
 after transmitting the previous output_token to the acceptor, the
 initiator should assume that the acceptor’s state is invalid and fail
 the GSS negotiation. Again, it may be appropriate for the initiator
 to report this error condition to the acceptor via the application’s
 communication channel.

3.8. Continue the Loop

 If the loop is in neither a success or failure condition, then the
 loop must continue. Control flow returns to Section 3.2.

4. After Security Context Negotiation

 Once a party has completed its half of the security context and
 fulfilled its obligations to the other party, the context is
 complete, but it is not necessarily ready and appropriate for use.
 In particular, the security context flags may not be appropriate for
 the given application’s use. In some cases the context may be ready
 for use before the negotiation is complete, see Section 4.2.

 The initiator specifies as part of its fixed set of inputs to
 GSS_Init_sec_context() values for all defined request flag booleans,
 among them: deleg_req_flag, mutual_req_flag, replay_det_req_flag,
 sequence_req_flag, conf_req_flag, and integ_req_flag. Upon
 completion of the security context negotiation, the initiator must
 verify that the values of the deleg_state, mutual_state,
 replay_det_state, sequence_state, conf_avail, and integ_avail (and
 any additional flags added by extensions) from the last call to
 GSS_Init_sec_context() correspond to the requested flags. If a flag
 was requested but is not available, and that feature is necessary for
 the appplication protocol, the initiator must destroy the security
 context and not use the security context for application traffic.

 Application protocol specifications citing this document should
 indicate which context flags are required for their application
 protocol.

 The acceptor receives as output the following booleans: deleg_state,
 mutual_state, replay_det_state, sequence_state, anon_state,

Kaduk Expires August 23, 2015 [Page 9]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 trans_state, conf_avail, and integ_avail, and any additional flags
 added by extensions to the GSS-API. The acceptor must verify that
 any flags necessary for the application protocol are set. If a
 necessary flag is not set, the acceptor must destroy the security
 context and not use the security context for application traffic.

4.1. Authorization Checks

 The acceptor receives as one of the outputs of
 GSS_Accept_sec_context() the name of the initiator which has
 authenticated during the security context negotiation. Applications
 need to implement authorization checks on this received name
 (’client_name’ in the sample code) before providing access to
 restricted resources. In particular, security context negotiation
 can be successful when the client is anonymous or is from a different
 identity realm than the acceptor, depending on the details of the
 mechanism used by the GSS-API to establish the security context.
 Acceptor applications can check which target name was used by the
 initiator, but the details are out of scope for this document. See
 [RFC2743] sections 2.2.6 and 1.1.5. Additional information can be
 available in GSS-API Naming Extensions, [RFC6680].

4.2. Using Partially Complete Security Contexts

 For mechanism/flag combinations that require multiple token
 exchanges, the GSS-API specification [RFC2743] provides a
 prot_ready_state output value from GSS_Init_sec_context() and
 GSS_Accept_sec_context(), which indicates when per-message operations
 are available. However, many mechanism implementations do not
 provide this functionality, and the analysis of the security
 consequences of its use is rather complicated, so it is not expected
 to be useful in most application protocols.

 In particular, mutual authentication, replay protection, and other
 services (if requested) are services which will be active when
 GSS_S_COMPLETE is returned, but which are not necessarily active
 before the security context is fully established.

4.3. Additional Context Tokens

 Under some conditions, a context token will be received by a party to
 a security context negotiation after that party has completed the
 negotiation (i.e., after GSS_Init_sec_context() or
 GSS_Accept_sec_context() has returned GSS_S_COMPLETE). Such tokens
 must be passed to GSS_Process_context_token() for processing. It may
 not always be necessary for a mechanism implementation to generate an
 error token on the initiator side, or for an initiator application to
 transmit that token to the acceptor; such decisions are out of scope

Kaduk Expires August 23, 2015 [Page 10]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 for this document. Both peers should always be prepared to process
 such tokens, and application protocols should provide means by which
 they can be transmitted.

 Such tokens can be security context deletion tokens, emitted when the
 remote party called GSS_Delete_sec_context() with a non-null
 output_context_token parameter, or error tokens, emitted when the
 remote party experiences an error processing the last token in a
 security context negotiation exchange. Errors experienced when
 processing tokens earlier in the negotiation would be transmitted as
 normal security context tokens and processed by
 GSS_Init_sec_context() or GSS_Accept_sec_context(), as appropriate.
 With the GSS-API version 2, it is not recommended to use security
 context deletion tokens, so error tokens are expected to be the most
 common form of additional context token for new application
 protocols.

 GSS_Process_context_token() may indicate an error in its major_status
 field if an error is encountered locally during token processing, or
 to indicate that an error was encountered on the peer and conveyed in
 an error token. See [RFC2743] Errata #4151. Regardless of the
 major_status output of GSS_Process_context_token(),
 GSS_Inquire_context() should be used after processing the extra
 token, to query the status of the security context and whether it can
 supply the features necessary for the application protocol.

 At present, all tokens which should be handled by
 GSS_Process_context_token() will lead to the security context being
 effectively unusable. Future extensions to the GSS-API may allow for
 applications to continue to function after a call to
 GSS_Process_context_token(), and it is expected that the outputs of
 GSS_Inquire_context() will indicate whether it is safe to do so.
 However, since there are no such extensions at present (error tokens
 and deletion tokens both result in the security context being
 essentially unusable), there is no guidance to give to applications
 regarding this possibility at this time.

 Even if GSS_Process_context_token() processes an error or deletion
 token which renders the context essentially unusable, the resources
 associated with the context must eventually be freed with a call to
 GSS_Delete_sec_context(), just as would be needed if
 GSS_Init_sec_context() or GSS_Accept_sec_context() had returned an
 error while processing an input context token and the
 input_context_handle was not GSS_C_NO_CONTEXT. RFC 2743 has some
 text which is slightly ambiguous in this regard, but the best
 practice is to always call GSS_Delete_sec_context().

Kaduk Expires August 23, 2015 [Page 11]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

5. Sample Code

 This section gives sample code for the GSS negotiation loop, both for
 a regular application and for an application where the initiator
 wishes to remain anonymous. Since the code for the two cases is very
 similar, the anonymous-specific additions are wrapped in a
 conditional check; that check and the conditional code may be ignored
 if anonymous processing is not needed.

 Since the communication channel between the initiator and acceptor is
 a matter for individual application protocols, it is inherently
 unspecified at the GSS-API level, which can lead to examples that are
 less satisfying than may be desired. For example, the sample code in
 [RFC2744] uses an unspecified send_token_to_peer() routine. Fully
 correct and general code to frame and transmit tokens requires a
 substantial amount of error checking and would detract from the core
 purpose of this document, so we only present the function signature
 for one example of what such functions might be, and leave some
 comments in the otherwise-empty function bodies.

 This sample code is written in C, using the GSS-API C bindings
 [RFC2744]. It uses the macro GSS_ERROR() to help unpack the various
 sorts of information which can be stored in the major status field;
 supplementary information does not necessarily indicate an error.
 Applications written in other languages will need to exercise care
 that checks against the major status value are written correctly.

 This sample code should be compilable as a standalone program, linked
 against a GSS-API library. In addition to supplying implementations
 for the token transmission/receipt routines, in order for the program
 to successfully run when linked against most GSS-API libraries, the
 initiator will need to specify an explicit target name for the
 acceptor, which must match the credentials available to the acceptor.
 A skeleton for how this may be done is provided, using a dummy name.

 This sample code assumes v2 of the GSS-API. Applications wishing to
 remain compatible with v1 of the GSS-API may need to perform
 additional checks in some locations.

5.1. GSS Application Sample Code

#include <unistd.h>
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gssapi/gssapi.h>

Kaduk Expires August 23, 2015 [Page 12]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

/*
 * This helper is used only on buffers that we allocate ourselves (e.g.,
 * from receive_token()). Buffers allocated by GSS routines must use
 * gss_release_buffer().
 */
static void
release_buffer(gss_buffer_t buf)
{
 free(buf->value);
 buf->value = NULL;
 buf->length = 0;
}

/*
 * Helper to send a token on the specified fd.
 *
 * If errors are encountered, this routine must not directly cause
 * termination of the process, because compliant GSS applications
 * must release resources allocated by the GSS library before
 * exiting.
 *
 * Returns 0 on success, non-zero on failure.
 */
static int
send_token(int fd, gss_buffer_t token)
{
 /*
 * Supply token framing and transmission code here.
 *
 * It is advisable for the application protocol to specify the
 * length of the token being transmitted, unless the underlying
 * transit does so implicitly.
 *
 * In addition to checking for error returns from whichever
 * syscall(s) are used to send data, applications should have
 * a loop to handle EINTR returns.
 */
 return 1;
}

/*
 * Helper to receive a token on the specified fd.
 *
 * If errors are encountered, this routine must not directly cause
 * termination of the process, because compliant GSS applications
 * must release resources allocated by the GSS library before
 * exiting.
 *

Kaduk Expires August 23, 2015 [Page 13]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 * Returns 0 on success, non-zero on failure.
 */
static int
receive_token(int fd, gss_buffer_t token)
{
 /*
 * Supply token framing and transmission code here.
 *
 * In addition to checking for error returns from whichever
 * syscall(s) are used to receive data, applications should have
 * a loop to handle EINTR returns.
 *
 * This routine is assumed to allocate memory for the local copy
 * of the received token, which must be freed with release_buffer().
 */
 return 1;
}

static void
do_initiator(int readfd, int writefd, int anon)
{
 int initiator_established = 0, ret;
 gss_ctx_id_t ctx = GSS_C_NO_CONTEXT;
 OM_uint32 major, minor, req_flags, ret_flags;
 gss_buffer_desc input_token = GSS_C_EMPTY_BUFFER;
 gss_buffer_desc output_token = GSS_C_EMPTY_BUFFER;
 gss_buffer_desc name_buf = GSS_C_EMPTY_BUFFER;
 gss_name_t target_name = GSS_C_NO_NAME;

 /* Applications should set target_name to a real value. */
 name_buf.value = "<service>@<hostname.domain>";
 name_buf.length = strlen(name_buf.value);
 major = gss_import_name(&minor, &name_buf,
 GSS_C_NT_HOSTBASED_SERVICE, &target_name);
 if (GSS_ERROR(major)) {
 warnx(1, "Could not import name\n");
 goto cleanup;
 }

 /* Mutual authentication will require a token from acceptor to
 * initiator, and thus a second call to gss_init_sec_context(). */
 req_flags = GSS_C_MUTUAL_FLAG | GSS_C_CONF_FLAG | GSS_C_INTEG_FLAG;
 if (anon)
 req_flags |= GSS_C_ANON_FLAG;

 while (!initiator_established) {
 /* The initiator_cred_handle, mech_type, time_req,
 * input_chan_bindings, actual_mech_type, and time_rec

Kaduk Expires August 23, 2015 [Page 14]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 * parameters are not needed in many cases. We pass
 * GSS_C_NO_CREDENTIAL, GSS_C_NO_OID, 0, NULL, NULL, and NULL
 * for them, respectively. */
 major = gss_init_sec_context(&minor, GSS_C_NO_CREDENTIAL, &ctx,
 target_name, GSS_C_NO_OID,
 req_flags, 0, NULL, &input_token,
 NULL, &output_token, &ret_flags,
 NULL);
 /* This was allocated by receive_token() and is no longer
 * needed. Free it now to avoid leaks if the loop continues. */
 release_buffer(&input_token);
 if (anon) {
 /* Initiators which wish to remain anonymous must check
 * whether their request has been honored before sending
 * each token. */
 if (!(ret_flags & GSS_C_ANON_FLAG)) {
 warnx("Anonymous requested but not available\n");
 goto cleanup;
 }
 }
 /* Always send a token if we are expecting another input token
 * (GSS_S_CONTINUE_NEEDED is set) or if it is nonempty. */
 if ((major & GSS_S_CONTINUE_NEEDED) ||
 output_token.length > 0) {
 ret = send_token(writefd, &output_token);
 if (ret != 0)
 goto cleanup;
 }
 /* Check for errors after sending the token so that we will send
 * error tokens. */
 if (GSS_ERROR(major)) {
 warnx("gss_init_sec_context() error major 0x%x\n", major);
 goto cleanup;
 }
 /* Free the output token’s storage; we don’t need it anymore.
 * gss_release_buffer() is safe to call on the output buffer
 * from gss_int_sec_context(), even if there is no storage
 * associated with that buffer. */
 (void)gss_release_buffer(&minor, &output_token);

 if (major & GSS_S_CONTINUE_NEEDED) {
 ret = receive_token(readfd, &input_token);
 if (ret != 0)
 goto cleanup;
 } else if (major == GSS_S_COMPLETE) {
 initiator_established = 1;
 } else {
 /* This situation is forbidden by RFC 2743. Bail out. */

Kaduk Expires August 23, 2015 [Page 15]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 warnx("major not complete or continue but not error\n");
 goto cleanup;
 }
 } /* while (!initiator_established) */
 if ((ret_flags & req_flags) != req_flags) {
 warnx("Negotiated context does not support requested flags\n");
 goto cleanup;
 }
 printf("Initiator’s context negotiation successful\n");
cleanup:
 /* We are required to release storage for nonzero-length output
 * tokens. gss_release_buffer() zeros the length, so we are
 * will not attempt to release the same buffer twice. */
 if (output_token.length > 0)
 (void)gss_release_buffer(&minor, &output_token);
 /* Do not request a context deletion token; pass NULL. */
 (void)gss_delete_sec_context(&minor, &ctx, NULL);
 (void)gss_release_name(&minor, &target_name);
}

/*
 * Perform authorization checks on the initiator’s GSS name object.
 *
 * Returns 0 on success (the initiator is authorized) and nonzero
 * when the initiator is not authorized.
 */
static int
check_authz(gss_name_t client_name)
{
 /*
 * Supply authorization checking code here.
 *
 * Options include bitwise comparison of the exported name against
 * a local database, and introspection against name attributes.
 */
 return 0;
}

static void
do_acceptor(int readfd, int writefd)
{
 int acceptor_established = 0, ret;
 gss_ctx_id_t ctx = GSS_C_NO_CONTEXT;
 OM_uint32 major, minor, ret_flags;
 gss_buffer_desc input_token = GSS_C_EMPTY_BUFFER;
 gss_buffer_desc output_token = GSS_C_EMPTY_BUFFER;
 gss_name_t client_name;

Kaduk Expires August 23, 2015 [Page 16]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 major = GSS_S_CONTINUE_NEEDED;

 while (!acceptor_established) {
 if (major & GSS_S_CONTINUE_NEEDED) {
 ret = receive_token(readfd, &input_token);
 if (ret != 0)
 goto cleanup;
 } else if (major == GSS_S_COMPLETE) {
 acceptor_established = 1;
 break;
 } else {
 /* This situation is forbidden by RFC 2743. Bail out. */
 warnx("major not complete or continue but not error\n");
 goto cleanup;
 }
 /* We can use the default behavior or do not need the returned
 * information for the parameters acceptor_cred_handle,
 * input_chan_bindings, mech_type, time_rec, and
 * delegated_cred_handle and pass the values
 * GSS_C_NO_CREDENTIAL, NULL, NULL, NULL, and NULL,
 * respectively. In some cases the src_name will not be
 * needed, but most likely it will be needed for some
 * authorization or logging functionality. */
 major = gss_accept_sec_context(&minor, &ctx,
 GSS_C_NO_CREDENTIAL,
 &input_token, NULL,
 &client_name, NULL,
 &output_token, &ret_flags, NULL,
 NULL);
 /* This was allocated by receive_token() and is no longer
 * needed. Free it now to avoid leaks if the loop continues. */
 release_buffer(&input_token);
 /* Always send a token if we are expecting another input token
 * (GSS_S_CONTINUE_NEEDED is set) or if it is nonempty. */
 if ((major & GSS_S_CONTINUE_NEEDED) ||
 output_token.length > 0) {
 ret = send_token(writefd, &output_token);
 if (ret != 0)
 goto cleanup;
 }
 /* Check for errors after sending the token so that we will send
 * error tokens. */
 if (GSS_ERROR(major)) {
 warnx("gss_accept_sec_context() error major 0x%x\n", major);
 goto cleanup;
 }
 /* Free the output token’s storage; we don’t need it anymore.
 * gss_release_buffer() is safe to call on the output buffer

Kaduk Expires August 23, 2015 [Page 17]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

 * from gss_accept_sec_context(), even if there is no storage
 * associated with that buffer. */
 (void)gss_release_buffer(&minor, &output_token);
 } /* while (!acceptor_established) */
 if (!(ret_flags & GSS_C_INTEG_FLAG)) {
 warnx("Negotiated context does not support integrity\n");
 goto cleanup;
 }
 printf("Acceptor’s context negotiation successful\n");
 ret = check_authz(client_name);
 if (ret != 0)
 printf("Client is not authorized; rejecting access\n");
cleanup:
 release_buffer(&input_token);
 /* We are required to release storage for nonzero-length output
 * tokens. gss_release_buffer() zeros the length, so we are
 * will not attempt to release the same buffer twice. */
 if (output_token.length > 0)
 (void)gss_release_buffer(&minor, &output_token);
 /* Do not request a context deletion token, pass NULL. */
 (void)gss_delete_sec_context(&minor, &ctx, NULL);
 (void)gss_release_name(&minor, &client_name);
}

int
main(void)
{
 pid_t pid;
 int fd1 = -1, fd2 = -1;

 /* Create fds for reading/writing here. */
 pid = fork();
 if (pid == 0)
 do_initiator(fd1, fd2, 0);
 else if (pid > 0)
 do_acceptor(fd2, fd1);
 else
 err(1, "fork() failed\n");
 exit(0);
}

6. IANA Considerations

 This document makes no request of IANA.

Kaduk Expires August 23, 2015 [Page 18]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

7. Security Considerations

 This document provides a (reasonably) concise description and example
 for correct construction of the GSS-API security context negotiation
 loop. Since everything relating to the construction and use of a GSS
 security context is security-related, there are security-relevant
 considerations throughout the document. It is useful to call out a
 few things in this section, though.

 The GSS-API uses a request-and-check model for features. An
 application using the GSS-API requests certain features
 (confidentiality protection for messages, or anonymity), but such a
 request does not require the GSS implementation to provide that
 feature. The application must check the returned flags to verify
 whether a requested feature is present; if the feature was non-
 optional for the application, the application must generate an error.
 Phrased differently, the GSS-API will not generate an error if it is
 unable to satisfy the features requested by the application.

 In many cases it is convenient for GSS acceptors to accept security
 contexts using multiple acceptor names (such as by using the default
 credential set, as happens when GSS_C_NO_CREDENTIAL is passed to
 GSS_Accept_sec_context()). This allows acceptors to use any
 credentials to which it has access for accepting security contexts,
 which may not be the desired behavior for a given application. (For
 example, sshd may only wish to accept only using GSS_C_NT_HOSTBASED
 credentials of the form host@<hostname>, and not nfs@<hostname>.)
 Acceptor applications can check which target name was used by the
 initiator, but the details are out of scope for this document. See
 [RFC2743] sections 2.2.6 and 1.1.5.

 The C sample code uses the macro GSS_ERROR() to assess the return
 value of gss_init_sec_context() and gss_accept_sec_context(). This
 is done to indicate where checks are needed in writing code for other
 languages and what the nature of those checks might be. The C code
 could be made simpler by omitting that macro. In applications
 expecting to receive protected octet streams, this macro should not
 be used on the result of per-message operations, as it omits checking
 for supplementary status values such as GSS_S_DUPLICATE_TOKEN,
 GSS_S_OLD_TOKEN, etc.. Use of the GSS_ERROR() macro on the results
 of GSS-API per-message operations has resulted in security
 vulnerabilities in existing software!

 The security considerations from RFCs 2743 and 2744 remain applicable
 to consumers of this document.

Kaduk Expires August 23, 2015 [Page 19]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

8. References

8.1. Normative References

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC2744] Wray, J., "Generic Security Service API Version 2 :
 C-bindings", RFC 2744, January 2000.

8.2. Informational References

 [RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API
 Extension for the Generic Security Service Application
 Program Interface (GSS-API)", RFC 4401, February 2006.

 [RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
 "Generic Security Service Application Program Interface
 (GSS-API) Authentication and Key Exchange for the Secure
 Shell (SSH) Protocol", RFC 4462, May 2006.

 [RFC3645] Kwan, S., Garg, P., Gilroy, J., Esibov, L., Westhead, J.,
 and R. Hall, "Generic Security Service Algorithm for
 Secret Key Transaction Authentication for DNS (GSS-TSIG)",
 RFC 3645, October 2003.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

 [RFC4752] Melnikov, A., "The Kerberos V5 ("GSSAPI") Simple
 Authentication and Security Layer (SASL) Mechanism", RFC
 4752, November 2006.

 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.

 [NTLMSSP] Microsoft Corporation, "[MS-NLMP]: NT LAN Manager (NTLM)
 Authentication Protocol", May 2014.

 [RFC6680] Williams, N., Johansson, L., Hartman, S., and S.
 Josefsson, "Generic Security Service Application
 Programming Interface (GSS-API) Naming Extensions", RFC
 6680, August 2012.

Kaduk Expires August 23, 2015 [Page 20]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

Appendix A. Acknowledgements

 Thanks to Nico Williams and Jeff Hutzleman for prompting me to write
 this document.

Author’s Address

 Benjamin Kaduk
 MIT Kerberos Consortium

 Email: kaduk@mit.edu

Kaduk Expires August 23, 2015 [Page 21]

