
OAuth Working Group B. Campbell
Internet-Draft Ping Identity
Intended status: Standards Track C. Mortimore
Expires: April 24, 2015 Salesforce
 M. Jones
 Y. Goland
 Microsoft
 October 21, 2014

 Assertion Framework for OAuth 2.0 Client Authentication and
 Authorization Grants
 draft-ietf-oauth-assertions-18

Abstract

 This specification provides a framework for the use of assertions
 with OAuth 2.0 in the form of a new client authentication mechanism
 and a new authorization grant type. Mechanisms are specified for
 transporting assertions during interactions with a token endpoint, as
 well as general processing rules.

 The intent of this specification is to provide a common framework for
 OAuth 2.0 to interwork with other identity systems using assertions,
 and to provide alternative client authentication mechanisms.

 Note that this specification only defines abstract message flows and
 processing rules. In order to be implementable, companion
 specifications are necessary to provide the corresponding concrete
 instantiations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2015.

Campbell, et al. Expires April 24, 2015 [Page 1]

Internet-Draft OAuth Assertion Framework October 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Notational Conventions 4
 3. Framework . 4
 4. Transporting Assertions 7
 4.1. Using Assertions as Authorization Grants 7
 4.1.1. Error Responses 8
 4.2. Using Assertions for Client Authentication 8
 4.2.1. Error Responses 9
 5. Assertion Content and Processing 10
 5.1. Assertion Metamodel 10
 5.2. General Assertion Format and Processing Rules 11
 6. Common Scenarios . 12
 6.1. Client Authentication 12
 6.2. Client Acting on Behalf of Itself 12
 6.3. Client Acting on Behalf of a User 13
 6.3.1. Client Acting on Behalf of an Anonymous User 13
 7. Interoperability Considerations 14
 8. Security Considerations 14
 8.1. Forged Assertion . 15
 8.2. Stolen Assertion . 15
 8.3. Unauthorized Disclosure of Personal Information 16
 8.4. Privacy Considerations 16
 9. IANA Considerations . 17
 9.1. assertion Parameter Registration 17
 9.2. client_assertion Parameter Registration 17
 9.3. client_assertion_type Parameter Registration 17
 10. References . 18
 10.1. Normative References 18
 10.2. Informative References 18
 Appendix A. Acknowledgements 19
 Appendix B. Document History 19

Campbell, et al. Expires April 24, 2015 [Page 2]

Internet-Draft OAuth Assertion Framework October 2014

 Authors’ Addresses . 23

1. Introduction

 An assertion is a package of information that facilitates the sharing
 of identity and security information across security domains.
 Section 3 provides a more detailed description of the concept of an
 assertion for the purpose of this specification.

 OAuth 2.0 [RFC6749] is an authorization framework that enables a
 third-party application to obtain limited access to a protected HTTP
 resource. In OAuth, those third-party applications are called
 clients; they access protected resources by presenting an access
 token to the HTTP resource. Access tokens are issued to clients by
 an authorization server with the (sometimes implicit) approval of the
 resource owner. These access tokens are typically obtained by
 exchanging an authorization grant, which represents the authorization
 granted by the resource owner (or by a privileged administrator).
 Several authorization grant types are defined to support a wide range
 of client types and user experiences. OAuth also provides an
 extensibility mechanism for defining additional grant types, which
 can serve as a bridge between OAuth and other protocol frameworks.

 This specification provides a general framework for the use of
 assertions as authorization grants with OAuth 2.0. It also provides
 a framework for assertions to be used for client authentication. It
 provides generic mechanisms for transporting assertions during
 interactions with an authorization server’s token endpoint, as well
 as general rules for the content and processing of those assertions.
 The intent is to provide an alternative client authentication
 mechanism (one that doesn’t send client secrets), as well as to
 facilitate the use of OAuth 2.0 in client-server integration
 scenarios, where the end-user may not be present.

 This specification only defines abstract message flows and processing
 rules. In order to be implementable, companion specifications are
 necessary to provide the corresponding concrete instantiations. For
 instance, SAML 2.0 Profile for OAuth 2.0 Client Authentication and
 Authorization Grants [I-D.ietf-oauth-saml2-bearer] defines a concrete
 instantiation for SAML 2.0 assertions and JSON Web Token (JWT)
 Profile for OAuth 2.0 Client Authentication and Authorization Grants
 [I-D.ietf-oauth-jwt-bearer] defines a concrete instantiation for
 JWTs.

 Note: The use of assertions for client authentication is orthogonal
 to and separable from using assertions as an authorization grant.
 They can be used either in combination or separately. Client
 assertion authentication is nothing more than an alternative way for

Campbell, et al. Expires April 24, 2015 [Page 3]

Internet-Draft OAuth Assertion Framework October 2014

 a client to authenticate to the token endpoint and must be used in
 conjunction with some grant type to form a complete and meaningful
 protocol request. Assertion authorization grants may be used with or
 without client authentication or identification. Whether or not
 client authentication is needed in conjunction with an assertion
 authorization grant, as well as the supported types of client
 authentication, are policy decisions at the discretion of the
 authorization server.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] .

 Throughout this document, values are quoted to indicate that they are
 to be taken literally. When using these values in protocol messages,
 the quotes must not be used as part of the value.

3. Framework

 An assertion is a package of information that allows identity and
 security information to be shared across security domains. An
 assertion typically contains information about a subject or
 principal, information about the party that issued the assertion and
 when was it issued, as well as the conditions under which the
 assertion is to be considered valid, such as when and where it can be
 used.

 The entity that creates and signs or integrity protects the assertion
 is typically known as the "Issuer" and the entity that consumes the
 assertion and relies on its information is typically known as the
 "Relying Party". In the context of this document, the authorization
 server acts as a relying party.

 Assertions used in the protocol exchanges defined by this
 specification MUST always be integrity protected using a digital
 signature or Message Authentication Code applied by the issuer, which
 authenticates the issuer and ensures integrity of the assertion
 content. In many cases, the assertion is issued by a third party and
 it must be protected against tampering by the client that presents
 it. An assertion MAY additionally be encrypted, preventing
 unauthorized parties (such as the client) from inspecting the
 content.

 Although this document does not define the processes by which the
 client obtains the assertion (prior to sending it to the
 authorization server), there are two common patterns described below.

Campbell, et al. Expires April 24, 2015 [Page 4]

Internet-Draft OAuth Assertion Framework October 2014

 In the first pattern, depicted in Figure 1, the client obtains an
 assertion from a third party entity capable of issuing, renewing,
 transforming, and validating security tokens. Typically such an
 entity is known as a "Security Token Service" (STS) or just "Token
 Service" and a trust relationship (usually manifested in the exchange
 of some kind of key material) exists between the token service and
 the relying party. The token service is the assertion issuer; its
 role is to fulfill requests from clients, which present various
 credentials, and mint assertions as requested, fill them with
 appropriate information, and integrity protect them with a signature
 or message authentication code. WS-Trust [OASIS.WS-Trust] is one
 available standard for requesting security tokens (assertions).

 Relying
 Party Client Token Service
 | | |
 | | 1) Request Assertion |
 | |------------------------>|
 | | |
 | | 2) Assertion |
 | |<------------------------|
 | 3) Assertion | |
 |<-------------------------| |
 | | |
 | 4) OK or Failure | |
 |------------------------->| |
 | | |
 | | |

 Figure 1: Third Party Created Assertion

 In the second pattern, depicted in Figure 2, the client creates
 assertions locally. To apply the signatures or message
 authentication codes to assertions, it has to obtain key material:
 either symmetric keys or asymmetric key pairs. The mechanisms for
 obtaining this key material are beyond the scope of this
 specification.

 Although assertions are usually used to convey identity and security
 information, self-issued assertions can also serve a different
 purpose. They can be used to demonstrate knowledge of some secret,
 such as a client secret, without actually communicating the secret
 directly in the transaction. In that case, additional information
 included in the assertion by the client itself will be of limited
 value to the relying party and, for this reason, only a bare minimum
 of information is typically included in such an assertion, such as
 information about issuing and usage conditions.

Campbell, et al. Expires April 24, 2015 [Page 5]

Internet-Draft OAuth Assertion Framework October 2014

 Relying
 Party Client
 | |
 | | 1) Create
 | | Assertion
 | |--------------+
 | | |
 | | 2) Assertion |
 | |<-------------+
 | 3) Assertion |
 |<-------------------------|
 | |
 | 4) OK or Failure |
 |------------------------->|
 | |
 | |

 Figure 2: Self-Issued Assertion

 Deployments need to determine the appropriate variant to use based on
 the required level of security, the trust relationship between the
 entities, and other factors.

 From the perspective of what must be done by the entity presenting
 the assertion, there are two general types of assertions:

 1. Bearer Assertions: Any entity in possession of a bearer assertion
 (the bearer) can use it to get access to the associated resources
 (without demonstrating possession of a cryptographic key). To
 prevent misuse, bearer assertions need to be protected from
 disclosure in storage and in transport. Secure communication
 channels are required between all entities to avoid leaking the
 assertion to unauthorized parties.

 2. Holder-of-Key Assertions: To access the associated resources, the
 entity presenting the assertion must demonstrate possession of
 additional cryptographic material. The token service thereby
 binds a key identifier to the assertion and the client has to
 demonstrate to the relying party that it knows the key
 corresponding to that identifier when presenting the assertion.

 The protocol parameters and processing rules defined in this document
 are intended to support a client presenting a bearer assertion to an
 authorization server. They are not directly suitable for use with
 holder-of-key assertions. While they could be used as a baseline for
 a holder-of-key assertion system, there would be a need for
 additional mechanisms (to support proof-of-possession of the secret

Campbell, et al. Expires April 24, 2015 [Page 6]

Internet-Draft OAuth Assertion Framework October 2014

 key), and possibly changes to the security model (e.g., to relax the
 requirement for an Audience).

4. Transporting Assertions

 This section defines HTTP parameters for transporting assertions
 during interactions with a token endpoint of an OAuth authorization
 server. Because requests to the token endpoint result in the
 transmission of clear-text credentials (in both the HTTP request and
 response), all requests to the token endpoint MUST use TLS, as
 mandated in Section 3.2 of OAuth 2.0 [RFC6749].

4.1. Using Assertions as Authorization Grants

 This section defines the use of assertions as authorization grants,
 based on the definition provided in Section 4.5 of OAuth 2.0
 [RFC6749]. When using assertions as authorization grants, the client
 includes the assertion and related information using the following
 HTTP request parameters:

 grant_type
 REQUIRED. The format of the assertion as defined by the
 authorization server. The value will be an absolute URI.

 assertion
 REQUIRED. The assertion being used as an authorization grant.
 Specific serialization of the assertion is defined by profile
 documents.

 scope
 OPTIONAL. The requested scope as described in Section 3.3 of
 OAuth 2.0 [RFC6749]. When exchanging assertions for access
 tokens, the authorization for the token has been previously
 granted through some out-of-band mechanism. As such, the
 requested scope MUST be equal or lesser than the scope originally
 granted to the authorized accessor. The Authorization Server MUST
 limit the scope of the issued access token to be equal or lesser
 than the scope originally granted to the authorized accessor.

 Authentication of the client is optional, as described in
 Section 3.2.1 of OAuth 2.0 [RFC6749] and consequently, the
 "client_id" is only needed when a form of client authentication that
 relies on the parameter is used.

 The following example demonstrates an assertion being used as an
 authorization grant (with extra line breaks for display purposes
 only):

Campbell, et al. Expires April 24, 2015 [Page 7]

Internet-Draft OAuth Assertion Framework October 2014

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Asaml2-bearer&
 assertion=PHNhbWxwOl...[omitted for brevity]...ZT4

 An assertion used in this context is generally a short lived
 representation of the authorization grant and authorization servers
 SHOULD NOT issue access tokens with a lifetime that exceeds the
 validity period of the assertion by a significant period. In
 practice, that will usually mean that refresh tokens are not issued
 in response to assertion grant requests and access tokens will be
 issued with a reasonably short lifetime. Clients can refresh an
 expired access token by requesting a new one using the same
 assertion, if it is still valid, or with a new assertion.

 An IETF URN for use as the "grant_type" value can be requested using
 the template in [RFC6755]. A URN of the form
 urn:ietf:params:oauth:grant-type:* is suggested.

4.1.1. Error Responses

 If an assertion is not valid or has expired, the Authorization Server
 constructs an error response as defined in OAuth 2.0 [RFC6749]. The
 value of the "error" parameter MUST be the "invalid_grant" error
 code. The authorization server MAY include additional information
 regarding the reasons the assertion was considered invalid using the
 "error_description" or "error_uri" parameters.

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error":"invalid_grant",
 "error_description":"Audience validation failed"
 }

4.2. Using Assertions for Client Authentication

 The following section defines the use of assertions as client
 credentials as an extension of Section 2.3 of OAuth 2.0 [RFC6749].
 When using assertions as client credentials, the client includes the
 assertion and related information using the following HTTP request
 parameters:

Campbell, et al. Expires April 24, 2015 [Page 8]

Internet-Draft OAuth Assertion Framework October 2014

 client_assertion_type
 REQUIRED. The format of the assertion as defined by the
 authorization server. The value will be an absolute URI.

 client_assertion
 REQUIRED. The assertion being used to authenticate the client.
 Specific serialization of the assertion is defined by profile
 documents.

 client_id
 OPTIONAL. The client identifier as described in Section 2.2 of
 OAuth 2.0 [RFC6749]. The "client_id" is unnecessary for client
 assertion authentication because the client is identified by the
 subject of the assertion. If present, the value of the
 "client_id" parameter MUST identify the same client as is
 identified by the client assertion.

 The following example demonstrates a client authenticating using an
 assertion during an Access Token Request, as defined in Section 4.1.3
 of OAuth 2.0 [RFC6749] (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=i1WsRn1uB1&
 client_assertion_type=urn%3Aietf%3Aparams%3Aoauth
 %3Aclient-assertion-type%3Asaml2-bearer&
 client_assertion=PHNhbW...[omitted for brevity]...ZT

 Token endpoints can differentiate between assertion based credentials
 and other client credential types by looking for the presence of the
 "client_assertion" and "client_assertion_type" parameters, which will
 only be present when using assertions for client authentication.

 An IETF URN for use as the "client_assertion_type" value may be
 requested using the template in [RFC6755]. A URN of the form
 urn:ietf:params:oauth:client-assertion-type:* is suggested.

4.2.1. Error Responses

 If an assertion is invalid for any reason or if more than one client
 authentication mechanism is used, the Authorization Server constructs
 an error response as defined in OAuth 2.0 [RFC6749]. The value of
 the "error" parameter MUST be the "invalid_client" error code. The
 authorization server MAY include additional information regarding the

Campbell, et al. Expires April 24, 2015 [Page 9]

Internet-Draft OAuth Assertion Framework October 2014

 reasons the client assertion was considered invalid using the
 "error_description" or "error_uri" parameters.

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error":"invalid_client"
 "error_description":"assertion has expired"
 }

5. Assertion Content and Processing

 This section provides a general content and processing model for the
 use of assertions in OAuth 2.0 [RFC6749].

5.1. Assertion Metamodel

 The following are entities and metadata involved in the issuance,
 exchange, and processing of assertions in OAuth 2.0. These are
 general terms, abstract from any particular assertion format.
 Mappings of these terms into specific representations are provided by
 profiles of this specification.

 Issuer
 A unique identifier for the entity that issued the assertion.
 Generally this is the entity that holds the key material used to
 sign or integrity protect the assertion. Examples of issuers are
 OAuth clients (when assertions are self-issued) and third party
 security token services. If the assertion is self-issued, the
 Issuer value is the client identifier. If the assertion was
 issued by a Security Token Service (STS), the Issuer should
 identify the STS in a manner recognized by the Authorization
 Server. In the absence of an application profile specifying
 otherwise, compliant applications MUST compare Issuer values using
 the Simple String Comparison method defined in Section 6.2.1 of
 RFC 3986 [RFC3986].

 Subject
 A unique identifier for the principal that is the subject of the
 assertion.

 * When using assertions for client authentication, the Subject
 identifies the client to the authorization server using the
 value of the "client_id" of the OAuth client.

Campbell, et al. Expires April 24, 2015 [Page 10]

Internet-Draft OAuth Assertion Framework October 2014

 * When using assertions as an authorization grant, the Subject
 identifies an authorized accessor for which the access token is
 being requested (typically the resource owner, or an authorized
 delegate).

 Audience
 A value that identifies the party or parties intended to process
 the assertion. The URL of the Token Endpoint, as defined in
 Section 3.2 of OAuth 2.0 [RFC6749], can be used to indicate that
 the authorization server as a valid intended audience of the
 assertion. In the absence of an application profile specifying
 otherwise, compliant applications MUST compare the audience values
 using the Simple String Comparison method defined in Section 6.2.1
 of RFC 3986 [RFC3986].

 Issued At
 The time at which the assertion was issued. While the
 serialization may differ by assertion format, it is REQUIRED that
 the time be expressed in UTC with no time zone component.

 Expires At
 The time at which the assertion expires. While the serialization
 may differ by assertion format, it is REQUIRED that the time be
 expressed in UTC with no time zone component.

 Assertion ID
 A nonce or unique identifier for the assertion. The Assertion ID
 may be used by implementations requiring message de-duplication
 for one-time use assertions. Any entity that assigns an
 identifier MUST ensure that there is negligible probability that
 that entity or any other entity will accidentally assign the same
 identifier to a different data object.

5.2. General Assertion Format and Processing Rules

 The following are general format and processing rules for the use of
 assertions in OAuth:

 o The assertion MUST contain an Issuer. The Issuer identifies the
 entity that issued the assertion as recognized by the
 Authorization Server. If an assertion is self-issued, the Issuer
 MUST be the value of the client’s "client_id".

 o The assertion MUST contain a Subject. The Subject typically
 identifies an authorized accessor for which the access token is
 being requested (i.e., the resource owner or an authorized
 delegate), but in some cases, may be a pseudonymous identifier or
 other value denoting an anonymous user. When the client is acting

Campbell, et al. Expires April 24, 2015 [Page 11]

Internet-Draft OAuth Assertion Framework October 2014

 on behalf of itself, the Subject MUST be the value of the client’s
 "client_id".

 o The assertion MUST contain an Audience that identifies the
 Authorization Server as the intended audience. The Authorization
 Server MUST reject any assertion that does not contain the its own
 identity as the intended audience.

 o The assertion MUST contain an Expires At entity that limits the
 time window during which the assertion can be used. The
 authorization server MUST reject assertions that have expired
 (subject to allowable clock skew between systems). Note that the
 authorization server may reject assertions with an Expires At
 attribute value that is unreasonably far in the future.

 o The assertion MAY contain an Issued At entity containing the UTC
 time at which the assertion was issued.

 o The Authorization Server MUST reject assertions with an invalid
 signature or Message Authentication Code. The algorithm used to
 validate the signature or message authentication code and the
 mechanism for designating the secret used to generate the
 signature or message authentication code over the assertion are
 beyond the scope of this specification.

6. Common Scenarios

 The following provides additional guidance, beyond the format and
 processing rules defined in Section 4 and Section 5, on assertion use
 for a number of common use cases.

6.1. Client Authentication

 A client uses an assertion to authenticate to the authorization
 server’s token endpoint by using the "client_assertion_type" and
 "client_assertion" parameters as defined in Section 4.2. The Subject
 of the assertion identifies the client. If the assertion is self-
 issued by the client, the Issuer of the assertion also identifies the
 client.

 The example in Section 4.2 shows a client authenticating using an
 assertion during an Access Token Request.

6.2. Client Acting on Behalf of Itself

 When a client is accessing resources on behalf of itself, it does so
 in a manner analogous to the Client Credentials Grant defined in
 Section 4.4 of OAuth 2.0 [RFC6749]. This is a special case that

Campbell, et al. Expires April 24, 2015 [Page 12]

Internet-Draft OAuth Assertion Framework October 2014

 combines both the authentication and authorization grant usage
 patterns. In this case, the interactions with the authorization
 server should be treated as using an assertion for Client
 Authentication according to Section 4.2, while using the grant_type
 parameter with the value "client_credentials" to indicate that the
 client is requesting an access token using only its client
 credentials.

 The following example demonstrates an assertion being used for a
 Client Credentials Access Token Request, as defined in Section 4.4.2
 of OAuth 2.0 [RFC6749] (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials&
 client_assertion_type=urn%3Aietf%3Aparams%3Aoauth
 %3Aclient-assertion-type%3Asaml2-bearer&
 client_assertion=PHNhbW...[omitted for brevity]...ZT

6.3. Client Acting on Behalf of a User

 When a client is accessing resources on behalf of a user, it does so
 by using the "grant_type" and "assertion" parameters as defined in
 Section 4.1. The Subject identifies an authorized accessor for which
 the access token is being requested (typically the resource owner, or
 an authorized delegate).

 The example in Section 4.1 shows a client making an Access Token
 Request using an assertion as an Authorization Grant.

6.3.1. Client Acting on Behalf of an Anonymous User

 When a client is accessing resources on behalf of an anonymous user,
 a mutually agreed upon Subject identifier indicating anonymity is
 used. The Subject value might be an opaque persistent or transient
 pseudonymous identifier for the user or be an agreed upon static
 value indicating an anonymous user (e.g., "anonymous"). The
 authorization may be based upon additional criteria, such as
 additional attributes or claims provided in the assertion. For
 example, a client might present an assertion from a trusted issuer
 asserting that the bearer is over 18 via an included claim. In this
 case, no additional information about the user’s identity is
 included, yet all the data needed to issue an access token is
 present.

Campbell, et al. Expires April 24, 2015 [Page 13]

Internet-Draft OAuth Assertion Framework October 2014

 More information about anonymity, pseudonymity, and privacy
 considerations in general can be found in [RFC6973].

7. Interoperability Considerations

 This specification defines a framework for using assertions with
 OAuth 2.0. However, as an abstract framework in which the data
 formats used for representing many values are not defined, on its
 own, this specification is not sufficient to produce interoperable
 implementations.

 Two other specifications that profile this framework for specific
 assertion have been developed: one [I-D.ietf-oauth-saml2-bearer] uses
 SAML 2.0-based assertions and the other [I-D.ietf-oauth-jwt-bearer]
 uses JSON Web Tokens (JWTs). These two instantiations of this
 framework specify additional details about the assertion encoding and
 processing rules for using those kinds of assertions with OAuth 2.0.

 However, even when profiled for specific assertion types, agreements
 between system entities regarding identifiers, keys, and endpoints
 are required in order to achieve interoperable deployments. Specific
 items that require agreement are as follows: values for the issuer
 and audience identifiers, supported assertion and client
 authentication types, the location of the token endpoint, the key
 used to apply and verify the digital signature or Message
 Authentication Code over the assertion, one-time use restrictions on
 assertions, maximum assertion lifetime allowed, and the specific
 subject and attribute requirements of the assertion. The exchange of
 such information is explicitly out of scope for this specification.
 Deployments for particular trust frameworks, circles of trust, or
 other uses cases will need to agree among the participants on the
 kinds of values to be used for some abstract fields defined by this
 specification. In some cases, additional profiles may be created
 that constrain or prescribe these values or specify how they are to
 be exchanged. The OAuth 2.0 Dynamic Client Registration Core
 Protocol [I-D.ietf-oauth-dyn-reg] is one such profile that enables
 OAuth Clients to register metadata about themselves at an
 Authorization Server.

8. Security Considerations

 This section discusses security considerations that apply when using
 assertions with OAuth 2.0 as described in this document. As
 discussed in Section 3, there are two different ways to obtain
 assertions: either as self-issued or obtained from a third party
 token service. While the actual interactions for obtaining an
 assertion are outside the scope of this document, the details are
 important from a security perspective. Section 3 discusses the high

Campbell, et al. Expires April 24, 2015 [Page 14]

Internet-Draft OAuth Assertion Framework October 2014

 level architectural aspects. Many of the security considerations
 discussed in this section are applicable to both the OAuth exchange
 as well as the client obtaining the assertion.

 The remainder of this section focuses on the exchanges that concern
 presenting an assertion for client authentication and for the
 authorization grant.

8.1. Forged Assertion

 Threat:
 An adversary could forge or alter an assertion in order to obtain
 an access token (in case of the authorization grant) or to
 impersonate a client (in case of the client authentication
 mechanism).

 Countermeasures:
 To avoid this kind of attack, the entities must assure that proper
 mechanisms for protecting the integrity of the assertion are
 employed. This includes the issuer digitally signing the
 assertion or computing a keyed message digest over the assertion.

8.2. Stolen Assertion

 Threat:
 An adversary may be able obtain an assertion (e.g., by
 eavesdropping) and then reuse it (replay it) at a later point in
 time.

 Countermeasures:
 The primary mitigation for this threat is the use of secure
 communication channels with server authentication for all network
 exchanges.

 An assertion may also contain several elements to prevent replay
 attacks. There is, however, a clear tradeoff between reusing an
 assertion for multiple exchanges and obtaining and creating new
 fresh assertions.

 Authorization Servers and Resource Servers may use a combination
 of the Assertion ID and Issued At/Expires At attributes for replay
 protection. Previously processed assertions may be rejected based
 on the Assertion ID. The addition of the validity window relieves
 the authorization server from maintaining an infinite state table
 of processed Assertion IDs.

Campbell, et al. Expires April 24, 2015 [Page 15]

Internet-Draft OAuth Assertion Framework October 2014

8.3. Unauthorized Disclosure of Personal Information

 Threat:
 The ability for other entities to obtain information about an
 individual, such as authentication information, role in an
 organization, or other authorization relevant information, raises
 privacy concerns.

 Countermeasures:
 To address the threats, two cases need to be differentiated:

 First, a third party that did not participate in any of the
 exchange is prevented from eavesdropping on the content of the
 assertion by employing confidentiality protection of the exchange
 using TLS. This ensures that an eavesdropper on the wire is
 unable to obtain information. However, this does not prevent
 legitimate protocol entities from obtaining information that they
 are not allowed to possess from assertions. Some assertion
 formats allow for the assertion to be encrypted, preventing
 unauthorized parties from inspecting the content.

 Second, an Authorization Server may obtain an assertion that was
 created by a third party token service and that token service may
 have placed attributes into the assertion. To mitigate potential
 privacy problems, prior consent for the release of such attribute
 information from the resource owner should be obtained. OAuth
 itself does not directly provide such capabilities, but this
 consent approval may be obtained using other identity management
 protocols, user consent interactions, or in an out-of-band
 fashion.

 For the cases where a third party token service creates assertions
 to be used for client authentication, privacy concerns are
 typically lower, since many of these clients are Web servers
 rather than individual devices operated by humans. If the
 assertions are used for client authentication of devices or
 software that can be closely linked to end users, then privacy
 protection safeguards need to be taken into consideration.

 Further guidance on privacy friendly protocol design can be found
 in [RFC6973].

8.4. Privacy Considerations

 An assertion may contain privacy-sensitive information and, to
 prevent disclosure of such information to unintended parties, should
 only be transmitted over encrypted channels, such as TLS. In cases

Campbell, et al. Expires April 24, 2015 [Page 16]

Internet-Draft OAuth Assertion Framework October 2014

 where it is desirable to prevent disclosure of certain information
 the client, the assertion, or portions of it, should be be encrypted
 to the authorization server.

 Deployments should determine the minimum amount of information
 necessary to complete the exchange and include only such information
 in the assertion. In some cases, the subject identifier can be a
 value representing an anonymous or pseudonymous user, as described in
 Section 6.3.1.

9. IANA Considerations

 This is a request to add three values, as listed in the sub-sections
 below, to the "OAuth Parameters" registry established by RFC 6749
 [RFC6749].

9.1. assertion Parameter Registration

 o Parameter name: assertion

 o Parameter usage location: token request

 o Change controller: IESG

 o Specification document(s): [[this document]]

9.2. client_assertion Parameter Registration

 o Parameter name: client_assertion

 o Parameter usage location: token request

 o Change controller: IESG

 o Specification document(s): [[this document]]

9.3. client_assertion_type Parameter Registration

 o Parameter name: client_assertion_type

 o Parameter usage location: token request

 o Change controller: IESG

 o Specification document(s): [[this document]]

Campbell, et al. Expires April 24, 2015 [Page 17]

Internet-Draft OAuth Assertion Framework October 2014

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

10.2. Informative References

 [I-D.ietf-oauth-dyn-reg]
 Richer, J., Jones, M., Bradley, J., Machulak, M., and P.
 Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 draft-ietf-oauth-dyn-reg-20 (work in progress), August
 2014.

 [I-D.ietf-oauth-jwt-bearer]
 Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", draft-ietf-oauth-jwt-bearer (work
 in progress), October 2014.

 [I-D.ietf-oauth-saml2-bearer]
 Campbell, B., Mortimore, C., and M. Jones, "SAML 2.0
 Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", draft-ietf-oauth-saml2-bearer (work
 in progress), October 2014.

 [OASIS.WS-Trust]
 Nadalin, A., Ed., Goodner, M., Ed., Gudgin, M., Ed.,
 Barbir, A., Ed., and H. Granqvist, Ed., "WS-Trust", Feb
 2009.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, October 2012.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973, July
 2013.

Campbell, et al. Expires April 24, 2015 [Page 18]

Internet-Draft OAuth Assertion Framework October 2014

Appendix A. Acknowledgements

 The authors wish to thank the following people that have influenced
 or contributed this specification: Paul Madsen, Eric Sachs, Jian Cai,
 Tony Nadalin, Hannes Tschofenig, the authors of the OAuth WRAP
 specification, and the members of the OAuth working group.

Appendix B. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 draft-ietf-oauth-assertions-18

 o Changes/suggestions from IESG reviews.

 draft-ietf-oauth-assertions-17

 o Added Privacy Considerations section per AD review discussion
 http://www.ietf.org/mail-archive/web/oauth/current/msg13148.html
 and http://www.ietf.org/mail-archive/web/oauth/current/
 msg13144.html

 draft-ietf-oauth-assertions-16

 o Clarified some text around the treatment of subject based on the
 rough rough consensus from the thread staring at
 http://www.ietf.org/mail-archive/web/oauth/current/msg12630.html

 draft-ietf-oauth-assertions-15

 o Updated references.

 o Improved formatting of hanging lists.

 draft-ietf-oauth-assertions-14

 o Update reference: draft-iab-privacy-considerations is now RFC 6973

 o Update reference: draft-ietf-oauth-dyn-reg from -13 to -15

 draft-ietf-oauth-assertions-13

 o Clean up language around subject per the subject part of
 http://www.ietf.org/mail-archive/web/oauth/current/msg12155.html

 o Replace "Client Credentials flow" by "Client Credentials _Grant_"
 as suggested in http://www.ietf.org/mail-
 archive/web/oauth/current/msg12155.html

Campbell, et al. Expires April 24, 2015 [Page 19]

Internet-Draft OAuth Assertion Framework October 2014

 o For consistency with SAML and JWT per http://www.ietf.org/mail-
 archive/web/oauth/current/msg12251.html and http://www.ietf.org/
 mail-archive/web/oauth/current/msg12253.html Stated that "In the
 absence of an application profile specifying otherwise, compliant
 applications MUST compare the audience values using the Simple
 String Comparison method defined in Section 6.2.1 of RFC 3986."

 o Added one-time use, maximum lifetime, and specific subject and
 attribute requirements to Interoperability Considerations.

 draft-ietf-oauth-assertions-12

 o Stated that issuer and audience values SHOULD be compared using
 the Simple String Comparison method defined in Section 6.2.1 of
 RFC 3986 unless otherwise specified by the application.

 draft-ietf-oauth-assertions-11

 o Addressed comments from IESG evaluation
 https://datatracker.ietf.org/doc/draft-ietf-oauth-assertions/
 ballot/.

 o Reworded Interoperability Considerations to state what
 identifiers, keys, endpoints, etc. need to be exchanged/agreed
 upon.

 o Added brief description of assertion to the into and included a
 reference to Section 3 (Framework) where it’s described more.

 o Changed such that a self-issued assertion must (was should) have
 the client id as the issuer.

 o Changed "Specific Assertion Format and Processing Rules" to
 "Common Scenarios" and reworded to be more suggestive of common
 practices, rather than trying to be normative. Also removed lots
 of repetitive text in that section.

 o Refined language around audience, subject, client identifiers,
 etc. to hopefully be clearer and less redundant.

 o Changed title from "Assertion Framework for OAuth 2.0" to
 "Assertion Framework for OAuth 2.0 Client Authentication and
 Authorization Grants" to be more explicit about the scope of the
 document per http://www.ietf.org/mail-archive/web/oauth/current/
 msg11063.html.

 o Noted that authentication of the client per Section 3.2.1 of OAuth
 is optional for an access token request with an assertion as an

Campbell, et al. Expires April 24, 2015 [Page 20]

Internet-Draft OAuth Assertion Framework October 2014

 authorization grant and removed client_id from the associated
 example.

 draft-ietf-oauth-assertions-10

 o Changed term "Principal" to "Subject".

 o Added Interoperability Considerations section.

 o Applied Shawn Emery’s comments from the security directorate
 review, including correcting urn:ietf:params:oauth:grant_type:* to
 urn:ietf:params:oauth:grant-type:*.

 draft-ietf-oauth-assertions-09

 o Allow audience values to not be URIs.

 o Added informative references to draft-ietf-oauth-saml2-bearer and
 draft-ietf-oauth-jwt-bearer.

 o Clarified that the statements about possible issuers are non-
 normative by using the language "Examples of issuers".

 draft-ietf-oauth-assertions-08

 o Update reference to RFC 6755 from draft-ietf-oauth-urn-sub-ns

 o Tidy up IANA consideration section

 draft-ietf-oauth-assertions-07

 o Reference RFC 6749.

 o Remove extraneous word per http://www.ietf.org/mail-
 archive/web/oauth/current/msg10029.html

 draft-ietf-oauth-assertions-06

 o Add more text to intro explaining that an assertion grant type can
 be used with or without client authentication/identification and
 that client assertion authentication is nothing more than an
 alternative way for a client to authenticate to the token endpoint

 draft-ietf-oauth-assertions-05

 o Non-normative editorial cleanups

 draft-ietf-oauth-assertions-04

Campbell, et al. Expires April 24, 2015 [Page 21]

Internet-Draft OAuth Assertion Framework October 2014

 o Updated document to incorporate the review comments from the
 shepherd - thread and alternative draft at http://www.ietf.org/
 mail-archive/web/oauth/current/msg09437.html

 o Added reference to draft-ietf-oauth-urn-sub-ns and include
 suggestions on urn:ietf:params:oauth:[grant-type|client-assertion-
 type]:* URNs

 draft-ietf-oauth-assertions-03

 o updated reference to draft-ietf-oauth-v2 from -25 to -26

 draft-ietf-oauth-assertions-02

 o Added text about limited lifetime ATs and RTs per
 http://www.ietf.org/mail-archive/web/oauth/current/msg08298.html.

 o Changed the line breaks in some examples to avoid awkward
 rendering to text format. Also removed encoded ’=’ padding from a
 few examples because both known derivative specs, SAML and JWT,
 omit the padding char in serialization/encoding.

 o Remove section 7 on error responses and move that (somewhat
 modified) content into subsections of section 4 broken up by
 authn/authz per http://www.ietf.org/mail-
 archive/web/oauth/current/msg08735.html.

 o Rework the text about "MUST validate ... in order to establish a
 mapping between ..." per http://www.ietf.org/mail-
 archive/web/oauth/current/msg08872.html and http://www.ietf.org/
 mail-archive/web/oauth/current/msg08749.html.

 o Change "The Principal MUST identify an authorized accessor. If
 the assertion is self-issued, the Principal SHOULD be the
 client_id" in 6.1 per http://www.ietf.org/mail-
 archive/web/oauth/current/msg08873.html.

 o Update reference in 4.1 to point to 2.3 (rather than 3.2) of
 oauth-v2 (rather than self) http://www.ietf.org/mail-
 archive/web/oauth/current/msg08874.html.

 o Move the "Section 3 of" out of the xref to hopefully fix the link
 in 4.1 and remove the client_id bullet from 4.2 per
 http://www.ietf.org/mail-archive/web/oauth/current/msg08875.html.

 o Add ref to Section 3.3 of oauth-v2 for scope definition and remove
 some then redundant text per http://www.ietf.org/mail-
 archive/web/oauth/current/msg08890.html.

Campbell, et al. Expires April 24, 2015 [Page 22]

Internet-Draft OAuth Assertion Framework October 2014

 o Change "The following format and processing rules SHOULD be
 applied" to "The following format and processing rules apply" in
 sections 6.x to remove conflicting normative qualification of
 other normative statements per http://www.ietf.org/mail-
 archive/web/oauth/current/msg08892.html.

 o Add text the client_id must id the client to 4.1 and remove
 similar text from other places per http://www.ietf.org/mail-
 archive/web/oauth/current/msg08893.html.

 o Remove the MUST from the text prior to the HTTP parameter
 definitions per http://www.ietf.org/mail-
 archive/web/oauth/current/msg08920.html.

 o Updated examples to use grant_type and client_assertion_type
 values from the OAuth SAML Assertion Profiles spec.

Authors’ Addresses

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com

 Chuck Mortimore
 Salesforce.com

 Email: cmortimore@salesforce.com

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com

 Yaron Y. Goland
 Microsoft

 Email: yarong@microsoft.com

Campbell, et al. Expires April 24, 2015 [Page 23]

OAuth Working Group J. Richer, Ed.
Internet-Draft
Intended status: Standards Track M. Jones
Expires: November 29, 2015 Microsoft
 J. Bradley
 Ping Identity
 M. Machulak
 Newcastle University
 P. Hunt
 Oracle Corporation
 May 28, 2015

 OAuth 2.0 Dynamic Client Registration Protocol
 draft-ietf-oauth-dyn-reg-30

Abstract

 This specification defines mechanisms for dynamically registering
 OAuth 2.0 clients with authorization servers. Registration requests
 send a set of desired client metadata values to the authorization
 server. The resulting registration responses return a client
 identifier to use at the authorization server and the client metadata
 values registered for the client. The client can then use this
 registration information to communicate with the authorization server
 using the OAuth 2.0 protocol. This specification also defines a set
 of common client metadata fields and values for clients to use during
 registration.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 29, 2015.

Richer, et al. Expires November 29, 2015 [Page 1]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Notational Conventions 4
 1.2. Terminology . 4
 1.3. Protocol Flow . 6
 2. Client Metadata . 7
 2.1. Relationship between Grant Types and Response Types . . . 11
 2.2. Human-Readable Client Metadata 12
 2.3. Software Statement 13
 3. Client Registration Endpoint 14
 3.1. Client Registration Request 15
 3.1.1. Client Registration Request Using a Software
 Statement . 17
 3.2. Responses . 18
 3.2.1. Client Information Response 18
 3.2.2. Client Registration Error Response 20
 4. IANA Considerations . 22
 4.1. OAuth Dynamic Client Registration Metadata Registry . . . 22
 4.1.1. Registration Template 23
 4.1.2. Initial Registry Contents 23
 4.2. OAuth Token Endpoint Authentication Methods Registry . . 26
 4.2.1. Registration Template 26
 4.2.2. Initial Registry Contents 27
 5. Security Considerations 27
 6. Privacy Considerations 30
 7. References . 31
 7.1. Normative References 31
 7.2. Informative References 33
 Appendix A. Use Cases . 33
 A.1. Open versus Protected Dynamic Client Registration 33
 A.1.1. Open Dynamic Client Registration 33
 A.1.2. Protected Dynamic Client Registration 33

Richer, et al. Expires November 29, 2015 [Page 2]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 A.2. Registration Without or With Software Statements 34
 A.2.1. Registration Without a Software Statement 34
 A.2.2. Registration With a Software Statement 34
 A.3. Registration by the Client or Developer 34
 A.3.1. Registration by the Client 34
 A.3.2. Registration by the Developer 34
 A.4. Client ID per Client Instance or per Client Software . . 34
 A.4.1. Client ID per Client Software Instance 34
 A.4.2. Client ID Shared Among All Instances of Client
 Software . 35
 A.5. Stateful or Stateless Registration 35
 A.5.1. Stateful Client Registration 35
 A.5.2. Stateless Client Registration 35
 Appendix B. Acknowledgments 35
 Appendix C. Document History 36
 Authors’ Addresses . 42

1. Introduction

 In order for an OAuth 2.0 [RFC6749] client to utilize an OAuth 2.0
 authorization server, the client needs specific information to
 interact with the server, including an OAuth 2.0 client identifier to
 use at that server. This specification describes how an OAuth 2.0
 client can be dynamically registered with an authorization server to
 obtain this information.

 As part of the registration process, this specification also defines
 a mechanism for the client to present the authorization server with a
 set of metadata, such as a set of valid redirection URIs. This
 metadata can either be communicated in a self-asserted fashion or as
 a set of metadata called a software statement, which is digitally
 signed or MACed; in the case of a software statement, the issuer is
 vouching for the validity of the data about the client.

 Traditionally, registration of a client with an authorization server
 is performed manually. The mechanisms defined in this specification
 can be used either for a client to dynamically register itself with
 authorization servers or for a client developer to programmatically
 register the client with authorization servers. Multiple
 applications using OAuth 2.0 have previously developed mechanisms for
 accomplishing such registrations. This specification generalizes the
 registration mechanisms defined by the OpenID Connect Dynamic Client
 Registration 1.0 [OpenID.Registration] specification and used by the
 User Managed Access (UMA) Profile of OAuth 2.0
 [I-D.hardjono-oauth-umacore] specification in a way that is
 compatible with both, while being applicable to a wider set of OAuth
 2.0 use cases.

Richer, et al. Expires November 29, 2015 [Page 3]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

1.1. Notational Conventions

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 This specification uses the terms "access token", "authorization
 code", "authorization endpoint", "authorization grant",
 "authorization server", "client", "client identifier", "client
 secret", "grant type", "protected resource", "redirection URI",
 "refresh token", "resource owner", "resource server", "response
 type", and "token endpoint" defined by OAuth 2.0 [RFC6749] and uses
 the term "Claim" defined by JSON Web Token (JWT) [RFC7519].

 This specification defines the following terms:

 Client Software
 Software implementing an OAuth 2.0 client.

 Client Instance
 A deployed instance of a piece of client software.

 Client Developer
 The person or organization that builds a client software package
 and prepares it for distribution. At the time of building the
 client, the developer is often not aware of who the deploying
 service provider organizations will be. Client developers will
 need to use dynamic registration when they are unable to predict
 aspects of the software, such as the deployment URLs, at compile
 time. For instance, this can occur when the software API
 publisher and the deploying organization are not the same.

 Client Registration Endpoint
 OAuth 2.0 endpoint through which a client can be registered at an
 authorization server. The means by which the URL for this
 endpoint is obtained are out of scope for this specification.

 Initial Access Token
 OAuth 2.0 access token optionally issued by an authorization
 server to a developer or client and used to authorize calls to the
 client registration endpoint. The type and format of this token
 are likely service-specific and are out of scope for this
 specification. The means by which the authorization server issues

Richer, et al. Expires November 29, 2015 [Page 4]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 this token as well as the means by which the registration endpoint
 validates this token are out of scope for this specification. Use
 of an initial access token is required when the authorization
 server limits the parties that can register a client.

 Deployment Organization
 An administrative security domain under which a software API
 (service) is deployed and protected by an OAuth 2.0 framework. In
 some OAuth scenarios, the deployment organization and the software
 API publisher are the same. In these cases, the deploying
 organization will often have a close relationship with client
 software developers. In many other cases, the definer of the
 service may be an independent third-party publisher or a standards
 organization. When working to a published specification for an
 API, the client software developer is unable to have a prior
 relationship with the potentially many deployment organizations
 deploying the software API (service).

 Software API Deployment
 A deployed instance of a software API that is protected by OAuth
 2.0 (a protected resource) in a particular deployment organization
 domain. For any particular software API, there may be one or more
 deployments. A software API deployment typically has an
 associated OAuth 2.0 authorization server as well as a client
 registration endpoint. The means by which endpoints are obtained
 are out of scope for this specification.

 Software API Publisher
 The organization that defines a particular web accessible API that
 may be deployed in one or more deployment environments. A
 publisher may be any standards body, commercial, public, private,
 or open source organization that is responsible for publishing and
 distributing software and API specifications that may be protected
 via OAuth 2.0. In some cases, a software API publisher and a
 client developer may be the same organization. At the time of
 publication of a web accessible API, the software publisher often
 does not have a prior relationship with the deploying
 organizations.

 Software Statement
 Digitally signed or MACed JSON Web Token (JWT) [RFC7519] that
 asserts metadata values about the client software. In some cases,
 a software statement will be issued directly by the client
 developer. In other cases, a software statement will be issued by
 a third party organization for use by the client developer. In
 both cases, the trust relationship the authorization server has
 with the issuer of the software statement is intended to be used
 as an input to the evaluation of whether the registration request

Richer, et al. Expires November 29, 2015 [Page 5]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 is accepted. A software statement can be presented to an
 authorization server as part of a client registration request.

1.3. Protocol Flow

 +--------(A)- Initial Access Token (OPTIONAL)
 |
 | +----(B)- Software Statement (OPTIONAL)
 | |
 v v
 +-----------+ +---------------+
 | |--(C)- Client Registration Request -->| Client |
 | Client or | | Registration |
 | Developer |<-(D)- Client Information Response ---| Endpoint |
 | | or Client Error Response +---------------+
 +-----------+

 Figure 1: Abstract Dynamic Client Registration Flow

 The abstract OAuth 2.0 client dynamic registration flow illustrated
 in Figure 1 describes the interaction between the client or developer
 and the endpoint defined in this specification. This figure does not
 demonstrate error conditions. This flow includes the following
 steps:

 (A) Optionally, the client or developer is issued an initial access
 token giving access to the client registration endpoint. The
 method by which the initial access token is issued to the client
 or developer is out of scope for this specification.

 (B) Optionally, the client or developer is issued a software
 statement for use with the client registration endpoint. The
 method by which the software statement is issued to the client or
 developer is out of scope for this specification.

 (C) The client or developer calls the client registration endpoint
 with the client’s desired registration metadata, optionally
 including the initial access token from (A) if one is required by
 the authorization server.

 (D) The authorization server registers the client and returns:

 * the client’s registered metadata,

 * a client identifier that is unique at the server, and

Richer, et al. Expires November 29, 2015 [Page 6]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 * a set of client credentials such as a client secret, if
 applicable for this client.

 Examples of different configurations and usages are included in
 Appendix A.

2. Client Metadata

 Registered clients have a set of metadata values associated with
 their client identifier at an authorization server, such as the list
 of valid redirection URIs or a display name.

 These client metadata values are used in two ways:

 o as input values to registration requests, and

 o as output values in registration responses.

 The following client metadata fields are defined by this
 specification. The implementation and use of all client metadata
 fields is OPTIONAL, unless stated otherwise. All data member types
 (strings, arrays, numbers) are defined in terms of their JSON
 [RFC7159] representations.

 redirect_uris
 Array of redirection URI strings for use in redirect-based flows
 such as the authorization code and implicit flows. As required by
 Section 2 of OAuth 2.0 [RFC6749], clients using flows with
 redirection MUST register their redirection URI values.
 Authorization servers that support dynamic registration for
 redirect-based flows MUST implement support for this metadata
 value.

 token_endpoint_auth_method
 String indicator of the requested authentication method for the
 token endpoint. Values defined by this specification are:

 * "none": The client is a public client as defined in OAuth 2.0
 and does not have a client secret.

 * "client_secret_post": The client uses the HTTP POST parameters
 defined in OAuth 2.0 section 2.3.1.

 * "client_secret_basic": the client uses HTTP Basic defined in
 OAuth 2.0 section 2.3.1

 Additional values can be defined via the IANA OAuth Token Endpoint
 Authentication Methods Registry established in Section 4.2.

Richer, et al. Expires November 29, 2015 [Page 7]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 Absolute URIs can also be used as values for this parameter
 without being registered. If unspecified or omitted, the default
 is "client_secret_basic", denoting HTTP Basic Authentication
 Scheme as specified in Section 2.3.1 of OAuth 2.0.

 grant_types
 Array of OAuth 2.0 grant type strings that the client can use at
 the token endpoint. These grant types are defined as follows:

 * "authorization_code": The Authorization Code Grant described in
 OAuth 2.0 Section 4.1

 * "implicit": The Implicit Grant described in OAuth 2.0
 Section 4.2

 * "password": The Resource Owner Password Credentials Grant
 described in OAuth 2.0 Section 4.3

 * "client_credentials": The Client Credentials Grant described in
 OAuth 2.0 Section 4.4

 * "refresh_token": The Refresh Token Grant described in OAuth 2.0
 Section 6.

 * "urn:ietf:params:oauth:grant-type:jwt-bearer": The JWT Bearer
 Grant defined in OAuth JWT Bearer Token Profiles [RFC7523].

 * "urn:ietf:params:oauth:grant-type:saml2-bearer": The SAML 2
 Bearer Grant defined in OAuth SAML 2 Bearer Token Profiles
 [RFC7522].

 If the token endpoint is used in the grant type, the value of this
 parameter MUST be the same as the value of the "grant_type"
 parameter passed to the token endpoint defined in the grant type
 definition. Authorization servers MAY allow for other values as
 defined in the grant type extension process described in OAuth 2.0
 Section 2.5. If omitted, the default behavior is that the client
 will use only the "authorization_code" Grant Type.

 response_types
 Array of the OAuth 2.0 response type strings that the client can
 use at the authorization endpoint. These response types are
 defined as follows:

 * "code": The authorization code response described in OAuth 2.0
 Section 4.1.

Richer, et al. Expires November 29, 2015 [Page 8]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 * "token": The implicit response described in OAuth 2.0
 Section 4.2.

 If the authorization endpoint is used by the grant type, the value
 of this parameter MUST be the same as the value of the
 "response_type" parameter passed to the authorization endpoint
 defined in the grant type definition. Authorization servers MAY
 allow for other values as defined in the grant type extension
 process is described in OAuth 2.0 Section 2.5. If omitted, the
 default is that the client will use only the "code" response type.

 client_name
 Human-readable string name of the client to be presented to the
 end-user during authorization. If omitted, the authorization
 server MAY display the raw "client_id" value to the end-user
 instead. It is RECOMMENDED that clients always send this field.
 The value of this field MAY be internationalized, as described in
 Section 2.2.

 client_uri
 URL string of a web page providing information about the client.
 If present, the server SHOULD display this URL to the end-user in
 a clickable fashion. It is RECOMMENDED that clients always send
 this field. The value of this field MUST point to a valid web
 page. The value of this field MAY be internationalized, as
 described in Section 2.2.

 logo_uri
 URL string that references a logo for the client. If present, the
 server SHOULD display this image to the end-user during approval.
 The value of this field MUST point to a valid image file. The
 value of this field MAY be internationalized, as described in
 Section 2.2.

 scope
 String containing a space separated list of scope values (as
 described in Section 3.3 of OAuth 2.0 [RFC6749]) that the client
 can use when requesting access tokens. The semantics of values in
 this list is service specific. If omitted, an authorization
 server MAY register a client with a default set of scopes.

 contacts
 Array of strings representing ways to contact people responsible
 for this client, typically email addresses. The authorization
 server MAY make these contact addresses available to end-users for
 support requests for the client. See Section 6 for information on
 Privacy Considerations.

Richer, et al. Expires November 29, 2015 [Page 9]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 tos_uri
 URL string that points to a human-readable terms of service
 document for the client that describes a contractual relationship
 between the end-user and the client that the end-user accepts when
 authorizing the client. The authorization server SHOULD display
 this URL to the end-user if it is provided. The value of this
 field MUST point to a valid web page. The value of this field MAY
 be internationalized, as described in Section 2.2.

 policy_uri
 URL string that points to a human-readable privacy policy document
 that describes how the deployment organization collects, uses,
 retains, and discloses personal data. The authorization server
 SHOULD display this URL to the end-user if it is provided. The
 value of this field MUST point to a valid web page. The value of
 this field MAY be internationalized, as described in Section 2.2.

 jwks_uri
 URL string referencing the client’s JSON Web Key Set [RFC7517]
 document, which contains the client’s public keys. The value of
 this field MUST point to a valid JWK Set document. These keys can
 be used by higher level protocols that use signing or encryption.
 For instance, these keys might be used by some applications for
 validating signed requests made to the token endpoint when using
 JWTs for client authentication [RFC7523]. Use of this parameter
 is preferred over the "jwks" parameter, as it allows for easier
 key rotation. The "jwks_uri" and "jwks" parameters MUST NOT both
 be present in the same request or response.

 jwks
 Client’s JSON Web Key Set [RFC7517] document value, which contains
 the client’s public keys. The value of this field MUST be a JSON
 object containing a valid JWK Set. These keys can be used by
 higher level protocols that use signing or encryption. This
 parameter is intended to be used by clients that cannot use the
 "jwks_uri" parameter, such as native clients that cannot host
 public URLs. The "jwks_uri" and "jwks" parameters MUST NOT both
 be present in the same request or response.

 software_id
 A unique identifier string (e.g. a UUID) assigned by the client
 developer or software publisher used by registration endpoints to
 identify the client software to be dynamically registered. Unlike
 "client_id", which is issued by the authorization server and
 SHOULD vary between instances, the "software_id" SHOULD remain the
 same for all instances of the client software. The "software_id"
 SHOULD remain the same across multiple updates or versions of the
 same piece of software. The value of this field is not intended

Richer, et al. Expires November 29, 2015 [Page 10]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 to be human-readable and is usually opaque to the client and
 authorization server.

 software_version
 A version identifier string for the client software identified by
 "software_id". The value of the "software_version" SHOULD change
 on any update to the client software identified by the same
 "software_id". The value of this field is intended to be compared
 using string equality matching and no other comparison semantics
 are defined by this specification. The value of this field is
 outside the scope of this speicification, but it is not intended
 to be human readable and is usually opaque to the client and
 authorization server. The definition of what constitutes an
 update to client software that would trigger a change to this
 value is specific to the software itself and is outside the scope
 of this specification.

 Extensions and profiles of this specification can expand this list
 with metadata names and descriptions registered in accordance with
 the IANA Considerations in Section 4 of this document. The
 authorization server MUST ignore any client metadata sent by the
 client that it does not understand (for instance, by silently
 removing unknown metadata from the client’s registration record
 during processing). The authorization server MAY reject any
 requested client metadata values by replacing requested values with
 suitable defaults as described in Section 3.2.1 or by returning an
 error response as described in Section 3.2.2.

 Client metadata values can either be communicated directly in the
 body of a registration request, as described in Section 3.1, or
 included as claims in a software statement, as described in
 Section 2.3, or a mixture of both. If the same client metadata name
 is present in both locations and the software statement is trusted by
 the authorization server, the value of a claim in the software
 statement MUST take precedence.

2.1. Relationship between Grant Types and Response Types

 The "grant_types" and "response_types" values described above are
 partially orthogonal, as they refer to arguments passed to different
 endpoints in the OAuth protocol. However, they are related in that
 the "grant_types" available to a client influence the
 "response_types" that the client is allowed to use, and vice versa.
 For instance, a "grant_types" value that includes
 "authorization_code" implies a "response_types" value that includes
 "code", as both values are defined as part of the OAuth 2.0
 authorization code grant. As such, a server supporting these fields
 SHOULD take steps to ensure that a client cannot register itself into

Richer, et al. Expires November 29, 2015 [Page 11]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 an inconsistent state, for example by returning an
 "invalid_client_metadata" error response to an inconsistent
 registration request.

 The correlation between the two fields is listed in the table below.

 +---+-------------------+
 | grant_types value includes: | response_types |
 | | value includes: |
 +---+-------------------+
authorization_code	code
implicit	token
password	(none)
client_credentials	(none)
refresh_token	(none)
urn:ietf:params:oauth:grant-type:jwt-bearer	(none)
urn:ietf:params:oauth:grant-type:saml2-bearer	(none)
 +---+-------------------+

 Extensions and profiles of this document that introduce new values to
 either the "grant_types" or "response_types" parameter MUST document
 all correspondences between these two parameter types.

2.2. Human-Readable Client Metadata

 Human-readable client metadata values and client metadata values that
 reference human-readable values MAY be represented in multiple
 languages and scripts. For example, the values of fields such as
 "client_name", "tos_uri", "policy_uri", "logo_uri", and "client_uri"
 might have multiple locale-specific values in some client
 registrations to facilitate use in different locations.

 To specify the languages and scripts, BCP47 [RFC5646] language tags
 are added to client metadata member names, delimited by a #
 character. Since JSON [RFC7159] member names are case sensitive, it
 is RECOMMENDED that language tag values used in Claim Names be
 spelled using the character case with which they are registered in
 the IANA Language Subtag Registry [IANA.Language]. In particular,
 normally language names are spelled with lowercase characters, region
 names are spelled with uppercase characters, and languages are
 spelled with mixed case characters. However, since BCP47 language
 tag values are case insensitive, implementations SHOULD interpret the
 language tag values supplied in a case insensitive manner. Per the
 recommendations in BCP47, language tag values used in metadata member
 names should only be as specific as necessary. For instance, using
 "fr" might be sufficient in many contexts, rather than "fr-CA" or
 "fr-FR".

Richer, et al. Expires November 29, 2015 [Page 12]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 For example, a client could represent its name in English as
 ""client_name#en": "My Client"" and its name in Japanese as
 ""client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D"" within the same
 registration request. The authorization server MAY display any or
 all of these names to the resource owner during the authorization
 step, choosing which name to display based on system configuration,
 user preferences or other factors.

 If any human-readable field is sent without a language tag, parties
 using it MUST NOT make any assumptions about the language, character
 set, or script of the string value, and the string value MUST be used
 as-is wherever it is presented in a user interface. To facilitate
 interoperability, it is RECOMMENDED that clients and servers use a
 human-readable field without any language tags in addition to any
 language-specific fields, and it is RECOMMENDED that any human-
 readable fields sent without language tags contain values suitable
 for display on a wide variety of systems.

 Implementer’s Note: Many JSON libraries make it possible to reference
 members of a JSON object as members of an object construct in the
 native programming environment of the library. However, while the
 "#" character is a valid character inside of a JSON object’s member
 names, it is not a valid character for use in an object member name
 in many programming environments. Therefore, implementations will
 need to use alternative access forms for these claims. For instance,
 in JavaScript, if one parses the JSON as follows, "var j =
 JSON.parse(json);", then as a workaround the member "client_name#en-
 us" can be accessed using the JavaScript syntax "j["client_name#en-
 us"]".

2.3. Software Statement

 A software statement is a JSON Web Token (JWT) [RFC7519] that asserts
 metadata values about the client software as a bundle. A set of
 claims that can be used in a software statement are defined in
 Section 2. When presented to the authorization server as part of a
 client registration request, the software statement MUST be digitally
 signed or MACed using JWS [RFC7515] and MUST contain an "iss"
 (issuer) claim denoting the party attesting to the claims in the
 software statement. It is RECOMMENDED that software statements be
 digitally signed using the "RS256" signature algorithm, although
 particular applications MAY specify the use of different algorithms.
 It is RECOMMENDED that software statements contain the "software_id"
 claim to allow authorization servers to correlate different instances
 of software using the same software statement.

 For example, a software statement could contain the following claims:

Richer, et al. Expires November 29, 2015 [Page 13]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 {
 "software_id": "4NRB1-0XZABZI9E6-5SM3R",
 "client_name": "Example Statement-based Client",
 "client_uri": "https://client.example.net/"
 }

 The following non-normative example JWT includes these claims and has
 been asymmetrically signed using RS256:

 Line breaks are for display purposes only

 eyJhbGciOiJSUzI1NiJ9.
 eyJzb2Z0d2FyZV9pZCI6IjROUkIxLTBYWkFCWkk5RTYtNVNNM1IiLCJjbGll
 bnRfbmFtZSI6IkV4YW1wbGUgU3RhdGVtZW50LWJhc2VkIENsaWVudCIsImNs
 aWVudF91cmkiOiJodHRwczovL2NsaWVudC5leGFtcGxlLm5ldC8ifQ.
 GHfL4QNIrQwL18BSRdE595T9jbzqa06R9BT8w409x9oIcKaZo_mt15riEXHa
 zdISUvDIZhtiyNrSHQ8K4TvqWxH6uJgcmoodZdPwmWRIEYbQDLqPNxREtYn0
 5X3AR7ia4FRjQ2ojZjk5fJqJdQ-JcfxyhK-P8BAWBd6I2LLA77IG32xtbhxY
 fHX7VhuU5ProJO8uvu3Ayv4XRhLZJY4yKfmyjiiKiPNe-Ia4SMy_d_QSWxsk
 U5XIQl5Sa2YRPMbDRXttm2TfnZM1xx70DoYi8g6czz-CPGRi4SW_S2RKHIJf
 IjoI3zTJ0Y2oe0_EJAiXbL6OyF9S5tKxDXV8JIndSA

 The means by which a client or developer obtains a software statement
 are outside the scope of this specification. Some common methods
 could include a client developer generating a client-specific JWT by
 registering with a software API publisher to obtain a software
 statement for a class of clients. The software statement is
 typically distributed with all instances of a client application.

 The criteria by which authorization servers determine whether to
 trust and utilize the information in a software statement are beyond
 the scope of this specification.

 In some cases, authorization servers MAY choose to accept a software
 statement value directly as a client identifier in an authorization
 request, without a prior dynamic client registration having been
 performed. The circumstances under which an authorization server
 would do so, and the specific software statement characteristics
 required in this case, are beyond the scope of this specification.

3. Client Registration Endpoint

 The client registration endpoint is an OAuth 2.0 endpoint defined in
 this document that is designed to allow a client to be registered
 with the authorization server. The client registration endpoint MUST
 accept HTTP POST messages with request parameters encoded in the
 entity body using the "application/json" format. The client

Richer, et al. Expires November 29, 2015 [Page 14]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 registration endpoint MUST be protected by a transport-layer security
 mechanism, as described in Section 5.

 The client registration endpoint MAY be an OAuth 2.0 protected
 resource and accept an initial access token in the form of an OAuth
 2.0 [RFC6749] access token to limit registration to only previously
 authorized parties. The method by which the initial access token is
 obtained by the client or developer is generally out-of-band and is
 out of scope for this specification. The method by which the initial
 access token is verified and validated by the client registration
 endpoint is out of scope for this specification.

 To support open registration and facilitate wider interoperability,
 the client registration endpoint SHOULD allow registration requests
 with no authorization (which is to say, with no initial access token
 in the request). These requests MAY be rate-limited or otherwise
 limited to prevent a denial-of-service attack on the client
 registration endpoint.

3.1. Client Registration Request

 This operation registers a client with the authorization server. The
 authorization server assigns this client a unique client identifier,
 optionally assigns a client secret, and associates the metadata
 provided in the request with the issued client identifier. The
 request includes any client metadata parameters being specified for
 the client during the registration. The authorization server MAY
 provision default values for any items omitted in the client
 metadata.

 To register, the client or developer sends an HTTP POST to the client
 registration endpoint with a content type of "application/json". The
 HTTP Entity Payload is a JSON [RFC7159] document consisting of a JSON
 object and all requested client metadata values as top-level members
 of that JSON object.

 For example, if the server supports open registration (with no
 initial access token), the client could send the following
 registration request to the client registration endpoint:

Richer, et al. Expires November 29, 2015 [Page 15]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 The following is a non-normative example request not using an initial
 access token (with line wraps within values for display purposes
 only):

 POST /register HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Host: server.example.com

 {
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "client_name":"My Example Client",
 "client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "token_endpoint_auth_method":"client_secret_basic",
 "logo_uri":"https://client.example.org/logo.png",
 "jwks_uri":"https://client.example.org/my_public_keys.jwks",
 "example_extension_parameter": "example_value"
 }

 Alternatively, if the server supports authorized registration, the
 developer or the client will be provisioned with an initial access
 token. (The method by which the initial access token is obtained is
 out of scope for this specification.) The developer or client sends
 the following authorized registration request to the client
 registration endpoint. Note that the initial access token sent in
 this example as an OAuth 2.0 Bearer Token [RFC6750], but any OAuth
 2.0 token type could be used by an authorization server.

Richer, et al. Expires November 29, 2015 [Page 16]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 The following is a non-normative example request using an initial
 access token and registering a JWK set by value (with line wraps
 within values for display purposes only):

 POST /register HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Bearer ey23f2.adfj230.af32-developer321
 Host: server.example.com

 {
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "client_name":"My Example Client",
 "client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "token_endpoint_auth_method":"client_secret_basic",
 "policy_uri":"https://client.example.org/policy.html",
 "jwks":{"keys":[{
 "e": "AQAB",
 "n": "nj3YJwsLUFl9BmpAbkOswCNVx17Eh9wMO-_AReZwBqfaWFcfG
 HrZXsIV2VMCNVNU8Tpb4obUaSXcRcQ-VMsfQPJm9IzgtRdAY8NN8Xb7PEcYyk
 lBjvTtuPbpzIaqyiUepzUXNDFuAOOkrIol3WmflPUUgMKULBN0EUd1fpOD70p
 RM0rlp_gg_WNUKoW1V-3keYUJoXH9NztEDm_D2MQXj9eGOJJ8yPgGL8PAZMLe
 2R7jb9TxOCPDED7tY_TU4nFPlxptw59A42mldEmViXsKQt60s1SLboazxFKve
 qXC_jpLUt22OC6GUG63p-REw-ZOr3r845z50wMuzifQrMI9bQ",
 "kty": "RSA"
 }]},
 "example_extension_parameter": "example_value"
 }

3.1.1. Client Registration Request Using a Software Statement

 In addition to JSON elements, client metadata values MAY also be
 provided in a software statement, as described in Section 2.3. The
 authorization server MAY ignore the software statement if it does not
 support this feature. If the server supports software statements,
 client metadata values conveyed in the software statement MUST take
 precedence over those conveyed using plain JSON elements.

 Software statements are included in the requesting JSON object using
 this OPTIONAL member:

 software_statement
 A software statement containing client metadata values about the
 client software as claims. This is a string value containing the
 entire signed JWT.

Richer, et al. Expires November 29, 2015 [Page 17]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 In the following example, some registration parameters are conveyed
 as claims in a software statement from the example in Section 2.3,
 while some values specific to the client instance are conveyed as
 regular parameters (with line wraps within values for display
 purposes only):

 POST /register HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Host: server.example.com

 {
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/callback2"
],
 "software_statement":"eyJhbGciOiJSUzI1NiJ9.
 eyJzb2Z0d2FyZV9pZCI6IjROUkIxLTBYWkFCWkk5RTYtNVNNM1IiLCJjbGll
 bnRfbmFtZSI6IkV4YW1wbGUgU3RhdGVtZW50LWJhc2VkIENsaWVudCIsImNs
 aWVudF91cmkiOiJodHRwczovL2NsaWVudC5leGFtcGxlLm5ldC8ifQ.
 GHfL4QNIrQwL18BSRdE595T9jbzqa06R9BT8w409x9oIcKaZo_mt15riEXHa
 zdISUvDIZhtiyNrSHQ8K4TvqWxH6uJgcmoodZdPwmWRIEYbQDLqPNxREtYn0
 5X3AR7ia4FRjQ2ojZjk5fJqJdQ-JcfxyhK-P8BAWBd6I2LLA77IG32xtbhxY
 fHX7VhuU5ProJO8uvu3Ayv4XRhLZJY4yKfmyjiiKiPNe-Ia4SMy_d_QSWxsk
 U5XIQl5Sa2YRPMbDRXttm2TfnZM1xx70DoYi8g6czz-CPGRi4SW_S2RKHIJf
 IjoI3zTJ0Y2oe0_EJAiXbL6OyF9S5tKxDXV8JIndSA",
 "scope":"read write",
 "example_extension_parameter":"example_value"
 }

3.2. Responses

 Upon a successful registration request, the authorization server
 returns a client identifier for the client. The server responds with
 an HTTP 201 Created code and a body of type "application/json" with
 content as described in Section 3.2.1.

 Upon an unsuccessful registration request, the authorization server
 responds with an error, as described in Section 3.2.2.

3.2.1. Client Information Response

 The response contains the client identifier as well as the client
 secret, if the client is a confidential client. The response MAY
 contain additional fields as specified by extensions to this
 specification.

 client_id

Richer, et al. Expires November 29, 2015 [Page 18]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 REQUIRED. OAuth 2.0 client identifier string. It SHOULD NOT be
 currently valid for any other registered client, though an
 authorization server MAY issue the same client identifier to
 multiple instances of a registered client at its discretion.

 client_secret
 OPTIONAL. OAuth 2.0 client secret string. If issued, this MUST
 be unique for each "client_id" and SHOULD be unique for multiple
 instances of a client using the same "client_id". This value is
 used by confidential clients to authenticate to the token endpoint
 as described in OAuth 2.0 [RFC6749] Section 2.3.1.

 client_id_issued_at
 OPTIONAL. Time at which the client identifier was issued. The
 time is represented as the number of seconds from
 1970-01-01T0:0:0Z as measured in UTC until the date/time of
 issuance.

 client_secret_expires_at
 REQUIRED if "client_secret" is issued. Time at which the client
 secret will expire or 0 if it will not expire. The time is
 represented as the number of seconds from 1970-01-01T0:0:0Z as
 measured in UTC until the date/time of expiration.

 Additionally, the authorization server MUST return all registered
 metadata about this client, including any fields provisioned by the
 authorization server itself. The authorization server MAY reject or
 replace any of the client’s requested metadata values submitted
 during the registration and substitute them with suitable values.
 The client or developer can check the values in the response to
 determine if the registration is sufficient for use (e.g., the
 registered "token_endpoint_auth_method" is supported by the client
 software) and determine a course of action appropriate for the client
 software. The response to such a situation is out of scope for this
 specification but could include filing a report with the application
 developer or authorization server provider, attempted re-registration
 with different metadata values, or various other methods. For
 instance, if the server also supports a registration management
 mechanism such as that defined in [OAuth.Registration.Management],
 the client or developer could attempt to update the registration with
 different metadata values. This process could also be aided by a
 service discovery protocol such as [OpenID.Discovery] which can list
 a server’s capabilities, allowing a client to make a more informed
 registration request. The use of any such management or discovery
 system is optional and outside the scope of this specification.

 The successful registration response uses an HTTP 201 Created status
 code with a body of type "application/json" consisting of a single

Richer, et al. Expires November 29, 2015 [Page 19]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 JSON object [RFC7159] with all parameters as top-level members of the
 object.

 If a software statement was used as part of the registration, its
 value MUST be returned unmodified in the response along with other
 metadata using the "software_statement" member name. Client metadata
 elements used from the software statement MUST also be returned
 directly as top-level client metadata values in the registration
 response (possibly with different values, since the values requested
 and the values used may differ).

 Following is a non-normative example response of a successful
 registration:

 HTTP/1.1 201 Created
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "client_id_issued_at":2893256800,
 "client_secret_expires_at":2893276800,
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "grant_types": ["authorization_code", "refresh_token"],
 "client_name":"My Example Client",
 "client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "token_endpoint_auth_method":"client_secret_basic",
 "logo_uri":"https://client.example.org/logo.png",
 "jwks_uri":"https://client.example.org/my_public_keys.jwks",
 "example_extension_parameter": "example_value"
 }

3.2.2. Client Registration Error Response

 When an OAuth 2.0 error condition occurs, such as the client
 presenting an invalid initial access token, the authorization server
 returns an error response appropriate to the OAuth 2.0 token type.

 When a registration error condition occurs, the authorization server
 returns an HTTP 400 status code (unless otherwise specified) with
 content type "application/json" consisting of a JSON object [RFC7159]
 describing the error in the response body.

Richer, et al. Expires November 29, 2015 [Page 20]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 Two members are defined for inclusion in the JSON object:

 error
 REQUIRED. Single ASCII error code string.

 error_description
 OPTIONAL. Human-readable ASCII text description of the error used
 for debugging.

 Other members MAY also be included, and if not understood, MUST be
 ignored.

 This specification defines the following error codes:

 invalid_redirect_uri
 The value of one or more redirection URIs is invalid.

 invalid_client_metadata
 The value of one of the client metadata fields is invalid and the
 server has rejected this request. Note that an authorization
 server MAY choose to substitute a valid value for any requested
 parameter of a client’s metadata.

 invalid_software_statement
 The software statement presented is invalid.

 unapproved_software_statement
 The software statement presented is not approved for use by this
 authorization server.

 Following is a non-normative example of an error response resulting
 from a redirection URI that has been blacklisted by the authorization
 server (with line wraps within values for display purposes only):

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error": "invalid_redirect_uri",
 "error_description": "The redirection URI
 http://sketchy.example.com is not allowed by this server."
 }

Richer, et al. Expires November 29, 2015 [Page 21]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 Following is a non-normative example of an error response resulting
 from an inconsistent combination of "response_types" and
 "grant_types" values (with line wraps within values for display
 purposes only):

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error": "invalid_client_metadata",
 "error_description": "The grant type ’authorization_code’ must be
 registered along with the response type ’code’ but found only
 ’implicit’ instead."
 }

4. IANA Considerations

4.1. OAuth Dynamic Client Registration Metadata Registry

 This specification establishes the OAuth Dynamic Client Registration
 Metadata registry.

 OAuth registration client metadata names and descriptions are
 registered with a Specification Required ([RFC5226]) after a two-week
 review period on the oauth-ext-review@ietf.org mailing list, on the
 advice of one or more Designated Experts. However, to allow for the
 allocation of names prior to publication, the Designated Expert(s)
 may approve registration once they are satisfied that such a
 specification will be published, per [RFC7120].

 Registration requests sent to the mailing list for review should use
 an appropriate subject (e.g., "Request to register OAuth Dynamic
 Client Registration Metadata name: example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

Richer, et al. Expires November 29, 2015 [Page 22]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

4.1.1. Registration Template

 Client Metadata Name:
 The name requested (e.g., "example"). This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted.

 Client Metadata Description:
 Brief description of the metadata value (e.g., "Example
 description").

 Change controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification document(s):
 Reference to the document(s) that specify the token endpoint
 authorization method, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

4.1.2. Initial Registry Contents

 The initial contents of the OAuth Dynamic Client Registration
 Metadata registry are:

 o Client Metadata Name: "redirect_uris"
 o Client Metadata Description: Array of redirection URIs for use in
 redirect-based flows
 o Change controller: IESG
 o Specification document(s): [[this document]]

 o Client Metadata Name: "token_endpoint_auth_method"
 o Client Metadata Description: Requested authentication method for
 the token endpoint
 o Change controller: IESG
 o Specification document(s): [[this document]]

 o Client Metadata Name: "grant_types"
 o Client Metadata Description: Array of OAuth 2.0 grant types that
 the client may use
 o Change controller: IESG
 o Specification document(s): [[this document]]

 o Client Metadata Name: "response_types"
 o Client Metadata Description: Array of the OAuth 2.0 response types
 that the client may use

Richer, et al. Expires November 29, 2015 [Page 23]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 o Change controller: IESG
 o Specification document(s): [[this document]]

 o Client Metadata Name: "client_name"
 o Client Metadata Description: Human-readable name of the client to
 be presented to the user
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "client_uri"
 o Client Metadata Description: URL of a Web page providing
 information about the client
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "logo_uri"
 o Client Metadata Description: URL that references a logo for the
 client
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "scope"
 o Client Metadata Description: Space separated list of OAuth 2.0
 scope values
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "contacts"
 o Client Metadata Description: Array of strings representing ways to
 contact people responsible for this client, typically email
 addresses
 o Change Controller: IESG
 o Specification document(s): [[this document]]

 o Client Metadata Name: "tos_uri"
 o Client Metadata Description: URL that points to a human-readable
 Terms of Service document for the client
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "policy_uri"
 o Client Metadata Description: URL that points to a human-readable
 Policy document for the client
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "jwks_uri"

Richer, et al. Expires November 29, 2015 [Page 24]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 o Client Metadata Description: URL referencing the client’s JSON Web
 Key Set [RFC7517] document representing the client’s public keys
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "jwks"
 o Client Metadata Description: Client’s JSON Web Key Set [RFC7517]
 document representing the client’s public keys
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "software_id"
 o Client Metadata Description: Identifier for the software that
 comprises a client
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "software_version"
 o Client Metadata Description: Version identifier for the software
 that comprises a client
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "client_id"
 o Client Metadata Description: Client identifier
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "client_secret"
 o Client Metadata Description: Client secret
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "client_id_issued_at"
 o Client Metadata Description: Time at which the client identifier
 was issued
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

 o Client Metadata Name: "client_secret_expires_at"
 o Client Metadata Description: Time at which the client secret will
 expire
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

Richer, et al. Expires November 29, 2015 [Page 25]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

4.2. OAuth Token Endpoint Authentication Methods Registry

 This specification establishes the OAuth Token Endpoint
 Authentication Methods registry.

 Additional values for use as "token_endpoint_auth_method" values are
 registered with a Specification Required ([RFC5226]) after a two-week
 review period on the oauth-ext-review@ietf.org mailing list, on the
 advice of one or more Designated Experts. However, to allow for the
 allocation of values prior to publication, the Designated Expert(s)
 may approve registration once they are satisfied that such a
 specification will be published, per [RFC7120].

 Registration requests must be sent to the oauth-ext-review@ietf.org
 mailing list for review and comment, with an appropriate subject
 (e.g., "Request to register token_endpoint_auth_method value:
 example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

4.2.1. Registration Template

 Token Endpoint Authorization Method Name:
 The name requested (e.g., "example"). This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted.

 Change controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification document(s):
 Reference to the document(s) that specify the token endpoint
 authorization method, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

Richer, et al. Expires November 29, 2015 [Page 26]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

4.2.2. Initial Registry Contents

 The initial contents of the OAuth Token Endpoint Authentication
 Methods registry are:

 o Token Endpoint Authorization Method Name: "none"
 o Change controller: IESG
 o Specification document(s): [[this document]]

 o Token Endpoint Authorization Method Name: "client_secret_post"
 o Change controller: IESG
 o Specification document(s): [[this document]]

 o Token Endpoint Authorization Method Name: "client_secret_basic"
 o Change controller: IESG
 o Specification document(s): [[this document]]

5. Security Considerations

 Since requests to the client registration endpoint result in the
 transmission of clear-text credentials (in the HTTP request and
 response), the authorization server MUST require the use of a
 transport-layer security mechanism when sending requests to the
 registration endpoint. The server MUST support TLS 1.2 RFC 5246
 [RFC5246] and MAY support additional transport-layer mechanisms
 meeting its security requirements. When using TLS, the client MUST
 perform a TLS/SSL server certificate check, per RFC 6125 [RFC6125].
 Implementation security considerations can be found in
 Recommendations for Secure Use of TLS and DTLS [RFC7525].

 For clients that use redirect-based grant types such as
 "authorization_code" and "implicit", authorization servers MUST
 require clients to register their redirection URI values. This can
 help mitigate attacks where rogue actors inject and impersonate a
 validly registered client and intercept its authorization code or
 tokens through an invalid redirection URI or open redirector.
 Additionally, in order to prevent hijacking of the return values of
 the redirection, registered redirection URI values MUST be one of:

 o A remote web site protected by TLS (e.g.,
 https://client.example.com/oauth_redirect)
 o A web site hosted on the local machine using an HTTP URI (e.g.,
 http://localhost:8080/oauth_redirect)
 o A non-HTTP application-specific URL that is available only to the
 client application (e.g., exampleapp://oauth_redirect)

 Public clients MAY register with an authorization server using this
 protocol, if the authorization server’s policy allows them. Public

Richer, et al. Expires November 29, 2015 [Page 27]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 clients use a "none" value for the "token_endpoint_auth_method"
 metadata field and are generally used with the "implicit" grant type.
 Often these clients will be short-lived in-browser applications
 requesting access to a user’s resources and access is tied to a
 user’s active session at the authorization server. Since such
 clients often do not have long-term storage, it is possible that such
 clients would need to re-register every time the browser application
 is loaded. To avoid the resulting proliferation of dead client
 identifiers, an authorization server MAY decide to expire
 registrations for existing clients meeting certain criteria after a
 period of time has elapsed. Alternatively, such clients could be
 registered on the server where the in-browser application’s code is
 served from, and the client’s configuration pushed to the browser
 along side the code.

 Since different OAuth 2.0 grant types have different security and
 usage parameters, an authorization server MAY require separate
 registrations for a piece of software to support multiple grant
 types. For instance, an authorization server might require that all
 clients using the "authorization_code" grant type make use of a
 client secret for the "token_endpoint_auth_method", but any clients
 using the "implicit" grant type do not use any authentication at the
 token endpoint. In such a situation, a server MAY disallow clients
 from registering for both the "authorization_code" and "implicit"
 grant types simultaneously. Similarly, the "authorization_code"
 grant type is used to represent access on behalf of an end-user, but
 the "client_credentials" grant type represents access on behalf of
 the client itself. For security reasons, an authorization server
 could require that different scopes be used for these different use
 cases, and as a consequence it MAY disallow these two grant types
 from being registered together by the same client. In all of these
 cases, the authorization server would respond with an
 "invalid_client_metadata" error response.

 Unless used as a claim in a software statement, the authorization
 server MUST treat all client metadata as self-asserted. For
 instance, a rogue client might use the name and logo of a legitimate
 client that it is trying to impersonate. Additionally, a rogue
 client might try to use the software identifier or software version
 of a legitimate client to attempt to associate itself on the
 authorization server with instances of the legitimate client. To
 counteract this, an authorization server MUST take appropriate steps
 to mitigate this risk by looking at the entire registration request
 and client configuration. For instance, an authorization server
 could issue a warning if the domain/site of the logo doesn’t match
 the domain/site of redirection URIs. An authorization server could
 also refuse registration requests from a known software identifier
 that is requesting different redirection URIs or a different client

Richer, et al. Expires November 29, 2015 [Page 28]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 URI. An authorization server can also present warning messages to
 end-users about dynamically registered clients in all cases,
 especially if such clients have been recently registered or have not
 been trusted by any users at the authorization server before.

 In a situation where the authorization server is supporting open
 client registration, it must be extremely careful with any URL
 provided by the client that will be displayed to the user (e.g.
 "logo_uri", "tos_uri", "client_uri", and "policy_uri"). For
 instance, a rogue client could specify a registration request with a
 reference to a drive-by download in the "policy_uri", enticing the
 user to click on it during the authorization. The authorization
 server SHOULD check to see if the "logo_uri", "tos_uri",
 "client_uri", and "policy_uri" have the same host and scheme as the
 those defined in the array of "redirect_uris" and that all of these
 URIs resolve to valid web pages. Since these URI values that are
 intended to be displayed to the user at the authorization page, the
 authorization server SHOULD protect the user from malicious content
 hosted at the URLs where possible. For instance, before presenting
 the URLs to the user at the authorization page, the authorization
 server could download the content hosted at the URLs, check the
 content against a malware scanner and blacklist filter, determine
 whether or not there is mixed secure and non-secure content at the
 URL, and other possible server-side mitigations. Note that the
 content in these URLs can change at any time and the authorization
 server cannot provide complete confidence in the safety of the URLs,
 but these practices could help. To further mitigate this kind of
 threat, the authorization server can also warn the user that the URL
 links have been provided by a third party, should be treated with
 caution, and are not hosted by the authorization server itself. For
 instance, instead of providing the links directly in an HTML anchor,
 the authorization server can direct the user to an interstitial
 warning page before allowing the user to continue to the target URL.

 Clients MAY use both the direct JSON object and the JWT-encoded
 software statement to present client metadata to the authorization
 server as part of the registration request. A software statement is
 cryptographically protected and represents claims made by the issuer
 of the statement, while the JSON object represents the self-asserted
 claims made by the client or developer directly. If the software
 statement is valid and signed by an acceptable authority (such as the
 software API publisher), the values of client metadata within the
 software statement MUST take precedence over those metadata values
 presented in the plain JSON object, which could have been intercepted
 and modified.

 Like all metadata values, the software statement is an item that is
 self-asserted by the client, even though its contents have been

Richer, et al. Expires November 29, 2015 [Page 29]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 digitally signed or MACed by the issuer of the software statement.
 As such, presentation of the software statement is not sufficient in
 most cases to fully identify a piece of client software. An initial
 access token, in contrast, does not necessarily contain information
 about a particular piece of client software but instead represents
 authorization to use the registration endpoint. An authorization
 server MUST consider the full registration request, including the
 software statement, initial access token, and JSON client metadata
 values, when deciding whether to honor a given registration request.

 If an authorization server receives a registration request for a
 client that is not intended to have multiple instances registered
 simultaneously and the authorization server can infer a duplication
 of registration (e.g., it uses the same "software_id" and
 "software_version" values as another existing client), the server
 SHOULD treat the new registration as being suspect and reject the
 registration. It is possible that the new client is trying to
 impersonate the existing client in order to trick users into
 authorizing it, or that the original registration is no longer valid.
 The details of managing this situation are specific to the
 authorization server deployment and outside the scope of this
 specification.

 Since a client identifier is a public value that can be used to
 impersonate a client at the authorization endpoint, an authorization
 server that decides to issue the same client identifier to multiple
 instances of a registered client needs to be very particular about
 the circumstances under which this occurs. For instance, the
 authorization server can limit a given client identifier to clients
 using the same redirect-based flow and the same redirection URIs. An
 authorization server SHOULD NOT issue the same client secret to
 multiple instances of a registered client, even if they are issued
 the same client identifier, or else the client secret could be
 leaked, allowing malicious impostors to impersonate a confidential
 client.

6. Privacy Considerations

 As the protocol described in this specification deals almost
 exclusively with information about software and not about people,
 there are very few privacy concerns for its use. The notable
 exception is the "contacts" field as defined in Client Metadata
 (Section 2), which contains contact information for the developers or
 other parties responsible for the client software. These values are
 intended to be displayed to end-users and will be available to the
 administrators of the authorization server. As such, the developer
 may wish to provide an email address or other contact information
 expressly dedicated to the purpose of supporting the client instead

Richer, et al. Expires November 29, 2015 [Page 30]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 of using their personal or professional addresses. Alternatively,
 the developer may wish to provide a collective email address for the
 client to allow for continuing contact and support of the client
 software after the developer moves on and someone else takes over
 that responsibility.

 In general, the metadata for a client, such as the client name and
 software identifier, are common across all instances of a piece of
 client software and therefore pose no privacy issues for end-users.
 Client identifiers, on the other hand, are often unique to a specific
 instance of a client. For clients such as web sites that are used by
 many users, there may not be significant privacy concerns regarding
 the client identifier, but for clients such as native applications
 that are installed on a single end-user’s device, the client
 identifier could be uniquely tracked during OAuth 2.0 transactions
 and its use tied to that single end-user. However, as the client
 software still needs to be authorized by a resource owner through an
 OAuth 2.0 authorization grant, this type of tracking can occur
 whether or not the client identifier is unique by correlating the
 authenticated resource owner with the requesting client identifier.

 Note that clients are forbidden by this specification from creating
 their own client identifier. If the client were able to do so, an
 individual client instance could be tracked across multiple colluding
 authorization servers, leading to privacy and security issues.
 Additionally, client identifiers are generally issued uniquely per
 registration request, even for the same instance of software. In
 this way, an application could marginally improve privacy by
 registering multiple times and appearing to be completely separate
 applications. However, this technique does incur significant
 usability cost in the form of requiring multiple authorizations per
 resource owner and is therefore unlikely to be used in practice.

7. References

7.1. Normative References

 [IANA.Language]
 Internet Assigned Numbers Authority (IANA), "Language
 Subtag Registry", <http://www.iana.org/assignments/
 language-subtag-registry>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

Richer, et al. Expires November 29, 2015 [Page 31]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

 [RFC7120] Cotton, M., "Early IANA Allocation of Standards Track Code
 Points", BCP 100, RFC 7120, January 2014.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, May 2015.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517, May 2015.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, May 2015.

 [RFC7522] Campbell, B., Mortimore, C., and M. Jones, "Security
 Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0
 Client Authentication and Authorization Grants", RFC 7522,
 May 2015.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", RFC 7523, May 2015.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, May 2015.

Richer, et al. Expires November 29, 2015 [Page 32]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

7.2. Informative References

 [I-D.hardjono-oauth-umacore]
 Hardjono, T., Maler, E., Machulak, M., and D. Catalano,
 "User-Managed Access (UMA) Profile of OAuth 2.0", draft-
 hardjono-oauth-umacore-13 (work in progress), April 2015.

 [OAuth.Registration.Management]
 Richer, J., Jones, M., Bradley, J., and M. Machulak,
 "OAuth 2.0 Dynamic Client Registration Management
 Protocol", draft-ietf-oauth-dyn-reg-management (work in
 progress), May 2015.

 [OpenID.Discovery]
 Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
 Connect Discovery 1.0", November 2014.

 [OpenID.Registration]
 Sakimura, N., Bradley, J., and M. Jones, "OpenID Connect
 Dynamic Client Registration 1.0", November 2014.

Appendix A. Use Cases

 This appendix describes different ways that this specification can be
 utilized, including describing some of the choices that may need to
 be made. Some of the choices are independent and can be used in
 combination, whereas some of the choices are interrelated.

A.1. Open versus Protected Dynamic Client Registration

A.1.1. Open Dynamic Client Registration

 Authorization servers that support open registration allow
 registrations to be made with no initial access token. This allows
 all client software to register with the authorization server.

A.1.2. Protected Dynamic Client Registration

 Authorization servers that support protected registration require
 that an initial access token be used when making registration
 requests. While the method by which a client or developer receives
 this initial access token and the method by which the authorization
 server validates this initial access token are out of scope for this
 specification, a common approach is for the developer to use a manual
 pre-registration portal at the authorization server that issues an
 initial access token to the developer.

Richer, et al. Expires November 29, 2015 [Page 33]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

A.2. Registration Without or With Software Statements

A.2.1. Registration Without a Software Statement

 When a software statement is not used in the registration request,
 the authorization server must be willing to use client metadata
 values without them being digitally signed or MACed (and thereby
 attested to) by any authority. (Note that this choice is independent
 of the Open versus Protected choice, and that an initial access token
 is another possible form of attestation.)

A.2.2. Registration With a Software Statement

 A software statement can be used in a registration request to provide
 attestation by an authority for a set of client metadata values.
 This can be useful when the authorization server wants to restrict
 registration to client software attested to by a set of authorities
 or when it wants to know that multiple registration requests refer to
 the same piece of client software.

A.3. Registration by the Client or Developer

A.3.1. Registration by the Client

 In some use cases, client software will dynamically register itself
 with an authorization server to obtain a client identifier and other
 information needed to interact with the authorization server. In
 this case, no client identifier for the authorization server is
 packaged with the client software.

A.3.2. Registration by the Developer

 In some cases, the developer (or development software being used by
 the developer) will pre-register the client software with the
 authorization server or a set of authorization servers. In this
 case, the client identifier value(s) for the authorization server(s)
 can be packaged with the client software.

A.4. Client ID per Client Instance or per Client Software

A.4.1. Client ID per Client Software Instance

 In some cases, each deployed instance of a piece of client software
 will dynamically register and obtain distinct client identifier
 values. This can be advantageous, for instance, if the code flow is
 being used, as it also enables each client instance to have its own
 client secret. This can be useful for native clients, which cannot
 maintain the secrecy of a client secret value packaged with the

Richer, et al. Expires November 29, 2015 [Page 34]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 software, but which may be able to maintain the secrecy of a per-
 instance client secret.

A.4.2. Client ID Shared Among All Instances of Client Software

 In some cases, each deployed instance of a piece of client software
 will share a common client identifier value. For instance, this is
 often the case for in-browser clients using the implicit flow, when
 no client secret is involved. Particular authorization servers might
 choose, for instance, to maintain a mapping between software
 statement values and client identifier values, and return the same
 client identifier value for all registration requests for a
 particular piece of software. The circumstances under which an
 authorization server would do so, and the specific software statement
 characteristics required in this case, are beyond the scope of this
 specification.

A.5. Stateful or Stateless Registration

A.5.1. Stateful Client Registration

 In some cases, authorization servers will maintain state about
 registered clients, typically indexing this state using the client
 identifier value. This state would typically include the client
 metadata values associated with the client registration, and possibly
 other state specific to the authorization server’s implementation.
 When stateful registration is used, operations to support retrieving
 and/or updating this state may be supported. One possible set of
 operations upon stateful registrations is described in the
 [OAuth.Registration.Management] specification.

A.5.2. Stateless Client Registration

 In some cases, authorization servers will be implemented in a manner
 the enables them to not maintain any local state about registered
 clients. One means of doing this is to encode all the registration
 state in the returned client identifier value, and possibly
 encrypting the state to the authorization server to maintain the
 confidentiality and integrity of the state.

Appendix B. Acknowledgments

 The authors thank the OAuth Working Group, the User-Managed Access
 Working Group, and the OpenID Connect Working Group participants for
 their input to this document. In particular, the following
 individuals have been instrumental in their review and contribution
 to various versions of this document: Amanda Anganes, Derek Atkins,
 Tim Bray, Domenico Catalano, Donald Coffin, Vladimir Dzhuvinov,

Richer, et al. Expires November 29, 2015 [Page 35]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 George Fletcher, Thomas Hardjono, Phil Hunt, William Kim, Torsten
 Lodderstedt, Eve Maler, Josh Mandel, Nov Matake, Tony Nadalin, Nat
 Sakimura, Christian Scholz, and Hannes Tschofenig.

Appendix C. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -30

 o Updated JOSE, JWT, and OAuth Assertion draft references to final
 RFC numbers.

 -29

 o Descrbed more possible client responses to the metadata fields
 returned by the server being different than those requested.
 o Added RFC 7120/BCP 100 references.
 o Added RFC 7525/BCP 195 reference to replace draft reference.

 -28

 o Clarified all client metadata as JSON arrays, strings, or numbers.
 o Expanded security considerations advice around external URLs.
 o Added text to say what happens if the client doesn’t get back the
 registration it expected in the response.
 o Added more explicit references to HTTP 201 response from
 registration.
 o Clarified client version definition.
 o Removed spurious reference to "delete action".
 o Fixed intended normative and non-normative language in several
 sections.
 o Stated what a server should do if a suspected duplicate client
 tries to register.

 -27

 o Changed a registry name missed in -26.

 -26

 o Used consistent registry name.

 -25

 o Updated author information.
 o Clarified registry contents.
 o Added forward pointer to IANA from metadata section.

Richer, et al. Expires November 29, 2015 [Page 36]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 o Clarified how to silently ignore errors.
 o Reformatted diagram text.

 -24

 o Clarified some party definitions.
 o Clarified the opaqueness of software_id and software_statement.
 o Created a forward pointer to the Security Considerations section
 for TLS requirements on the registration endpoint.
 o Added a forward pointer to the Privacy Considerations section for
 the contacts field.
 o Wrote privacy considerations about client_id tracking.

 -23

 o Updated author information.

 -22

 o Reorganized registration response sections.
 o Addressed shepherd comments.
 o Added concrete JWK set to example.

 -21

 o Applied minor editorial fixes.
 o Added software statement examples.
 o Moved software statement request details to sub-section.
 o Clarified that a server MAY ignore the software statement (just as
 it MAY ignore other metadata values).
 o Removed TLS 1.0.
 o Added privacy considerations around "contacts" field.
 o Marked software_id as RECOMMENDED inside of a software statement.

 -20

 o Applied minor editorial fixes from working group comments.

 -19

 o Added informative references to the OpenID Connect Dynamic Client
 Registration and UMA specifications in the introduction.
 o Clarified the "jwks" and "jwks_uri" descriptions and included an
 example situation in which they might be used.
 o Removed "application_type".
 o Added redirection URI usage restrictions to the Security
 Considerations section, based on the client type.
 o Expanded the "tos_uri" and "policy_uri" descriptions.

Richer, et al. Expires November 29, 2015 [Page 37]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 -18

 o Corrected an example HTTP response status code to be 201 Created.
 o Said more about who issues and uses initial access tokens and
 software statements.
 o Stated that the use of an initial access token is required when
 the authorization server limits the parties that can register a
 client.
 o Stated that the implementation and use of all client metadata
 fields is OPTIONAL, other than "redirect_uris", which MUST be used
 for redirect-based flows and implemented to fulfill the
 requirement in Section 2 of OAuth 2.0.
 o Added the "application_type" metadata value, which had somehow
 been omitted.
 o Added missing default metadata values, which had somehow been
 omitted.
 o Clarified that the "software_id" is ultimately asserted by the
 client developer.
 o Clarified that the "error" member is required in error responses,
 "error_description" member is optional, and other members may be
 present.
 o Added security consideration about registrations with duplicate
 "software_id" and "software_version" values.

 -17

 o Merged draft-ietf-oauth-dyn-reg-metadata back into this document.
 o Removed "Core" from the document title.
 o Explicitly state that all metadata members are optional.
 o Clarified language around software statements for use in
 registration context.
 o Clarified that software statements need to be digitally signed or
 MACed.
 o Added a "jwks" metadata parameter to parallel the "jwks_uri"
 parameter.
 o Removed normative language from terminology.
 o Expanded abstract and introduction.
 o Addressed review comments from several working group members.

 -16

 o Replaced references to draft-jones-oauth-dyn-reg-metadata and
 draft-jones-oauth-dyn-reg-management with draft-ietf-oauth-dyn-
 reg-metadata and draft-ietf-oauth-dyn-reg-management.
 o Addressed review comments by Phil Hunt and Tony Nadalin.

 -15

Richer, et al. Expires November 29, 2015 [Page 38]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 o Partitioned the Dynamic Client Registration specification into
 core, metadata, and management specifications. This built on work
 first published as draft-richer-oauth-dyn-reg-core-00 and draft-
 richer-oauth-dyn-reg-management-00.
 o Added the ability to use Software Statements. This built on work
 first published as draft-hunt-oauth-software-statement-00 and
 draft-hunt-oauth-client-association-00.
 o Created the IANA OAuth Registration Client Metadata registry for
 registering Client Metadata values.
 o Defined Client Instance term and stated that multiple instances
 can use the same client identifier value under certain
 circumstances.
 o Rewrote the introduction.
 o Rewrote the Use Cases appendix.

 -14

 o Added software_id and software_version metadata fields
 o Added direct references to RFC6750 errors in read/update/delete
 methods

 -13

 o Fixed broken example text in registration request and in delete
 request
 o Added security discussion of separating clients of different grant
 types
 o Fixed error reference to point to RFC6750 instead of RFC6749
 o Clarified that servers must respond to all requests to
 configuration endpoint, even if it’s just an error code
 o Lowercased all Terms to conform to style used in RFC6750

 -12

 o Improved definition of Initial Access Token
 o Changed developer registration scenario to have the Initial Access
 Token gotten through a normal OAuth 2.0 flow
 o Moved non-normative client lifecycle examples to appendix
 o Marked differentiating between auth servers as out of scope
 o Added protocol flow diagram
 o Added credential rotation discussion
 o Called out Client Registration Endpoint as an OAuth 2.0 Protected
 Resource
 o Cleaned up several pieces of text

 -11

Richer, et al. Expires November 29, 2015 [Page 39]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 o Added localized text to registration request and response
 examples.
 o Removed "client_secret_jwt" and "private_key_jwt".
 o Clarified "tos_uri" and "policy_uri" definitions.
 o Added the OAuth Token Endpoint Authentication Methods registry for
 registering "token_endpoint_auth_method" metadata values.
 o Removed uses of non-ASCII characters, per RFC formatting rules.
 o Changed "expires_at" to "client_secret_expires_at" and "issued_at"
 to "client_id_issued_at" for greater clarity.
 o Added explanatory text for different credentials (Initial Access
 Token, Registration Access Token, Client Credentials) and what
 they’re used for.
 o Added Client Lifecycle discussion and examples.
 o Defined Initial Access Token in Terminology section.

 -10

 o Added language to point out that scope values are service-specific
 o Clarified normative language around client metadata
 o Added extensibility to token_endpoint_auth_method using absolute
 URIs
 o Added security consideration about registering redirect URIs
 o Changed erroneous 403 responses to 401’s with notes about token
 handling
 o Added example for initial registration credential

 -09

 o Added method of internationalization for Client Metadata values
 o Fixed SAML reference

 -08

 o Collapsed jwk_uri, jwk_encryption_uri, x509_uri, and
 x509_encryption_uri into a single jwks_uri parameter
 o Renamed grant_type to grant_types since it’s a plural value
 o Formalized name of "OAuth 2.0" throughout document
 o Added JWT Bearer Assertion and SAML 2 Bearer Assertion to example
 grant types
 o Added response_types parameter and explanatory text on its use
 with and relationship to grant_types

 -07

 o Changed registration_access_url to registration_client_uri
 o Fixed missing text in 5.1
 o Added Pragma: no-cache to examples
 o Changed "no such client" error to 403

Richer, et al. Expires November 29, 2015 [Page 40]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 o Renamed Client Registration Access Endpoint to Client
 Configuration Endpoint
 o Changed all the parameter names containing "_url" to instead use
 "_uri"
 o Updated example text for forming Client Configuration Endpoint URL

 -06

 o Removed secret_rotation as a client-initiated action, including
 removing client secret rotation endpoint and parameters.
 o Changed _links structure to single value registration_access_url.
 o Collapsed create/update/read responses into client info response.
 o Changed return code of create action to 201.
 o Added section to describe suggested generation and composition of
 Client Registration Access URL.
 o Added clarifying text to PUT and POST requests to specify JSON in
 the body.
 o Added Editor’s Note to DELETE operation about its inclusion.
 o Added Editor’s Note to registration_access_url about alternate
 syntax proposals.

 -05

 o changed redirect_uri and contact to lists instead of space
 delimited strings
 o removed operation parameter
 o added _links structure
 o made client update management more RESTful
 o split endpoint into three parts
 o changed input to JSON from form-encoded
 o added READ and DELETE operations
 o removed Requirements section
 o changed token_endpoint_auth_type back to
 token_endpoint_auth_method to match OIDC who changed to match us

 -04

 o removed default_acr, too undefined in the general OAuth2 case
 o removed default_max_auth_age, since there’s no mechanism for
 supplying a non-default max_auth_age in OAuth2
 o clarified signing and encryption URLs
 o changed token_endpoint_auth_method to token_endpoint_auth_type to
 match OIDC

 -03

 o added scope and grant_type claims
 o fixed various typos and changed wording for better clarity

Richer, et al. Expires November 29, 2015 [Page 41]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 o endpoint now returns the full set of client information
 o operations on client_update allow for three actions on metadata:
 leave existing value, clear existing value, replace existing value
 with new value

 -02

 o Reorganized contributors and references
 o Moved OAuth references to RFC
 o Reorganized model/protocol sections for clarity
 o Changed terminology to "client register" instead of "client
 associate"
 o Specified that client_id must match across all subsequent requests
 o Fixed RFC2XML formatting, especially on lists

 -01

 o Merged UMA and OpenID Connect registrations into a single document
 o Changed to form-parameter inputs to endpoint
 o Removed pull-based registration

 -00

 o Imported original UMA draft specification

Authors’ Addresses

 Justin Richer (editor)

 Email: ietf@justin.richer.org

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com

Richer, et al. Expires November 29, 2015 [Page 42]

Internet-Draft OAuth 2.0 Dynamic Registration May 2015

 Maciej Machulak
 Newcastle University

 Email: maciej.machulak@gmail.com

 Phil Hunt
 Oracle Corporation

 Email: phil.hunt@yahoo.com

Richer, et al. Expires November 29, 2015 [Page 43]

OAuth Working Group J. Richer, Ed.
Internet-Draft
Intended status: Experimental M. Jones
Expires: November 6, 2015 Microsoft
 J. Bradley
 Ping Identity
 M. Machulak
 Newcastle University
 May 5, 2015

 OAuth 2.0 Dynamic Client Registration Management Protocol
 draft-ietf-oauth-dyn-reg-management-15

Abstract

 This specification defines methods for management of dynamic OAuth
 2.0 client registrations for use cases in which the properties of a
 registered client may need to be changed during the lifetime of the
 client. Not all authorization servers supporting dynamic client
 registration will support these management methods.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 6, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Richer, et al. Expires November 6, 2015 [Page 1]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Notational Conventions 3
 1.2. Terminology . 3
 1.3. Protocol Flow . 3
 2. Client Configuration Endpoint 5
 2.1. Client Read Request 6
 2.2. Client Update Request 6
 2.3. Client Delete Request 9
 3. Client Information Response 10
 4. IANA Considerations . 11
 5. Security Considerations 12
 6. Privacy Considerations 13
 7. Normative References . 13
 Appendix A. Acknowledgments 14
 Appendix B. Registration Tokens and Client Credentials 14
 B.1. Credential Rotation 15
 Appendix C. Forming the Client Configuration Endpoint URL . . . 15
 Appendix D. Document History 16
 Authors’ Addresses . 18

1. Introduction

 In order for an OAuth 2.0 client to utilize an OAuth 2.0
 authorization server, the client needs specific information to
 interact with the server, including an OAuth 2.0 client identifier to
 use with that server. The OAuth 2.0 Dynamic Client Registration
 Protocol [OAuth.Registration] specification describes how an OAuth
 2.0 client can be dynamically registered with an authorization server
 to obtain this information and how metadata about the client can be
 registered with the server.

 This specification extends the core registration specification by
 defining a set of methods for management of dynamic OAuth 2.0 client
 registrations beyond those defined in the core registration
 specification. In some situations, the registered metadata of a
 client can change over time, either by modification at the
 authorization server or by a change in the client software itself.
 This specification provides methods for the current registration
 state of a client to be queried at the authorization server, methods
 for the registration of a client to be updated at the authorization

Richer, et al. Expires November 6, 2015 [Page 2]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 server, and methods for the client to be unregistered from the
 authorization server.

 This experimental draft is intended to encourage development and
 deployment of interoperable solutions with the intent that feedback
 from this experience will inform a future standard.

1.1. Notational Conventions

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 This specification uses the terms "access token", "authorization
 code", "authorization endpoint", "authorization grant",
 "authorization server", "client", "client identifier", "client
 secret", "grant type", "protected resource", "redirection URI",
 "refresh token", "resource owner", "resource server", "response
 type", and "token endpoint" defined by OAuth 2.0 [RFC6749] and the
 terms defined by the OAuth 2.0 Client Dynamic Registration Protocol
 [OAuth.Registration].

 This specification defines the following terms:

 Client Configuration Endpoint
 OAuth 2.0 endpoint through which registration information for a
 registered client can be managed. This URL for this endpoint is
 returned by the authorization server in the client information
 response.

 Registration Access Token
 OAuth 2.0 bearer token issued by the authorization server through
 the client registration endpoint that is used to authenticate the
 caller when accessing the client’s registration information at the
 client configuration endpoint. This access token is associated
 with a particular registered client.

1.3. Protocol Flow

Richer, et al. Expires November 6, 2015 [Page 3]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 This extends the flow in the OAuth 2.0 Dynamic Client Registration
 Protocol [OAuth.Registration] specification as follows:

 +--------(A)- Initial Access Token (OPTIONAL)
 |
 | +----(B)- Software Statement (OPTIONAL)
 | |
 v v
 +-----------+ +---------------+
 | |--(C)- Client Registration Request -->| Client |
 | | | Registration |
 | |<-(D)- Client Information Response ---| Endpoint |
 | | +---------------+
 | |
 | | +---------------+
 | Client or |--(E)- Read or Update Request ------->| |
 | Developer | | |
 | |<-(F)- Client Information Response ---| Client |
 | | | Configuration |
 | | | Endpoint |
 | | | |
 | |--(G)- Delete Request --------------->| |
 | | | |
 | |<-(H)- Delete Confirmation -----------| |
 +-----------+ +---------------+

 Figure 1: Abstract Extended Dynamic Client Registration Flow

 The abstract OAuth 2.0 client dynamic registration flow illustrated
 in Figure 1 describes the interaction between the client or developer
 and the endpoints defined in this specification and its parent. This
 figure does not demonstrate error conditions. This flow includes the
 following steps:

 (A) Optionally, the client or developer is issued an initial access
 token for use with the client registration endpoint. The method
 by which the initial access token is issued to the client or
 developer is out of scope for this specification.

 (B) Optionally, the client or developer is issued a software
 statement for use with the client registration endpoint. The
 method by which the software statement is issued to the client or
 developer is out of scope for this specification.

 (C) The client or developer calls the client registration endpoint
 with its desired registration metadata, optionally including the
 initial access token from (A) if one is required by the
 authorization server.

Richer, et al. Expires November 6, 2015 [Page 4]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 (D) The authorization server registers the client and returns:

 * the client’s registered metadata,

 * a client identifier that is unique to the server,

 * a set of client credentials such as a client secret, if
 applicable for this client,

 * a URI pointing to the client configuration endpoint, and

 * a registration access token to be used when calling the client
 configuration endpoint.

 (E) The client or developer optionally calls the client
 configuration endpoint with a read or update request using the
 registration access token issued in (D). An update request
 contains all of the client’s registered metadata.

 (F) The authorization server responds with the client’s current
 configuration, potentially including a new registration access
 token and a new set of client credentials such as a client secret
 if applicable for this client. If a new registration access token
 is issued, it replaces the token issued in (D) for all subsequent
 calls to the client configuration endpoint.

 (G) The client or developer optionally calls the client
 configuration endpoint with a delete request using the
 registration access token issued in (D) or (F).

 (H) The authorization server deprovisions the client and responds
 with a confirmation that the deletion has taken place.

2. Client Configuration Endpoint

 The client configuration endpoint is an OAuth 2.0 protected resource
 that is provisioned by the server to facilitate viewing, updating,
 and deleting a client’s registered information. The location of this
 endpoint is communicated to the client through the
 "registration_client_uri" member of the client information response,
 as specified in Section 3. The client MUST use its registration
 access token in all calls to this endpoint as an OAuth 2.0 Bearer
 Token [RFC6750].

 The client configuration endpoint MUST be protected by a transport-
 layer security mechanism, as described in Section 5.

Richer, et al. Expires November 6, 2015 [Page 5]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 Operations on this endpoint are switched through the use of different
 HTTP methods [RFC7231]. If an authorization server does not support
 a particular method on the client configuration endpoint, it MUST
 respond with the appropriate error code.

2.1. Client Read Request

 To read the current configuration of the client on the authorization
 server, the client makes an HTTP GET request to the client
 configuration endpoint, authenticating with its registration access
 token.

 Following is a non-normative example request (with line wraps for
 display purposes only):

 GET /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 Upon successful read of the information for a currently active
 client, the authorization server responds with an HTTP 200 OK with
 content type of "application/json" and a payload, as described in
 Section 3. Some values in the response, including the
 "client_secret" and "registration_access_token", MAY be different
 from those in the initial registration response. If the
 authorization server includes a new client secret and/or registration
 access token in its response, the client MUST immediately discard its
 previous client secret and/or registration access token. The value
 of the "client_id" MUST NOT change from the initial registration
 response.

 If the registration access token used to make this request is not
 valid, the server MUST respond with an error as described in OAuth
 Bearer Token Usage [RFC6750].

 If the client does not exist on this server, the server MUST respond
 with HTTP 401 Unauthorized and the registration access token used to
 make this request SHOULD be immediately revoked.

 If the client does not have permission to read its record, the server
 MUST return an HTTP 403 Forbidden.

2.2. Client Update Request

 To update previously-registered client’s registration with an
 authorization server, the client makes an HTTP PUT request to the
 client configuration endpoint with a content type of "application/

Richer, et al. Expires November 6, 2015 [Page 6]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 json". The HTTP entity payload is a JSON [RFC7159] document
 consisting of a JSON object and all parameters as top-level members
 of that JSON object. This request is authenticated by the
 registration access token issued to the client.

 This request MUST include all client metadata fields as returned to
 the client from a previous registration, read, or update operation.
 The updated client metadata fields request MUST NOT include the
 "registration_access_token", "registration_client_uri",
 "client_secret_expires_at", or "client_id_issued_at" fields described
 in Section 3.

 Valid values of client metadata fields in this request MUST replace,
 not augment, the values previously associated with this client.
 Omitted fields MUST be treated as null or empty values by the server,
 indicating the client’s request to delete them from the client’s
 registration. The authorization server MAY ignore any null or empty
 value in the request just as any other value.

 The client MUST include its "client_id" field in the request, and it
 MUST be the same as its currently-issued client identifier. If the
 client includes the "client_secret" field in the request, the value
 of this field MUST match the currently-issued client secret for that
 client. The client MUST NOT be allowed to overwrite its existing
 client secret with its own chosen value.

 For all metadata fields, the authorization server MAY replace any
 invalid values with suitable default values, and it MUST return any
 such fields to the client in the response.

 For example, a client could send the following request to the client
 registration endpoint to update the client registration in the above
 example with new information:

Richer, et al. Expires November 6, 2015 [Page 7]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 Following is a non-normative example request (with line wraps for
 display purposes only):

 PUT /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 {
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/alt"],
 "grant_types": ["authorization_code", "refresh_token"],
 "token_endpoint_auth_method": "client_secret_basic",
 "jwks_uri": "https://client.example.org/my_public_keys.jwks",
 "client_name":"My New Example",
 "client_name#fr":"Mon Nouvel Exemple",
 "logo_uri":"https://client.example.org/newlogo.png",
 "logo_uri#fr":"https://client.example.org/fr/newlogo.png"
 }

 This example uses client metadata values defined in
 [OAuth.Registration].

 Upon successful update, the authorization server responds with an
 HTTP 200 OK Message with content type "application/json" and a
 payload, as described in Section 3. Some values in the response,
 including the "client_secret" and "registration_access_token", MAY be
 different from those in the initial registration response. If the
 authorization server includes a new client secret and/or registration
 access token in its response, the client MUST immediately discard its
 previous client secret and/or registration access token. The value
 of the "client_id" MUST NOT change from the initial registration
 response.

 If the registration access token used to make this request is not
 valid, the server MUST respond with an error as described in OAuth
 Bearer Token Usage [RFC6750].

 If the client does not exist on this server, the server MUST respond
 with HTTP 401 Unauthorized, and the registration access token used to
 make this request SHOULD be immediately revoked.

 If the client is not allowed to update its records, the server MUST
 respond with HTTP 403 Forbidden.

Richer, et al. Expires November 6, 2015 [Page 8]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 If the client attempts to set an invalid metadata field and the
 authorization server does not set a default value, the authorization
 server responds with an error as described in [OAuth.Registration].

2.3. Client Delete Request

 To deprovision itself on the authorization server, the client makes
 an HTTP DELETE request to the client configuration endpoint. This
 request is authenticated by the registration access token issued to
 the client as described in [RFC6749].

 Following is a non-normative example request (with line wraps for
 display purposes only):

 DELETE /register/s6BhdRkqt3 HTTP/1.1
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 A successful delete action will invalidate the "client_id",
 "client_secret", and "registration_access_token" for this client,
 thereby preventing the "client_id" from being used at either the
 authorization endpoint or token endpoint of the authorization server.
 If possible, the authorization server SHOULD immediately invalidate
 all existing authorization grants and currently-active access tokens,
 refresh tokens, and other tokens associated with this client.

 If a client has been successfully deprovisioned, the authorization
 server MUST respond with an HTTP 204 No Content message.

 If the server does not support the delete method, the server MUST
 respond with an HTTP 405 Not Supported.

 If the registration access token used to make this request is not
 valid, the server MUST respond with an error as described in OAuth
 Bearer Token Usage [RFC6750].

 If the client does not exist on this server, the server MUST respond
 with HTTP 401 Unauthorized and the registration access token used to
 make this request SHOULD be immediately revoked, if possible.

 If the client is not allowed to delete itself, the server MUST
 respond with HTTP 403 Forbidden.

 Following is a non-normative example response:

 HTTP/1.1 204 No Content
 Cache-Control: no-store
 Pragma: no-cache

Richer, et al. Expires November 6, 2015 [Page 9]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

3. Client Information Response

 This specification extends the client information response defined in
 OAuth 2.0 Client Dynamic Registration [OAuth.Registration], which
 states that the response contains the client identifier (as well as
 the client secret if the client is a confidential client). When used
 with this specification, the client information response also
 contains the fully qualified URL of the client configuration endpoint
 (Section 2) for this specific client that the client or developer may
 use to manage the client’s registration configuration, as well as a
 registration access token that is to be used by the client or
 developer to perform subsequent operations at the client
 configuration endpoint.

 registration_access_token
 REQUIRED. Access token string used at the client configuration
 endpoint to perform subsequent operations upon the client
 registration.

 registration_client_uri
 REQUIRED. Fully qualified URL string of the client configuration
 endpoint for this client.

 Additionally, the authorization server MUST return all registered
 metadata about this client, including any fields provisioned by the
 authorization server itself. The authorization server MAY reject or
 replace any of the client’s requested metadata values submitted
 during the registration or update requests and substitute them with
 suitable values.

 The response is an "application/json" document with all parameters as
 top-level members of a JSON object [RFC7159].

Richer, et al. Expires November 6, 2015 [Page 10]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 Following is a non-normative example response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "registration_access_token": "reg-23410913-abewfq.123483",
 "registration_client_uri":
 "https://server.example.com/register/s6BhdRkqt3",
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "client_id_issued_at":2893256800,
 "client_secret_expires_at":2893276800,
 "client_name":"My Example Client",
 "client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "grant_types": ["authorization_code", "refresh_token"],
 "token_endpoint_auth_method": "client_secret_basic",
 "logo_uri": "https://client.example.org/logo.png",
 "jwks_uri": "https://client.example.org/my_public_keys.jwks"
 }

4. IANA Considerations

 This specification registers the following client metadata names and
 descriptions in the OAuth Dynamic Client Registration Metadata
 registry established by [OAuth.Registration]:

 o Client Metadata Name: "registration_access_token"

 o Client Metadata Description: OAuth 2.0 bearer token used to access
 the client configuration endpoint

 o Change controller: IESG

 o Specification document(s): [[this document]]

 o Client Metadata Name: "registration_client_uri"

 o Client Metadata Description: Fully qualified URI of the client
 registration endpoint

 o Change controller: IESG

Richer, et al. Expires November 6, 2015 [Page 11]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 o Specification document(s): [[this document]]

5. Security Considerations

 While the client secret can expire, the registration access token
 SHOULD NOT expire while a client is still actively registered. If
 this token were to expire, a developer or client could be left in a
 situation where they have no means of retrieving, updating, or
 deleting the client’s registration information. Were that the case,
 a new registration would be required, thereby generating a new client
 identifier. However, to limit the exposure surface of the
 registration access token, the registration access token MAY be
 rotated when the developer or client does a read or update operation
 on the client’s client configuration endpoint. As the registration
 access tokens are relatively long-term credentials, and since the
 registration access token is a Bearer token and acts as the sole
 authentication for use at the client configuration endpoint, it MUST
 be protected by the developer or client as described in OAuth 2.0
 Bearer Token Usage [RFC6750].

 Since requests to the client configuration endpoint result in the
 transmission of clear-text credentials (in the HTTP request and
 response), the authorization server MUST require the use of a
 transport-layer security mechanism when sending requests to the
 endpoint. The server MUST support TLS 1.2 RFC 5246 [RFC5246] and MAY
 support additional transport-layer mechanisms meeting its security
 requirements. When using TLS, the client MUST perform a TLS/SSL
 server certificate check, per RFC 6125 [RFC6125]. Implementation
 security considerations can be found in Recommendations for Secure
 Use of TLS and DTLS [RFC7525].

 Since possession of the registration access token authorizes the
 holder to potentially read, modify, or delete a client’s registration
 (including its credentials such as a client_secret), the registration
 access token MUST contain sufficient entropy to prevent a random
 guessing attack of this token, such as described in [RFC6750]
 Section 5.2 and [RFC6819] Section 5.1.4.2.2.

 If a client is deprovisioned from a server, any outstanding
 registration access token for that client MUST be invalidated at the
 same time. Otherwise, this can lead to an inconsistent state wherein
 a client could make requests to the client configuration endpoint
 where the authentication would succeed but the action would fail
 because the client is no longer valid. The authorization server MUST
 treat all such requests as if the registration access token was
 invalid by returning an HTTP 401 Unauthorized error, as described.

Richer, et al. Expires November 6, 2015 [Page 12]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

6. Privacy Considerations

 This specification poses no additional privacy considerations beyond
 those described in the core OAuth 2.0 Dynamic Client Registration
 [OAuth.Registration] specification.

7. Normative References

 [OAuth.Registration]
 Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 draft-ietf-oauth-dyn-reg (work in progress), May 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

 [RFC6819] Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 January 2013.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, May 2015.

Richer, et al. Expires November 6, 2015 [Page 13]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

Appendix A. Acknowledgments

 The authors thank the OAuth Working Group, the User-Managed Access
 Working Group, and the OpenID Connect Working Group participants for
 their input to this document. In particular, the following
 individuals have been instrumental in their review and contribution
 to various versions of this document: Amanda Anganes, Derek Atkins,
 Tim Bray, Domenico Catalano, Donald Coffin, Vladimir Dzhuvinov,
 George Fletcher, Thomas Hardjono, Phil Hunt, William Kim, Torsten
 Lodderstedt, Eve Maler, Josh Mandel, Nov Matake, Tony Nadalin, Nat
 Sakimura, Christian Scholz, and Hannes Tschofenig.

Appendix B. Registration Tokens and Client Credentials

 Throughout the course of the dynamic registration protocol, there are
 three different classes of credentials in play, each with different
 properties and targets.

 o The initial access token is optionally used by the client or
 developer at the registration endpoint. This is an OAuth 2.0
 token that is used to authorize the initial client registration
 request. The content, structure, generation, and validation of
 this token are out of scope for this specification. The
 authorization server can use this token to verify that the
 presenter is allowed to dynamically register new clients. This
 token may be shared among multiple instances of a client to allow
 them to each register separately, thereby letting the
 authorization server use this token to tie multiple instances of
 registered clients (each with their own distinct client
 identifier) back to the party to whom the initial access token was
 issued, usually an application developer. This token is usually
 intended to be used only at the client registration endpoint.

 o The registration access token is used by the client or developer
 at the client configuration endpoint and represents the holder’s
 authorization to manage the registration of a client. This is an
 OAuth 2.0 bearer token that is issued from the client registration
 endpoint in response to a client registration request and is
 returned in a client information response. The registration
 access token is uniquely bound to the client identifier and is
 required to be presented with all calls to the client
 configuration endpoint. The registration access token should be
 protected as described in [RFC6750] and should not be shared
 between instances of a client. If a registration access token is
 shared between client instances, one instance could change or
 delete registration values for all other instances of the client.
 The registration access token can be rotated through the use of
 the client read or update method on the client configuration

Richer, et al. Expires November 6, 2015 [Page 14]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 endpoint. The registration access token is intended to be used
 only at the client configuration endpoint.

 o The client credentials (such as "client_secret") are optional
 depending on the type of client and are used to retrieve OAuth
 tokens. Client credentials are most often bound to particular
 instances of a client and should not be shared between instances.
 Note that since not all types of clients have client credentials,
 they cannot be used to manage client registrations at the client
 configuration endpoint. The client credentials can be rotated
 through the use of the client read or update method on the client
 configuration endpoint. The client credentials are intended to be
 used only at the token endpoint.

B.1. Credential Rotation

 The authorization server may be configured to issue new registration
 access tokens and/or client credentials (such as a "client_secret")
 throughout the lifetime of the client. This may help minimize the
 impact of exposed credentials. The authorization server conveys new
 registration access tokens and client credentials (if applicable) to
 the client in the client information response of either a read or
 update request to the client configuration endpoint. The client’s
 current registration access token and client credentials (if
 applicable) MUST be included in the client information response.

 The registration access token SHOULD be rotated only in response to a
 read or update request to the client configuration endpoint, at which
 point the new registration access token is returned to the client and
 the old registration access token MUST be discarded by the client and
 SHOULD be discarded by the server, if possible. If instead the
 registration access token were to expire or be invalidated outside of
 such requests, the client or developer might be locked out of
 managing the client’s configuration.

 Note that the authorization server decides the frequency of the
 credential rotation and not the client. Methods by which the client
 can request credential rotation are outside the scope of this
 document.

Appendix C. Forming the Client Configuration Endpoint URL

 The authorization server MUST provide the client with the fully
 qualified URL in the "registration_client_uri" element of the Client
 Information Response, as specified in Section 3. The authorization
 server MUST NOT expect the client to construct or discover this URL
 on its own. The client MUST use the URL as given by the server and
 MUST NOT construct this URL from component pieces.

Richer, et al. Expires November 6, 2015 [Page 15]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 Depending on deployment characteristics, the client configuration
 endpoint URL may take any number of forms. It is RECOMMENDED that
 this endpoint URL be formed through the use of a server-constructed
 URL string which combines the client registration endpoint’s URL and
 the issued "client_id" for this client, with the latter as either a
 path parameter or a query parameter. For example, a client with the
 client identifier "s6BhdRkqt3" could be given a client configuration
 endpoint URL of "https://server.example.com/register/s6BhdRkqt3"
 (path parameter) or of "https://server.example.com/
 register?client_id=s6BhdRkqt3" (query parameter). In both of these
 cases, the client simply uses the URL as given by the authorization
 server.

 These common patterns can help the server to more easily determine
 the client to which the request pertains, which MUST be matched
 against the client to which the registration access token was issued.
 If desired, the server MAY simply return the client registration
 endpoint URL as the client configuration endpoint URL and change
 behavior based on the authentication context provided by the
 registration access token.

Appendix D. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -15

 o Added RFC 7525/BCP 195 reference to replace draft reference.

 -14

 o Clarified all client metadata as JSON arrays, strings, or numbers.

 o Clarified experimental nature of the draft.

 -13

 o Changed rate-limiting suggestion to a complexity requirement.

 -12

 o Used consistent registry name.

 -11

 o Fixed a series of nits from Peter Yee’s Gen-ART review.

 -10

Richer, et al. Expires November 6, 2015 [Page 16]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 o Updated author information.

 o Updated TLS information, imported from Dynamic Registration core.

 o Expanded introduction.

 o Reformatted diagram text.

 o Added privacy considerations section.

 -09

 o Updated author information.

 -08

 o Updated HTTP RFC reference.

 -07

 o Editorial clarifications due to document shepherd feedback.

 -06

 o Removed TLS 1.0.

 o Moved several explanatory sections to the appendix.

 o Clarified read operations.

 o Added IANA request.

 -05

 o Removed Phil Hunt from authors list, per request.

 o Applied various minor editorial changes from working group
 comments.

 -04

 o Incorrect XML uploaded for -03

 -03

 o Changed draft to be Experimental instead of Standards Track.

 -02

Richer, et al. Expires November 6, 2015 [Page 17]

Internet-Draft OAuth 2.0 Dynamic Registration Management May 2015

 o Added more context information to the abstract.

 -01

 o Addressed issues that arose from last call comments on draft-ietf-
 oauth-dyn-reg and draft-ietf-oauth-dyn-reg-metadata.

 -00

 o Created from draft-jones-oauth-dyn-reg-management-00.

Authors’ Addresses

 Justin Richer (editor)

 Email: ietf@justin.richer.org

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com

 Maciej Machulak
 Newcastle University

 Email: maciej.machulak@gmail.com

Richer, et al. Expires November 6, 2015 [Page 18]

OAuth Working Group J. Richer, Ed.
Internet-Draft July 3, 2015
Intended status: Standards Track
Expires: January 4, 2016

 OAuth 2.0 Token Introspection
 draft-ietf-oauth-introspection-11

Abstract

 This specification defines a method for a protected resource to query
 an OAuth 2.0 authorization server to determine the active state of an
 OAuth 2.0 token and to determine meta-information about this token.
 OAuth 2.0 deployments can use this method to convey information about
 the authorization context of the token from the authorization server
 to the protected resource.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Richer Expires January 4, 2016 [Page 1]

Internet-Draft oauth-introspection July 2015

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Notational Conventions 3
 1.2. Terminology . 3
 2. Introspection Endpoint 4
 2.1. Introspection Request 4
 2.2. Introspection Response 6
 2.3. Error Response . 8
 3. IANA Considerations . 9
 3.1. OAuth Token Introspection Response Registry 9
 3.1.1. Registration Template 9
 3.1.2. Initial Registry Contents 10
 4. Security Considerations 11
 5. Privacy Considerations 14
 6. Acknowledgements . 14
 7. References . 14
 7.1. Normative References 14
 7.2. Informative References 15
 Appendix A. Use with Proof of Posession Tokens 15
 Appendix B. Document History 16
 Author’s Address . 17

1. Introduction

 In OAuth 2.0, the contents of tokens are opaque to clients. This
 means that the client does not need to know anything about the
 content or structure of the token itself, if there is any. However,
 there is still a large amount of metadata that may be attached to a
 token, such as its current validity, approved scopes, and information
 about the context in which the token was issued. These pieces of
 information are often vital to protected resources making
 authorization decisions based on the tokens being presented. Since
 OAuth 2.0 [RFC6749] does not define a protocol for the resource
 server to learn meta-information about a token that is has received
 from an authorization server, several different approaches have been
 developed to bridge this gap. These include using structured token
 formats such as JWT [RFC7519] or proprietary inter-service
 communication mechanisms (such as shared databases and protected
 enterprise service buses) that convey token information.

Richer Expires January 4, 2016 [Page 2]

Internet-Draft oauth-introspection July 2015

 This specification defines a protocol that allows authorized
 protected resources to query the authorization server to determine
 the set of metadata for a given token that was presented to them by
 an OAuth 2.0 client. This metadata includes whether or not the token
 is currently active (or if it has expired or otherwise been revoked),
 what rights of access the token carries (usually conveyed through
 OAuth 2.0 scopes), and the authorization context in which the token
 was granted (including who authorized the token and which client it
 was issued to). Token introspection allows a protected resource to
 query this information regardless of whether or not it is carried in
 the token itself, allowing this method to be used along with or
 independently of structured token values. Additionally, a protected
 resource can use the mechanism described in this specification to
 introspect the token in a particular authorization decision context
 and ascertain the relevant metadata about the token to make this
 authorization decision appropriately.

1.1. Notational Conventions

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 This section defines the terminology used by this specification.
 This section is a normative portion of this specification, imposing
 requirements upon implementations.

 This specification uses the terms "access token", "authorization
 endpoint", "authorization grant", "authorization server", "client",
 "client identifier", "protected resource", "refresh token", "resource
 owner", "resource server", and "token endpoint" defined by OAuth 2.0
 [RFC6749], and the terms "claim names" and "claim values" defined by
 JSON Web Token (JWT) [RFC7519].

 This specification defines the following terms:

 Token Introspection
 The act of inquiring about the current state of an OAuth 2.0 token
 through use of the network protocol defined in this document.

 Introspection Endpoint
 The OAuth 2.0 endpoint through which the token introspection
 operation is accomplished..

Richer Expires January 4, 2016 [Page 3]

Internet-Draft oauth-introspection July 2015

2. Introspection Endpoint

 The introspection endpoint is an OAuth 2.0 endpoint that takes a
 parameter representing an OAuth 2.0 token and returns a JSON
 [RFC7159] document representing the meta information surrounding the
 token, including whether this token is currently active. The
 definition of an active token is dependent upon the authorization
 server, but this is commonly a token that has been issued by this
 authorization server, is not expired, has not been revoked, and valid
 for use at the protected resource making the introspection call.

 The introspection endpoint MUST be protected by a transport-layer
 security mechanism as described in Section 4. The means by which the
 protected resource discovers the location of the introspection
 endpoint are outside the scope of this specification.

2.1. Introspection Request

 The protected resource calls the introspection endpoint using an HTTP
 POST [RFC7231] request with parameters sent as "application/x-www-
 form-urlencoded" data as defined in [W3C.REC-html5-20141028]. The
 protected resource sends a parameter representing the token along
 with optional parameters representing additional context that is
 known by the protected resource to aid the authorization server in
 its response.

 token REQUIRED. The string value of the token. For access tokens,
 this is the "access_token" value returned from the token endpoint
 defined in OAuth 2.0 [RFC6749] section 5.1. For refresh tokens,
 this is the "refresh_token" value returned from the token endpoint
 as defined in OAuth 2.0 [RFC6749] section 5.1. Other token types
 are outside the scope of this specification.

 token_type_hint OPTIONAL. A hint about the type of the token
 submitted for introspection. The protected resource MAY pass this
 parameter to help the authorization server to optimize the token
 lookup. If the server is unable to locate the token using the
 given hint, it MUST extend its search across all of its supported
 token types. An authorization server MAY ignore this parameter,
 particularly if it is able to detect the token type automatically.
 Values for this field are defined in the OAuth Token Type Hints
 registry defined in OAuth Token Revocation [RFC7009].

 The introspection endpoint MAY accept other OPTIONAL parameters to
 provide further context to the query. For instance, an authorization
 server may desire to know the IP address of the client accessing the
 protected resource to determine if the correct client is likely to be
 presenting the token. The definition of this or any other parameters

Richer Expires January 4, 2016 [Page 4]

Internet-Draft oauth-introspection July 2015

 are outside the scope of this specification, to be defined by service
 documentation or extensions to this specification. If the
 authorization server is unable to determine the state of the token
 without additional information, it SHOULD return an introspection
 response indicating the token is not active as described in
 Section 2.2.

 To prevent token scanning attacks, the endpoint MUST also require
 some form of authorization to access this endpoint, such as client
 authentication as described in OAuth 2.0 [RFC6749] or a separate
 OAuth 2.0 access token such as the bearer token described in OAuth
 2.0 Bearer Token Usage [RFC6750]. The methods of managing and
 validating these authentication credentials are out of scope of this
 specification.

 For example, the following example shows a protected resource calling
 the token introspection endpoint to query about an OAuth 2.0 bearer
 token. The protected resource is using a separate OAuth 2.0 bearer
 token to authorize this call.

 Following is a non-normative example request:

 POST /introspect HTTP/1.1
 Host: server.example.com
 Accept: application/json
 Content-Type: application/x-www-form-urlencoded
 Authorization: Bearer 23410913-abewfq.123483

 token=2YotnFZFEjr1zCsicMWpAA

 In this example, the protected resource uses a client identifier and
 client secret to authenticate itself to the introspection endpoint as
 well as send a token type hint.

 Following is a non-normative example request:

 POST /introspect HTTP/1.1
 Host: server.example.com
 Accept: application/json
 Content-Type: application/x-www-form-urlencoded
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

 token=mF_9.B5f-4.1JqM&token_type_hint=access_token

Richer Expires January 4, 2016 [Page 5]

Internet-Draft oauth-introspection July 2015

2.2. Introspection Response

 The server responds with a JSON object [RFC7159] in "application/
 json" format with the following top-level members.

 active
 REQUIRED. Boolean indicator of whether or not the presented token
 is currently active. The specifics of a token’s "active" state
 will vary depending on the implementation of the authorization
 server, and the information it keeps about its tokens, but a
 "true" value return for the "active" property will generally
 indicate that a given token has been issued by this authorization
 server, has not been revoked by the resource owner, and is within
 its given time window of validity (e.g. after its issuance time
 and before its expiration time). See Section 4 for information on
 implementation of such checks.

 scope
 OPTIONAL. A JSON string containing a space-separated list of
 scopes associated with this token, in the format described in
 section 3.3 of OAuth 2.0 [RFC6749].

 client_id
 OPTIONAL. Client identifier for the OAuth 2.0 client that
 requested this token.

 username
 OPTIONAL. Human-readable identifier for the resource owner who
 authorized this token.

 token_type
 OPTIONAL. Type of the token as defined in section 5.1 of OAuth
 2.0 [RFC6749].

 exp
 OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating when this token will expire,
 as defined in JWT [RFC7519].

 iat
 OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating when this token was
 originally issued, as defined in JWT [RFC7519].

 nbf
 OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating when this token is not to be
 used before, as defined in JWT [RFC7519].

Richer Expires January 4, 2016 [Page 6]

Internet-Draft oauth-introspection July 2015

 sub
 OPTIONAL. Subject of the token, as defined in JWT [RFC7519].
 Usually a machine-readable identifier of the resource owner who
 authorized this token.

 aud
 OPTIONAL. Service-specific string identifier or list of string
 identifiers representing the intended audience for this token, as
 defined in JWT [RFC7519].

 iss
 OPTIONAL. String representing the issuer of this token, as
 defined in JWT [RFC7519].

 jti
 OPTIONAL. String identifier for the token, as defined in JWT
 [RFC7519].

 Specific implementations MAY extend this structure with their own
 service-specific response names as top-level members of this JSON
 object. Response names intended to be used across domains MUST be
 registered in the OAuth Token Introspection Response registry defined
 in Section 3.1.

 The authorization server MAY respond differently to different
 protected resources making the same request. For instance, an
 authorization server MAY limit which scopes from a given token are
 returned for each protected resource to prevent protected resources
 from learning more about the larger network than is necessary for its
 operation.

 The response MAY be cached by the protected resource to improve
 performance and reduce load on the introspection endpoint, but at the
 cost of liveness of the information used by the protected resource.
 See Section 4 for more information regarding the trade off when the
 response is cached.

 For example, the following response contains a set of information
 about an active token:

Richer Expires January 4, 2016 [Page 7]

Internet-Draft oauth-introspection July 2015

 Following is a non-normative example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "active": true,
 "client_id": "l238j323ds-23ij4",
 "username": "jdoe",
 "scope": "read write dolphin",
 "sub": "Z5O3upPC88QrAjx00dis",
 "aud": "https://protected.example.net/resource",
 "iss": "https://server.example.com/",
 "exp": 1419356238,
 "iat": 1419350238,
 "extension_field": "twenty-seven"
 }

 If the introspection call is properly authorized but the token is not
 active, does not exist on this server, or the protected resource is
 not allowed to introspect this particular token, the authorization
 server MUST return an introspection response with the active field
 set to false. Note that to avoid disclosing too much of the
 authorization server’s state to a third party, the authorization
 server SHOULD NOT include any additional information about an
 inactive token, including why the token is inactive. For example,
 the response for a token that has been revoked or is otherwise
 invalid would look like the following:

 Following is a non-normative example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "active": false
 }

2.3. Error Response

 If the protected resource uses OAuth 2.0 client credentials to
 authenticate to the introspection endpoint and its credentials are
 invalid, the authorization server responds with an HTTP 401
 (Unauthorized) as described in section 5.2 of OAuth 2.0 [RFC6749].

Richer Expires January 4, 2016 [Page 8]

Internet-Draft oauth-introspection July 2015

 If the protected resource uses an OAuth 2.0 bearer token to authorize
 its call to the introspection endpoint and the token used for
 authorization does not contain sufficient privileges or is otherwise
 invalid for this request, the authorization server responds with an
 HTTP 401 code as described in section 3 of OAuth 2.0 Bearer Token
 Usage [RFC6750].

 Note that a properly formed and authorized query for an inactive or
 otherwise invalid token (or a token the protected resource is not
 allowed to know about) is not considered an error response by this
 specification. In these cases, the authorization server MUST instead
 respond with an introspection response with the "active" field set to
 "false" as described in Section 2.2.

3. IANA Considerations

3.1. OAuth Token Introspection Response Registry

 This specification establishes the OAuth Token Introspection Response
 registry.

 OAuth registration client metadata names and descriptions are
 registered with a Specification Required ([RFC5226]) after a two-week
 review period on the oauth-ext-review@ietf.org mailing list, on the
 advice of one or more Designated Experts. However, to allow for the
 allocation of names prior to publication, the Designated Expert(s)
 may approve registration once they are satisfied that such a
 specification will be published.

 Registration requests sent to the mailing list for review should use
 an appropriate subject (e.g., "Request to register OAuth Token
 Introspection Response name: example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

3.1.1. Registration Template

 Name:
 The name requested (e.g., "example"). This name is case
 sensitive. Names that match other registered names in a case

Richer Expires January 4, 2016 [Page 9]

Internet-Draft oauth-introspection July 2015

 insensitive manner SHOULD NOT be accepted. Names that match
 claims registered in the JSON Web Token Claims registry
 established by [RFC7519] SHOULD have comparable definitions and
 semantics.

 Description:
 Brief description of the metadata value (e.g., "Example
 description").

 Change controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification document(s):
 Reference to the document(s) that specify the token endpoint
 authorization method, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

3.1.2. Initial Registry Contents

 The initial contents of the OAuth Token Introspection Response
 registry are:

 o Name: "active"
 o Description: Token active status
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "username"
 o Description: User identifier of the resource owner
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "client_id"
 o Description: Client identifier of the client
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "scope"
 o Description: Authorized scopes of the token
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "token_type"
 o Description: Type of the token
 o Change Controller: IESG

Richer Expires January 4, 2016 [Page 10]

Internet-Draft oauth-introspection July 2015

 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "exp"
 o Description: Expiration timestamp of the token
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "iat"
 o Description: Issuance timestamp of the token
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "nbf"
 o Description: Timestamp which the token is not valid before
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "sub"
 o Description: Subject of the token
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "aud"
 o Description: Audience of the token
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "iss"
 o Description: Issuer of the token
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

 o Name: "jti"
 o Description: Unique identifier of the token
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this document]].

4. Security Considerations

 Since there are many different and valid ways to implement an OAuth
 2.0 system, there are consequently many ways for an authorization
 server to determine whether or not a token is currently "active" or
 not. However, since resource servers using token introspection rely
 on the authorization server to determine the state of a token, the
 authorization server MUST perform all applicable checks against a
 token’s state. For instance:

Richer Expires January 4, 2016 [Page 11]

Internet-Draft oauth-introspection July 2015

 o If the token can expire, the authorization server MUST determine
 whether or not the token has expired.
 o If the token can be issued before it is able to be used, the
 authorization server MUST determine whether or not a token’s valid
 period has started yet.
 o If the token can be revoked after it was issued, the authorization
 server MUST determine whether or not such a revocation has taken
 place.
 o If the token has been signed, the authorization server MUST
 validate the signature.
 o If the token can be used only at certain resource servers, the
 authorization server MUST determine whether or not the token can
 be used at the resource server making the introspection call.

 If an authorization server fails to perform any applicable check, the
 resource server could make an erroneous security decision based on
 that response. Note that not all of these checks will be applicable
 to all OAuth 2.0 deployments and it is up to the authorization server
 to determine which of these checks (and any other checks) apply.

 If left unprotected and un-throttled, the introspection endpoint
 could present a means for an attacker to poll a series of possible
 token values, fishing for a valid token. To prevent this, the
 authorization server MUST require authentication of protected
 resources that need to access the introspection endpoint and SHOULD
 require protected resources to be specifically authorized to call the
 introspection endpoint. The specifics of this authentication
 credentials are out of scope of this specification, but commonly
 these credentials could take the form of any valid client
 authentication mechanism used with the token endpoint, an OAuth 2.0
 access token, or other HTTP authorization or authentication
 mechanism. A single piece of software acting as both a client and a
 protected resource MAY re-use the same credentials between the token
 endpoint and the introspection endpoint, though doing so potentially
 conflates the activities of the client and protected resource
 portions of the software and the authorization server MAY require
 separate credentials for each mode.

 Since the introspection endpoint takes in OAuth 2.0 tokens as
 parameters and responds with information used to make authorization
 decisions, the server MUST support TLS 1.2 RFC 5246 [RFC5246] and MAY
 support additional transport-layer mechanisms meeting its security
 requirements. When using TLS, the client or protected resource MUST
 perform a TLS/SSL server certificate check, as specified in RFC 6125
 [RFC6125]. Implementation security considerations can be found in
 Recommendations for Secure Use of TLS and DTLS [TLS.BCP].

Richer Expires January 4, 2016 [Page 12]

Internet-Draft oauth-introspection July 2015

 To prevent the values of access tokens from leaking into server-side
 logs via query parameters, an authorization server offering token
 introspection MAY disallow the use of HTTP GET on the introspection
 endpoint and instead require the HTTP POST method to be used at the
 introspection endpoint.

 To avoid disclosing internal server state, an introspection response
 for an inactive token SHOULD NOT contain any additional claims beyond
 the required "active" claim (with its value set to "false").

 Since a protected resource MAY cache the response of the
 introspection endpoint, designers of an OAuth 2.0 system using this
 protocol MUST consider the performance and security trade-offs
 inherent in caching security information such as this. A less
 aggressive cache with a short timeout will provide the protected
 resource with more up to date information (due to it needing to query
 the introspection endpoint more often) at the cost of increased
 network traffic and load on the introspection endpoint. A more
 aggressive cache with a longer duration will minimize network traffic
 and load on the introspection endpoint, but at the risk of stale
 information about the token. For example, the token may be revoked
 while the protected resource is relying on the value of the cached
 response to make authorization decisions. This creates a window
 during which a revoked token could be used at the protected resource.
 Consequently, an acceptable cache validity duration needs to be
 carefully considered given the concerns and sensitivities of the
 protected resource being accessed and the likelihood of a token being
 revoked or invalidated in the interim period. Highly sensitive
 environments can opt to disable caching entirely on the protected
 resource to eliminate the risk of stale cached information entirely,
 again at the cost of increased network traffic and server load. If
 the response contains the "exp" parameter (expiration), the response
 MUST NOT be cached beyond the time indicated therein.

 An authorization server offering token introspection must be able to
 understand the token values being presented to it during this call.
 The exact means by which this happens is an implementation detail and
 outside the scope of this specification. For unstructured tokens,
 this could take the form of a simple server-side database query
 against a data store containing the context information for the
 token. For structured tokens, this could take the form of the server
 parsing the token, validating its signature or other protection
 mechanisms, and returning the information contained in the token back
 to the protected resource (allowing the protected resource to be
 unaware of the token’s contents, much like the client). Note that
 for tokens carrying encrypted information that is needed during the
 introspection process, the authorization server must be able to
 decrypt and validate the token to access this information. Also note

Richer Expires January 4, 2016 [Page 13]

Internet-Draft oauth-introspection July 2015

 that in cases where the authorization server stores no information
 about the token and has no means of accessing information about the
 token by parsing the token itself, it can not likely offer an
 introspection service.

5. Privacy Considerations

 The introspection response may contain privacy-sensitive information
 such as user identifiers for resource owners. When this is the case,
 measures MUST be taken to prevent disclosure of this information to
 unintended parties. One method is to transmit user identifiers as
 opaque service-specific strings, potentially returning different
 identifiers to each protected resource.

 If the protected resource sends additional information about the
 client’s request to the authorization server (such as the client’s IP
 address) using an extension of this specification, such information
 could have additional privacy considerations that the extension
 should detail. However, the nature and implications of such
 extensions are outside the scope of this specification.

 Omitting privacy-sensitive information from an introspection response
 is the simplest way of minimizing privacy issues.

6. Acknowledgements

 Thanks to the OAuth Working Group and the User Managed Access Working
 Group for feedback and review of this document, and to the various
 implementors of both the client and server components of this
 specification. In particular, the author would like to thank Amanda
 Anganes, John Bradley, Thomas Broyer, Brian Campbell, George
 Fletcher, Paul Freemantle, Thomas Hardjono, Eve Maler, Josh Mandel,
 Steve Moore, Mike Schwartz, Prabath Siriwardena, Sarah Squire, and
 Hannes Tschofennig.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Richer Expires January 4, 2016 [Page 14]

Internet-Draft oauth-introspection July 2015

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

 [RFC7009] Lodderstedt, T., Dronia, S., and M. Scurtescu, "OAuth 2.0
 Token Revocation", RFC 7009, August 2013.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, May 2015.

 [W3C.REC-html5-20141028]
 Hickson, I., Berjon, R., Faulkner, S., Leithead, T.,
 Navara, E., O'Connor, E., and S. Pfeiffer, "HTML5",
 World Wide Web Consortium Recommendation REC-
 html5-20141028, October 2014,
 <http://www.w3.org/TR/2014/REC-html5-20141028>.

7.2. Informative References

 [TLS.BCP] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of TLS and DTLS", November
 2014.

Appendix A. Use with Proof of Posession Tokens

 With bearer tokens such as those defined by OAuth 2.0 Bearer Token
 Usage [RFC6750], the protected resource will have in its possession
 the entire secret portion of the token for submission to the
 introspection service. However, for proof-of-possession style
 tokens, the protected resource will have only a token identifier used
 during the request, along with the cryptographic signature on the
 request. The protected resource would be able to submit the token
 identifier to the authorization server’s token endpoint to obtain the
 necessary key information needed to validate the signature on the

Richer Expires January 4, 2016 [Page 15]

Internet-Draft oauth-introspection July 2015

 request. The details of this usage are outside the scope of this
 specification and will be defined in an extension to this
 specification.

Appendix B. Document History

 [[To be removed by the RFC Editor.]]

 -11

 o Minor wording tweaks from IESG review.

 -10

 o Added missing 2119 section to terminology.
 o Removed optional HTTP GET at introspection endpoint.
 o Added terminology.
 o Renamed this "a protocol" instead of "web API".
 o Moved JWT to normative reference.
 o Reworded definition of "scope" value.
 o Clarified extensibility of input parameters.
 o Noted that discover is out of scope.
 o Fixed several typos and imprecise references.

 -09

 o Updated JOSE, JWT, and OAuth Assertion draft references to final
 RFC numbers.

 -08

 o Added privacy considerations note about extensions.
 o Added acknowledgements (finally).

 -07

 o Created a separate IANA registry for introspection responses,
 importing the values from JWT.

 -06

 o Clarified relationship between AS and RS in introduction.
 o Used updated TLS text imported from Dyn-Reg drafts.
 o Clarified definition of active state.
 o Added some advice on caching responses.
 o Added security considerations on active state implementation.
 o Changed user_id to username based on WG feedback.

Richer Expires January 4, 2016 [Page 16]

Internet-Draft oauth-introspection July 2015

 -05

 o Typo fix.
 o Updated author information.
 o Removed extraneous "linewrap" note from examples.

 - 04

 o Removed "resource_id" from request.
 o Added examples.

 - 03

 o Updated HTML and HTTP references.
 o Call for registration of parameters in the JWT registry.

 - 02

 o Removed SAML pointer.
 o Clarified what an "active" token could be.
 o Explicitly declare introspection request as x-www-form-urlencoded
 format.
 o Added extended example.
 o Made protected resource authentication a MUST.

 - 01

 o Fixed casing and consistent term usage.
 o Incorporated working group comments.
 o Clarified that authorization servers need to be able to understand
 the token if they’re to introspect it.
 o Various editorial cleanups.

 - 00

 o Created initial IETF drafted based on draft-richer-oauth-
 introspection-06 with no normative changes.

Author’s Address

 Justin Richer (editor)

 Email: ietf@justin.richer.org

Richer Expires January 4, 2016 [Page 17]

OAuth Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track J. Bradley
Expires: June 12, 2015 Ping Identity
 N. Sakimura
 NRI
 December 9, 2014

 JSON Web Token (JWT)
 draft-ietf-oauth-json-web-token-32

Abstract

 JSON Web Token (JWT) is a compact, URL-safe means of representing
 claims to be transferred between two parties. The claims in a JWT
 are encoded as a JavaScript Object Notation (JSON) object that is
 used as the payload of a JSON Web Signature (JWS) structure or as the
 plaintext of a JSON Web Encryption (JWE) structure, enabling the
 claims to be digitally signed or MACed and/or encrypted.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 12, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Jones, et al. Expires June 12, 2015 [Page 1]

Internet-Draft JSON Web Token (JWT) December 2014

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Notational Conventions 4
 2. Terminology . 4
 3. JSON Web Token (JWT) Overview 6
 3.1. Example JWT . 6
 4. JWT Claims . 8
 4.1. Registered Claim Names 8
 4.1.1. "iss" (Issuer) Claim 9
 4.1.2. "sub" (Subject) Claim 9
 4.1.3. "aud" (Audience) Claim 9
 4.1.4. "exp" (Expiration Time) Claim 9
 4.1.5. "nbf" (Not Before) Claim 9
 4.1.6. "iat" (Issued At) Claim 10
 4.1.7. "jti" (JWT ID) Claim 10
 4.2. Public Claim Names . 10
 4.3. Private Claim Names 10
 5. JOSE Header . 10
 5.1. "typ" (Type) Header Parameter 11
 5.2. "cty" (Content Type) Header Parameter 11
 5.3. Replicating Claims as Header Parameters 11
 6. Unsecured JWTs . 12
 6.1. Example Unsecured JWT 12
 7. Creating and Validating JWTs 13
 7.1. Creating a JWT . 13
 7.2. Validating a JWT . 14
 7.3. String Comparison Rules 15
 8. Implementation Requirements 16
 9. URI for Declaring that Content is a JWT 16
 10. IANA Considerations . 16
 10.1. JSON Web Token Claims Registry 16
 10.1.1. Registration Template 18
 10.1.2. Initial Registry Contents 18
 10.2. Sub-Namespace Registration of
 urn:ietf:params:oauth:token-type:jwt 19
 10.2.1. Registry Contents 19
 10.3. Media Type Registration 19
 10.3.1. Registry Contents 19
 10.4. Header Parameter Names Registration 20
 10.4.1. Registry Contents 20
 11. Security Considerations 21

Jones, et al. Expires June 12, 2015 [Page 2]

Internet-Draft JSON Web Token (JWT) December 2014

 11.1. Trust Decisions . 21
 11.2. Signing and Encryption Order 21
 12. Privacy Considerations . 22
 13. References . 22
 13.1. Normative References 22
 13.2. Informative References 23
 Appendix A. JWT Examples . 24
 A.1. Example Encrypted JWT 24
 A.2. Example Nested JWT . 25
 Appendix B. Relationship of JWTs to SAML Assertions 26
 Appendix C. Relationship of JWTs to Simple Web Tokens (SWTs) . . 27
 Appendix D. Acknowledgements 27
 Appendix E. Document History 28
 Authors’ Addresses . 34

Jones, et al. Expires June 12, 2015 [Page 3]

Internet-Draft JSON Web Token (JWT) December 2014

1. Introduction

 JSON Web Token (JWT) is a compact claims representation format
 intended for space constrained environments such as HTTP
 Authorization headers and URI query parameters. JWTs encode claims
 to be transmitted as a JavaScript Object Notation (JSON) [RFC7159]
 object that is used as the payload of a JSON Web Signature (JWS)
 [JWS] structure or as the plaintext of a JSON Web Encryption (JWE)
 [JWE] structure, enabling the claims to be digitally signed or MACed
 and/or encrypted. JWTs are always represented using the JWS Compact
 Serialization or the JWE Compact Serialization.

 The suggested pronunciation of JWT is the same as the English word
 "jot".

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in Key
 words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
 these words are used without being spelled in uppercase then they are
 to be interpreted with their normal natural language meanings.

2. Terminology

 These terms defined by the JSON Web Signature (JWS) [JWS]
 specification are incorporated into this specification: "JSON Web
 Signature (JWS)", "Base64url Encoding", "Header Parameter", "JOSE
 Header", "JWS Compact Serialization", "JWS Payload", "JWS Signature",
 and "Unsecured JWS".

 These terms defined by the JSON Web Encryption (JWE) [JWE]
 specification are incorporated into this specification: "JSON Web
 Encryption (JWE)", "Content Encryption Key (CEK)", "JWE Compact
 Serialization", "JWE Encrypted Key", "JWE Initialization Vector", and
 "JWE Plaintext".

 These terms defined by the Internet Security Glossary, Version 2
 [RFC4949] are incorporated into this specification: "Ciphertext",
 "Digital Signature" "Message Authentication Code (MAC)", and
 "Plaintext".

 These terms are defined by this specification:

Jones, et al. Expires June 12, 2015 [Page 4]

Internet-Draft JSON Web Token (JWT) December 2014

 JSON Web Token (JWT)
 A string representing a set of claims as a JSON object that is
 encoded in a JWS or JWE, enabling the claims to be digitally
 signed or MACed and/or encrypted.

 JWT Claims Set
 A JSON object that contains the Claims conveyed by the JWT.

 Claim
 A piece of information asserted about a subject. A Claim is
 represented as a name/value pair consisting of a Claim Name and a
 Claim Value.

 Claim Name
 The name portion of a Claim representation. A Claim Name is
 always a string.

 Claim Value
 The value portion of a Claim representation. A Claim Value can be
 any JSON value.

 Encoded JOSE Header
 Base64url encoding of the JOSE Header.

 Nested JWT
 A JWT in which nested signing and/or encryption are employed. In
 nested JWTs, a JWT is used as the payload or plaintext value of an
 enclosing JWS or JWE structure, respectively.

 Unsecured JWT
 A JWT whose Claims are not integrity protected or encrypted.

 Collision-Resistant Name
 A name in a namespace that enables names to be allocated in a
 manner such that they are highly unlikely to collide with other
 names. Examples of collision-resistant namespaces include: Domain
 Names, Object Identifiers (OIDs) as defined in the ITU-T X.660 and
 X.670 Recommendation series, and Universally Unique IDentifiers
 (UUIDs) [RFC4122]. When using an administratively delegated
 namespace, the definer of a name needs to take reasonable
 precautions to ensure they are in control of the portion of the
 namespace they use to define the name.

 StringOrURI
 A JSON string value, with the additional requirement that while
 arbitrary string values MAY be used, any value containing a ":"
 character MUST be a URI [RFC3986]. StringOrURI values are
 compared as case-sensitive strings with no transformations or

Jones, et al. Expires June 12, 2015 [Page 5]

Internet-Draft JSON Web Token (JWT) December 2014

 canonicalizations applied.

 NumericDate
 A JSON numeric value representing the number of seconds from 1970-
 01-01T00:00:00Z UTC until the specified UTC date/time, ignoring
 leap seconds. This is equivalent to the IEEE Std 1003.1, 2013
 Edition [POSIX.1] definition "Seconds Since the Epoch", in which
 each day is accounted for by exactly 86400 seconds, other than
 that non-integer values can be represented. See RFC 3339
 [RFC3339] for details regarding date/times in general and UTC in
 particular.

3. JSON Web Token (JWT) Overview

 JWTs represent a set of claims as a JSON object that is encoded in a
 JWS and/or JWE structure. This JSON object is the JWT Claims Set. As
 per Section 4 of RFC 7159 [RFC7159], the JSON object consists of zero
 or more name/value pairs (or members), where the names are strings
 and the values are arbitrary JSON values. These members are the
 claims represented by the JWT. This JSON object MAY contain white
 space and/or line breaks before or after any JSON values or
 structural characters, in accordance with Section 2 of RFC 7159
 [RFC7159].

 The member names within the JWT Claims Set are referred to as Claim
 Names. The corresponding values are referred to as Claim Values.

 The contents of the JOSE Header describe the cryptographic operations
 applied to the JWT Claims Set. If the JOSE Header is for a JWS, the
 JWT is represented as a JWS and the claims are digitally signed or
 MACed, with the JWT Claims Set being the JWS Payload. If the JOSE
 Header is for a JWE, the JWT is represented as a JWE and the claims
 are encrypted, with the JWT Claims Set being the JWE Plaintext. A
 JWT may be enclosed in another JWE or JWS structure to create a
 Nested JWT, enabling nested signing and encryption to be performed.

 A JWT is represented as a sequence of URL-safe parts separated by
 period (’.’) characters. Each part contains a base64url encoded
 value. The number of parts in the JWT is dependent upon the
 representation of the resulting JWS using the JWS Compact
 Serialization or JWE using the JWE Compact Serialization.

3.1. Example JWT

 The following example JOSE Header declares that the encoded object is
 a JSON Web Token (JWT) and the JWT is a JWS that is MACed using the
 HMAC SHA-256 algorithm:

Jones, et al. Expires June 12, 2015 [Page 6]

Internet-Draft JSON Web Token (JWT) December 2014

 {"typ":"JWT",
 "alg":"HS256"}

 To remove potential ambiguities in the representation of the JSON
 object above, the octet sequence for the actual UTF-8 representation
 used in this example for the JOSE Header above is also included
 below. (Note that ambiguities can arise due to differing platform
 representations of line breaks (CRLF versus LF), differing spacing at
 the beginning and ends of lines, whether the last line has a
 terminating line break or not, and other causes. In the
 representation used in this example, the first line has no leading or
 trailing spaces, a CRLF line break (13, 10) occurs between the first
 and second lines, the second line has one leading space (32) and no
 trailing spaces, and the last line does not have a terminating line
 break.) The octets representing the UTF-8 representation of the JOSE
 Header in this example (using JSON array notation) are:

 [123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32,
 34, 97, 108, 103, 34, 58, 34, 72, 83, 50, 53, 54, 34, 125]

 Base64url encoding the octets of the UTF-8 representation of the JOSE
 Header yields this Encoded JOSE Header value:

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

 The following is an example of a JWT Claims Set:

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

 The following octet sequence, which is the UTF-8 representation used
 in this example for the JWT Claims Set above, is the JWS Payload:

 [123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10,
 32, 34, 101, 120, 112, 34, 58, 49, 51, 48, 48, 56, 49, 57, 51, 56,
 48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47, 101, 120, 97,
 109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111,
 111, 116, 34, 58, 116, 114, 117, 101, 125]

 Base64url encoding the JWS Payload yields this encoded JWS Payload
 (with line breaks for display purposes only):

 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly
 9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 Computing the MAC of the encoded JOSE Header and encoded JWS Payload
 with the HMAC SHA-256 algorithm and base64url encoding the HMAC value

Jones, et al. Expires June 12, 2015 [Page 7]

Internet-Draft JSON Web Token (JWT) December 2014

 in the manner specified in [JWS], yields this encoded JWS Signature:

 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 Concatenating these encoded parts in this order with period (’.’)
 characters between the parts yields this complete JWT (with line
 breaks for display purposes only):

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .
 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 This computation is illustrated in more detail in Appendix A.1 of
 [JWS]. See Appendix A.1 for an example of an encrypted JWT.

4. JWT Claims

 The JWT Claims Set represents a JSON object whose members are the
 claims conveyed by the JWT. The Claim Names within a JWT Claims Set
 MUST be unique; JWT parsers MUST either reject JWTs with duplicate
 Claim Names or use a JSON parser that returns only the lexically last
 duplicate member name, as specified in Section 15.12 (The JSON
 Object) of ECMAScript 5.1 [ECMAScript].

 The set of claims that a JWT must contain to be considered valid is
 context-dependent and is outside the scope of this specification.
 Specific applications of JWTs will require implementations to
 understand and process some claims in particular ways. However, in
 the absence of such requirements, all claims that are not understood
 by implementations MUST be ignored.

 There are three classes of JWT Claim Names: Registered Claim Names,
 Public Claim Names, and Private Claim Names.

4.1. Registered Claim Names

 The following Claim Names are registered in the IANA JSON Web Token
 Claims registry defined in Section 10.1. None of the claims defined
 below are intended to be mandatory to use or implement in all cases,
 but rather, provide a starting point for a set of useful,
 interoperable claims. Applications using JWTs should define which
 specific claims they use and when they are required or optional. All
 the names are short because a core goal of JWTs is for the
 representation to be compact.

Jones, et al. Expires June 12, 2015 [Page 8]

Internet-Draft JSON Web Token (JWT) December 2014

4.1.1. "iss" (Issuer) Claim

 The "iss" (issuer) claim identifies the principal that issued the
 JWT. The processing of this claim is generally application specific.
 The "iss" value is a case-sensitive string containing a StringOrURI
 value. Use of this claim is OPTIONAL.

4.1.2. "sub" (Subject) Claim

 The "sub" (subject) claim identifies the principal that is the
 subject of the JWT. The Claims in a JWT are normally statements
 about the subject. The subject value MUST either be scoped to be
 locally unique in the context of the issuer or be globally unique.
 The processing of this claim is generally application specific. The
 "sub" value is a case-sensitive string containing a StringOrURI
 value. Use of this claim is OPTIONAL.

4.1.3. "aud" (Audience) Claim

 The "aud" (audience) claim identifies the recipients that the JWT is
 intended for. Each principal intended to process the JWT MUST
 identify itself with a value in the audience claim. If the principal
 processing the claim does not identify itself with a value in the
 "aud" claim when this claim is present, then the JWT MUST be
 rejected. In the general case, the "aud" value is an array of case-
 sensitive strings, each containing a StringOrURI value. In the
 special case when the JWT has one audience, the "aud" value MAY be a
 single case-sensitive string containing a StringOrURI value. The
 interpretation of audience values is generally application specific.
 Use of this claim is OPTIONAL.

4.1.4. "exp" (Expiration Time) Claim

 The "exp" (expiration time) claim identifies the expiration time on
 or after which the JWT MUST NOT be accepted for processing. The
 processing of the "exp" claim requires that the current date/time
 MUST be before the expiration date/time listed in the "exp" claim.
 Implementers MAY provide for some small leeway, usually no more than
 a few minutes, to account for clock skew. Its value MUST be a number
 containing a NumericDate value. Use of this claim is OPTIONAL.

4.1.5. "nbf" (Not Before) Claim

 The "nbf" (not before) claim identifies the time before which the JWT
 MUST NOT be accepted for processing. The processing of the "nbf"
 claim requires that the current date/time MUST be after or equal to
 the not-before date/time listed in the "nbf" claim. Implementers MAY
 provide for some small leeway, usually no more than a few minutes, to

Jones, et al. Expires June 12, 2015 [Page 9]

Internet-Draft JSON Web Token (JWT) December 2014

 account for clock skew. Its value MUST be a number containing a
 NumericDate value. Use of this claim is OPTIONAL.

4.1.6. "iat" (Issued At) Claim

 The "iat" (issued at) claim identifies the time at which the JWT was
 issued. This claim can be used to determine the age of the JWT. Its
 value MUST be a number containing a NumericDate value. Use of this
 claim is OPTIONAL.

4.1.7. "jti" (JWT ID) Claim

 The "jti" (JWT ID) claim provides a unique identifier for the JWT.
 The identifier value MUST be assigned in a manner that ensures that
 there is a negligible probability that the same value will be
 accidentally assigned to a different data object; if the application
 uses multiple issuers, collisions MUST be prevented among values
 produced by different issuers as well. The "jti" claim can be used
 to prevent the JWT from being replayed. The "jti" value is a case-
 sensitive string. Use of this claim is OPTIONAL.

4.2. Public Claim Names

 Claim Names can be defined at will by those using JWTs. However, in
 order to prevent collisions, any new Claim Name should either be
 registered in the IANA JSON Web Token Claims registry defined in
 Section 10.1 or be a Public Name: a value that contains a Collision-
 Resistant Name. In each case, the definer of the name or value needs
 to take reasonable precautions to make sure they are in control of
 the part of the namespace they use to define the Claim Name.

4.3. Private Claim Names

 A producer and consumer of a JWT MAY agree to use Claim Names that
 are Private Names: names that are not Registered Claim Names
 Section 4.1 or Public Claim Names Section 4.2. Unlike Public Claim
 Names, Private Claim Names are subject to collision and should be
 used with caution.

5. JOSE Header

 For a JWT object, the members of the JSON object represented by the
 JOSE Header describe the cryptographic operations applied to the JWT
 and optionally, additional properties of the JWT. Depending upon
 whether the JWT is a JWS or JWE, the corresponding rules for the JOSE
 Header values apply.

Jones, et al. Expires June 12, 2015 [Page 10]

Internet-Draft JSON Web Token (JWT) December 2014

 This specification further specifies the use of the following Header
 Parameters in both the cases where the JWT is a JWS and where it is a
 JWE.

5.1. "typ" (Type) Header Parameter

 The "typ" (type) Header Parameter defined by [JWS] and [JWE] is used
 by JWT applications to declare the MIME Media Type [IANA.MediaTypes]
 of this complete JWT. This is intended for use by the JWT
 application when values that are not JWTs could also be present in an
 application data structure that can contain a JWT object; the
 application can use this value to disambiguate among the different
 kinds of objects that might be present. It will typically not be
 used by applications when it is already known that the object is a
 JWT. This parameter is ignored by JWT implementations; any
 processing of this parameter is performed by the JWT application. If
 present, it is RECOMMENDED that its value be "JWT" to indicate that
 this object is a JWT. While media type names are not case-sensitive,
 it is RECOMMENDED that "JWT" always be spelled using uppercase
 characters for compatibility with legacy implementations. Use of
 this Header Parameter is OPTIONAL.

5.2. "cty" (Content Type) Header Parameter

 The "cty" (content type) Header Parameter defined by [JWS] and [JWE]
 is used by this specification to convey structural information about
 the JWT.

 In the normal case in which nested signing or encryption operations
 are not employed, the use of this Header Parameter is NOT
 RECOMMENDED. In the case that nested signing or encryption is
 employed, this Header Parameter MUST be present; in this case, the
 value MUST be "JWT", to indicate that a Nested JWT is carried in this
 JWT. While media type names are not case-sensitive, it is
 RECOMMENDED that "JWT" always be spelled using uppercase characters
 for compatibility with legacy implementations. See Appendix A.2 for
 an example of a Nested JWT.

5.3. Replicating Claims as Header Parameters

 In some applications using encrypted JWTs, it is useful to have an
 unencrypted representation of some Claims. This might be used, for
 instance, in application processing rules to determine whether and
 how to process the JWT before it is decrypted.

 This specification allows Claims present in the JWT Claims Set to be
 replicated as Header Parameters in a JWT that is a JWE, as needed by
 the application. If such replicated Claims are present, the

Jones, et al. Expires June 12, 2015 [Page 11]

Internet-Draft JSON Web Token (JWT) December 2014

 application receiving them SHOULD verify that their values are
 identical, unless the application defines other specific processing
 rules for these Claims. It is the responsibility of the application
 to ensure that only claims that are safe to be transmitted in an
 unencrypted manner are replicated as Header Parameter values in the
 JWT.

 Section 10.4.1 of this specification registers the "iss" (issuer),
 "sub" (subject), and "aud" (audience) Header Parameter names for the
 purpose of providing unencrypted replicas of these Claims in
 encrypted JWTs for applications that need them. Other specifications
 MAY similarly register other names that are registered Claim Names as
 Header Parameter names, as needed.

6. Unsecured JWTs

 To support use cases in which the JWT content is secured by a means
 other than a signature and/or encryption contained within the JWT
 (such as a signature on a data structure containing the JWT), JWTs
 MAY also be created without a signature or encryption. An Unsecured
 JWT is a JWS using the "alg" Header Parameter value "none" and with
 the empty string for its JWS Signature value, as defined in JSON Web
 Algorithms (JWA) [JWA]; it is an Unsecured JWS with the JWT Claims
 Set as its JWS Payload.

6.1. Example Unsecured JWT

 The following example JOSE Header declares that the encoded object is
 an Unsecured JWT:

 {"alg":"none"}

 Base64url encoding the octets of the UTF-8 representation of the JOSE
 Header yields this Encoded JOSE Header:

 eyJhbGciOiJub25lIn0

 The following is an example of a JWT Claims Set:

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

 Base64url encoding the octets of the UTF-8 representation of the JWT
 Claims Set yields this encoded JWS Payload (with line breaks for
 display purposes only):

Jones, et al. Expires June 12, 2015 [Page 12]

Internet-Draft JSON Web Token (JWT) December 2014

 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 The encoded JWS Signature is the empty string.

 Concatenating these encoded parts in this order with period (’.’)
 characters between the parts yields this complete JWT (with line
 breaks for display purposes only):

 eyJhbGciOiJub25lIn0
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .

7. Creating and Validating JWTs

7.1. Creating a JWT

 To create a JWT, the following steps are performed. The order of the
 steps is not significant in cases where there are no dependencies
 between the inputs and outputs of the steps.

 1. Create a JWT Claims Set containing the desired claims. Note that
 white space is explicitly allowed in the representation and no
 canonicalization need be performed before encoding.

 2. Let the Message be the octets of the UTF-8 representation of the
 JWT Claims Set.

 3. Create a JOSE Header containing the desired set of Header
 Parameters. The JWT MUST conform to either the [JWS] or [JWE]
 specification. Note that white space is explicitly allowed in
 the representation and no canonicalization need be performed
 before encoding.

 4. Depending upon whether the JWT is a JWS or JWE, there are two
 cases:

 * If the JWT is a JWS, create a JWS using the Message as the JWS
 Payload; all steps specified in [JWS] for creating a JWS MUST
 be followed.

 * Else, if the JWT is a JWE, create a JWE using the Message as
 the JWE Plaintext; all steps specified in [JWE] for creating a
 JWE MUST be followed.

Jones, et al. Expires June 12, 2015 [Page 13]

Internet-Draft JSON Web Token (JWT) December 2014

 5. If a nested signing or encryption operation will be performed,
 let the Message be the JWS or JWE, and return to Step 3, using a
 "cty" (content type) value of "JWT" in the new JOSE Header
 created in that step.

 6. Otherwise, let the resulting JWT be the JWS or JWE.

7.2. Validating a JWT

 When validating a JWT, the following steps are performed. The order
 of the steps is not significant in cases where there are no
 dependencies between the inputs and outputs of the steps. If any of
 the listed steps fails then the JWT MUST be rejected -- treated by
 the application as an invalid input.

 1. Verify that the JWT contains at least one period (’.’)
 character.

 2. Let the Encoded JOSE Header be the portion of the JWT before the
 first period (’.’) character.

 3. Base64url decode the Encoded JOSE Header following the
 restriction that no line breaks, white space, or other
 additional characters have been used.

 4. Verify that the resulting octet sequence is a UTF-8 encoded
 representation of a completely valid JSON object conforming to
 RFC 7159 [RFC7159]; let the JOSE Header be this JSON object.

 5. Verify that the resulting JOSE Header includes only parameters
 and values whose syntax and semantics are both understood and
 supported or that are specified as being ignored when not
 understood.

 6. Determine whether the JWT is a JWS or a JWE using any of the
 methods described in Section 9 of [JWE].

 7. Depending upon whether the JWT is a JWS or JWE, there are two
 cases:

 * If the JWT is a JWS, follow the steps specified in [JWS] for
 validating a JWS. Let the Message be the result of base64url
 decoding the JWS Payload.

 * Else, if the JWT is a JWE, follow the steps specified in
 [JWE] for validating a JWE. Let the Message be the JWE
 Plaintext.

Jones, et al. Expires June 12, 2015 [Page 14]

Internet-Draft JSON Web Token (JWT) December 2014

 8. If the JOSE Header contains a "cty" (content type) value of
 "JWT", then the Message is a JWT that was the subject of nested
 signing or encryption operations. In this case, return to Step
 1, using the Message as the JWT.

 9. Otherwise, base64url decode the Message following the
 restriction that no line breaks, white space, or other
 additional characters have been used.

 10. Verify that the resulting octet sequence is a UTF-8 encoded
 representation of a completely valid JSON object conforming to
 RFC 7159 [RFC7159]; let the JWT Claims Set be this JSON object.

 Finally, note that it is an application decision which algorithms may
 be used in a given context. Even if a JWT can be successfully
 validated, unless the algorithm(s) used in the JWT are acceptable to
 the application, it SHOULD reject the JWT.

7.3. String Comparison Rules

 Processing a JWT inevitably requires comparing known strings to
 members and values in JSON objects. For example, in checking what
 the algorithm is, the Unicode string encoding "alg" will be checked
 against the member names in the JOSE Header to see if there is a
 matching Header Parameter name.

 The JSON rules for doing member name comparison are described in
 Section 8.3 of RFC 7159 [RFC7159]. Since the only string comparison
 operations that are performed are equality and inequality, the same
 rules can be used for comparing both member names and member values
 against known strings.

 These comparison rules MUST be used for all JSON string comparisons
 except in cases where the definition of the member explicitly calls
 out that a different comparison rule is to be used for that member
 value. In this specification, only the "typ" and "cty" member values
 do not use these comparison rules.

 Some applications may include case-insensitive information in a case-
 sensitive value, such as including a DNS name as part of the "iss"
 (issuer) claim value. In those cases, the application may need to
 define a convention for the canonical case to use for representing
 the case-insensitive portions, such as lowercasing them, if more than
 one party might need to produce the same value so that they can be
 compared. (However if all other parties consume whatever value the
 producing party emitted verbatim without attempting to compare it to
 an independently produced value, then the case used by the producer
 will not matter.)

Jones, et al. Expires June 12, 2015 [Page 15]

Internet-Draft JSON Web Token (JWT) December 2014

8. Implementation Requirements

 This section defines which algorithms and features of this
 specification are mandatory to implement. Applications using this
 specification can impose additional requirements upon implementations
 that they use. For instance, one application might require support
 for encrypted JWTs and Nested JWTs, while another might require
 support for signing JWTs with ECDSA using the P-256 curve and the
 SHA-256 hash algorithm ("ES256").

 Of the signature and MAC algorithms specified in JSON Web Algorithms
 (JWA) [JWA], only HMAC SHA-256 ("HS256") and "none" MUST be
 implemented by conforming JWT implementations. It is RECOMMENDED
 that implementations also support RSASSA-PKCS1-V1_5 with the SHA-256
 hash algorithm ("RS256") and ECDSA using the P-256 curve and the SHA-
 256 hash algorithm ("ES256"). Support for other algorithms and key
 sizes is OPTIONAL.

 Support for encrypted JWTs is OPTIONAL. If an implementation
 provides encryption capabilities, of the encryption algorithms
 specified in [JWA], only RSAES-PKCS1-V1_5 with 2048 bit keys
 ("RSA1_5"), AES Key Wrap with 128 and 256 bit keys ("A128KW" and
 "A256KW"), and the composite authenticated encryption algorithm using
 AES CBC and HMAC SHA-2 ("A128CBC-HS256" and "A256CBC-HS512") MUST be
 implemented by conforming implementations. It is RECOMMENDED that
 implementations also support using ECDH-ES to agree upon a key used
 to wrap the Content Encryption Key ("ECDH-ES+A128KW" and
 "ECDH-ES+A256KW") and AES in Galois/Counter Mode (GCM) with 128 bit
 and 256 bit keys ("A128GCM" and "A256GCM"). Support for other
 algorithms and key sizes is OPTIONAL.

 Support for Nested JWTs is OPTIONAL.

9. URI for Declaring that Content is a JWT

 This specification registers the URN
 "urn:ietf:params:oauth:token-type:jwt" for use by applications that
 declare content types using URIs (rather than, for instance, MIME
 Media Types) to indicate that the content referred to is a JWT.

10. IANA Considerations

10.1. JSON Web Token Claims Registry

 This specification establishes the IANA JSON Web Token Claims
 registry for JWT Claim Names. The registry records the Claim Name

Jones, et al. Expires June 12, 2015 [Page 16]

Internet-Draft JSON Web Token (JWT) December 2014

 and a reference to the specification that defines it. This
 specification registers the Claim Names defined in Section 4.1.

 Values are registered on a Specification Required [RFC5226] basis
 after a three-week review period on the jwt-reg-review@ietf.org
 mailing list, on the advice of one or more Designated Experts.
 However, to allow for the allocation of values prior to publication,
 the Designated Expert(s) may approve registration once they are
 satisfied that such a specification will be published.

 Registration requests must be sent to the jwt-reg-review@ietf.org
 mailing list for review and comment, with an appropriate subject
 (e.g., "Request to register claim: example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful. Registration requests that are undetermined for a period
 longer than 21 days can be brought to the IESG’s attention (using the
 iesg@ietf.org mailing list) for resolution.

 Criteria that should be applied by the Designated Expert(s) includes
 determining whether the proposed registration duplicates existing
 functionality, determining whether it is likely to be of general
 applicability or whether it is useful only for a single application,
 and whether the registration description is clear.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

 It is suggested that multiple Designated Experts be appointed who are
 able to represent the perspectives of different applications using
 this specification, in order to enable broadly-informed review of
 registration decisions. In cases where a registration decision could
 be perceived as creating a conflict of interest for a particular
 Expert, that Expert should defer to the judgment of the other
 Expert(s).

 [[Note to the RFC Editor and IANA: Pearl Liang of ICANN had
 requested that the draft supply the following proposed registry
 description information.

 o Protocol Category: JSON Web Token (JWT)

 o Registry Location: http://www.iana.org/assignments/jwt

Jones, et al. Expires June 12, 2015 [Page 17]

Internet-Draft JSON Web Token (JWT) December 2014

 o Webpage Title: (same as the protocol category)

 o Registry Name: JSON Web Token Claims

]]

10.1.1. Registration Template

 Claim Name:
 The name requested (e.g., "iss"). Because a core goal of this
 specification is for the resulting representations to be compact,
 it is RECOMMENDED that the name be short -- not to exceed 8
 characters without a compelling reason to do so. This name is
 case-sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Expert(s) state that
 there is a compelling reason to allow an exception in this
 particular case.

 Claim Description:
 Brief description of the Claim (e.g., "Issuer").

 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

10.1.2. Initial Registry Contents

 o Claim Name: "iss"
 o Claim Description: Issuer
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.1 of [[this document]]

 o Claim Name: "sub"
 o Claim Description: Subject
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.2 of [[this document]]

 o Claim Name: "aud"
 o Claim Description: Audience

Jones, et al. Expires June 12, 2015 [Page 18]

Internet-Draft JSON Web Token (JWT) December 2014

 o Change Controller: IESG
 o Specification Document(s): Section 4.1.3 of [[this document]]

 o Claim Name: "exp"
 o Claim Description: Expiration Time
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.4 of [[this document]]

 o Claim Name: "nbf"
 o Claim Description: Not Before
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.5 of [[this document]]

 o Claim Name: "iat"
 o Claim Description: Issued At
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.6 of [[this document]]

 o Claim Name: "jti"
 o Claim Description: JWT ID
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.7 of [[this document]]

10.2. Sub-Namespace Registration of
 urn:ietf:params:oauth:token-type:jwt

10.2.1. Registry Contents

 This specification registers the value "token-type:jwt" in the IANA
 urn:ietf:params:oauth registry established in An IETF URN Sub-
 Namespace for OAuth [RFC6755], which can be used to indicate that the
 content is a JWT.

 o URN: urn:ietf:params:oauth:token-type:jwt
 o Common Name: JSON Web Token (JWT) Token Type
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

10.3. Media Type Registration

10.3.1. Registry Contents

 This specification registers the "application/jwt" Media Type
 [RFC2046] in the MIME Media Types registry [IANA.MediaTypes] in the
 manner described in RFC 6838 [RFC6838], which can be used to indicate
 that the content is a JWT.

Jones, et al. Expires June 12, 2015 [Page 19]

Internet-Draft JSON Web Token (JWT) December 2014

 o Type Name: application
 o Subtype Name: jwt
 o Required Parameters: n/a
 o Optional Parameters: n/a
 o Encoding considerations: 8bit; JWT values are encoded as a series
 of base64url encoded values (some of which may be the empty
 string) separated by period (’.’) characters.
 o Security Considerations: See the Security Considerations section
 of [[this document]]
 o Interoperability Considerations: n/a
 o Published Specification: [[this document]]
 o Applications that use this media type: OpenID Connect, Mozilla
 Persona, Salesforce, Google, Android, Windows Azure, Amazon Web
 Services, and numerous others
 o Fragment identifier considerations: n/a
 o Additional Information: Magic number(s): n/a, File extension(s):
 n/a, Macintosh file type code(s): n/a
 o Person & email address to contact for further information: Michael
 B. Jones, mbj@microsoft.com
 o Intended Usage: COMMON
 o Restrictions on Usage: none
 o Author: Michael B. Jones, mbj@microsoft.com
 o Change Controller: IESG
 o Provisional registration? No

10.4. Header Parameter Names Registration

 This specification registers specific Claim Names defined in
 Section 4.1 in the IANA JSON Web Signature and Encryption Header
 Parameters registry defined in [JWS] for use by Claims replicated as
 Header Parameters in JWEs, per Section 5.3.

10.4.1. Registry Contents

 o Header Parameter Name: "iss"
 o Header Parameter Description: Issuer
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.1 of [[this document]]

 o Header Parameter Name: "sub"
 o Header Parameter Description: Subject
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.2 of [[this document]]

Jones, et al. Expires June 12, 2015 [Page 20]

Internet-Draft JSON Web Token (JWT) December 2014

 o Header Parameter Name: "aud"
 o Header Parameter Description: Audience
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.3 of [[this document]]

11. Security Considerations

 All of the security issues that are pertinent to any cryptographic
 application must be addressed by JWT/JWS/JWE/JWK agents. Among these
 issues are protecting the user’s asymmetric private and symmetric
 secret keys and employing countermeasures to various attacks.

 All the security considerations in the JWS specification also apply
 to JWT, as do the JWE security considerations when encryption is
 employed. In particular, the JWS JSON Security Considerations and
 Unicode Comparison Security Considerations apply equally to the JWT
 Claims Set in the same manner that they do to the JOSE Header.

11.1. Trust Decisions

 The contents of a JWT cannot be relied upon in a trust decision
 unless its contents have been cryptographically secured and bound to
 the context necessary for the trust decision. In particular, the
 key(s) used to sign and/or encrypt the JWT will typically need to
 verifiably be under the control of the party identified as the issuer
 of the JWT.

11.2. Signing and Encryption Order

 While syntactically the signing and encryption operations for Nested
 JWTs may be applied in any order, if both signing and encryption are
 necessary, normally producers should sign the message and then
 encrypt the result (thus encrypting the signature). This prevents
 attacks in which the signature is stripped, leaving just an encrypted
 message, as well as providing privacy for the signer. Furthermore,
 signatures over encrypted text are not considered valid in many
 jurisdictions.

 Note that potential concerns about security issues related to the
 order of signing and encryption operations are already addressed by
 the underlying JWS and JWE specifications; in particular, because JWE
 only supports the use of authenticated encryption algorithms,
 cryptographic concerns about the potential need to sign after
 encryption that apply in many contexts do not apply to this
 specification.

Jones, et al. Expires June 12, 2015 [Page 21]

Internet-Draft JSON Web Token (JWT) December 2014

12. Privacy Considerations

 A JWT may contain privacy-sensitive information. When this is the
 case, measures MUST be taken to prevent disclosure of this
 information to unintended parties. One way to achieve this is to use
 an encrypted JWT and authenticate the recipient. Another way is to
 ensure that JWTs containing unencrypted privacy-sensitive information
 are only transmitted using protocols utilizing encryption that
 support endpoint authentication, such as TLS. Omitting privacy-
 sensitive information from a JWT is the simplest way of minimizing
 privacy issues.

13. References

13.1. Normative References

 [ECMAScript]
 Ecma International, "ECMAScript Language Specification,
 5.1 Edition", ECMA 262, June 2011.

 [IANA.MediaTypes]
 Internet Assigned Numbers Authority (IANA), "MIME Media
 Types", 2005.

 [JWA] Jones, M., "JSON Web Algorithms (JWA)",
 draft-ietf-jose-json-web-algorithms (work in progress),
 December 2014.

 [JWE] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 draft-ietf-jose-json-web-encryption (work in progress),
 December 2014.

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature (work
 in progress), December 2014.

 [RFC20] Cerf, V., "ASCII format for Network Interchange", RFC 20,
 October 1969.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Jones, et al. Expires June 12, 2015 [Page 22]

Internet-Draft JSON Web Token (JWT) December 2014

 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 RFC 4949, August 2007.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

13.2. Informative References

 [CanvasApp]
 Facebook, "Canvas Applications", 2010.

 [JSS] Bradley, J. and N. Sakimura (editor), "JSON Simple Sign",
 September 2010.

 [MagicSignatures]
 Panzer (editor), J., Laurie, B., and D. Balfanz, "Magic
 Signatures", January 2011.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005.

 [POSIX.1] Institute of Electrical and Electronics Engineers, "The
 Open Group Base Specifications Issue 7", IEEE Std 1003.1,
 2013 Edition, 2013.

 [RFC3275] Eastlake, D., Reagle, J., and D. Solo, "(Extensible Markup
 Language) XML-Signature Syntax and Processing", RFC 3275,
 March 2002.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 July 2005.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, October 2012.

Jones, et al. Expires June 12, 2015 [Page 23]

Internet-Draft JSON Web Token (JWT) December 2014

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, January 2013.

 [SWT] Hardt, D. and Y. Goland, "Simple Web Token (SWT)",
 Version 0.9.5.1, November 2009.

 [W3C.CR-xml11-20021015]
 Cowan, J., "Extensible Markup Language (XML) 1.1", W3C
 CR CR-xml11-20021015, October 2002.

 [W3C.REC-xml-c14n-20010315]
 Boyer, J., "Canonical XML Version 1.0", World Wide Web
 Consortium Recommendation REC-xml-c14n-20010315,
 March 2001,
 <http://www.w3.org/TR/2001/REC-xml-c14n-20010315>.

Appendix A. JWT Examples

 This section contains examples of JWTs. For other example JWTs, see
 Section 6.1 and Appendices A.1, A.2, and A.3 of [JWS].

A.1. Example Encrypted JWT

 This example encrypts the same claims as used in Section 3.1 to the
 recipient using RSAES-PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256.

 The following example JOSE Header declares that:

 o The Content Encryption Key is encrypted to the recipient using the
 RSAES-PKCS1-V1_5 algorithm to produce the JWE Encrypted Key.

 o Authenticated encryption is performed on the Plaintext using the
 AES_128_CBC_HMAC_SHA_256 algorithm to produce the JWE Ciphertext
 and the JWE Authentication Tag.

 {"alg":"RSA1_5","enc":"A128CBC-HS256"}

 Other than using the octets of the UTF-8 representation of the JWT
 Claims Set from Section 3.1 as the plaintext value, the computation
 of this JWT is identical to the computation of the JWE in Appendix
 A.2 of [JWE], including the keys used.

 The final result in this example (with line breaks for display
 purposes only) is:

Jones, et al. Expires June 12, 2015 [Page 24]

Internet-Draft JSON Web Token (JWT) December 2014

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.
 QR1Owv2ug2WyPBnbQrRARTeEk9kDO2w8qDcjiHnSJflSdv1iNqhWXaKH4MqAkQtM
 oNfABIPJaZm0HaA415sv3aeuBWnD8J-Ui7Ah6cWafs3ZwwFKDFUUsWHSK-IPKxLG
 TkND09XyjORj_CHAgOPJ-Sd8ONQRnJvWn_hXV1BNMHzUjPyYwEsRhDhzjAD26ima
 sOTsgruobpYGoQcXUwFDn7moXPRfDE8-NoQX7N7ZYMmpUDkR-Cx9obNGwJQ3nM52
 YCitxoQVPzjbl7WBuB7AohdBoZOdZ24WlN1lVIeh8v1K4krB8xgKvRU8kgFrEn_a
 1rZgN5TiysnmzTROF869lQ.
 AxY8DCtDaGlsbGljb3RoZQ.
 MKOle7UQrG6nSxTLX6Mqwt0orbHvAKeWnDYvpIAeZ72deHxz3roJDXQyhxx0wKaM
 HDjUEOKIwrtkHthpqEanSBNYHZgmNOV7sln1Eu9g3J8.
 fiK51VwhsxJ-siBMR-YFiA

A.2. Example Nested JWT

 This example shows how a JWT can be used as the payload of a JWE or
 JWS to create a Nested JWT. In this case, the JWT Claims Set is
 first signed, and then encrypted.

 The inner signed JWT is identical to the example in Appendix A.2 of
 [JWS]. Therefore, its computation is not repeated here. This
 example then encrypts this inner JWT to the recipient using RSAES-
 PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256.

 The following example JOSE Header declares that:

 o The Content Encryption Key is encrypted to the recipient using the
 RSAES-PKCS1-V1_5 algorithm to produce the JWE Encrypted Key.

 o Authenticated encryption is performed on the Plaintext using the
 AES_128_CBC_HMAC_SHA_256 algorithm to produce the JWE Ciphertext
 and the JWE Authentication Tag.

 o The Plaintext is itself a JWT.

 {"alg":"RSA1_5","enc":"A128CBC-HS256","cty":"JWT"}

 Base64url encoding the octets of the UTF-8 representation of the JOSE
 Header yields this encoded JOSE Header value:

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwiY3R5IjoiSldUIn0

 The computation of this JWT is identical to the computation of the
 JWE in Appendix A.2 of [JWE], other than that different JOSE Header,
 Plaintext, JWE Initialization Vector, and Content Encryption Key
 values are used. (The RSA key used is the same.)

 The Payload used is the octets of the ASCII [RFC20] representation of

Jones, et al. Expires June 12, 2015 [Page 25]

Internet-Draft JSON Web Token (JWT) December 2014

 the JWT at the end of Appendix A.2.1 of [JWS] (with all whitespace
 and line breaks removed), which is a sequence of 458 octets.

 The JWE Initialization Vector value used (using JSON array notation)
 is:

 [82, 101, 100, 109, 111, 110, 100, 32, 87, 65, 32, 57, 56, 48, 53,
 50]

 This example uses the Content Encryption Key represented by the
 base64url encoded value below:

 GawgguFyGrWKav7AX4VKUg

 The final result for this Nested JWT (with line breaks for display
 purposes only) is:

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwiY3R5IjoiSldU
 In0.
 g_hEwksO1Ax8Qn7HoN-BVeBoa8FXe0kpyk_XdcSmxvcM5_P296JXXtoHISr_DD_M
 qewaQSH4dZOQHoUgKLeFly-9RI11TG-_Ge1bZFazBPwKC5lJ6OLANLMd0QSL4fYE
 b9ERe-epKYE3xb2jfY1AltHqBO-PM6j23Guj2yDKnFv6WO72tteVzm_2n17SBFvh
 DuR9a2nHTE67pe0XGBUS_TK7ecA-iVq5COeVdJR4U4VZGGlxRGPLRHvolVLEHx6D
 YyLpw30Ay9R6d68YCLi9FYTq3hIXPK_-dmPlOUlKvPr1GgJzRoeC9G5qCvdcHWsq
 JGTO_z3Wfo5zsqwkxruxwA.
 UmVkbW9uZCBXQSA5ODA1Mg.
 VwHERHPvCNcHHpTjkoigx3_ExK0Qc71RMEParpatm0X_qpg-w8kozSjfNIPPXiTB
 BLXR65CIPkFqz4l1Ae9w_uowKiwyi9acgVztAi-pSL8GQSXnaamh9kX1mdh3M_TT
 -FZGQFQsFhu0Z72gJKGdfGE-OE7hS1zuBD5oEUfk0Dmb0VzWEzpxxiSSBbBAzP10
 l56pPfAtrjEYw-7ygeMkwBl6Z_mLS6w6xUgKlvW6ULmkV-uLC4FUiyKECK4e3WZY
 Kw1bpgIqGYsw2v_grHjszJZ-_I5uM-9RA8ycX9KqPRp9gc6pXmoU_-27ATs9XCvr
 ZXUtK2902AUzqpeEUJYjWWxSNsS-r1TJ1I-FMJ4XyAiGrfmo9hQPcNBYxPz3GQb2
 8Y5CLSQfNgKSGt0A4isp1hBUXBHAndgtcslt7ZoQJaKe_nNJgNliWtWpJ_ebuOpE
 l8jdhehdccnRMIwAmU1n7SPkmhIl1HlSOpvcvDfhUN5wuqU955vOBvfkBOh5A11U
 zBuo2WlgZ6hYi9-e3w29bR0C2-pp3jbqxEDw3iWaf2dc5b-LnR0FEYXvI_tYk5rd
 _J9N0mg0tQ6RbpxNEMNoA9QWk5lgdPvbh9BaO195abQ.
 AVO9iT5AV4CzvDJCdhSFlQ

Appendix B. Relationship of JWTs to SAML Assertions

 SAML 2.0 [OASIS.saml-core-2.0-os] provides a standard for creating
 security tokens with greater expressivity and more security options
 than supported by JWTs. However, the cost of this flexibility and
 expressiveness is both size and complexity. SAML’s use of XML
 [W3C.CR-xml11-20021015] and XML DSIG [RFC3275] contributes to the
 size of SAML assertions; its use of XML and especially XML
 Canonicalization [W3C.REC-xml-c14n-20010315] contributes to their

Jones, et al. Expires June 12, 2015 [Page 26]

Internet-Draft JSON Web Token (JWT) December 2014

 complexity.

 JWTs are intended to provide a simple security token format that is
 small enough to fit into HTTP headers and query arguments in URIs.
 It does this by supporting a much simpler token model than SAML and
 using the JSON [RFC7159] object encoding syntax. It also supports
 securing tokens using Message Authentication Codes (MACs) and digital
 signatures using a smaller (and less flexible) format than XML DSIG.

 Therefore, while JWTs can do some of the things SAML assertions do,
 JWTs are not intended as a full replacement for SAML assertions, but
 rather as a token format to be used when ease of implementation or
 compactness are considerations.

 SAML Assertions are always statements made by an entity about a
 subject. JWTs are often used in the same manner, with the entity
 making the statements being represented by the "iss" (issuer) claim,
 and the subject being represented by the "sub" (subject) claim.
 However, with these claims being optional, other uses of the JWT
 format are also permitted.

Appendix C. Relationship of JWTs to Simple Web Tokens (SWTs)

 Both JWTs and Simple Web Tokens SWT [SWT], at their core, enable sets
 of claims to be communicated between applications. For SWTs, both
 the claim names and claim values are strings. For JWTs, while claim
 names are strings, claim values can be any JSON type. Both token
 types offer cryptographic protection of their content: SWTs with HMAC
 SHA-256 and JWTs with a choice of algorithms, including signature,
 MAC, and encryption algorithms.

Appendix D. Acknowledgements

 The authors acknowledge that the design of JWTs was intentionally
 influenced by the design and simplicity of Simple Web Tokens [SWT]
 and ideas for JSON tokens that Dick Hardt discussed within the OpenID
 community.

 Solutions for signing JSON content were previously explored by Magic
 Signatures [MagicSignatures], JSON Simple Sign [JSS], and Canvas
 Applications [CanvasApp], all of which influenced this draft.

 This specification is the work of the OAuth Working Group, which
 includes dozens of active and dedicated participants. In particular,
 the following individuals contributed ideas, feedback, and wording
 that influenced this specification:

Jones, et al. Expires June 12, 2015 [Page 27]

Internet-Draft JSON Web Token (JWT) December 2014

 Dirk Balfanz, Richard Barnes, Brian Campbell, Alissa Cooper, Breno de
 Medeiros, Stephen Farrell, Dick Hardt, Joe Hildebrand, Jeff Hodges,
 Edmund Jay, Yaron Y. Goland, Warren Kumari, Ben Laurie, Barry Leiba,
 Ted Lemon, James Manger, Prateek Mishra, Kathleen Moriarty, Tony
 Nadalin, Axel Nennker, John Panzer, Emmanuel Raviart, David Recordon,
 Eric Rescorla, Jim Schaad, Paul Tarjan, Hannes Tschofenig, Sean
 Turner, and Tom Yu.

 Hannes Tschofenig and Derek Atkins chaired the OAuth working group
 and Sean Turner, Stephen Farrell, and Kathleen Moriarty served as
 Security area directors during the creation of this specification.

Appendix E. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -32

 o Replaced uses of the phrases "JWS object" and "JWE object" with
 "JWS" and "JWE".

 o Applied other minor editorial improvements.

 -31

 o Updated the example IANA registration request subject line.

 -30

 o Applied privacy wording supplied by Stephen Farrell.

 o Clarified where white space and line breaks may occur in JSON
 objects by referencing Section 2 of RFC 7159.

 o Specified that registration reviews occur on the
 jwt-reg-review@ietf.org mailing list.

 -29

 o Used real values for examples in the IANA Registration Template.

 -28

 o Addressed IESG review comments by Alissa Cooper, Barry Leiba,
 Stephen Farrell, Ted Lemon, and Richard Barnes.

Jones, et al. Expires June 12, 2015 [Page 28]

Internet-Draft JSON Web Token (JWT) December 2014

 o Changed the RFC 6755 reference to be informative, based upon
 related IESG review feedback on draft-ietf-oauth-saml2-bearer.

 -27

 o Removed unused reference to RFC 4648.

 o Changed to use the term "authenticated encryption" instead of
 "encryption", where appropriate.

 o Changed the registration review period to three weeks.

 o Acknowledged additional contributors.

 -26

 o Removed an ambiguity in numeric date representations by specifying
 that leap seconds are handled in the manner specified by POSIX.1.

 o Addressed Gen-ART review comments by Russ Housley.

 o Addressed secdir review comments by Warren Kumari and Stephen
 Kent.

 o Replaced the terms Plaintext JWS and Plaintext JWT with Unsecured
 JWS and Unsecured JWT.

 -25

 o Reworded the language about JWT implementations ignoring the "typ"
 parameter, explicitly saying that its processing is performed by
 JWT applications.

 o Added a Privacy Considerations section.

 -24

 o Cleaned up the reference syntax in a few places.

 o Applied minor wording changes to the Security Considerations
 section.

 -23

 o Replaced the terms JWS Header, JWE Header, and JWT Header with a
 single JOSE Header term defined in the JWS specification. This
 also enabled a single Header Parameter definition to be used and
 reduced other areas of duplication between specifications.

Jones, et al. Expires June 12, 2015 [Page 29]

Internet-Draft JSON Web Token (JWT) December 2014

 -22

 o Revised the introduction to the Security Considerations section.
 Also introduced subsection headings for security considerations
 items.

 o Added text about when applications typically would and would not
 use the "typ" header parameter.

 -21

 o Removed unnecessary informative JWK spec reference.

 -20

 o Changed the RFC 6755 reference to be normative.

 o Changed the JWK reference to be informative.

 o Described potential sources of ambiguity in representing the JSON
 objects used in the examples. The octets of the actual UTF-8
 representations of the JSON objects used in the examples are
 included to remove these ambiguities.

 o Noted that octet sequences are depicted using JSON array notation.

 -19

 o Specified that support for Nested JWTs is optional and that
 applications using this specification can impose additional
 requirements upon implementations that they use.

 o Updated the JSON reference to RFC 7159.

 -18

 o Clarified that the base64url encoding includes no line breaks,
 white space, or other additional characters.

 o Removed circularity in the audience claim definition.

 o Clarified that it is entirely up to applications which claims to
 use.

 o Changed "SHOULD" to "MUST" in "in the absence of such
 requirements, all claims that are not understood by
 implementations MUST be ignored".

Jones, et al. Expires June 12, 2015 [Page 30]

Internet-Draft JSON Web Token (JWT) December 2014

 o Clarified that applications can define their own processing rules
 for claims replicated in header parameters, rather than always
 requiring that they be identical in the JWT Header and JWT Claims
 Set.

 o Removed a JWT creation step that duplicated a step in the
 underlying JWS or JWE creation.

 o Added security considerations about using JWTs in trust decisions.

 -17

 o Corrected RFC 2119 terminology usage.

 o Replaced references to draft-ietf-json-rfc4627bis with RFC 7158.

 -16

 o Changed some references from being normative to informative, per
 JOSE issue #90.

 -15

 o Replaced references to RFC 4627 with draft-ietf-json-rfc4627bis.

 -14

 o Referenced the JWE section on Distinguishing between JWS and JWE
 Objects.

 -13

 o Added Claim Description registry field.

 o Used Header Parameter Description registry field.

 o Removed the phrases "JWA signing algorithms" and "JWA encryption
 algorithms".

 o Removed the term JSON Text Object.

 -12

 o Tracked the JOSE change refining the "typ" and "cty" definitions
 to always be MIME Media Types, with the omission of "application/"
 prefixes recommended for brevity. For compatibility with legacy
 implementations, it is RECOMMENDED that "JWT" always be spelled
 using uppercase characters when used as a "typ" or "cty" value.

Jones, et al. Expires June 12, 2015 [Page 31]

Internet-Draft JSON Web Token (JWT) December 2014

 As side effects, this change removed the "typ" Claim definition
 and narrowed the uses of the URI
 "urn:ietf:params:oauth:token-type:jwt".

 o Updated base64url definition to match JOSE definition.

 o Changed terminology from "Reserved Claim Name" to "Registered
 Claim Name" to match JOSE terminology change.

 o Applied other editorial changes to track parallel JOSE changes.

 o Clarified that the subject value may be scoped to be locally
 unique in the context of the issuer or may be globally unique.

 -11

 o Added a Nested JWT example.

 o Added "sub" to the list of Claims registered for use as Header
 Parameter values when an unencrypted representation is required in
 an encrypted JWT.

 -10

 o Allowed Claims to be replicated as Header Parameters in encrypted
 JWTs as needed by applications that require an unencrypted
 representation of specific Claims.

 -09

 o Clarified that the "typ" header parameter is used in an
 application-specific manner and has no effect upon the JWT
 processing.

 o Stated that recipients MUST either reject JWTs with duplicate
 Header Parameter Names or with duplicate Claim Names or use a JSON
 parser that returns only the lexically last duplicate member name.

 -08

 o Tracked a change to how JWEs are computed (which only affected the
 example encrypted JWT value).

 -07

 o Defined that the default action for claims that are not understood
 is to ignore them unless otherwise specified by applications.

Jones, et al. Expires June 12, 2015 [Page 32]

Internet-Draft JSON Web Token (JWT) December 2014

 o Changed from using the term "byte" to "octet" when referring to 8
 bit values.

 o Tracked encryption computation changes in the JWE specification.

 -06

 o Changed the name of the "prn" claim to "sub" (subject) both to
 more closely align with SAML name usage and to use a more
 intuitive name.

 o Allow JWTs to have multiple audiences.

 o Applied editorial improvements suggested by Jeff Hodges, Prateek
 Mishra, and Hannes Tschofenig. Many of these simplified the
 terminology used.

 o Explained why Nested JWTs should be signed and then encrypted.

 o Clarified statements of the form "This claim is OPTIONAL" to "Use
 of this claim is OPTIONAL".

 o Referenced String Comparison Rules in JWS.

 o Added seriesInfo information to Internet Draft references.

 -05

 o Updated values for example AES CBC calculations.

 -04

 o Promoted Initialization Vector from being a header parameter to
 being a top-level JWE element. This saves approximately 16 bytes
 in the compact serialization, which is a significant savings for
 some use cases. Promoting the Initialization Vector out of the
 header also avoids repeating this shared value in the JSON
 serialization.

 o Applied changes made by the RFC Editor to RFC 6749’s registry
 language to this specification.

 o Reference RFC 6755 -- An IETF URN Sub-Namespace for OAuth.

 -03

 o Added statement that "StringOrURI values are compared as case-
 sensitive strings with no transformations or canonicalizations

Jones, et al. Expires June 12, 2015 [Page 33]

Internet-Draft JSON Web Token (JWT) December 2014

 applied".

 o Indented artwork elements to better distinguish them from the body
 text.

 -02

 o Added an example of an encrypted JWT.

 o Added this language to Registration Templates: "This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted."

 o Applied editorial suggestions.

 -01

 o Added the "cty" (content type) header parameter for declaring type
 information about the secured content, as opposed to the "typ"
 (type) header parameter, which declares type information about
 this object. This significantly simplified nested JWTs.

 o Moved description of how to determine whether a header is for a
 JWS or a JWE from the JWT spec to the JWE spec.

 o Changed registration requirements from RFC Required to
 Specification Required with Expert Review.

 o Added Registration Template sections for defined registries.

 o Added Registry Contents sections to populate registry values.

 o Added "Collision Resistant Namespace" to the terminology section.

 o Numerous editorial improvements.

 -00

 o Created the initial IETF draft based upon
 draft-jones-json-web-token-10 with no normative changes.

Jones, et al. Expires June 12, 2015 [Page 34]

Internet-Draft JSON Web Token (JWT) December 2014

Authors’ Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Nat Sakimura
 Nomura Research Institute

 Email: n-sakimura@nri.co.jp
 URI: http://nat.sakimura.org/

Jones, et al. Expires June 12, 2015 [Page 35]

OAuth Working Group N. Sakimura

Internet-Draft Nomura Research Institute

Intended status: Standards Track J. Bradley

Expires: December 12, 2019 Yubico

 June 10, 2019

The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request

 (JAR)

 draft-ietf-oauth-jwsreq-19

Abstract

 The authorization request in OAuth 2.0 described in RFC 6749 utilizes

 query parameter serialization, which means that Authorization Request

 parameters are encoded in the URI of the request and sent through

 user agents such as web browsers. While it is easy to implement, it

 means that (a) the communication through the user agents are not

 integrity protected and thus the parameters can be tainted, and (b)

 the source of the communication is not authenticated. Because of

 these weaknesses, several attacks to the protocol have now been put

 forward.

 This document introduces the ability to send request parameters in a

 JSON Web Token (JWT) instead, which allows the request to be signed

 with JSON Web Signature (JWS) and encrypted with JSON Web Encryption

 (JWE) so that the integrity, source authentication and

 confidentiality property of the Authorization Request is attained.

 The request can be sent by value or by reference.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 12, 2019.

Sakimura & Bradley Expires December 12, 2019 [Page 1]

Internet-Draft OAuth JAR June 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Requirements Language 5

 2. Terminology . 5

 2.1. Request Object . 5

 2.2. Request Object URI 6

 3. Symbols and abbreviated terms 6

 4. Request Object . 6

 5. Authorization Request . 8

 5.1. Passing a Request Object by Value 9

 5.2. Passing a Request Object by Reference 9

 5.2.1. URI Referencing the Request Object 11

 5.2.2. Request using the "request_uri" Request Parameter . . 11

 5.2.3. Authorization Server Fetches Request Object 11

 6. Validating JWT-Based Requests 12

 6.1. Encrypted Request Object 12

 6.2. JWS Signed Request Object 13

 6.3. Request Parameter Assembly and Validation 13

 7. Authorization Server Response 13

 8. TLS Requirements . 13

 9. IANA Considerations . 14

 10. Security Considerations 14

 10.1. Choice of Algorithms 14

 10.2. Request Source Authentication 15

 10.3. Explicit Endpoints 15

 10.4. Risks Associated with request_uri 16

 10.4.1. DDoS Attack on the Authorization Server 16

 10.4.2. Request URI Rewrite 16

 11. TLS security considerations 17

 12. Privacy Considerations 17

 12.1. Collection limitation 17

 12.2. Disclosure Limitation 18

Sakimura & Bradley Expires December 12, 2019 [Page 2]

Internet-Draft OAuth JAR June 2019

 12.2.1. Request Disclosure 18

 12.2.2. Tracking using Request Object URI 18

 13. Acknowledgements . 18

 14. Revision History . 19

 15. References . 24

 15.1. Normative References 25

 15.2. Informative References 26

 Authors’ Addresses . 27

1. Introduction

 The Authorization Request in OAuth 2.0 [RFC6749] utilizes query

 parameter serialization and is typically sent through user agents

 such as web browsers.

 For example, the parameters "response_type", "client_id", "state",

 and "redirect_uri" are encoded in the URI of the request:

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz

 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1

 Host: server.example.com

 While it is easy to implement, the encoding in the URI does not allow

 application layer security with confidentiality and integrity

 protection to be used. While TLS is used to offer communication

 security between the Client and the user-agent as well as the user-

 agent and the Authorization Server, TLS sessions are terminated in

 the user-agent. In addition, TLS sessions may be terminated

 prematurely at some middlebox (such as a load balancer).

 As the result, the Authorization Request of [RFC6749] has

 shortcomings in that:

 (a) the communication through the user agents are not integrity

 protected and thus the parameters can be tainted (integrity

 protection failure)

 (b) the source of the communication is not authenticated (source

 authentication failure)

 (c) the communication through the user agents can be monitored

 (containment / confidentiality failure).

 Due to these inherent weaknesses, several attacks against the

 protocol, such as Redirection URI rewriting and Mix-up attack [FETT],

 have been identified.

 The use of application layer security mitigates these issues.

Sakimura & Bradley Expires December 12, 2019 [Page 3]

Internet-Draft OAuth JAR June 2019

 The use of application layer security allows requests to be prepared

 by a third party so that a client application cannot request more

 permissions than previously agreed. This offers an additional degree

 of privacy protection.

 Furthermore, the request by reference allows the reduction of over-

 the-wire overhead.

 The JWT [RFC7519] encoding has been chosen because of

 (1) its close relationship with JSON, which is used as OAuth’s

 response format

 (2) its developer friendliness due to its textual nature

 (3) its relative compactness compared to XML

 (4) its development status that it is an RFC and so is its

 associated signing and encryption methods as [RFC7515] and

 [RFC7516]

 (5) the relative ease of JWS and JWE compared to XML Signature and

 Encryption.

 The parameters "request" and "request_uri" are introduced as

 additional authorization request parameters for the OAuth 2.0

 [RFC6749] flows. The "request" parameter is a JSON Web Token (JWT)

 [RFC7519] whose JWT Claims Set holds the JSON encoded OAuth 2.0

 authorization request parameters. This JWT is integrity protected

 and source authenticated using JWS.

 The JWT [RFC7519] can be passed to the authorization endpoint by

 reference, in which case the parameter "request_uri" is used instead

 of the "request".

 Using JWT [RFC7519] as the request encoding instead of query

 parameters has several advantages:

 (a) (integrity protection) The request can be signed so that the

 integrity of the request can be checked.

 (b) (source authentication) The request can be signed so that the

 signer can be authenticated.

 (c) (confidentiality protection) The request can be encrypted so

 that end-to-end confidentiality can be provided even if the TLS

 connection is terminated at one point or another.

Sakimura & Bradley Expires December 12, 2019 [Page 4]

Internet-Draft OAuth JAR June 2019

 (d) (collection minimization) The request can be signed by a third

 party attesting that the authorization request is compliant with

 a certain policy. For example, a request can be pre-examined by

 a third party that all the personal data requested is strictly

 necessary to perform the process that the end-user asked for,

 and statically signed by that third party. The authorization

 server then examines the signature and shows the conformance

 status to the end-user, who would have some assurance as to the

 legitimacy of the request when authorizing it. In some cases,

 it may even be desirable to skip the authorization dialogue

 under such circumstances.

 There are a few cases that request by reference is useful such as:

 1. When it is desirable to reduce the size of transmitted request.

 The use of application layer security increases the size of the

 request, particularly when public key cryptography is used.

 2. When the client does not want to do the crypto. The

 Authorization Server may provide an endpoint to accept the

 Authorization Request through direct communication with the

 Client so that the Client is authenticated and the channel is TLS

 protected.

 This capability is in use by OpenID Connect [OpenID.Core].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Terminology

 For the purposes of this specification, the following terms and

 definitions in addition to what is defined in OAuth 2.0 Framework

 [RFC6749], JSON Web Signature [RFC7515], and JSON Web Encryption

 [RFC7519] apply.

2.1. Request Object

 JWT [RFC7519] that holds an OAuth 2.0 authorization request as JWT

 Claims Set

Sakimura & Bradley Expires December 12, 2019 [Page 5]

Internet-Draft OAuth JAR June 2019

2.2. Request Object URI

 Absolute URI from which the Request Object (Section 2.1) can be

 obtained

3. Symbols and abbreviated terms

 The following abbreviations are common to this specification.

 JSON Javascript Object Notation

 JWT JSON Web Token

 JWS JSON Web Signature

 JWE JSON Web Encryption

 URI Uniform Resource Identifier

 URL Uniform Resource Locator

4. Request Object

 A Request Object (Section 2.1) is used to provide authorization

 request parameters for an OAuth 2.0 authorization request. It MUST

 contains all the OAuth 2.0 [RFC6749] authorization request parameters

 including extension parameters. The parameters are represented as

 the JWT claims. Parameter names and string values MUST be included

 as JSON strings. Since Request Objects are handled across domains

 and potentially outside of a closed ecosystem, per section 8.1 of

 [RFC8259], these JSON strings MUST be encoded using UTF-8 [RFC3629].

 Numerical values MUST be included as JSON numbers. It MAY include

 any extension parameters. This JSON [RFC7159] constitutes the JWT

 Claims Set defined in JWT [RFC7519]. The JWT Claims Set is then

 signed or signed and encrypted.

 To sign, JSON Web Signature (JWS) [RFC7515] is used. The result is a

 JWS signed JWT [RFC7519]. If signed, the Authorization Request

 Object SHOULD contain the Claims "iss" (issuer) and "aud" (audience)

 as members, with their semantics being the same as defined in the JWT

 [RFC7519] specification. The value of "aud" should be the value of

 the Authorization Server (AS) "issuer" as defined in RFC8414

 [RFC8414].

 To encrypt, JWE [RFC7516] is used. When both signature and

 encryption are being applied, the JWT MUST be signed then encrypted

 as advised in the section 11.2 of [RFC7519]. The result is a Nested

 JWT, as defined in [RFC7519].

Sakimura & Bradley Expires December 12, 2019 [Page 6]

Internet-Draft OAuth JAR June 2019

 The Authorization Request Object MAY be sent by value as described in

 Section 5.1 or by reference as described in Section 5.2.

 "request" and "request_uri" parameters MUST NOT be included in

 Request Objects.

 The following is an example of the Claims in a Request Object before

 base64url encoding and signing. Note that it includes extension

 variables such as "nonce" and "max_age".

 {

 "iss": "s6BhdRkqt3",

 "aud": "https://server.example.com",

 "response_type": "code id_token",

 "client_id": "s6BhdRkqt3",

 "redirect_uri": "https://client.example.org/cb",

 "scope": "openid",

 "state": "af0ifjsldkj",

 "nonce": "n-0S6_WzA2Mj",

 "max_age": 86400

 }

 Signing it with the "RS256" algorithm results in this Request Object

 value (with line wraps within values for display purposes only):

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiAiczZCaGRSa3

 F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmNvbSIsDQogInJl

 c3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWVudF9pZCI6ICJzNk

 JoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8vY2xpZW50LmV4YW1w

 bGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiAic3RhdGUiOiAiYWYwaW

 Zqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWoiLA0KICJtYXhfYWdlIjog

 ODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXNlcmluZm8iOiANCiAgICB7DQ

 ogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgIm5p

 Y2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJlc3NlbnRpYWwiOiB0cnVlfS

 wNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAg

 ICAgInBpY3R1cmUiOiBudWxsDQogICAgfSwNCiAgICJpZF90b2tlbiI6IA0KICAgIH

 sNCiAgICAgImdlbmRlciI6IG51bGwsDQogICAgICJiaXJ0aGRhdGUiOiB7ImVzc2Vu

 dGlhbCI6IHRydWV9LA0KICAgICAiYWNyIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOm

 luY29tbW9uOmlhcDpzaWx2ZXIiXX0NCiAgICB9DQogIH0NCn0.nwwnNsk1-Zkbmnvs

 F6zTHm8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF

 KzuMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx

 0GxFbuPbj96tVuj11pTnmFCUR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8K

 ol-cSLWoYE9l5QqholImzjT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPG

 iyon_-Te111V8uE83IlzCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

Sakimura & Bradley Expires December 12, 2019 [Page 7]

Internet-Draft OAuth JAR June 2019

 The following RSA public key, represented in JWK format, can be used

 to validate the Request Object signature in this and subsequent

 Request Object examples (with line wraps within values for display

 purposes only):

 {

 "kty":"RSA",

 "kid":"k2bdc",

 "n":"y9Lqv4fCp6Ei-u2-ZCKq83YvbFEk6JMs_pSj76eMkddWRuWX2aBKGHAtKlE5P

 7_vn__PCKZWePt3vGkB6ePgzAFu08NmKemwE5bQI0e6kIChtt_6KzT5OaaXDF

 I6qCLJmk51Cc4VYFaxgqevMncYrzaW_50mZ1yGSFIQzLYP8bijAHGVjdEFgZa

 ZEN9lsn_GdWLaJpHrB3ROlS50E45wxrlg9xMncVb8qDPuXZarvghLL0HzOuYR

 adBJVoWZowDNTpKpk2RklZ7QaBO7XDv3uR7s_sf2g-bAjSYxYUGsqkNA9b3xV

 W53am_UZZ3tZbFTIh557JICWKHlWj5uzeJXaw",

 "e":"AQAB"

 }

5. Authorization Request

 The client constructs the authorization request URI by adding one of

 the following parameters but not both to the query component of the

 authorization endpoint URI using the "application/x-www-form-

 urlencoded" format:

 request The Request Object (Section 2.1) that holds authorization

 request parameters stated in section 4 of OAuth 2.0 [RFC6749].

 request_uri The absolute URI as defined by RFC3986 [RFC3986] that

 points to the Request Object (Section 2.1) that holds

 authorization request parameters stated in section 4 of OAuth 2.0

 [RFC6749].

 The client directs the resource owner to the constructed URI using an

 HTTP redirection response, or by other means available to it via the

 user-agent.

 For example, the client directs the end user’s user-agent to make the

 following HTTPS request:

 GET /authz?request=eyJhbG..AlMGzw HTTP/1.1

 Host: server.example.com

 The value for the request parameter is abbreviated for brevity.

 The authorization request object MUST be one of the following:

 (a) JWS signed

Sakimura & Bradley Expires December 12, 2019 [Page 8]

Internet-Draft OAuth JAR June 2019

 (b) JWS signed and JWE encrypted

 The client MAY send the parameters included in the request object

 duplicated in the query parameters as well for the backward

 compatibility etc. However, the authorization server supporting this

 specification MUST only use the parameters included in the request

 object.

5.1. Passing a Request Object by Value

 The Client sends the Authorization Request as a Request Object to the

 Authorization Endpoint as the "request" parameter value.

 The following is an example of an Authorization Request using the

 "request" parameter (with line wraps within values for display

 purposes only):

 https://server.example.com/authorize?

 request=eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiA

 iczZCaGRSa3F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmN

 vbSIsDQogInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWV

 udF9pZCI6ICJzNkJoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8

 vY2xpZW50LmV4YW1wbGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiA

 ic3RhdGUiOiAiYWYwaWZqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWo

 iLA0KICJtYXhfYWdlIjogODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXN

 lcmluZm8iOiANCiAgICB7DQogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWw

 iOiB0cnVlfSwNCiAgICAgIm5pY2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjo

 geyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJ

 lc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgInBpY3R1cmUiOiBudWxsDQogICAgfSw

 NCiAgICJpZF90b2tlbiI6IA0KICAgIHsNCiAgICAgImdlbmRlciI6IG51bGwsDQo

 gICAgICJiaXJ0aGRhdGUiOiB7ImVzc2VudGlhbCI6IHRydWV9LA0KICAgICAiYWN

 yIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOmluY29tbW9uOmlhcDpzaWx2ZXIiXX0

 NCiAgICB9DQogIH0NCn0.nwwnNsk1-ZkbmnvsF6zTHm8CHERFMGQPhos-EJcaH4H

 h-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyFKzuMXZFSZ3p6Mb8dkxtVyjoy2

 GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx0GxFbuPbj96tVuj11pTnmFC

 UR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8Kol-cSLWoYE9l5QqholImz

 jT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPGiyon_-Te111V8uE83Il

 zCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

5.2. Passing a Request Object by Reference

 The "request_uri" Authorization Request parameter enables OAuth

 authorization requests to be passed by reference, rather than by

 value. This parameter is used identically to the "request"

 parameter, other than that the Request Object value is retrieved from

 the resource identified by the specified URI rather than passed by

 value.

Sakimura & Bradley Expires December 12, 2019 [Page 9]

Internet-Draft OAuth JAR June 2019

 The entire Request URI MUST NOT exceed 512 ASCII characters. There

 are three reasons for this restriction.

 1. Many phones in the market as of this writing still do not accept

 large payloads. The restriction is typically either 512 or 1024

 ASCII characters.

 2. The maximum URL length supported by older versions of Internet

 Explorer is 2083 ASCII characters.

 3. On a slow connection such as 2G mobile connection, a large URL

 would cause the slow response and therefore the use of such is

 not advisable from the user experience point of view.

 The contents of the resource referenced by the URI MUST be a Request

 Object. The "request_uri" value MUST be either URN as defined in

 RFC8141 [RFC8141] or "https" URI, as defined in 2.7.2 of RFC7230

 [RFC7230] . The "request_uri" value MUST be reachable by the

 Authorization Server.

 The following is an example of the contents of a Request Object

 resource that can be referenced by a "request_uri" (with line wraps

 within values for display purposes only):

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiAiczZCaGRSa3

 F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmNvbSIsDQogInJl

 c3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWVudF9pZCI6ICJzNk

 JoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8vY2xpZW50LmV4YW1w

 bGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiAic3RhdGUiOiAiYWYwaW

 Zqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWoiLA0KICJtYXhfYWdlIjog

 ODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXNlcmluZm8iOiANCiAgICB7DQ

 ogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgIm5p

 Y2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJlc3NlbnRpYWwiOiB0cnVlfS

 wNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAg

 ICAgInBpY3R1cmUiOiBudWxsDQogICAgfSwNCiAgICJpZF90b2tlbiI6IA0KICAgIH

 sNCiAgICAgImdlbmRlciI6IG51bGwsDQogICAgICJiaXJ0aGRhdGUiOiB7ImVzc2Vu

 dGlhbCI6IHRydWV9LA0KICAgICAiYWNyIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOm

 luY29tbW9uOmlhcDpzaWx2ZXIiXX0NCiAgICB9DQogIH0NCn0.nwwnNsk1-Zkbmnvs

 F6zTHm8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF

 KzuMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx

 0GxFbuPbj96tVuj11pTnmFCUR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8K

 ol-cSLWoYE9l5QqholImzjT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPG

 iyon_-Te111V8uE83IlzCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

Sakimura & Bradley Expires December 12, 2019 [Page 10]

Internet-Draft OAuth JAR June 2019

5.2.1. URI Referencing the Request Object

 The Client stores the Request Object resource either locally or

 remotely at a URI the Authorization Server can access. Such facility

 may be provided by the authorization server or a third party. For

 example, the authorization server may provide a URL to which the

 client POSTs the request object and obtains the Request URI. This

 URI is the Request Object URI, "request_uri".

 It is possible for the Request Object to include values that are to

 be revealed only to the Authorization Server. As such, the

 "request_uri" MUST have appropriate entropy for its lifetime. For

 the guidance, refer to 5.1.4.2.2 of [RFC6819]. It is RECOMMENDED

 that it be removed after a reasonable timeout unless access control

 measures are taken.

 The following is an example of a Request Object URI value (with line

 wraps within values for display purposes only):

 https://tfp.example.org/request.jwt#

 GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM

5.2.2. Request using the "request_uri" Request Parameter

 The Client sends the Authorization Request to the Authorization

 Endpoint.

 The following is an example of an Authorization Request using the

 "request_uri" parameter (with line wraps within values for display

 purposes only):

 https://server.example.com/authorize?

 response_type=code%20id_token

 &client_id=s6BhdRkqt3

 &request_uri=https%3A%2F%2Ftfp.example.org%2Frequest.jwt

 %23GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM

 &state=af0ifjsldkj

5.2.3. Authorization Server Fetches Request Object

 Upon receipt of the Request, the Authorization Server MUST send an

 HTTP "GET" request to the "request_uri" to retrieve the referenced

 Request Object, unless it is stored in a way so that it can retrieve

 it through other mechanism securely, and parse it to recreate the

 Authorization Request parameters.

Sakimura & Bradley Expires December 12, 2019 [Page 11]

Internet-Draft OAuth JAR June 2019

 The following is an example of this fetch process:

 GET /request.jwt HTTP/1.1

 Host: tfp.example.org

 The following is an example of the fetch response:

 HTTP/1.1 200 OK

 Date: Thu, 16 Feb 2017 23:52:39 GMT

 Server: Apache/2.2.22 (tfp.example.org)

 Content-type: application/jwt

 Content-Length: 1250

 Last-Modified: Wed, 15 Feb 2017 23:52:32 GMT

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiAiczZCaGRSa3

 F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmNvbSIsDQogInJl

 c3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWVudF9pZCI6ICJzNk

 JoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8vY2xpZW50LmV4YW1w

 bGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiAic3RhdGUiOiAiYWYwaW

 Zqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWoiLA0KICJtYXhfYWdlIjog

 ODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXNlcmluZm8iOiANCiAgICB7DQ

 ogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgIm5p

 Y2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJlc3NlbnRpYWwiOiB0cnVlfS

 wNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAg

 ICAgInBpY3R1cmUiOiBudWxsDQogICAgfSwNCiAgICJpZF90b2tlbiI6IA0KICAgIH

 sNCiAgICAgImdlbmRlciI6IG51bGwsDQogICAgICJiaXJ0aGRhdGUiOiB7ImVzc2Vu

 dGlhbCI6IHRydWV9LA0KICAgICAiYWNyIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOm

 luY29tbW9uOmlhcDpzaWx2ZXIiXX0NCiAgICB9DQogIH0NCn0.nwwnNsk1-Zkbmnvs

 F6zTHm8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF

 KzuMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx

 0GxFbuPbj96tVuj11pTnmFCUR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8K

 ol-cSLWoYE9l5QqholImzjT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPG

 iyon_-Te111V8uE83IlzCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

6. Validating JWT-Based Requests

6.1. Encrypted Request Object

 If the request object is encrypted, the Authorization Server MUST

 decrypt the JWT in accordance with the JSON Web Encryption [RFC7516]

 specification.

 The result is a signed request object.

 If decryption fails, the Authorization Server MUST return an

 "invalid_request_object" error.

Sakimura & Bradley Expires December 12, 2019 [Page 12]

Internet-Draft OAuth JAR June 2019

6.2. JWS Signed Request Object

 The Authorization Server MUST perform the signature validation of the

 JSON Web Signature [RFC7515] signed request object. For this, the

 "alg" Header Parameter in its JOSE Header MUST match the value of the

 pre-registered algorithm. The signature MUST be validated against

 the appropriate key for that "client_id" and algorithm.

 If signature validation fails, the Authorization Server MUST return

 an "invalid_request_object" error.

6.3. Request Parameter Assembly and Validation

 The Authorization Server MUST extract the set of Authorization

 Request parameters from the Request Object value. The Authorization

 Server MUST only use the parameters in the Request Object even if the

 same parameter is provided in the query parameter. The Authorization

 Server then validates the request as specified in OAuth 2.0

 [RFC6749].

 If the validation fails, then the Authorization Server MUST return an

 error as specified in OAuth 2.0 [RFC6749].

7. Authorization Server Response

 Authorization Server Response is created and sent to the client as in

 Section 4 of OAuth 2.0 [RFC6749] .

 In addition, this document uses these additional error values:

 invalid_request_uri The "request_uri" in the Authorization Request

 returns an error or contains invalid data.

 invalid_request_object The request parameter contains an invalid

 Request Object.

 request_not_supported The Authorization Server does not support the

 use of the "request" parameter.

 request_uri_not_supported The Authorization Server does not support

 the use of the "request_uri" parameter.

8. TLS Requirements

 Client implementations supporting the Request Object URI method MUST

 support TLS following Recommendations for Secure Use of Transport

 Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 [BCP195].

Sakimura & Bradley Expires December 12, 2019 [Page 13]

Internet-Draft OAuth JAR June 2019

 To protect against information disclosure and tampering,

 confidentiality protection MUST be applied using TLS with a cipher

 suite that provides confidentiality and integrity protection.

 HTTP clients MUST also verify the TLS server certificate, using

 subjectAltName dNSName identities as described in [RFC6125], to avoid

 man-in-the-middle attacks. The rules and guidelines defined in

 [RFC6125] apply here, with the following considerations:

 o Support for DNS-ID identifier type (that is, the dNSName identity

 in the subjectAltName extension) is REQUIRED. Certification

 authorities which issue server certificates MUST support the DNS-

 ID identifier type, and the DNS-ID identifier type MUST be present

 in server certificates.

 o DNS names in server certificates MAY contain the wildcard

 character "*".

 o Clients MUST NOT use CN-ID identifiers; a CN field may be present

 in the server certificate’s subject name, but MUST NOT be used for

 authentication within the rules described in [BCP195].

 o SRV-ID and URI-ID as described in Section 6.5 of [RFC6125] MUST

 NOT be used for comparison.

9. IANA Considerations

 This specification requests no actions by IANA.

10. Security Considerations

 In addition to the all the security considerations discussed in OAuth

 2.0 [RFC6819], the security considerations in [RFC7515], [RFC7516],

 and [RFC7518] needs to be considered. Also, there are several

 academic papers such as [BASIN] that provide useful insight into the

 security properties of protocols like OAuth.

 In consideration of the above, this document advises taking the

 following security considerations into account.

10.1. Choice of Algorithms

 When sending the authorization request object through "request"

 parameter, it MUST either be signed using JWS [RFC7515] or encrypted

 using JWE [RFC7516] with then considered appropriate algorithm.

Sakimura & Bradley Expires December 12, 2019 [Page 14]

Internet-Draft OAuth JAR June 2019

10.2. Request Source Authentication

 The source of the Authorization Request MUST always be verified.

 There are several ways to do it in this specification.

 (a) Verifying the JWS Signature of the Request Object.

 (b) Verifying that the symmetric key for the JWE encryption is the

 correct one if the JWE is using symmetric encryption.

 (c) Verifying the TLS Server Identity of the Request Object URI. In

 this case, the Authorization Server MUST know out-of-band that

 the Client uses Request Object URI and only the Client is

 covered by the TLS certificate. In general, it is not a

 reliable method.

 (d) Authorization Server is providing an endpoint that provides a

 Request Object URI in exchange for a Request Object. In this

 case, the Authorization Server MUST perform Client

 Authentication to accept the Request Object and bind the Client

 Identifier to the Request Object URI it is providing. Since

 Request Object URI can be replayed, the lifetime of the Request

 Object URI MUST be short and preferably one-time use. The

 entropy of the Request Object URI MUST be sufficiently large.

 The adequate shortness of the validity and the entropy of the

 Request Object URI depends on the risk calculation based on the

 value of the resource being protected. A general guidance for

 the validity time would be less than a minute and the Request

 Object URI is to include a cryptographic random value of 128bit

 or more at the time of the writing of this specification.

 (e) A third party, such as a Trust Framework Provider, provides an

 endpoint that provides a Request Object URI in exchange for a

 Request Object. The same requirements as (b) above apply. In

 addition, the Authorization Server MUST know out-of-band that

 the Client utilizes the Trust Framework Operator.

10.3. Explicit Endpoints

 Although this specification does not require them, research such as

 [BASIN] points out that it is a good practice to explicitly state the

 intended interaction endpoints and the message position in the

 sequence in a tamper evident manner so that the intent of the

 initiator is unambiguous. The endpoints that come into question in

 this specification are :

 (a) Protected Resources ("protected_resources")

Sakimura & Bradley Expires December 12, 2019 [Page 15]

Internet-Draft OAuth JAR June 2019

 (b) Authorization Endpoint ("authorization_endpoint")

 (c) Redirection URI ("redirect_uri")

 (d) Token Endpoint ("token_endpoint")

 Further, if dynamic discovery is used, then the discovery related

 endpoints also come into question.

 In [RFC6749], while Redirection URI is included, others are not

 included in the Authorization Request. As the result, the same

 applies to Authorization Request Object.

 The lack of the link among those endpoints are cited as the cause of

 Cross-Phase Attacks introduced in [FETT]. An extension specification

 should be created as a measure to address the risk.

10.4. Risks Associated with request_uri

 The introduction of "request_uri" introduces several attack

 possibilities.

10.4.1. DDoS Attack on the Authorization Server

 A set of malicious client can launch a DoS attack to the

 authorization server by pointing the "request_uri" to a uri that

 returns extremely large content or extremely slow to respond. Under

 such an attack, the server may use up its resource and start failing.

 Similarly, a malicious client can specify the "request_uri" value

 that itself points to an authorization request URI that uses

 "request_uri" to cause the recursive lookup.

 To prevent such attack to succeed, the server should (a) check that

 the value of "request_uri" parameter does not point to an unexpected

 location, (b) check the content type of the response is "application/

 jwt" (c) implement a time-out for obtaining the content of

 "request_uri", and (d) do not perform recursive GET on the

 "request_uri".

10.4.2. Request URI Rewrite

 The value of "request_uri" is not signed thus it can be tampered by

 Man-in-the-browser attacker. Several attack possibilities rise

 because of this, e.g., (a) attacker may create another file that the

 rewritten URI points to making it possible to request extra scope (b)

 attacker launches a DoS attack to a victim site by setting the value

 of "request_uri" to be that of the victim.

Sakimura & Bradley Expires December 12, 2019 [Page 16]

Internet-Draft OAuth JAR June 2019

 To prevent such attack to succeed, the server should (a) check that

 the value of "request_uri" parameter does not point to an unexpected

 location, (b) check the content type of the response is "application/

 jwt" (c) implement a time-out for obtaining the content of

 "request_uri".

11. TLS security considerations

 Current security considerations can be found in Recommendations for

 Secure Use of TLS and DTLS [BCP195]. This supersedes the TLS version

 recommendations in OAuth 2.0 [RFC6749].

12. Privacy Considerations

 When the Client is being granted access to a protected resource

 containing personal data, both the Client and the Authorization

 Server need to adhere to Privacy Principles. RFC 6973 Privacy

 Considerations for Internet Protocols [RFC6973] gives excellent

 guidance on the enhancement of protocol design and implementation.

 The provision listed in it should be followed.

 Most of the provision would apply to The OAuth 2.0 Authorization

 Framework [RFC6749] and The OAuth 2.0 Authorization Framework: Bearer

 Token Usage [RFC6750] and are not specific to this specification. In

 what follows, only the specific provisions to this specification are

 noted.

12.1. Collection limitation

 When the Client is being granted access to a protected resource

 containing personal data, the Client SHOULD limit the collection of

 personal data to that which is within the bounds of applicable law

 and strictly necessary for the specified purpose(s).

 It is often hard for the user to find out if the personal data asked

 for is strictly necessary. A Trust Framework Provider can help the

 user by examining the Client request and comparing to the proposed

 processing by the Client and certifying the request. After the

 certification, the Client, when making an Authorization Request, can

 submit Authorization Request to the Trust Framework Provider to

 obtain the Request Object URI.

 Upon receiving such Request Object URI in the Authorization Request,

 the Authorization Server first verifies that the authority portion of

 the Request Object URI is a legitimate one for the Trust Framework

 Provider. Then, the Authorization Server issues HTTP GET request to

 the Request Object URI. Upon connecting, the Authorization Server

 MUST verify the server identity represented in the TLS certificate is

Sakimura & Bradley Expires December 12, 2019 [Page 17]

Internet-Draft OAuth JAR June 2019

 legitimate for the Request Object URI. Then, the Authorization

 Server can obtain the Request Object, which includes the "client_id"

 representing the Client.

 The Consent screen MUST indicate the Client and SHOULD indicate that

 the request has been vetted by the Trust Framework Operator for the

 adherence to the Collection Limitation principle.

12.2. Disclosure Limitation

12.2.1. Request Disclosure

 This specification allows extension parameters. These may include

 potentially sensitive information. Since URI query parameter may

 leak through various means but most notably through referrer and

 browser history, if the authorization request contains a potentially

 sensitive parameter, the Client SHOULD JWE [RFC7516] encrypt the

 request object.

 Where Request Object URI method is being used, if the request object

 contains personally identifiable or sensitive information, the

 "request_uri" SHOULD be used only once, have a short validity period,

 and MUST have large enough entropy deemed necessary with applicable

 security policy unless the Request Object itself is JWE [RFC7516]

 Encrypted. The adequate shortness of the validity and the entropy of

 the Request Object URI depends on the risk calculation based on the

 value of the resource being protected. A general guidance for the

 validity time would be less than a minute and the Request Object URI

 is to include a cryptographic random value of 128bit or more at the

 time of the writing of this specification.

12.2.2. Tracking using Request Object URI

 Even if the protected resource does not include a personally

 identifiable information, it is sometimes possible to identify the

 user through the Request Object URI if persistent per-user Request

 Object URI is used. A third party may observe it through browser

 history etc. and start correlating the user’s activity using it. In

 a way, it is a data disclosure as well and should be avoided.

 Therefore, per-user Request Object URI should be avoided.

13. Acknowledgements

 The following people contributed to the creation of this document in

 the OAuth WG. (Affiliations at the time of the contribution are

 used.)

Sakimura & Bradley Expires December 12, 2019 [Page 18]

Internet-Draft OAuth JAR June 2019

 Sergey Beryozkin, Brian Campbell (Ping Identity), Vladimir Dzhuvinov

 (Connect2id), Michael B. Jones (Microsoft), Torsten Lodderstedt

 (YES) Jim Manico, Axel Nenker(Deutsche Telecom), Hannes Tschofenig

 (ARM), Ben Campbell, Kathleen Moriarty (as AD), and Steve Kent (as

 SECDIR).

 The following people contributed to creating this document through

 the OpenID Connect Core 1.0 [OpenID.Core].

 Brian Campbell (Ping Identity), George Fletcher (AOL), Ryo Itou

 (Mixi), Edmund Jay (Illumila), Michael B. Jones (Microsoft), Breno

 de Medeiros (Google), Hideki Nara (TACT), Justin Richer (MITRE).

 In addition, the following people contributed to this and previous

 versions through the OAuth Working Group.

 Dirk Balfanz (Google), James H. Manger (Telstra), John Panzer

 (Google), David Recordon (Facebook), Marius Scurtescu (Google), Luke

 Shepard (Facebook).

14. Revision History

 Note to the RFC Editor: Please remove this section from the final

 RFC.

 -19

 o AD cooments

 o Section 5.2.1. s/Requiest URI/Request URI/

 o Section 8 s/[BCP195] ./[BCP195]./

 o Section 10.3. s/sited/cited/

 o Section 11. Typo. s/Curent/Current/

 -17

 o #78 Typos in content-type

 -16

 o Treated remaining Ben Campbell comments.

 -15

 o Removed further duplication

Sakimura & Bradley Expires December 12, 2019 [Page 19]

Internet-Draft OAuth JAR June 2019

 -14

 o #71 Reiterate dynamic params are included.

 o #70 Made clear that AS must return error.

 o #69 Inconsistency of the need to sign.

 o Fixed Mimetype.

 o #67 Incosistence in requiring HTTPS in request uri.

 o #66 Dropped ISO 29100 reference.

 o #25 Removed Encrypt only option.

 o #59 Same with #25.

 -13

 o add TLS Security Consideration section

 o replace RFC7525 reference with BCP195

 o moved front tag in FETT reference to fix XML structure

 o changes reference from SoK to FETT

 -12

 o fixes #62 - Alexey Melnikov Discuss

 o fixes #48 - OPSDIR Review : General - delete semicolors after list

 items

 o fixes #58 - DP Comments for the Last Call

 o fixes #57 - GENART - Remove "non-normative ... " from examples.

 o fixes #45 - OPSDIR Review : Introduction - are attacks discovered

 or already opened

 o fixes #49 - OPSDIR Review : Introduction - Inconsistent colons

 after initial sentence of list items.

 o fixes #53 - OPSDIR Review : 6.2 JWS Signed Request Object -

 Clarify JOSE Header

Sakimura & Bradley Expires December 12, 2019 [Page 20]

Internet-Draft OAuth JAR June 2019

 o fixes #42 - OPSDIR Review : Introduction - readability of ’and’ is

 confusing

 o fixes #50 - OPSDIR Review : Section 4 Request Object - Clarify

 ’signed, encrypted, or signed and encrypted’

 o fixes #39 - OPSDIR Review : Abstract - Explain/Clarify JWS and JWE

 o fixed #50 - OPSDIR Review : Section 4 Request Object - Clarify

 ’signed, encrypted, or signed and encrypted’

 o fixes #43 - OPSDIR Review : Introduction - ’properties’ sounds

 awkward and are not exactly ’properties’

 o fixes #56 - OPSDIR Review : 12 Acknowledgements - ’contribution

 is’ => ’contribution are’

 o fixes #55 - OPSDIR Review : 11.2.2 Privacy Considerations - ’ It

 is in a way’ => ’In a way, it is’

 o fixes #54 - OPSDIR Review : 11 Privacy Considerations - ’and not

 specific’ => ’and are not specific’

 o fixes #51 - OPSDIR Review : Section 4 Request Object - ’It is

 fine’ => ’It is recommended’

 o fixes #47 - OPSDIR Review : Introduction - ’over- the- wire’ =>

 ’over-the-wire’

 o fixes #46 - OPSDIR Review : Introduction - ’It allows’ => ’The use

 of application security’ for

 o fixes #44 - OPSDIR Review : Introduction - ’has’ => ’have’

 o fixes #41 - OPSDIR Review : Introduction - missing ’is’ before

 ’typically sent’

 o fixes #38 - OPSDIR Review : Section 11 - Delete ’freely

 accessible’ regarding ISO 29100

 -11

 o s/bing/being/

 o Added history for -10

 -10

Sakimura & Bradley Expires December 12, 2019 [Page 21]

Internet-Draft OAuth JAR June 2019

 o #20: KM1 -- some wording that is awkward in the TLS section.

 o #21: KM2 - the additional attacks against OAuth 2.0 should also

 have a pointer

 o #22: KM3 -- Nit: in the first line of 10.4:

 o #23: KM4 -- Mention RFC6973 in Section 11 in addition to ISO 29100

 o #24: SECDIR review: Section 4 -- Confusing requirements for

 sign+encrypt

 o #25: SECDIR review: Section 6 -- authentication and integrity need

 not be provided if the requestor encrypts the token?

 o #26: SECDIR Review: Section 10 -- why no reference for JWS

 algorithms?

 o #27: SECDIR Review: Section 10.2 - how to do the agreement between

 client and server "a priori"?

 o #28: SECDIR Review: Section 10.3 - Indication on "large entropy"

 and "short lifetime" should be indicated

 o #29: SECDIR Review: Section 10.3 - Typo

 o #30: SECDIR Review: Section 10.4 - typos and missing articles

 o #31: SECDIR Review: Section 10.4 - Clearer statement on the lack

 of endpoint identifiers needed

 o #32: SECDIR Review: Section 11 - ISO29100 needs to be moved to

 normative reference

 o #33: SECDIR Review: Section 11 - Better English and Entropy

 language needed

 o #34: Section 4: Typo

 o #35: More Acknowledgment

 o #36: DP - More precise qualification on Encryption needed.

 -09

 o Minor Editorial Nits.

 o Section 10.4 added.

Sakimura & Bradley Expires December 12, 2019 [Page 22]

Internet-Draft OAuth JAR June 2019

 o Explicit reference to Security consideration (10.2) added in

 section 5 and section 5.2.

 o , (add yourself) removed from the acknowledgment.

 -08

 o Applied changes proposed by Hannes on 2016-06-29 on IETF OAuth

 list recorded as https://bitbucket.org/Nat/oauth-jwsreq/

 issues/12/.

 o TLS requirements added.

 o Security Consideration reinforced.

 o Privacy Consideration added.

 o Introduction improved.

 -07

 o Changed the abbrev to OAuth JAR from oauth-jar.

 o Clarified sig and enc methods.

 o Better English.

 o Removed claims from one of the example.

 o Re-worded the URI construction.

 o Changed the example to use request instead of request_uri.

 o Clarified that Request Object parameters take precedence

 regardless of request or request_uri parameters were used.

 o Generalized the language in 4.2.1 to convey the intent more

 clearly.

 o Changed "Server" to "Authorization Server" as a clarification.

 o Stopped talking about request_object_signing_alg.

 o IANA considerations now reflect the current status.

 o Added Brian Campbell to the contributors list. Made the lists

 alphabetic order based on the last names. Clarified that the

 affiliation is at the time of the contribution.

Sakimura & Bradley Expires December 12, 2019 [Page 23]

Internet-Draft OAuth JAR June 2019

 o Added "older versions of " to the reference to IE uri length

 limitations.

 o Stopped talking about signed or unsigned JWS etc.

 o 1.Introduction improved.

 -06

 o Added explanation on the 512 chars URL restriction.

 o Updated Acknowledgements.

 -05

 o More alignment with OpenID Connect.

 -04

 o Fixed typos in examples. (request_url -> request_uri, cliend_id ->

 client_id)

 o Aligned the error messages with the OAuth IANA registry.

 o Added another rationale for having request object.

 -03

 o Fixed the non-normative description about the advantage of static

 signature.

 o Changed the requirement for the parameter values in the request

 itself and the request object from ’MUST MATCH" to ’Req Obj takes

 precedence.

 -02

 o Now that they are RFCs, replaced JWS, JWE, etc. with RFC numbers.

 -01

 o Copy Edits.

15. References

Sakimura & Bradley Expires December 12, 2019 [Page 24]

Internet-Draft OAuth JAR June 2019

15.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,

 "Recommendations for Secure Use of Transport Layer

 Security (TLS) and Datagram Transport Layer Security

 (DTLS)", BCP 195, RFC 7525, May 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO

 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

 Resource Identifier (URI): Generic Syntax", STD 66,

 RFC 3986, DOI 10.17487/RFC3986, January 2005,

 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and

 Verification of Domain-Based Application Service Identity

 within Internet Public Key Infrastructure Using X.509

 (PKIX) Certificates in the Context of Transport Layer

 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

 RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

 Framework: Bearer Token Usage", RFC 6750,

 DOI 10.17487/RFC6750, October 2012,

 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data

 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March

 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer

 Protocol (HTTP/1.1): Message Syntax and Routing",

 RFC 7230, DOI 10.17487/RFC7230, June 2014,

 <https://www.rfc-editor.org/info/rfc7230>.

Sakimura & Bradley Expires December 12, 2019 [Page 25]

Internet-Draft OAuth JAR June 2019

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web

 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

 RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <https://www.rfc-editor.org/info/rfc7516>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,

 DOI 10.17487/RFC7518, May 2015,

 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC8141] Saint-Andre, P. and J. Klensin, "Uniform Resource Names

 (URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,

 <https://www.rfc-editor.org/info/rfc8141>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data

 Interchange Format", STD 90, RFC 8259,

 DOI 10.17487/RFC8259, December 2017,

 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0

 Authorization Server Metadata", RFC 8414,

 DOI 10.17487/RFC8414, June 2018,

 <https://www.rfc-editor.org/info/rfc8414>.

15.2. Informative References

 [BASIN] Basin, D., Cremers, C., and S. Meier, "Provably Repairing

 the ISO/IEC 9798 Standard for Entity Authentication",

 Journal of Computer Security - Security and Trust

 Principles Volume 21 Issue 6, Pages 817-846, November

 2013,

 <https://www.cs.ox.ac.uk/people/cas.cremers/downloads/

 papers/BCM2012-iso9798.pdf>.

 [FETT] Fett, D., Kusters, R., and G. Schmitz, "A Comprehensive

 Formal Security Analysis of OAuth 2.0", CCS ’16

 Proceedings of the 2016 ACM SIGSAC Conference on Computer

 and Communications Security Pages 1204-1215 , October

 2016, <https://infsec.uni-

 trier.de/people/publications/paper/

 FettKuestersSchmitz-CCS-2016.pdf>.

Sakimura & Bradley Expires December 12, 2019 [Page 26]

Internet-Draft OAuth JAR June 2019

 [OpenID.Core]

 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and

 C. Mortimore, "OpenID Connect Core 1.0", OpenID

 Foundation Standards, February 2014,

 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0

 Threat Model and Security Considerations", RFC 6819,

 DOI 10.17487/RFC6819, January 2013,

 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,

 Morris, J., Hansen, M., and R. Smith, "Privacy

 Considerations for Internet Protocols", RFC 6973,

 DOI 10.17487/RFC6973, July 2013,

 <https://www.rfc-editor.org/info/rfc6973>.

Authors’ Addresses

 Nat Sakimura

 Nomura Research Institute

 Otemachi Financial City Grand Cube, 1-9-2 Otemachi

 Chiyoda-ku, Tokyo 100-0004

 Japan

 Phone: +81-3-5533-2111

 Email: n-sakimura@nri.co.jp

 URI: http://nat.sakimura.org/

 John Bradley

 Yubico

 Casilla 177, Sucursal Talagante

 Talagante, RM

 Chile

 Phone: +1.202.630.5272

 Email: ve7jtb@ve7jtb.com

 URI: http://www.thread-safe.com/

Sakimura & Bradley Expires December 12, 2019 [Page 27]

OAuth Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track B. Campbell
Expires: May 16, 2015 Ping Identity
 C. Mortimore
 Salesforce
 November 12, 2014

 JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants
 draft-ietf-oauth-jwt-bearer-12

Abstract

 This specification defines the use of a JSON Web Token (JWT) Bearer
 Token as a means for requesting an OAuth 2.0 access token as well as
 for use as a means of client authentication.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 16, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Jones, et al. Expires May 16, 2015 [Page 1]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Notational Conventions 4
 1.2. Terminology . 4
 2. HTTP Parameter Bindings for Transporting Assertions 4
 2.1. Using JWTs as Authorization Grants 4
 2.2. Using JWTs for Client Authentication 5
 3. JWT Format and Processing Requirements 5
 3.1. Authorization Grant Processing 7
 3.2. Client Authentication Processing 8
 4. Authorization Grant Example 8
 5. Interoperability Considerations 9
 6. Security Considerations 9
 7. Privacy Considerations 10
 8. IANA Considerations . 10
 8.1. Sub-Namespace Registration of urn:ietf:params:oauth
 :grant-type:jwt-bearer 10
 8.2. Sub-Namespace Registration of urn:ietf:params:oauth
 :client-assertion-type:jwt-bearer 10
 9. References . 11
 9.1. Normative References 11
 9.2. Informative References 11
 Appendix A. Acknowledgements 12
 Appendix B. Document History 12
 Authors’ Addresses . 14

1. Introduction

 JSON Web Token (JWT) [JWT] is a JavaScript Object Notation (JSON)
 [RFC7159] based security token encoding that enables identity and
 security information to be shared across security domains. A
 security token is generally issued by an identity provider and
 consumed by a relying party that relies on its content to identify
 the token’s subject for security related purposes.

 The OAuth 2.0 Authorization Framework [RFC6749] provides a method for
 making authenticated HTTP requests to a resource using an access
 token. Access tokens are issued to third-party clients by an
 authorization server (AS) with the (sometimes implicit) approval of
 the resource owner. In OAuth, an authorization grant is an abstract
 term used to describe intermediate credentials that represent the
 resource owner authorization. An authorization grant is used by the
 client to obtain an access token. Several authorization grant types
 are defined to support a wide range of client types and user

Jones, et al. Expires May 16, 2015 [Page 2]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 experiences. OAuth also allows for the definition of new extension
 grant types to support additional clients or to provide a bridge
 between OAuth and other trust frameworks. Finally, OAuth allows the
 definition of additional authentication mechanisms to be used by
 clients when interacting with the authorization server.

 The Assertion Framework for OAuth 2.0 Client Authentication and
 Authorization Grants [I-D.ietf-oauth-assertions] specification is an
 abstract extension to OAuth 2.0 that provides a general framework for
 the use of Assertions (a.k.a. Security Tokens) as client credentials
 and/or authorization grants with OAuth 2.0. This specification
 profiles the Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants [I-D.ietf-oauth-assertions] specification to
 define an extension grant type that uses a JSON Web Token (JWT)
 Bearer Token to request an OAuth 2.0 access token as well as for use
 as client credentials. The format and processing rules for the JWT
 defined in this specification are intentionally similar, though not
 identical, to those in the closely related SAML 2.0 Profile for OAuth
 2.0 Client Authentication and Authorization Grants
 [I-D.ietf-oauth-saml2-bearer] specification. The differences arise
 where the structure and semantics of JWTs differ from SAML
 assertions. JWTs, for example, have no direct equivalent to the
 <SubjectConfirmation> or <AuthnStatement> elements of SAML
 assertions.

 This document defines how a JSON Web Token (JWT) Bearer Token can be
 used to request an access token when a client wishes to utilize an
 existing trust relationship, expressed through the semantics of (and
 digital signature or Message Authentication Code calculated over) the
 JWT, without a direct user approval step at the authorization server.
 It also defines how a JWT can be used as a client authentication
 mechanism. The use of a security token for client authentication is
 orthogonal to and separable from using a security token as an
 authorization grant. They can be used either in combination or
 separately. Client authentication using a JWT is nothing more than
 an alternative way for a client to authenticate to the token endpoint
 and must be used in conjunction with some grant type to form a
 complete and meaningful protocol request. JWT authorization grants
 may be used with or without client authentication or identification.
 Whether or not client authentication is needed in conjunction with a
 JWT authorization grant, as well as the supported types of client
 authentication, are policy decisions at the discretion of the
 authorization server.

 The process by which the client obtains the JWT, prior to exchanging
 it with the authorization server or using it for client
 authentication, is out of scope.

Jones, et al. Expires May 16, 2015 [Page 3]

Internet-Draft OAuth JWT Assertion Profiles November 2014

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 All terms are as defined in The OAuth 2.0 Authorization Framework
 [RFC6749], the Assertion Framework for OAuth 2.0 Client
 Authentication and Authorization Grants [I-D.ietf-oauth-assertions],
 and the JSON Web Token (JWT) [JWT] specifications.

2. HTTP Parameter Bindings for Transporting Assertions

 The Assertion Framework for OAuth 2.0 Client Authentication and
 Authorization Grants [I-D.ietf-oauth-assertions] specification
 defines generic HTTP parameters for transporting Assertions (a.k.a.
 Security Tokens) during interactions with a token endpoint. This
 section defines specific parameters and treatments of those
 parameters for use with JWT bearer tokens.

2.1. Using JWTs as Authorization Grants

 To use a Bearer JWT as an authorization grant, the client uses an
 access token request as defined in Section 4 of the Assertion
 Framework for OAuth 2.0 Client Authentication and Authorization
 Grants [I-D.ietf-oauth-assertions] specification with the following
 specific parameter values and encodings.

 The value of the "grant_type" is "urn:ietf:params:oauth:grant-
 type:jwt-bearer".

 The value of the "assertion" parameter MUST contain a single JWT.

 The "scope" parameter may be used, as defined in the Assertion
 Framework for OAuth 2.0 Client Authentication and Authorization
 Grants [I-D.ietf-oauth-assertions] specification, to indicate the
 requested scope.

 Authentication of the client is optional, as described in
 Section 3.2.1 of OAuth 2.0 [RFC6749] and consequently, the
 "client_id" is only needed when a form of client authentication that
 relies on the parameter is used.

Jones, et al. Expires May 16, 2015 [Page 4]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 The following example demonstrates an Access Token Request with a JWT
 as an authorization grant (with extra line breaks for display
 purposes only):

 POST /token.oauth2 HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer
 &assertion=eyJhbGciOiJFUzI1NiJ9.
 eyJpc3Mi[...omitted for brevity...].
 J9l-ZhwP[...omitted for brevity...]

2.2. Using JWTs for Client Authentication

 To use a JWT Bearer Token for client authentication, the client uses
 the following parameter values and encodings.

 The value of the "client_assertion_type" is
 "urn:ietf:params:oauth:client-assertion-type:jwt-bearer".

 The value of the "client_assertion" parameter contains a single JWT.
 It MUST NOT contain more than one JWT.

 The following example demonstrates client authentication using a JWT
 during the presentation of an authorization code grant in an Access
 Token Request (with extra line breaks for display purposes only):

 POST /token.oauth2 HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=vAZEIHjQTHuGgaSvyW9hO0RpusLzkvTOww3trZBxZpo&
 client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3A
 client-assertion-type%3Ajwt-bearer&
 client_assertion=eyJhbGciOiJSUzI1NiJ9.
 eyJpc3Mi[...omitted for brevity...].
 cC4hiUPo[...omitted for brevity...]

3. JWT Format and Processing Requirements

 In order to issue an access token response as described in OAuth 2.0
 [RFC6749] or to rely on a JWT for client authentication, the
 authorization server MUST validate the JWT according to the criteria
 below. Application of additional restrictions and policy are at the
 discretion of the authorization server.

Jones, et al. Expires May 16, 2015 [Page 5]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 1. The JWT MUST contain an "iss" (issuer) claim that contains a
 unique identifier for the entity that issued the JWT. In the
 absence of an application profile specifying otherwise,
 compliant applications MUST compare Issuer values using the
 Simple String Comparison method defined in Section 6.2.1 of RFC
 3986 [RFC3986].

 2. The JWT MUST contain a "sub" (subject) claim identifying the
 principal that is the subject of the JWT. Two cases need to be
 differentiated:

 A. For the authorization grant, the subject typically
 identifies an authorized accessor for which the access token
 is being requested (i.e., the resource owner or an
 authorized delegate), but in some cases, may be a
 pseudonymous identifier or other value denoting an anonymous
 user.

 B. For client authentication, the subject MUST be the
 "client_id" of the OAuth client.

 3. The JWT MUST contain an "aud" (audience) claim containing a
 value that identifies the authorization server as an intended
 audience. The token endpoint URL of the authorization server
 MAY be used as a value for an "aud" element to identify the
 authorization server as an intended audience of the JWT. The
 Authorization Server MUST reject any JWT that does not contain
 its own identity as the intended audience In the absence of an
 application profile specifying otherwise, compliant applications
 MUST compare the audience values using the Simple String
 Comparison method defined in Section 6.2.1 of RFC 3986
 [RFC3986]. As noted in Section 5, the precise strings to be
 used as the audience for a given Authorization Server must be
 configured out-of-band by the Authorization Server and the
 Issuer of the JWT.

 4. The JWT MUST contain an "exp" (expiration) claim that limits the
 time window during which the JWT can be used. The authorization
 server MUST reject any JWT with an expiration time that has
 passed, subject to allowable clock skew between systems. Note
 that the authorization server may reject JWTs with an "exp"
 claim value that is unreasonably far in the future.

 5. The JWT MAY contain an "nbf" (not before) claim that identifies
 the time before which the token MUST NOT be accepted for
 processing.

Jones, et al. Expires May 16, 2015 [Page 6]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 6. The JWT MAY contain an "iat" (issued at) claim that identifies
 the time at which the JWT was issued. Note that the
 authorization server may reject JWTs with an "iat" claim value
 that is unreasonably far in the past.

 7. The JWT MAY contain a "jti" (JWT ID) claim that provides a
 unique identifier for the token. The authorization server MAY
 ensure that JWTs are not replayed by maintaining the set of used
 "jti" values for the length of time for which the JWT would be
 considered valid based on the applicable "exp" instant.

 8. The JWT MAY contain other claims.

 9. The JWT MUST be digitally signed or have a Message
 Authentication Code applied by the issuer. The authorization
 server MUST reject JWTs with an invalid signature or Message
 Authentication Code.

 10. The authorization server MUST reject a JWT that is not valid in
 all other respects per JSON Web Token (JWT) [JWT].

3.1. Authorization Grant Processing

 JWT authorization grants may be used with or without client
 authentication or identification. Whether or not client
 authentication is needed in conjunction with a JWT authorization
 grant, as well as the supported types of client authentication, are
 policy decisions at the discretion of the authorization server.
 However, if client credentials are present in the request, the
 authorization server MUST validate them.

 If the JWT is not valid, or the current time is not within the
 token’s valid time window for use, the authorization server
 constructs an error response as defined in OAuth 2.0 [RFC6749]. The
 value of the "error" parameter MUST be the "invalid_grant" error
 code. The authorization server MAY include additional information
 regarding the reasons the JWT was considered invalid using the
 "error_description" or "error_uri" parameters.

Jones, et al. Expires May 16, 2015 [Page 7]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error":"invalid_grant",
 "error_description":"Audience validation failed"
 }

3.2. Client Authentication Processing

 If the client JWT is not valid, the authorization server constructs
 an error response as defined in OAuth 2.0 [RFC6749]. The value of
 the "error" parameter MUST be the "invalid_client" error code. The
 authorization server MAY include additional information regarding the
 reasons the JWT was considered invalid using the "error_description"
 or "error_uri" parameters.

4. Authorization Grant Example

 The following examples illustrate what a conforming JWT and an access
 token request would look like.

 The example shows a JWT issued and signed by the system entity
 identified as "https://jwt-idp.example.com". The subject of the JWT
 is identified by email address as "mike@example.com". The intended
 audience of the JWT is "https://jwt-rp.example.net", which is an
 identifier with which the authorization server identifies itself.
 The JWT is sent as part of an access token request to the
 authorization server’s token endpoint at "https://authz.example.net/
 token.oauth2".

 Below is an example JSON object that could be encoded to produce the
 JWT Claims Object for a JWT:

 {"iss":"https://jwt-idp.example.com",
 "sub":"mailto:mike@example.com",
 "aud":"https://jwt-rp.example.net",
 "nbf":1300815780,
 "exp":1300819380,
 "http://claims.example.com/member":true}

Jones, et al. Expires May 16, 2015 [Page 8]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 The following example JSON object, used as the header of a JWT,
 declares that the JWT is signed with the ECDSA P-256 SHA-256
 algorithm.

 {"alg":"ES256"}

 To present the JWT with the claims and header shown in the previous
 example as part of an access token request, for example, the client
 might make the following HTTPS request (with extra line breaks for
 display purposes only):

 POST /token.oauth2 HTTP/1.1
 Host: authz.example.net
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer
 &assertion=eyJhbGciOiJFUzI1NiJ9.
 eyJpc3Mi[...omitted for brevity...].
 J9l-ZhwP[...omitted for brevity...]

5. Interoperability Considerations

 Agreement between system entities regarding identifiers, keys, and
 endpoints is required in order to achieve interoperable deployments
 of this profile. Specific items that require agreement are as
 follows: values for the issuer and audience identifiers, the location
 of the token endpoint, the key used to apply and verify the digital
 signature or Message Authentication Code over the JWT, one-time use
 restrictions on the JWT, maximum JWT lifetime allowed, and the
 specific subject and claim requirements of the JWT. The exchange of
 such information is explicitly out of scope for this specification.
 In some cases, additional profiles may be created that constrain or
 prescribe these values or specify how they are to be exchanged.
 Examples of such profiles include the OAuth 2.0 Dynamic Client
 Registration Core Protocol [I-D.ietf-oauth-dyn-reg], OpenID Connect
 Dynamic Client Registration 1.0 [OpenID.Registration], and OpenID
 Connect Discovery 1.0 [OpenID.Discovery].

 The "RS256" algorithm, from [I-D.ietf-jose-json-web-algorithms], is a
 mandatory to implement JSON Web Signature algorithm for this profile.

6. Security Considerations

 The security considerations described within the Assertion Framework
 for OAuth 2.0 Client Authentication and Authorization Grants
 [I-D.ietf-oauth-assertions], The OAuth 2.0 Authorization Framework
 [RFC6749], and the JSON Web Token (JWT) [JWT] specifications are all
 applicable to this document.

Jones, et al. Expires May 16, 2015 [Page 9]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 The specification does not mandate replay protection for the JWT
 usage for either the authorization grant or for client
 authentication. It is an optional feature, which implementations may
 employ at their own discretion.

7. Privacy Considerations

 A JWT may contain privacy-sensitive information and, to prevent
 disclosure of such information to unintended parties, should only be
 transmitted over encrypted channels, such as TLS. In cases where it
 is desirable to prevent disclosure of certain information to the
 client, the JWT should be be encrypted to the authorization server.

 Deployments should determine the minimum amount of information
 necessary to complete the exchange and include only such claims in
 the JWT. In some cases, the "sub" (subject) claim can be a value
 representing an anonymous or pseudonymous user, as described in
 Section 6.3.1 of the Assertion Framework for OAuth 2.0 Client
 Authentication and Authorization Grants [I-D.ietf-oauth-assertions].

8. IANA Considerations

8.1. Sub-Namespace Registration of urn:ietf:params:oauth:grant-
 type:jwt-bearer

 This specification registers the value "grant-type:jwt-bearer" in the
 IANA urn:ietf:params:oauth registry established in An IETF URN Sub-
 Namespace for OAuth [RFC6755].

 o URN: urn:ietf:params:oauth:grant-type:jwt-bearer

 o Common Name: JWT Bearer Token Grant Type Profile for OAuth 2.0

 o Change controller: IESG

 o Specification Document: [[this document]]

8.2. Sub-Namespace Registration of urn:ietf:params:oauth:client-
 assertion-type:jwt-bearer

 This specification registers the value "client-assertion-type:jwt-
 bearer" in the IANA urn:ietf:params:oauth registry established in An
 IETF URN Sub-Namespace for OAuth [RFC6755].

 o URN: urn:ietf:params:oauth:client-assertion-type:jwt-bearer

 o Common Name: JWT Bearer Token Profile for OAuth 2.0 Client
 Authentication

Jones, et al. Expires May 16, 2015 [Page 10]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 o Change controller: IESG

 o Specification Document: [[this document]]

9. References

9.1. Normative References

 [I-D.ietf-jose-json-web-algorithms]
 Jones, M., "JSON Web Algorithms (JWA)", draft-ietf-jose-
 json-web-algorithms-36 (work in progress), October 2014.

 [I-D.ietf-oauth-assertions]
 Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", draft-ietf-oauth-assertions
 (work in progress), October 2014.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", draft-ietf-oauth-json-web-token (work in
 progress), October 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

9.2. Informative References

 [I-D.ietf-oauth-dyn-reg]
 Richer, J., Jones, M., Bradley, J., Machulak, M., and P.
 Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 draft-ietf-oauth-dyn-reg-20 (work in progress), August
 2014.

 [I-D.ietf-oauth-saml2-bearer]
 Campbell, B., Mortimore, C., and M. Jones, "SAML 2.0
 Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", draft-ietf-oauth-saml2-bearer (work
 in progress), November 2014.

Jones, et al. Expires May 16, 2015 [Page 11]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 [OpenID.Discovery]
 Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
 Connect Discovery 1.0", February 2014.

 [OpenID.Registration]
 Sakimura, N., Bradley, J., and M. Jones, "OpenID Connect
 Dynamic Client Registration 1.0", February 2014.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, October 2012.

Appendix A. Acknowledgements

 This profile was derived from SAML 2.0 Profile for OAuth 2.0 Client
 Authentication and Authorization Grants [I-D.ietf-oauth-saml2-bearer]
 by Brian Campbell and Chuck Mortimore.

Appendix B. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 draft-ietf-oauth-jwt-bearer-12

 o Fix typo per http://www.ietf.org/mail-archive/web/oauth/current/
 msg13790.html

 draft-ietf-oauth-jwt-bearer-11

 o Changes/suggestions from IESG reviews.

 draft-ietf-oauth-jwt-bearer-10

 o Added Privacy Considerations section per AD review discussion
 http://www.ietf.org/mail-archive/web/oauth/current/msg13148.html
 and http://www.ietf.org/mail-archive/web/oauth/current/
 msg13144.html

 draft-ietf-oauth-jwt-bearer-09

 o Clarified some text around the treatment of subject based on the
 rough rough consensus from the thread staring at
 http://www.ietf.org/mail-archive/web/oauth/current/msg12630.html

 draft-ietf-oauth-jwt-bearer-08

 o Updated references, including replacing references to RFC 4627
 with RFC 7159.

Jones, et al. Expires May 16, 2015 [Page 12]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 draft-ietf-oauth-jwt-bearer-07

 o Clean up language around subject per http://www.ietf.org/mail-
 archive/web/oauth/current/msg12250.html.

 o As suggested in http://www.ietf.org/mail-
 archive/web/oauth/current/msg12251.html stated that "In the
 absence of an application profile specifying otherwise, compliant
 applications MUST compare the audience values using the Simple
 String Comparison method defined in Section 6.2.1 of RFC 3986."

 o Added one-time use, maximum lifetime, and specific subject and
 attribute requirements to Interoperability Considerations based on
 http://www.ietf.org/mail-archive/web/oauth/current/msg12252.html.

 o Remove "or its subject confirmation requirements cannot be met"
 text.

 o Reword security considerations and mention that replay protection
 is not mandated based on http://www.ietf.org/mail-
 archive/web/oauth/current/msg12259.html.

 -06

 o Stated that issuer and audience values SHOULD be compared using
 the Simple String Comparison method defined in Section 6.2.1 of
 RFC 3986 unless otherwise specified by the application.

 -05

 o Changed title from "JSON Web Token (JWT) Bearer Token Profiles for
 OAuth 2.0" to "JSON Web Token (JWT) Profile for OAuth 2.0 Client
 Authentication and Authorization Grants" to be more explicit about
 the scope of the document per http://www.ietf.org/mail-
 archive/web/oauth/current/msg11063.html.

 o Numbered the list of processing rules.

 o Smallish editorial cleanups to try and improve readability and
 comprehensibility.

 o Cleaner split out of the processing rules in cases where they
 differ for client authentication and authorization grants.

 o Clarified the parameters that are used/available for authorization
 grants.

 o Added Interoperability Considerations section.

Jones, et al. Expires May 16, 2015 [Page 13]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 o Added more explanatory context to the example in Section 4.

 -04

 o Changed the name of the "prn" claim to "sub" (subject) both to
 more closely align with SAML name usage and to use a more
 intuitive name.

 o Added seriesInfo information to Internet Draft references.

 -03

 o Reference RFC 6749 and RFC 6755.

 -02

 o Add more text to intro explaining that an assertion/JWT grant type
 can be used with or without client authentication/identification
 and that client assertion/JWT authentication is nothing more than
 an alternative way for a client to authenticate to the token
 endpoint

 o Add examples to Sections 2.1 and 2.2

 o Update references

 -01

 o Tracked specification name changes: "The OAuth 2.0 Authorization
 Protocol" to "The OAuth 2.0 Authorization Framework" and "OAuth
 2.0 Assertion Profile" to "Assertion Framework for OAuth 2.0".

 o Merged in changes between draft-ietf-oauth-saml2-bearer-11 and
 draft-ietf-oauth-saml2-bearer-13. All changes were strictly
 editorial.

 -00

 o Created the initial IETF draft based upon draft-jones-oauth-jwt-
 bearer-04 with no normative changes.

Authors’ Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

Jones, et al. Expires May 16, 2015 [Page 14]

Internet-Draft OAuth JWT Assertion Profiles November 2014

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com

 Chuck Mortimore
 Salesforce

 Email: cmortimore@salesforce.com

Jones, et al. Expires May 16, 2015 [Page 15]

OAuth P. Hunt, Ed.
Internet-Draft Oracle Corporation
Intended status: Informational J. Richer
Expires: January 9, 2017
 W. Mills

 P. Mishra
 Oracle Corporation
 H. Tschofenig
 ARM Limited
 July 8, 2016

 OAuth 2.0 Proof-of-Possession (PoP) Security Architecture
 draft-ietf-oauth-pop-architecture-08.txt

Abstract

 The OAuth 2.0 bearer token specification, as defined in RFC 6750,
 allows any party in possession of a bearer token (a "bearer") to get
 access to the associated resources (without demonstrating possession
 of a cryptographic key). To prevent misuse, bearer tokens must be
 protected from disclosure in transit and at rest.

 Some scenarios demand additional security protection whereby a client
 needs to demonstrate possession of cryptographic keying material when
 accessing a protected resource. This document motivates the
 development of the OAuth 2.0 proof-of-possession security mechanism.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2017.

Hunt, et al. Expires January 9, 2017 [Page 1]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 3. Use Cases . 3
 3.1. Preventing Access Token Re-Use by the Resource Server . . 4
 3.2. TLS and DTLS Channel Binding Support 4
 3.3. Access to a Non-TLS Protected Resource 4
 3.4. Offering Application Layer End-to-End Security 5
 4. Security and Privacy Threats 5
 5. Requirements . 6
 6. Threat Mitigation . 10
 6.1. Confidentiality Protection 11
 6.2. Sender Constraint . 11
 6.3. Key Confirmation . 12
 6.4. Summary . 13
 7. Architecture . 14
 7.1. Client and Authorization Server Interaction 15
 7.1.1. Symmetric Keys 15
 7.1.2. Asymmetric Keys 16
 7.2. Client and Resource Server Interaction 17
 7.3. Resource and Authorization Server Interaction (Token
 Introspection) . 18
 8. Security Considerations 19
 9. IANA Considerations . 19
 10. Acknowledgments . 19
 11. References . 20
 11.1. Normative References 20
 11.2. Informative References 21
 Authors’ Addresses . 22

Hunt, et al. Expires January 9, 2017 [Page 2]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

1. Introduction

 The OAuth 2.0 protocol family ([RFC6749], [RFC6750], and [RFC6819])
 offer a single token type known as the "bearer" token to access
 protected resources. RFC 6750 [RFC6750] specifies the bearer token
 mechanism and defines it as follows:

 "A security token with the property that any party in possession
 of the token (a "bearer") can use the token in any way that any
 other party in possession of it can. Using a bearer token does
 not require a bearer to prove possession of cryptographic key
 material."

 The bearer token meets the security needs of a number of use cases
 the OAuth 2.0 protocol had originally been designed for. There are,
 however, other scenarios that require stronger security properties
 and ask for active participation of the OAuth client in form of
 cryptographic computations when presenting an access token to a
 resource server.

 This document outlines additional use cases requiring stronger
 security protection in Section 3, identifies threats in Section 4,
 proposes different ways to mitigate those threats in Section 6,
 outlines an architecture for a solution that builds on top of the
 existing OAuth 2.0 framework in Section 7, and concludes with a
 requirements list in Section 5.

2. Terminology

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this
 specification are to be interpreted as described in [RFC2119], with
 the important qualification that, unless otherwise stated, these
 terms apply to the design of the protocol, not its implementation or
 application.

3. Use Cases

 The main use case that motivates improvement upon "bearer" token
 security is the desire of resource servers to obtain additional
 assurance that the client is indeed authorized to present an access
 token. The expectation is that the use of additional credentials
 (symmetric or asymmetric keying material) will encourage developers
 to take additional precautions when transferring and storing access
 token in combination with these credentials.

Hunt, et al. Expires January 9, 2017 [Page 3]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 Additional use cases listed below provide further requirements for
 the solution development. Note that a single solution does not
 necessarily need to offer support for all use cases.

3.1. Preventing Access Token Re-Use by the Resource Server

 In a scenario where a resource server receives a valid access token,
 the resource server then re-uses it with other resource server. The
 reason for re-use may be malicious or may well be legitimate. In a
 legitimate case, the intent is to support chaining of computations
 whereby a resource server needs to consult other third party resource
 servers to complete a requested operation. In both cases it may be
 assumed that the scope and audience of the access token is
 sufficiently defined that to allow such a re-use. For example,
 imagine a case where a company operates email services as well as
 picture sharing services and that company had decided to issue access
 tokens with a scope and audience that allows access to both services.

 With this use case the desire is to prevent such access token re-use.
 This also implies that the legitimate use cases require additional
 enhancements for request chaining.

3.2. TLS and DTLS Channel Binding Support

 In this use case we consider the scenario where an OAuth 2.0 request
 to a protected resource is secured using TLS or DTLS (see [RFC4347]),
 but the client and the resource server demand that the underlying
 TLS/DTLS exchange is bound to additional application layer security
 to prevent cases where the TLS/DTLS connection is terminated at a
 TLS/DTLS intermediary, which splits the TLS/DTLS connection into two
 separate connections.

 In this use case additional information should be conveyed to the
 resource server to ensure that no entity entity has tampered with the
 TLS/DTLS connection.

3.3. Access to a Non-TLS Protected Resource

 This use case is for a web client that needs to access a resource
 that makes data available (such as videos) without offering integrity
 and confidentiality protection using TLS. Still, the initial
 resource request using OAuth, which includes the access token, must
 be protected against various threats (e.g., token replay, token
 modification).

 While it is possible to utilize bearer tokens in this scenario with
 TLS protection when the request to the protected resource is made, as
 described in [RFC6750], there may be the desire to avoid using TLS

Hunt, et al. Expires January 9, 2017 [Page 4]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 between the client and the resource server at all. In such a case
 the bearer token approach is not possible since it relies on TLS for
 ensuring integrity and confidentiality protection of the access token
 exchange since otherwise replay attacks are possible: First, an
 eavesdropper may steal an access token and present it at a different
 resource server. Second, an eavesdropper may steal an access token
 and replay it against the same resource server at a later point in
 time. In both cases, if the attack is successful, the adversary gets
 access to the resource owners data or may perform an operation
 selected by the adversary (e.g., sending a message). Note that the
 adversary may obtain the access token (if the recommendations in
 [RFC6749] and [RFC6750] are not followed) using a number of ways,
 including eavesdropping the communication on the wireless link.

 Consequently, the important assumption in this use case is that a
 resource server does not have TLS support and the security solution
 should work in such a scenario. Furthermore, it may not be necessary
 to provide authentication of the resource server towards the client.

3.4. Offering Application Layer End-to-End Security

 In Web deployments resource servers are often placed behind load
 balancers, which are deployed by the same organization that operates
 the resource servers. These load balancers may terminate the TLS
 connection setup and HTTP traffic is transmitted without TLS
 protection from the load balancer to the resource server. With
 application layer security in addition to the underlying TLS security
 it is possible to allow application servers to perform cryptographic
 verification on an end-to-end basis.

 The key aspect in this use case is therefore to offer end-to-end
 security in the presence of load balancers via application layer
 security. Enterprise networks also deploy proxies that inspect
 traffic and thereby break TLS.

4. Security and Privacy Threats

 The following list presents several common threats against protocols
 utilizing some form of token. This list of threats is based on NIST
 Special Publication 800-63 [NIST800-63]. We exclude a discussion of
 threats related to any form of identity proofing and authentication
 of the resource owner to the authorization server since these
 procedures are not part of the OAuth 2.0 protocol specification
 itself.

 Token manufacture/modification:

Hunt, et al. Expires January 9, 2017 [Page 5]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 An attacker may generate a bogus token or modify the token content
 (such as authentication or attribute statements) of an existing
 token, causing resource server to grant inappropriate access to
 the client. For example, an attacker may modify the token to
 extend the validity period. A client, which MAY be a normal
 client or MAY be assumed to be constrained (see [RFC7252]), may
 modify the token to have access to information that they should
 not be able to view.

 Token disclosure:

 Tokens may contain personal data, such as real name, age or
 birthday, payment information, etc.

 Token redirect:

 An attacker uses the token generated for consumption by the
 resource server to obtain access to another resource server.

 Token reuse:

 An attacker attempts to use a token that has already been used
 once with a resource server. The attacker may be an eavesdropper
 who observes the communication exchange or, worse, one of the
 communication end points. A client may, for example, leak access
 tokens because it cannot keep secrets confidential. A client may
 also reuse access tokens for some other resource servers.
 Finally, a resource server may use a token it had obtained from a
 client and use it with another resource server that the client
 interacts with. A resource server, offering relatively
 unimportant application services, may attempt to use an access
 token obtained from a client to access a high-value service, such
 as a payment service, on behalf of the client using the same
 access token.

 Token repudiation:

 Token repudiation refers to a property whereby a resource server
 is given an assurance that the authorization server cannot deny to
 have created a token for the client.

5. Requirements

 RFC 4962 [RFC4962] gives useful guidelines for designers of
 authentication and key management protocols. While RFC 4962 was
 written with the AAA framework used for network access authentication
 in mind the offered suggestions are useful for the design of other
 key management systems as well. The following requirements list

Hunt, et al. Expires January 9, 2017 [Page 6]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 applies OAuth 2.0 terminology to the requirements outlined in RFC
 4962.

 These requirements include

 Cryptographic Algorithm Independent:

 The key management protocol MUST be cryptographic algorithm
 independent.

 Strong, fresh session keys:

 Session keys MUST be strong and fresh. Each session deserves an
 independent session key, i.e., one that is generated specifically
 for the intended use. In context of OAuth this means that keying
 material is created in such a way that can only be used by the
 combination of a client instance, protected resource, and
 authorization scope.

 Limit Key Scope:

 Following the principle of least privilege, parties MUST NOT have
 access to keying material that is not needed to perform their
 role. Any protocol that is used to establish session keys MUST
 specify the scope for session keys, clearly identifying the
 parties to whom the session key is available.

 Replay Detection Mechanism:

 The key management protocol exchanges MUST be replay protected.
 Replay protection allows a protocol message recipient to discard
 any message that was recorded during a previous legitimate
 dialogue and presented as though it belonged to the current
 dialogue.

 Authenticate All Parties:

 Each party in the key management protocol MUST be authenticated to
 the other parties with whom they communicate. Authentication
 mechanisms MUST maintain the confidentiality of any secret values
 used in the authentication process. Secrets MUST NOT be sent to
 another party without confidentiality protection.

 Authorization:

 Client and resource server authorization MUST be performed. These
 entities MUST demonstrate possession of the appropriate keying
 material, without disclosing it. Authorization is REQUIRED

Hunt, et al. Expires January 9, 2017 [Page 7]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 whenever a client interacts with an authorization server.
 Authorization checking prevents an elevation of privilege attack.

 Keying Material Confidentiality and Integrity:

 While preserving algorithm independence, confidentiality and
 integrity of all keying material MUST be maintained.

 Confirm Cryptographic Algorithm Selection:

 The selection of the "best" cryptographic algorithms SHOULD be
 securely confirmed. The mechanism SHOULD detect attempted roll-
 back attacks.

 Uniquely Named Keys:

 Key management proposals require a robust key naming scheme,
 particularly where key caching is supported. The key name
 provides a way to refer to a key in a protocol so that it is clear
 to all parties which key is being referenced. Objects that cannot
 be named cannot be managed. All keys MUST be uniquely named, and
 the key name MUST NOT directly or indirectly disclose the keying
 material.

 Prevent the Domino Effect:

 Compromise of a single client MUST NOT compromise keying material
 held by any other client within the system, including session keys
 and long-term keys. Likewise, compromise of a single resource
 server MUST NOT compromise keying material held by any other
 Resource Server within the system. In the context of a key
 hierarchy, this means that the compromise of one node in the key
 hierarchy must not disclose the information necessary to
 compromise other branches in the key hierarchy. Obviously, the
 compromise of the root of the key hierarchy will compromise all of
 the keys; however, a compromise in one branch MUST NOT result in
 the compromise of other branches. There are many implications of
 this requirement; however, two implications deserve highlighting.
 First, the scope of the keying material must be defined and
 understood by all parties that communicate with a party that holds
 that keying material. Second, a party that holds keying material
 in a key hierarchy must not share that keying material with
 parties that are associated with other branches in the key
 hierarchy.

 Bind Key to its Context:

Hunt, et al. Expires January 9, 2017 [Page 8]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 Keying material MUST be bound to the appropriate context. The
 context includes the following.

 * The manner in which the keying material is expected to be used.

 * The other parties that are expected to have access to the
 keying material.

 * The expected lifetime of the keying material. Lifetime of a
 child key SHOULD NOT be greater than the lifetime of its parent
 in the key hierarchy.

 Any party with legitimate access to keying material can determine
 its context. In addition, the protocol MUST ensure that all
 parties with legitimate access to keying material have the same
 context for the keying material. This requires that the parties
 are properly identified and authenticated, so that all of the
 parties that have access to the keying material can be determined.
 The context will include the client and the resource server
 identities in more than one form.

 Authorization Restriction:

 If client authorization is restricted, then the client SHOULD be
 made aware of the restriction.

 Client Identity Confidentiality:

 A client has identity confidentiality when any party other than
 the resource server and the authorization server cannot
 sufficiently identify the client within the anonymity set. In
 comparison to anonymity and pseudonymity, identity confidentiality
 is concerned with eavesdroppers and intermediaries. A key
 management protocol SHOULD provide this property.

 Resource Owner Identity Confidentiality:

 Resource servers SHOULD be prevented from knowing the real or
 pseudonymous identity of the resource owner, since the
 authorization server is the only entity involved in verifying the
 resource owner’s identity.

 Collusion:

 Resource servers that collude can be prevented from using
 information related to the resource owner to track the individual.
 That is, two different resource servers can be prevented from
 determining that the same resource owner has authenticated to both

Hunt, et al. Expires January 9, 2017 [Page 9]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 of them. Authorization servers MUST bind different keying
 material to access tokens used for resource servers from different
 origins (or similar concepts in the app world).

 AS-to-RS Relationship Anonymity:

 For solutions using asymmetric key cryptography the client MAY
 conceal information about the resource server it wants to interact
 with. The authorization server MAY reject such an attempt since
 it may not be able to enforce access control decisions.

 Channel Binding:

 A solution MUST enable support for channel bindings. The concept
 of channel binding, as defined in [RFC5056], allows applications
 to establish that the two end-points of a secure channel at one
 network layer are the same as at a higher layer by binding
 authentication at the higher layer to the channel at the lower
 layer.

 There are performance concerns with the use of asymmetric
 cryptography. Although symmetric key cryptography offers better
 performance asymmetric cryptography offers additional security
 properties. A solution MUST therefore offer the capability to
 support both symmetric as well as asymmetric keys.

 There are threats that relate to the experience of the software
 developer as well as operational practices. Verifying the servers
 identity in TLS is discussed at length in [RFC6125].

 A number of the threats listed in Section 4 demand protection of the
 access token content and a standardized solution, for example, in the
 form of a JSON-based format, is available with the JWT [RFC7519].

6. Threat Mitigation

 A large range of threats can be mitigated by protecting the content
 of the token, for example using a digital signature or a keyed
 message digest. Alternatively, the content of the token could be
 passed by reference rather than by value (requiring a separate
 message exchange to resolve the reference to the token content).

 To simplify discussion in the following example we assume that the
 token itself cannot be modified by the client, either due to
 cryptographic protection (such as signature or encryption) or use of
 a reference value with sufficient entropy and associated secure
 lookup. The token remains opaque to the client. These are
 characteristics shared with bearer tokens and more information on

Hunt, et al. Expires January 9, 2017 [Page 10]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 best practices can be found in [RFC6819] and in the security
 considerations section of [RFC6750].

 To deal with token redirect it is important for the authorization
 server to include the identifier of the intended recipient - the
 resource server. A resource server must not be allowed to accept
 access tokens that are not meant for its consumption.

 To provide protection against token disclosure two approaches are
 possible, namely (a) not to include sensitive information inside the
 token or (b) to ensure confidentiality protection. The latter
 approach requires at least the communication interaction between the
 client and the authorization server as well as the interaction
 between the client and the resource server to experience
 confidentiality protection. As an example, TLS with a ciphersuite
 that offers confidentiality protection has to be applied as per
 [RFC7525]. Encrypting the token content itself is another
 alternative. In our scenario the authorization server would, for
 example, encrypt the token content with a symmetric key shared with
 the resource server.

 To deal with token reuse more choices are available.

6.1. Confidentiality Protection

 In this approach confidentiality protection of the exchange is
 provided on the communication interfaces between the client and the
 resource server, and between the client and the authorization server.
 No eavesdropper on the wire is able to observe the token exchange.
 Consequently, a replay by a third party is not possible. An
 authorization server wants to ensure that it only hands out tokens to
 clients it has authenticated first and who are authorized. For this
 purpose, authentication of the client to the authorization server
 will be a requirement to ensure adequate protection against a range
 of attacks. This is, however, true for the description in
 Section 6.2 and Section 6.3 as well. Furthermore, the client has to
 make sure it does not distribute (or leak) the access token to
 entities other than the intended the resource server. For that
 purpose the client will have to authenticate the resource server
 before transmitting the access token.

6.2. Sender Constraint

 Instead of providing confidentiality protection, the authorization
 server could also put the identifier of the client into the protected
 token with the following semantic: ’This token is only valid when
 presented by a client with the following identifier.’ When the
 access token is then presented to the resource server how does it

Hunt, et al. Expires January 9, 2017 [Page 11]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 know that it was provided by the client? It has to authenticate the
 client! There are many choices for authenticating the client to the
 resource server, for example by using client certificates in TLS
 [RFC5246], or pre-shared secrets within TLS [RFC4279]. The choice of
 the preferred authentication mechanism and credential type may depend
 on a number of factors, including

 o security properties

 o available infrastructure

 o library support

 o credential cost (financial)

 o performance

 o integration into the existing IT infrastructure

 o operational overhead for configuration and distribution of
 credentials

 This long list hints to the challenge of selecting at least one
 mandatory-to-implement client authentication mechanism.

6.3. Key Confirmation

 A variation of the mechanism of sender authentication, described in
 Section 6.2, is to replace authentication with the proof-of-
 possession of a specific (session) key, i.e., key confirmation. In
 this model the resource server would not authenticate the client
 itself but would rather verify whether the client knows the session
 key associated with a specific access token. Examples of this
 approach can be found with the OAuth 1.0 MAC token [RFC5849], and
 Kerberos [RFC4120] when utilizing the AP_REQ/AP_REP exchange (see
 also [I-D.hardjono-oauth-kerberos] for a comparison between Kerberos
 and OAuth).

 To illustrate key confirmation, the first example is borrowed from
 Kerberos and use symmetric key cryptography. Assume that the
 authorization server shares a long-term secret with the resource
 server, called K(Authorization Server-Resource Server). This secret
 would be established between them out-of-band. When the client
 requests an access token the authorization server creates a fresh and
 unique session key Ks and places it into the token encrypted with the
 long term key K(Authorization Server-Resource Server). Additionally,
 the authorization server attaches Ks to the response message to the
 client (in addition to the access token itself) over a

Hunt, et al. Expires January 9, 2017 [Page 12]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 confidentiality protected channel. When the client sends a request
 to the resource server it has to use Ks to compute a keyed message
 digest for the request (in whatever form or whatever layer). The
 resource server, when receiving the message, retrieves the access
 token, verifies it and extracts K(Authorization Server-Resource
 Server) to obtain Ks. This key Ks is then used to verify the keyed
 message digest of the request message.

 Note that in this example one could imagine that the mechanism to
 protect the token itself is based on a symmetric key based mechanism
 to avoid any form of public key infrastructure but this aspect is not
 further elaborated in the scenario.

 A similar mechanism can also be designed using asymmetric
 cryptography. When the client requests an access token the
 authorization server creates an ephemeral public / privacy key pair
 (PK/SK) and places the public key PK into the protected token. When
 the authorization server returns the access token to the client it
 also provides the PK/SK key pair over a confidentiality protected
 channel. When the client sends a request to the resource server it
 has to use the privacy key SK to sign the request. The resource
 server, when receiving the message, retrieves the access token,
 verifies it and extracts the public key PK. It uses this ephemeral
 public key to verify the attached signature.

6.4. Summary

 As a high level message, there are various ways the threats can be
 mitigated. While the details of each solution are somewhat
 different, they all accomplish the goal of mitigating the threats.

 The three approaches are:

 Confidentiality Protection:

 The weak point with this approach, which is briefly described in
 Section 6.1, is that the client has to be careful to whom it
 discloses the access token. What can be done with the token
 entirely depends on what rights the token entitles the presenter
 and what constraints it contains. A token could encode the
 identifier of the client but there are scenarios where the client
 is not authenticated to the resource server or where the
 identifier of the client rather represents an application class
 rather than a single application instance. As such, it is
 possible that certain deployments choose a rather liberal approach
 to security and that everyone who is in possession of the access
 token is granted access to the data.

Hunt, et al. Expires January 9, 2017 [Page 13]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 Sender Constraint:

 The weak point with this approach, which is briefly described in
 Section 6.2, is to setup the authentication infrastructure such
 that clients can be authenticated towards resource servers.
 Additionally, the authorization server must encode the identifier
 of the client in the token for later verification by the resource
 server. Depending on the chosen layer for providing client-side
 authentication there may be additional challenges due to Web
 server load balancing, lack of API access to identity information,
 etc.

 Key Confirmation:

 The weak point with this approach, see Section 6.3, is the
 increased complexity: a complete key distribution protocol has to
 be defined.

 In all cases above it has to be ensured that the client is able to
 keep the credentials secret.

7. Architecture

 The proof-of-possession security concept assumes that the
 authorization server acts as a trusted third party that binds keys to
 access tokens. These keys are then used by the client to demonstrate
 the possession of the secret to the resource server when accessing
 the resource. The resource server, when receiving an access token,
 needs to verify that the key used by the client matches the one
 included in the access token.

 There are slight differences between the use of symmetric keys and
 asymmetric keys when they are bound to the access token and the
 subsequent interaction between the client and the authorization
 server when demonstrating possession of these keys. Figure 1 shows
 the symmetric key procedure and Figure 2 illustrates how asymmetric
 keys are used. While symmetric cryptography provides better
 performance properties the use of asymmetric cryptography allows the
 client to keep the private key locally and never expose it to any
 other party.

 For example, with the JSON Web Token (JWT) [RFC7519] a standardized
 format for access tokens is available. The necessary elements to
 bind symmetric or asymmetric keys to a JWT are described in
 [I-D.ietf-oauth-proof-of-possession].

 Note: The negotiation of cryptographic algorithms between the client
 and the authorization server is not shown in the examples below and

Hunt, et al. Expires January 9, 2017 [Page 14]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 assumed to be present in a protocol solution to meet the requirements
 for crypto-agility.

7.1. Client and Authorization Server Interaction

7.1.1. Symmetric Keys

 +---------------+
 ^| |
 // | Authorization |
 / | Server |
 // | |
 / | |
 (I) // /+---------------+
 Access / //
 Token / /
 Request // // (II) Access Token
 +Params / / +Symmetric Key
 // //
 / v
 +-----------+ +------------+
 | | | |
 | | | Resource |
 | Client | | Server |
 | | | |
 | | | |
 +-----------+ +------------+

 Figure 1: Interaction between the Client and the Authorization Server
 (Symmetric Keys).

 In order to request an access token the client interacts with the
 authorization server as part of the a normal grant exchange, as shown
 in Figure 1. However, it needs to include additional information
 elements for use with the PoP security mechanism, as depicted in
 message (I). In message (II) the authorization server then returns
 the requested access token. In addition to the access token itself,
 the symmetric key is communicated to the client. This symmetric key
 is a unique and fresh session key with sufficient entropy for the
 given lifetime. Furthermore, information within the access token
 ties it to this specific symmetric key.

 Note: For this security mechanism to work the client as well as the
 resource server need to have access to the session key. While the
 key transport mechanism from the authorization server to the client
 has been explained in the previous paragraph there are three ways for
 communicating this session key from the authorization server to the
 resource server, namely

Hunt, et al. Expires January 9, 2017 [Page 15]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 Embedding the symmetric key inside the access token itself. This
 requires that the symmetric key is confidentiality protected.

 The resource server queries the authorization server for the
 symmetric key. This is an approach envisioned by the token
 introspection endpoint [RFC7662].

 The authorization server and the resource server both have access
 to the same back-end database. Smaller, tightly coupled systems
 might prefer such a deployment strategy.

7.1.2. Asymmetric Keys

 +---------------+
 ^| |
 Access Token Req. // | Authorization |
 +Parameters / | Server |
 +[Fingerprint] // | |
 / | |
 (I) // /+---------------+
 / //
 / / (II)
 // // Access Token
 / / +[ephemeral
 // // asymmetric key pair]
 / v
 +-----------+ +------------+
 | | | |
 | | | Resource |
 | Client | | Server |
 | | | |
 | | | |
 +-----------+ +------------+

 Figure 2: Interaction between the Client and the Authorization Server
 (Asymmetric Keys).

 The use of asymmetric keys is slightly different since the client or
 the server could be involved in the generation of the ephemeral key
 pair. This exchange is shown in Figure 1. If the client generates
 the key pair it either includes a fingerprint of the public key or
 the public key in the request to the authorization server. The
 authorization server would include this fingerprint or public key in
 the confirmation claim inside the access token and thereby bind the
 asymmetric key pair to the token. If the client did not provide a
 fingerprint or a public key in the request then the authorization
 server is asked to create an ephemeral asymmetric key pair, binds the
 fingerprint of the public key to the access token, and returns the

Hunt, et al. Expires January 9, 2017 [Page 16]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 asymmetric key pair (public and private key) to the client. Note
 that there is a strong preference for generating the private/public
 key pair locally at the client rather than at the server.

7.2. Client and Resource Server Interaction

 The specification describing the interaction between the client and
 the authorization server, as shown in Figure 1 and in Figure 2, can
 be found in [I-D.ietf-oauth-pop-key-distribution].

 Once the client has obtained the necessary access token and keying
 material it can start to interact with the resource server. To
 demonstrate possession of the key bound to the access token it needs
 to apply this key to the request by computing a keyed message digest
 (i.e., a symmetric key-based cryptographic primitive) or a digital
 signature (i.e., an asymmetric cryptographic computation). When the
 resource server receives the request it verifies it and decides
 whether access to the protected resource can be granted. This
 exchange is shown in Figure 3.

Hunt, et al. Expires January 9, 2017 [Page 17]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 +---------------+
 | |
 | Authorization |
 | Server |
 | |
 | |
 +---------------+

 Request
 +-----------+ + Signature/MAC (a) +------------+
	---------------------->	
	[+Access Token]	Resource
Client		Server
	Response (b)	
	<----------------------	
 +-----------+ [+ Signature/MAC] +------------+

 ^ ^
 | |
 | |
 Symmetric Key Symmetric Key
 or or
 Asymmetric Key Pair Public Key (Client)
 + +
 Parameters Parameters

 Figure 3: Client Demonstrates PoP.

 The specification describing the ability to sign the HTTP request
 from the client to the resource server can be found in
 [I-D.ietf-oauth-signed-http-request].

7.3. Resource and Authorization Server Interaction (Token
 Introspection)

 So far the examples talked about access tokens that are passed by
 value and allow the resource server to make authorization decisions
 immediately after verifying the request from the client. In some
 deployments a real-time interaction between the authorization server
 and the resource server is envisioned that lowers the need to pass
 self-contained access tokens around. In that case the access token
 merely serves as a handle or a reference to state stored at the
 authorization server. As a consequence, the resource server cannot
 autonomously make an authorization decision when receiving a request

Hunt, et al. Expires January 9, 2017 [Page 18]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 from a client but has to consult the authorization server. This can,
 for example, be done using the token introspection endpoint (see
 [RFC7662]). Figure 4 shows the protocol interaction graphically.
 Despite the additional token exchange previous descriptions about
 associating symmetric and asymmetric keys to the access token are
 still applicable to this scenario.

 +---------------+
 Access ^| |
 Token Req. // | Authorization |^
 (I) / | Server | \ (IV) Token
 // | | \ Introspection Req.
 / | | \ +Access
 // /+---------------+ \ Token
 / // (II) \ \\
 / / Access \ \
 // // Token \ (V) \
 / / \Resp.\
 // // \ \
 / v V \
 +-----------+ Request +Signature/MAC+------------+
	(III) +Access Token	
	---------------------->	Resource
Client	(VI) Success or	Server
	Failure	
	<----------------------	
 +-----------+ +------------+

 Figure 4: Token Introspection and Access Token Handles.

8. Security Considerations

 The purpose of this document is to provide use cases, requirements,
 and motivation for developing an OAuth security solution extending
 Bearer Tokens. As such, this document is only about security.

9. IANA Considerations

 This document does not require actions by IANA.

10. Acknowledgments

 This document is the result of conference calls late 2012/early 2013
 and in design team conference calls February 2013 of the IETF OAuth
 working group. The following persons (in addition to the OAuth WG
 chairs, Hannes Tschofenig, and Derek Atkins) provided their input
 during these calls: Bill Mills, Justin Richer, Phil Hunt, Prateek
 Mishra, Mike Jones, George Fletcher, Leif Johansson, Lucy Lynch, John

Hunt, et al. Expires January 9, 2017 [Page 19]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 Bradley, Tony Nadalin, Klaas Wierenga, Thomas Hardjono, Brian
 Campbell

 In the appendix of this document we reuse content from [RFC4962] and
 the authors would like thank Russ Housely and Bernard Aboba for their
 work on RFC 4962.

 We would like to thank Reddy Tirumaleswar for his review.

11. References

11.1. Normative References

 [I-D.ietf-oauth-pop-key-distribution]
 Bradley, J., Hunt, P., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Proof-of-Possession: Authorization Server to
 Client Key Distribution", draft-ietf-oauth-pop-key-
 distribution-02 (work in progress), October 2015.

 [I-D.ietf-oauth-proof-of-possession]
 Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 draft-ietf-oauth-proof-of-possession-11 (work in
 progress), December 2015.

 [I-D.ietf-oauth-signed-http-request]
 Richer, J., Bradley, J., and H. Tschofenig, "A Method for
 Signing HTTP Requests for OAuth", draft-ietf-oauth-signed-
 http-request-02 (work in progress), February 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/
 RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

Hunt, et al. Expires January 9, 2017 [Page 20]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection", RFC
 7662, DOI 10.17487/RFC7662, October 2015,
 <http://www.rfc-editor.org/info/rfc7662>.

11.2. Informative References

 [I-D.hardjono-oauth-kerberos]
 Hardjono, T., "OAuth 2.0 support for the Kerberos V5
 Authentication Protocol", draft-hardjono-oauth-kerberos-01
 (work in progress), December 2010.

 [NIST800-63]
 Burr, W., Dodson, D., Perlner, R., Polk, T., Gupta, S.,
 and E. Nabbus, "NIST Special Publication 800-63-1,
 INFORMATION SECURITY", December 2008.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 DOI 10.17487/RFC4120, July 2005,
 <http://www.rfc-editor.org/info/rfc4120>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)", RFC
 4279, DOI 10.17487/RFC4279, December 2005,
 <http://www.rfc-editor.org/info/rfc4279>.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,
 <http://www.rfc-editor.org/info/rfc4347>.

 [RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management", BCP
 132, RFC 4962, DOI 10.17487/RFC4962, July 2007,
 <http://www.rfc-editor.org/info/rfc4962>.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <http://www.rfc-editor.org/info/rfc5056>.

 [RFC5849] Hammer-Lahav, E., Ed., "The OAuth 1.0 Protocol", RFC 5849,
 DOI 10.17487/RFC5849, April 2010,
 <http://www.rfc-editor.org/info/rfc5849>.

Hunt, et al. Expires January 9, 2017 [Page 21]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <http://www.rfc-editor.org/info/rfc6125>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/
 RFC6750, October 2012,
 <http://www.rfc-editor.org/info/rfc6750>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819, DOI
 10.17487/RFC6819, January 2013,
 <http://www.rfc-editor.org/info/rfc6819>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/
 RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

Authors’ Addresses

 Phil Hunt (editor)
 Oracle Corporation

 Email: phil.hunt@yahoo.com

 Justin Richer

 Email: ietf@justin.richer.org

 William Mills

 Email: wmills@yahoo-inc.com

 Prateek Mishra
 Oracle Corporation

 Email: prateek.mishra@oracle.com

Hunt, et al. Expires January 9, 2017 [Page 22]

Internet-Draft OAuth 2.0 PoP Architecture July 2016

 Hannes Tschofenig
 ARM Limited
 Hall in Tirol 6060
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Hunt, et al. Expires January 9, 2017 [Page 23]

Network Working Group J. Bradley
Internet-Draft Ping Identity
Intended status: Standards Track P. Hunt
Expires: September 28, 2019 Oracle Corporation
 M. Jones
 Microsoft
 H. Tschofenig
 Arm Ltd.
 M. Meszaros
 GITDA
 March 27, 2019

 OAuth 2.0 Proof-of-Possession: Authorization Server to Client Key
 Distribution
 draft-ietf-oauth-pop-key-distribution-07

Abstract

 RFC 6750 specified the bearer token concept for securing access to
 protected resources. Bearer tokens need to be protected in transit
 as well as at rest. When a client requests access to a protected
 resource it hands-over the bearer token to the resource server.

 The OAuth 2.0 Proof-of-Possession security concept extends bearer
 token security and requires the client to demonstrate possession of a
 key when accessing a protected resource.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 28, 2019.

Bradley, et al. Expires September 28, 2019 [Page 1]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 4
 3. Processing Instructions 4
 4. Examples . 5
 4.1. Symmetric Key Transport 5
 4.1.1. Client-to-AS Request 5
 4.1.2. Client-to-AS Response 6
 4.2. Asymmetric Key Transport 9
 4.2.1. Client-to-AS Request 9
 4.2.2. Client-to-AS Response 10
 5. Security Considerations 11
 6. IANA Considerations . 13
 6.1. OAuth Access Token Types 13
 6.2. OAuth Parameters Registration 13
 6.3. OAuth Extensions Error Registration 13
 7. Acknowledgements . 13
 8. References . 14
 8.1. Normative References 14
 8.2. Informative References 15
 Authors’ Addresses . 16

1. Introduction

 The work on proof-of-possession tokens, an extended token security
 mechanisms for OAuth 2.0, is motivated in [22]. This document
 defines the ability for the client request and to obtain PoP tokens
 from the authorization server. After successfully completing the
 exchange the client is in possession of a PoP token and the keying
 material bound to it. Clients that access protected resources then
 need to demonstrate knowledge of the secret key that is bound to the
 PoP token.

Bradley, et al. Expires September 28, 2019 [Page 2]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 To best describe the scope of this specification, the OAuth 2.0
 protocol exchange sequence is shown in Figure 1. The extension
 defined in this document piggybacks on the message exchange marked
 with (C) and (D). To demonstrate possession of the private/secret
 key to the resource server protocol mechanisms outside the scope of
 this document are used.

 +--------+ +---------------+
	--(A)- Authorization Request ->	Resource
		Owner
	<-(B)-- Authorization Grant ---	
	+---------------+	
	+---------------+	
	--(C)-- Authorization Grant -->	
Client	(resource, req_cnf)	Authorization
		Server
	<-(D)-- PoP Access Token ------	
	(rs_cnf, token_type) +---------------+	
	+---------------+	
	--(E)-- PoP Access Token ----->	
	(with proof of private key)	Resource
		Server
	<-(F)--- Protected Resource ---	
 +--------+ +---------------+

 Figure 1: Augmented OAuth 2.0 Protocol Flow

 In OAuth 2.0 [2] access tokens can be obtained via authorization
 grants and using refresh tokens. The core OAuth specification
 defines four authorization grants, see Section 1.3 of [2], and [19]
 adds an assertion-based authorization grant to that list. The token
 endpoint, which is described in Section 3.2 of [2], is used with
 every authorization grant except for the implicit grant type. In the
 implicit grant type the access token is issued directly.

 This specification extends the functionality of the token endpoint,
 i.e., the protocol exchange between the client and the authorization
 server, to allow keying material to be bound to an access token. Two
 types of keying material can be bound to an access token, namely
 symmetric keys and asymmetric keys. Conveying symmetric keys from
 the authorization server to the client is described in Section 4.1
 and the procedure for dealing with asymmetric keys is described in
 Section 4.2.

 This document describes how the client requests and obtains a PoP
 access token from the authorization server for use with HTTPS-based

Bradley, et al. Expires September 28, 2019 [Page 3]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 transport. The use of alternative transports, such as Constrained
 Application Protocol (CoAP), is described in [24].

2. Terminology

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this
 specification are to be interpreted as described in [1].

 Session Key:

 In the context of this specification ’session key’ refers to fresh
 and unique keying material established between the client and the
 resource server. This session key has a lifetime that corresponds
 to the lifetime of the access token, is generated by the
 authorization server and bound to the access token.

 This document uses the following abbreviations:

 JWA: JSON Web Algorithms[7]

 JWT: JSON Web Token[9]

 JWS: JSON Web Signature[6]

 JWK: JSON Web Key[5]

 JWE: JSON Web Encryption[8]

 CWT: CBOR Web Token[13]

 COSE: CBOR Object Signing and Encryption[14]

3. Processing Instructions

 Step (0): As an initial step the client typically determines the
 resource server it wants to interact with. This may, for example,
 happen as part of a discovery procedure or via manual
 configuration.

 Step (1): The client starts the OAuth 2.0 protocol interaction
 based on the selected grant type.

 Step (2): When the client interacts with the token endpoint to
 obtain an access token it MUST use the resource identicator
 parameter, defined in [16], or the audience parameter, defined in
 [15], when symmetric PoP tokens are used. For asymmetric PoP
 tokens the use of resource indicators and audience is optional but

Bradley, et al. Expires September 28, 2019 [Page 4]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 RECOMMENDED. The parameters ’audience’ and ’resource’ both allow
 the client to express the location of the target service and the
 difference between the two is described in [15]. As a summary,
 ’audience’ allows expressing a logical name while ’resource’
 contains an absolute URI. More details about the ’resource’
 parameter can be found in [16].

 Step (3): The authorization server parses the request from the
 server and determines the suitable response based on OAuth 2.0 and
 the PoP token credential procedures.

 Note that PoP access tokens may be encoded in a variety of ways:

 JWT The access token may be encoded using the JSON Web Token (JWT)
 format [9]. The proof-of-possession token functionality is
 described in [10]. A JWT encoded PoP token MUST be protected
 against modification by either using a digital signature or a
 keyed message digest, as described in [6]. The JWT may also be
 encrypted using [8].

 CWT [13] defines an alternative token format based on CBOR. The
 proof-of-possession token functionality is defined in [12]. A CWT
 encoded PoP token MUST be protected against modification by either
 using a digital signature or a keyed message digest, as described
 in [12].

 If the access token is only a reference then a look-up by the
 resource server is needed, as described in the token introspection
 specification [23].

 Note that the OAuth 2.0 framework nor this specification does not
 mandate a specific PoP token format but using a standardized format
 will improve interoperability and will lead to better code re-use.

 Application layer interactions between the client and the resource
 server are beyond the scope of this document.

4. Examples

 This section provides a number of examples.

4.1. Symmetric Key Transport

4.1.1. Client-to-AS Request

 The client starts with a request to the authorization server
 indicating that it is interested to obtain a token for
 https://resource.example.com

Bradley, et al. Expires September 28, 2019 [Page 5]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 POST /token HTTP/1.1
 Host: authz.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &scope=calendar%20contacts
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &resource=https%3A%2F%2Fresource.example.com

 Example Request to the Authorization Server

4.1.2. Client-to-AS Response

 If the access token request has been successfully verified by the
 authorization server and the client is authorized to obtain a PoP
 token for the indicated resource server, the authorization server
 issues an access token and optionally a refresh token.

 Figure 2 shows a response containing a token and a "cnf" parameter
 with a symmetric proof-of-possession key both encoded in a JSON-based
 serialization format. The "cnf" parameter contains the RFC 7517 [5]
 encoded key element.

Bradley, et al. Expires September 28, 2019 [Page 6]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":"SlAV32hkKG ...
 (remainder of JWT omitted for brevity;
 JWT contains JWK in the cnf claim)",
 "token_type":"pop",
 "expires_in":3600,
 "refresh_token":"8xLOxBtZp8",
 "cnf":{
 {"keys":
 [
 {"kty":"oct",
 "alg":"A128KW",
 "k":"GawgguFyGrWKav7AX4VKUg"
 }
]
 }
 }
 }

 Figure 2: Example: Response from the Authorization Server (Symmetric
 Variant)

 Note that the cnf payload in Figure 2 is not encrypted at the
 application layer since Transport Layer Security is used between the
 AS and the client and the content of the cnf payload is consumed by
 the client itself. Alternatively, a JWE could be used to encrypt the
 key distribution, as shown in Figure 3.

Bradley, et al. Expires September 28, 2019 [Page 7]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 {
 "access_token":"SlAV32hkKG ...
 (remainder of JWT omitted for brevity;
 JWT contains JWK in the cnf claim)",
 "token_type":"pop",
 "expires_in":3600,
 "refresh_token":"8xLOxBtZp8",
 "cnf":{
 "jwe":
 "eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhDQkMtSFMyNTYifQ.
 (remainder of JWE omitted for brevity)"
 }
 }
 }

 Figure 3: Example: Encrypted Symmmetric Key

 The content of the ’access_token’ in JWT format contains the ’cnf’
 (confirmation) claim. The confirmation claim is defined in [10].
 The digital signature or the keyed message digest offering integrity
 protection is not shown in this example but has to be present in a
 real deployment to mitigate a number of security threats.

 The JWK in the key element of the response from the authorization
 server, as shown in Figure 2, contains the same session key as the
 JWK inside the access token, as shown in Figure 4. It is, in this
 example, protected by TLS and transmitted from the authorization
 server to the client (for processing by the client).

 {
 "iss": "https://server.example.com",
 "sub": "24400320",
 "aud": "s6BhdRkqt3",
 "exp": 1311281970,
 "iat": 1311280970,
 "cnf":{
 "jwe":
 "eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhDQkMtSFMyNTYifQ.
 (remainder of JWE omitted for brevity)"
 }
 }

 Figure 4: Example: Access Token in JWT Format

Bradley, et al. Expires September 28, 2019 [Page 8]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 Note: When the JWK inside the access token contains a symmetric key
 it must be confidentiality protected using a JWE to maintain the
 security goals of the PoP architecture since content is meant for
 consumption by the selected resource server only. The details are
 described in [22].

4.2. Asymmetric Key Transport

4.2.1. Client-to-AS Request

 This example illustrates the case where an asymmetric key shall be
 bound to an access token. The client makes the following HTTPS
 request shown in Figure 5. Extra line breaks are for display
 purposes only.

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &token_type=pop
 &req_cnf=eyJhbGciOiJSU0ExXzUi ...
 (remainder of JWK omitted for brevity)

 Figure 5: Example Request to the Authorization Server (Asymmetric Key
 Variant)

 As shown in Figure 6 the content of the ’req_cnf’ parameter contains
 the ECC public key the client would like to associate with the access
 token (in JSON format).

 "jwk":{
 "kty": "EC",
 "use": "sig",
 "crv": "P-256",
 "x": "18wHLeIgW9wVN6VD1Txgpqy2LszYkMf6J8njVAibvhM",
 "y": "-V4dS4UaLMgP_4fY4j8ir7cl1TXlFdAgcx55o7TkcSA"
 }

 Figure 6: Client Providing Public Key to Authorization Server

Bradley, et al. Expires September 28, 2019 [Page 9]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

4.2.2. Client-to-AS Response

 If the access token request is valid and authorized, the
 authorization server issues an access token and optionally a refresh
 token. The authorization server also places information about the
 public key used by the client into the access token to create the
 binding between the two. The new token type "pop" is placed into the
 ’token_type’ parameter.

 An example of a successful response is shown in Figure 7.

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFE....jr1zCsicMWpAA",
 "token_type":"pop",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"
 }

 Figure 7: Example: Response from the Authorization Server (Asymmetric
 Variant)

 The content of the ’access_token’ field contains an encoded JWT, as
 shown in Figure 8. The digital signature covering the access token
 offering authenticity and integrity protection is not shown below
 (but must be present).

Bradley, et al. Expires September 28, 2019 [Page 10]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 {
 "iss":"https://authz.example.com",
 "aud":"https://resource.example.com",
 "exp":"1361398824",
 "nbf":"1360189224",
 "cnf":{
 "jwk" : {
 "kty" : "EC",
 "crv" : "P-256",
 "x" : "usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8",
 "y" : "IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4"
 }
 }
 }

 Figure 8: Example: Access Token Structure (Asymmetric Variant)

 Note: In this example there is no need for the authorization server
 to convey further keying material to the client since the client is
 already in possession of the private key (as well as the public key).

5. Security Considerations

 [22] describes the architecture for the OAuth 2.0 proof-of-possession
 security architecture, including use cases, threats, and
 requirements. This requirements describes one solution component of
 that architecture, namely the mechanism for the client to interact
 with the authorization server to either obtain a symmetric key from
 the authorization server, to obtain an asymmetric key pair, or to
 offer a public key to the authorization. In any case, these keys are
 then bound to the access token by the authorization server.

 To summarize the main security recommendations: A large range of
 threats can be mitigated by protecting the contents of the access
 token by using a digital signature or a keyed message digest.
 Consequently, the token integrity protection MUST be applied to
 prevent the token from being modified, particularly since it contains
 a reference to the symmetric key or the asymmetric key. If the
 access token contains the symmetric key (see Section 2.2 of [10] for
 a description about how symmetric keys can be securely conveyed
 within the access token) this symmetric key MUST be encrypted by the
 authorization server with a long-term key shared with the resource
 server.

 To deal with token redirect, it is important for the authorization
 server to include the identity of the intended recipient (the
 audience), typically a single resource server (or a list of resource
 servers), in the token. Using a single shared secret with multiple

Bradley, et al. Expires September 28, 2019 [Page 11]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 authorization server to simplify key management is NOT RECOMMENDED
 since the benefit from using the proof-of-possession concept is
 significantly reduced.

 Token replay is also not possible since an eavesdropper will also
 have to obtain the corresponding private key or shared secret that is
 bound to the access token. Nevertheless, it is good practice to
 limit the lifetime of the access token and therefore the lifetime of
 associated key.

 The authorization server MUST offer confidentiality protection for
 any interactions with the client. This step is extremely important
 since the client will obtain the session key from the authorization
 server for use with a specific access token. Not using
 confidentiality protection exposes this secret (and the access token)
 to an eavesdropper thereby making the OAuth 2.0 proof-of-possession
 security model completely insecure. OAuth 2.0 [2] relies on TLS to
 offer confidentiality protection and additional protection can be
 applied using the JWK [5] offered security mechanism, which would add
 an additional layer of protection on top of TLS for cases where the
 keying material is conveyed, for example, to a hardware security
 module. Which version(s) of TLS ought to be implemented will vary
 over time, and depend on the widespread deployment and known security
 vulnerabilities at the time of implementation. At the time of this
 writing, TLS version 1.2 [4] is the most recent version. The client
 MUST validate the TLS certificate chain when making requests to
 protected resources, including checking the validity of the
 certificate.

 Similarly to the security recommendations for the bearer token
 specification [17] developers MUST ensure that the ephemeral
 credentials (i.e., the private key or the session key) is not leaked
 to third parties. An adversary in possession of the ephemeral
 credentials bound to the access token will be able to impersonate the
 client. Be aware that this is a real risk with many smart phone app
 and Web development environments.

 Clients can at any time request a new proof-of-possession capable
 access token. Using a refresh token to regularly request new access
 tokens that are bound to fresh and unique keys is important. Keeping
 the lifetime of the access token short allows the authorization
 server to use shorter key sizes, which translate to a performance
 benefit for the client and for the resource server. Shorter keys
 also lead to shorter messages (particularly with asymmetric keying
 material).

 When authorization servers bind symmetric keys to access tokens then
 they SHOULD scope these access tokens to a specific permissions.

Bradley, et al. Expires September 28, 2019 [Page 12]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

6. IANA Considerations

6.1. OAuth Access Token Types

 This specification registers the following error in the IANA "OAuth
 Access Token Types" [25] established by [17].

 o Name: pop
 o Change controller: IESG
 o Specification document(s): [[this specification]]

6.2. OAuth Parameters Registration

 This specification registers the following value in the IANA "OAuth
 Parameters" registry [25] established by [2].

 o Parameter name: cnf_req
 o Parameter usage location: authorization request, token request
 o Change controller: IESG
 o Specification document(s): [[this specification]]

 o Parameter name: cnf
 o Parameter usage location: authorization response, token response
 o Change controller: IESG
 o Specification document(s): [[this specification]]

 o Parameter name: rs_cnf
 o Parameter usage location: token response
 o Change controller: IESG
 o Specification document(s): [[this specification]]

6.3. OAuth Extensions Error Registration

 This specification registers the following error in the IANA "OAuth
 Extensions Error Registry" [25] established by [2].

 o Error name: invalid_token_type
 o Error usage location: implicit grant error response, token error
 response
 o Related protocol extension: token_type parameter
 o Change controller: IESG
 o Specification document(s): [[this specification]]

7. Acknowledgements

 We would like to thank Chuck Mortimore and James Manger for their
 review comments.

Bradley, et al. Expires September 28, 2019 [Page 13]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

8. References

8.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [2] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [3] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [4] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [5] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [6] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [7] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [8] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <https://www.rfc-editor.org/info/rfc7516>.

 [9] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [10] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

Bradley, et al. Expires September 28, 2019 [Page 14]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 [11] Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
 2015, <https://www.rfc-editor.org/info/rfc7638>.

 [12] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", draft-ietf-ace-cwt-proof-of-
 possession-06 (work in progress), February 2019.

 [13] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [14] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [15] Jones, M., Nadalin, A., Campbell, B., Bradley, J., and C.
 Mortimore, "OAuth 2.0 Token Exchange", draft-ietf-oauth-
 token-exchange-16 (work in progress), October 2018.

 [16] Campbell, B., Bradley, J., and H. Tschofenig, "Resource
 Indicators for OAuth 2.0", draft-ietf-oauth-resource-
 indicators-02 (work in progress), January 2019.

8.2. Informative References

 [17] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [18] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [19] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
 May 2015, <https://www.rfc-editor.org/info/rfc7521>.

 [20] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

Bradley, et al. Expires September 28, 2019 [Page 15]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 [21] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [22] Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-ietf-oauth-pop-architecture-08 (work
 in progress), July 2016.

 [23] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

 [24] Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-24
 (work in progress), March 2019.

 [25] IANA, "OAuth Parameters", October 2018.

 [26] IANA, "JSON Web Token Claims", June 2018.

Authors’ Addresses

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Phil Hunt
 Oracle Corporation

 Email: phil.hunt@yahoo.com
 URI: http://www.indepdentid.com

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

Bradley, et al. Expires September 28, 2019 [Page 16]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 Hannes Tschofenig
 Arm Ltd.
 Absam 6067
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Mihaly Meszaros
 GITDA
 Debrecen 4033
 Hungary

 Email: bakfitty@gmail.com
 URI: https://github.com/misi

Bradley, et al. Expires September 28, 2019 [Page 17]

OAuth Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track J. Bradley
Expires: June 20, 2016 Ping Identity
 H. Tschofenig
 ARM Limited
 December 18, 2015

 Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)
 draft-ietf-oauth-proof-of-possession-11

Abstract

 This specification defines how to declare in a JSON Web Token (JWT)
 that the presenter of the JWT possesses a particular proof-of-
 possession key and that the recipient can cryptographically confirm
 proof-of-possession of the key by the presenter. Being able to prove
 possession of a key is also sometimes described as the presenter
 being a holder-of-key.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 20, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Jones, et al. Expires June 20, 2016 [Page 1]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Notational Conventions 5
 2. Terminology . 5
 3. Representations for Proof-of-Possession Keys 6
 3.1. Confirmation Claim . 6
 3.2. Representation of an Asymmetric Proof-of-Possession Key . 7
 3.3. Representation of an Encrypted Symmetric
 Proof-of-Possession Key 8
 3.4. Representation of a Key ID for a Proof-of-Possession
 Key . 9
 3.5. Representation of a URL for a Proof-of-Possession Key . . 9
 3.6. Specifics Intentionally Not Specified 10
 4. Security Considerations 10
 5. Privacy Considerations . 11
 6. IANA Considerations . 11
 6.1. JSON Web Token Claims Registration 12
 6.1.1. Registry Contents 12
 6.2. JWT Confirmation Methods Registry 12
 6.2.1. Registration Template 12
 6.2.2. Initial Registry Contents 13
 7. References . 13
 7.1. Normative References 13
 7.2. Informative References 14
 Appendix A. Acknowledgements 15
 Appendix B. Document History 15
 Authors’ Addresses . 17

Jones, et al. Expires June 20, 2016 [Page 2]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

1. Introduction

 This specification defines how a JSON Web Token [JWT] can declare
 that the presenter of the JWT possesses a particular proof-of-
 possession (PoP) key and that the recipient can cryptographically
 confirm proof-of-possession of the key by the presenter. Proof-of-
 possession of a key is also sometimes described as the presenter
 being a holder-of-key. The [I-D.ietf-oauth-pop-architecture]
 specification describes key confirmation, among other confirmation
 mechanisms. This specification defines how to communicate key
 confirmation key information in JWTs.

 Envision the following two use cases. The first use case employs a
 symmetric proof-of-possession key and the second use case employs an
 asymmetric proof-of-possession key.

 +--------------+
 | | +--------------+
 | |--(3) Presentation of -->| |
 | | JWT w/ Encrypted | |
 | Presenter | PoP Key | |
 | | | |
 | |<-(4) Communication ---->| |
 | | Authenticated by | |
 +--------------+ PoP Key | |
 ^ ^ | |
 | | | |
 (1) Sym. (2) JWT w/ | Recipient |
 | PoP | Encrypted | |
 | Key | PoP Key | |
 v | | |
 +--------------+ | |
 | | | |
 | | | |
 | |<-(0) Key Exchange for ->| |
 | Issuer | Key Encryption Key | |
 | | | |
 | | | |
 | | +--------------+
 +--------------+

 Figure 1: Proof-of-Possession with a Symmetric Key

 In the case illustrated in Figure 1, either the presenter generates a
 symmetric key and privately sends it to the issuer (1) or the issuer
 generates a symmetric key and privately sends it to the presenter
 (1). The issuer generates a JWT with an encrypted copy of this
 symmetric key in the confirmation claim. This symmetric key is

Jones, et al. Expires June 20, 2016 [Page 3]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 encrypted with a key known only to the issuer and the recipient,
 which was previously established in step (0). The entire JWT is
 integrity protected by the issuer. The JWT is then (2) sent to the
 presenter. Now, the presenter is in possession of the symmetric key
 as well as the JWT (which includes the confirmation claim). When the
 presenter (3) presents the JWT to the recipient, it also needs to
 demonstrate possession of the symmetric key; the presenter, for
 example, (4) uses the symmetric key in a challenge/response protocol
 with the recipient. The recipient is then able to verify that it is
 interacting with the genuine presenter by decrypting the key in the
 confirmation claim of the JWT. By doing this, the recipient obtains
 the symmetric key, which it then uses to verify cryptographically
 protected messages exchanged with the presenter (4). This symmetric
 key mechanism described above is conceptually similar to the use of
 Kerberos tickets.

 Note that for simplicity, the diagram above and associated text
 describe the direct use of symmetric keys without the use of derived
 keys. A more secure practice is to derive the symmetric keys
 actually used from secrets exchanged, such as the key exchanged in
 step (0), using a Key Derivation Function (KDF) and use the derived
 keys, rather than directly using the secrets exchanged.

 +--------------+
 | | +--------------+
 | |--(3) Presentation of -->| |
 | | JWT w/ Public | |
 | Presenter | PoP Key | |
 | | | |
 | |<-(4) Communication ---->| |
 | | Authenticated by | |
 +--------------+ PoP Key | |
 | ^ | |
 | | | |
 (1) Public (2) JWT w/ | Recipient |
 | PoP | Public | |
 | Key | PoP Key | |
 v | | |
 +--------------+ | |
 | | | |
 | | | |
 | | | |
 | Issuer | | |
 | | | |
 | | | |
 | | +--------------+
 +--------------+

Jones, et al. Expires June 20, 2016 [Page 4]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 Figure 2: Proof-of-Possession with an Asymmetric Key

 In the case illustrated in Figure 2, the presenter generates a
 public/private key pair and (1) sends the public key to the issuer,
 which creates a JWT that contains the public key (or an identifier
 for it) in the confirmation claim. The entire JWT is integrity
 protected using a digital signature to protect it against
 modifications. The JWT is then (2) sent to the presenter. When the
 presenter (3) presents the JWT to the recipient, it also needs to
 demonstrate possession of the private key. The presenter, for
 example, (4) uses the private key in a TLS exchange with the
 recipient or (4) signs a nonce with the private key. The recipient
 is able to verify that it is interacting with the genuine presenter
 by extracting the public key from the confirmation claim of the JWT
 (after verifying the digital signature of the JWT) and utilizing it
 with the private key in the TLS exchange or by checking the nonce
 signature.

 In both cases, the JWT may contain other claims that are needed by
 the application.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

2. Terminology

 This specification uses terms defined in the JSON Web Token [JWT],
 JSON Web Key [JWK], and JSON Web Encryption [JWE] specifications.

 These terms are defined by this specification:

 Issuer
 Party that creates the JWT and binds the proof-of-possession key
 to it.

 Presenter
 Party that proves possession of a private key (for asymmetric key
 cryptography) or secret key (for symmetric key cryptography) to a
 recipient.

Jones, et al. Expires June 20, 2016 [Page 5]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 Recipient
 Party that receives the JWT containing the proof-of-possession key
 information from the presenter.

3. Representations for Proof-of-Possession Keys

 By including a "cnf" (confirmation) claim in a JWT, the issuer of the
 JWT declares that the presenter possesses a particular key, and that
 the recipient can cryptographically confirm that the presenter has
 possession of that key. The value of the "cnf" claim is a JSON
 object and the members of that object identify the proof-of-
 possession key.

 The presenter can be identified in one of several ways by the JWT,
 depending upon the application requirements. If the JWT contains a
 "sub" (subject) claim [JWT], the presenter is normally the subject
 identified by the JWT. (In some applications, the subject identifier
 will be relative to the issuer identified by the "iss" (issuer) claim
 [JWT].) If the JWT contains no "sub" (subject) claim, the presenter
 is normally the issuer identified by the JWT using the "iss" (issuer)
 claim. The case in which the presenter is the subject of the JWT is
 analogous to SAML 2.0 [OASIS.saml-core-2.0-os] SubjectConfirmation
 usage. At least one of the "sub" and "iss" claims MUST be present in
 the JWT. Some use cases may require that both be present.

 Another means used by some applications to identify the presenter is
 an explicit claim, such as the "azp" (authorized party) claim defined
 by OpenID Connect [OpenID.Core]. Ultimately, the means of
 identifying the presenter is application-specific, as is the means of
 confirming possession of the key that is communicated.

3.1. Confirmation Claim

 The "cnf" (confirmation) claim is used in the JWT to contain members
 used to identify the proof-of-possession key. Other members of the
 "cnf" object may be defined because a proof-of-possession key may not
 be the only means of confirming the authenticity of the token. This
 is analogous to the SAML 2.0 [OASIS.saml-core-2.0-os]
 SubjectConfirmation element, in which a number of different subject
 confirmation methods can be included, including proof-of-possession
 key information.

 The set of confirmation members that a JWT must contain to be
 considered valid is context dependent and is outside the scope of
 this specification. Specific applications of JWTs will require
 implementations to understand and process some confirmation members
 in particular ways. However, in the absence of such requirements,

Jones, et al. Expires June 20, 2016 [Page 6]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 all confirmation members that are not understood by implementations
 MUST be ignored.

 This specification establishes the IANA "JWT Confirmation Methods"
 registry for these members in Section 6.2 and registers the members
 defined by this specification. Other specifications can register
 other members used for confirmation, including other members for
 conveying proof-of-possession keys, possibly using different key
 representations.

 The "cnf" claim value MUST represent only a single proof-of-
 possession key; thus, at most one of the "jwk", "jwe", and "jku"
 confirmation values defined below may be present. Note that if an
 application needs to represent multiple proof-of-possession keys in
 the same JWT, one way for it to achieve this is to use other claim
 names, in addition to "cnf", to hold the additional proof-of-
 possession key information. These claims could use the same syntax
 and semantics as the "cnf" claim. Those claims would be defined by
 applications or other specifications and could be registered in the
 IANA "JSON Web Token Claims" registry [IANA.JWT.Claims].

3.2. Representation of an Asymmetric Proof-of-Possession Key

 When the key held by the presenter is an asymmetric private key, the
 "jwk" member is a JSON Web Key [JWK] representing the corresponding
 asymmetric public key. The following example demonstrates such a
 declaration in the JWT Claims Set of a JWT:

 {
 "iss": "https://server.example.com",
 "aud": "https://client.example.org",
 "exp": 1361398824,
 "cnf":{
 "jwk":{
 "kty": "EC",
 "use": "sig",
 "crv": "P-256",
 "x": "18wHLeIgW9wVN6VD1Txgpqy2LszYkMf6J8njVAibvhM",
 "y": "-V4dS4UaLMgP_4fY4j8ir7cl1TXlFdAgcx55o7TkcSA"
 }
 }
 }

 The JWK MUST contain the required key members for a JWK of that key
 type and MAY contain other JWK members, including the "kid" (key ID)
 member.

 The "jwk" member MAY also be used for a JWK representing a symmetric

Jones, et al. Expires June 20, 2016 [Page 7]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 key, provided that the JWT is encrypted so that the key is not
 revealed to unintended parties. If the JWT is not encrypted, the
 symmetric key MUST be encrypted as described below.

3.3. Representation of an Encrypted Symmetric Proof-of-Possession Key

 When the key held by the presenter is a symmetric key, the "jwe"
 member is an encrypted JSON Web Key [JWK] encrypted to a key known to
 the recipient using the JWE Compact Serialization containing the
 symmetric key. The rules for encrypting a JWK are found in Section 7
 of the JSON Web Key [JWK] specification.

 The following example illustrates a symmetric key that could
 subsequently be encrypted for use in the "jwe" member:

 {
 "kty": "oct",
 "alg": "HS256",
 "k": "ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE"
 }

 The UTF-8 [RFC3629] encoding of this JWK is used as the JWE Plaintext
 when encrypting the key.

 The following example is a JWE Header that could be used when
 encrypting this key:

 {
 "alg": "RSA-OAEP",
 "enc": "A128CBC-HS256"
 }

 The following example JWT Claims Set of a JWT illustrates the use of
 an encrypted symmetric key as the "jwe" member value:

 {
 "iss": "https://server.example.com",
 "sub": "24400320",
 "aud": "s6BhdRkqt3",
 "nonce": "n-0S6_WzA2Mj",
 "exp": 1311281970,
 "iat": 1311280970,
 "cnf":{
 "jwe":
 "eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhDQkMtSFMyNTYifQ.
 (remainder of JWE omitted for brevity)"
 }
 }

Jones, et al. Expires June 20, 2016 [Page 8]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

3.4. Representation of a Key ID for a Proof-of-Possession Key

 The proof-of-possession key can also be identified by the use of a
 Key ID instead of communicating the actual key, provided the
 recipient is able to obtain the identified key using the Key ID. In
 this case, the issuer of a JWT declares that the presenter possesses
 a particular key and that the recipient can cryptographically confirm
 proof-of-possession of the key by the presenter by including a "cnf"
 (confirmation) claim in the JWT whose value is a JSON object, with
 the JSON object containing a "kid" (key ID) member identifying the
 key.

 The following example demonstrates such a declaration in the JWT
 Claims Set of a JWT:

 {
 "iss": "https://server.example.com",
 "aud": "https://client.example.org",
 "exp": 1361398824,
 "cnf":{
 "kid": "dfd1aa97-6d8d-4575-a0fe-34b96de2bfad"
 }
 }

 The content of the "kid" value is application specific. For
 instance, some applications may choose to use a JWK Thumbprint
 [JWK.Thumbprint] value as the "kid" value.

3.5. Representation of a URL for a Proof-of-Possession Key

 The proof-of-possession key can be passed by reference instead of
 being passed by value. This is done using the "jku" (JWK Set URL)
 member. Its value is a URI [RFC3986] that refers to a resource for a
 set of JSON-encoded public keys represented as a JWK Set [JWK], one
 of which is the proof-of-possession key. If there are multiple keys
 in the referenced JWK Set document, a "kid" member MUST also be
 included, with the referenced key’s JWK also containing the same
 "kid" value.

 The protocol used to acquire the resource MUST provide integrity
 protection. An HTTP GET request to retrieve the JWK Set MUST use
 Transport Layer Security (TLS) [RFC5246] and the identity of the
 server MUST be validated, as per Section 6 of RFC 6125 [RFC6125].

 The following example demonstrates such a declaration in the JWT
 Claims Set of a JWT:

Jones, et al. Expires June 20, 2016 [Page 9]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 {
 "iss": "https://server.example.com",
 "sub": "17760704",
 "aud": "https://client.example.org",
 "exp": 1440804813,
 "cnf":{
 "jku": "https://keys.example.net/pop-keys.json",
 "kid": "2015-08-28"
 }
 }

3.6. Specifics Intentionally Not Specified

 Proof-of-possession is typically demonstrated by having the presenter
 sign a value determined by the recipient using the key possessed by
 the presenter. This value is sometimes called a "nonce" or a
 "challenge".

 The means of communicating the nonce and the nature of its contents
 are intentionally not described in this specification, as different
 protocols will communicate this information in different ways.
 Likewise, the means of communicating the signed nonce is also not
 specified, as this is also protocol-specific.

 Note that another means of proving possession of the key when it is a
 symmetric key is to encrypt the key to the recipient. The means of
 obtaining a key for the recipient is likewise protocol-specific.

 For examples using the mechanisms defined in this specification, see
 [I-D.ietf-oauth-pop-architecture].

4. Security Considerations

 All of the security considerations that are discussed in [JWT] also
 apply here. In addition, proof-of-possession introduces its own
 unique security issues. Possessing a key is only valuable if it is
 kept secret. Appropriate means must be used to ensure that
 unintended parties do not learn private key or symmetric key values.

 Applications utilizing proof-of-possession should also utilize
 audience restriction, as described in Section 4.1.3 of [JWT], as it
 provides different protections. Proof-of-possession can be used by
 recipients to reject messages from unauthorized senders. Audience
 restriction can be used by recipients to reject messages intended for
 different recipients.

 A recipient might not understand the "cnf" claim. Applications that

Jones, et al. Expires June 20, 2016 [Page 10]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 require the proof-of-possession keys communicated with it to be
 understood and processed must ensure that the parts of this
 specification that they use are implemented.

 Proof-of-possession via encrypted symmetric secrets is subject to
 replay attacks. This attack can be avoided when a signed nonce or
 challenge is used, since the recipient can use a distinct nonce or
 challenge for each interaction. Replay can also be avoided if a sub-
 key is derived from a shared secret that is specific to the instance
 of the PoP demonstration.

 Similarly to other information included in a JWT, it is necessary to
 apply data origin authentication and integrity protection (via a
 keyed message digest or a digital signature). Data origin
 authentication ensures that the recipient of the JWT learns about the
 entity that created the JWT, since this will be important for any
 policy decisions. Integrity protection prevents an adversary from
 changing any elements conveyed within the JWT payload. Special care
 has to be applied when carrying symmetric keys inside the JWT, since
 those not only require integrity protection, but also confidentiality
 protection.

5. Privacy Considerations

 A proof-of-possession key can be used as a correlation handle if the
 same key is used with multiple parties. Thus, for privacy reasons,
 it is recommended that different proof-of-possession keys be used
 when interacting with different parties.

6. IANA Considerations

 The following registration procedure is used for all the registries
 established by this specification.

 Values are registered on a Specification Required [RFC5226] basis
 after a three-week review period on the oauth-pop-reg-review@ietf.org
 mailing list, on the advice of one or more Designated Experts.
 However, to allow for the allocation of values prior to publication,
 the Designated Experts may approve registration once they are
 satisfied that such a specification will be published. [[Note to the
 RFC Editor: The name of the mailing list should be determined in
 consultation with the IESG and IANA. Suggested name:
 oauth-pop-reg-review@ietf.org.]]

 Registration requests sent to the mailing list for review should use
 an appropriate subject (e.g., "Request to register JWT Confirmation

Jones, et al. Expires June 20, 2016 [Page 11]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 Method: example"). Registration requests that are undetermined for a
 period longer than 21 days can be brought to the IESG’s attention
 (using the iesg@ietf.org mailing list) for resolution.

 Criteria that should be applied by the Designated Experts include
 determining whether the proposed registration duplicates existing
 functionality, determining whether it is likely to be of general
 applicability or whether it is useful only for a single application,
 evaluating the security properties of the item being registered, and
 whether the registration makes sense.

 It is suggested that multiple Designated Experts be appointed who are
 able to represent the perspectives of different applications using
 this specification, in order to enable broadly-informed review of
 registration decisions. In cases where a registration decision could
 be perceived as creating a conflict of interest for a particular
 Expert, that Expert should defer to the judgment of the other
 Experts.

6.1. JSON Web Token Claims Registration

 This specification registers the "cnf" claim in the IANA "JSON Web
 Token Claims" registry [IANA.JWT.Claims] established by [JWT].

6.1.1. Registry Contents

 o Claim Name: "cnf"
 o Claim Description: Confirmation
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

6.2. JWT Confirmation Methods Registry

 This specification establishes the IANA "JWT Confirmation Methods"
 registry for JWT "cnf" member values. The registry records the
 confirmation method member and a reference to the specification that
 defines it.

6.2.1. Registration Template

 Confirmation Method Value:
 The name requested (e.g., "kid"). Because a core goal of this
 specification is for the resulting representations to be compact,
 it is RECOMMENDED that the name be short -- not to exceed 8
 characters without a compelling reason to do so. This name is
 case-sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Experts state that
 there is a compelling reason to allow an exception.

Jones, et al. Expires June 20, 2016 [Page 12]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 Confirmation Method Description:
 Brief description of the confirmation method (e.g., "Key
 Identifier").

 Change Controller:
 For Standards Track RFCs, list the "IESG". For others, give the
 name of the responsible party. Other details (e.g., postal
 address, email address, home page URI) may also be included.

 Specification Document(s):
 Reference to the document or documents that specify the parameter,
 preferably including URIs that can be used to retrieve copies of
 the documents. An indication of the relevant sections may also be
 included but is not required.

6.2.2. Initial Registry Contents

 o Confirmation Method Value: "jwk"
 o Confirmation Method Description: JSON Web Key Representing Public
 Key
 o Change Controller: IESG
 o Specification Document(s): Section 3.2 of [[this document]]

 o Confirmation Method Value: "jwe"
 o Confirmation Method Description: Encrypted JSON Web Key
 o Change Controller: IESG
 o Specification Document(s): Section 3.3 of [[this document]]

 o Confirmation Method Value: "kid"
 o Confirmation Method Description: Key Identifier
 o Change Controller: IESG
 o Specification Document(s): Section 3.4 of [[this document]]

 o Confirmation Method Value: "jku"
 o Confirmation Method Description: JWK Set URL
 o Change Controller: IESG
 o Specification Document(s): Section 3.5 of [[this document]]

7. References

7.1. Normative References

 [IANA.JWT.Claims]
 IANA, "JSON Web Token Claims",
 <http://www.iana.org/assignments/jwt>.

 [JWE] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

Jones, et al. Expires June 20, 2016 [Page 13]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 RFC 7516, DOI 10.17487/RFC7156, May 2015,
 <http://www.rfc-editor.org/info/rfc7516>.

 [JWK] Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/
 RFC7157, May 2015,
 <http://www.rfc-editor.org/info/rfc7517>.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7159, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629,
 November 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/
 RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125,
 March 2011, <http://www.rfc-editor.org/info/rfc6125>.

7.2. Informative References

 [I-D.ietf-oauth-pop-architecture]
 Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-ietf-oauth-pop-architecture-05 (work

Jones, et al. Expires June 20, 2016 [Page 14]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 in progress), October 2015.

 [JWK.Thumbprint]
 Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638,
 September 2015, <http://www.rfc-editor.org/info/rfc7638>.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005.

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", November 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

Appendix A. Acknowledgements

 The authors wish to thank Brian Campbell, Stephen Farrell, Barry
 Leiba, Kepeng Li, Chris Lonvick, James Manger, Kathleen Moriarty,
 Justin Richer, and Nat Sakimura for their reviews of the
 specification.

Appendix B. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -11

 o Addressed Sec-Dir review comments by Chris Lonvick and ballot
 comments by Stephen Farrell.

 -10

 o Addressed ballot comments by Barry Leiba.

 -09

 o Removed erroneous quotation marks around numeric "exp" claim
 values in examples.

 -08

Jones, et al. Expires June 20, 2016 [Page 15]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 o Added security consideration about also utilizing audience
 restriction.

 -07

 o Addressed review comments by Hannes Tschofenig, Kathleen Moriarty,
 and Justin Richer. Changes were:

 o Clarified that symmetric proof-of-possession keys can be generated
 by either the presenter or the issuer.

 o Clarified that confirmation members that are not understood must
 be ignored unless otherwise specified by the application.

 -06

 o Added diagrams to the introduction.

 -05

 o Addressed review comments by Kepeng Li.

 -04

 o Allowed the use of "jwk" for symmetric keys when the JWT is
 encrypted.

 o Added the "jku" (JWK Set URL) member.

 o Added privacy considerations.

 o Reordered sections so that the "cnf" (confirmation) claim is
 defined before it is used.

 o Noted that applications can define new claim names, in addition to
 "cnf", to represent additional proof-of-possession keys, using the
 same representation as "cnf".

 o Applied wording clarifications suggested by Nat Sakimura.

 -03

 o Separated the "jwk" and "jwe" confirmation members; the former
 represents a public key as a JWK and the latter represents a
 symmetric key as a JWE encrypted JWK.

 o Changed the title to indicate that a proof-of-possession key is
 being communicated.

Jones, et al. Expires June 20, 2016 [Page 16]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 o Updated language that formerly assumed that the issuer was an
 OAuth 2.0 authorization server.

 o Described ways that applications can choose to identify the
 presenter, including use of the "iss", "sub", and "azp" claims.

 o Harmonized the registry language with that used in JWT [RFC 7519].

 o Addressed other issues identified during working group last call.

 o Referenced the JWT and JOSE RFCs.

 -02

 o Defined the terms Issuer, Presenter, and Recipient and updated
 their usage within the document.

 o Added a description of a use case using an asymmetric proof-of-
 possession key to the introduction.

 o Added the "kid" (key ID) confirmation method.

 o These changes address the open issues identified in the previous
 draft.

 -01

 o Updated references.

 -00

 o Created the initial working group draft from
 draft-jones-oauth-proof-of-possession-02.

Authors’ Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

Jones, et al. Expires June 20, 2016 [Page 17]

Internet-Draft Proof-of-Possession Key for JWTs December 2015

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Hannes Tschofenig
 ARM Limited
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Jones, et al. Expires June 20, 2016 [Page 18]

OAuth Working Group B. Campbell
Internet-Draft Ping Identity
Intended status: Standards Track C. Mortimore
Expires: May 16, 2015 Salesforce
 M. Jones
 Microsoft
 November 12, 2014

 SAML 2.0 Profile for OAuth 2.0 Client Authentication and Authorization
 Grants
 draft-ietf-oauth-saml2-bearer-23

Abstract

 This specification defines the use of a Security Assertion Markup
 Language (SAML) 2.0 Bearer Assertion as a means for requesting an
 OAuth 2.0 access token as well as for use as a means of client
 authentication.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 16, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Campbell, et al. Expires May 16, 2015 [Page 1]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Notational Conventions 4
 1.2. Terminology . 4
 2. HTTP Parameter Bindings for Transporting Assertions 4
 2.1. Using SAML Assertions as Authorization Grants 4
 2.2. Using SAML Assertions for Client Authentication 5
 3. Assertion Format and Processing Requirements 6
 3.1. Authorization Grant Processing 8
 3.2. Client Authentication Processing 9
 4. Authorization Grant Example 9
 5. Interoperability Considerations 11
 6. Security Considerations 11
 7. Privacy Considerations 12
 8. IANA Considerations . 12
 8.1. Sub-Namespace Registration of urn:ietf:params:oauth
 :grant-type:saml2-bearer 12
 8.2. Sub-Namespace Registration of urn:ietf:params:oauth
 :client-assertion-type:saml2-bearer 12
 9. References . 13
 9.1. Normative References 13
 9.2. Informative References 14
 Appendix A. Acknowledgements 14
 Appendix B. Document History 15
 Authors’ Addresses . 21

1. Introduction

 The Security Assertion Markup Language (SAML) 2.0
 [OASIS.saml-core-2.0-os] is an XML-based framework that allows
 identity and security information to be shared across security
 domains. The SAML specification, while primarily targeted at
 providing cross domain Web browser single sign-on, was also designed
 to be modular and extensible to facilitate use in other contexts.

 The Assertion, an XML security token, is a fundamental construct of
 SAML that is often adopted for use in other protocols and
 specifications. (Some examples include [OASIS.WSS-SAMLTokenProfile]
 and [OASIS.WS-Fed].) An Assertion is generally issued by an identity
 provider and consumed by a service provider who relies on its content
 to identify the Assertion’s subject for security related purposes.

Campbell, et al. Expires May 16, 2015 [Page 2]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 The OAuth 2.0 Authorization Framework [RFC6749] provides a method for
 making authenticated HTTP requests to a resource using an access
 token. Access tokens are issued to third-party clients by an
 authorization server (AS) with the (sometimes implicit) approval of
 the resource owner. In OAuth, an authorization grant is an abstract
 term used to describe intermediate credentials that represent the
 resource owner authorization. An authorization grant is used by the
 client to obtain an access token. Several authorization grant types
 are defined to support a wide range of client types and user
 experiences. OAuth also allows for the definition of new extension
 grant types to support additional clients or to provide a bridge
 between OAuth and other trust frameworks. Finally, OAuth allows the
 definition of additional authentication mechanisms to be used by
 clients when interacting with the authorization server.

 The Assertion Framework for OAuth 2.0 Client Authentication and
 Authorization Grants [I-D.ietf-oauth-assertions] specification is an
 abstract extension to OAuth 2.0 that provides a general framework for
 the use of Assertions as client credentials and/or authorization
 grants with OAuth 2.0. This specification profiles the Assertion
 Framework for OAuth 2.0 Client Authentication and Authorization
 Grants [I-D.ietf-oauth-assertions] specification to define an
 extension grant type that uses a SAML 2.0 Bearer Assertion to request
 an OAuth 2.0 access token as well as for use as client credentials.
 The format and processing rules for the SAML Assertion defined in
 this specification are intentionally similar, though not identical,
 to those in the Web Browser SSO Profile defined in the SAML Profiles
 [OASIS.saml-profiles-2.0-os] specification. This specification is
 reusing, to the extent reasonable, concepts and patterns from that
 well-established Profile.

 This document defines how a SAML Assertion can be used to request an
 access token when a client wishes to utilize an existing trust
 relationship, expressed through the semantics of (and digital
 signature or keyed message digest calculated over) the SAML
 Assertion, without a direct user approval step at the authorization
 server. It also defines how a SAML Assertion can be used as a client
 authentication mechanism. The use of an Assertion for client
 authentication is orthogonal to and separable from using an Assertion
 as an authorization grant. They can be used either in combination or
 separately. Client assertion authentication is nothing more than an
 alternative way for a client to authenticate to the token endpoint
 and must be used in conjunction with some grant type to form a
 complete and meaningful protocol request. Assertion authorization
 grants may be used with or without client authentication or
 identification. Whether or not client authentication is needed in
 conjunction with an assertion authorization grant, as well as the

Campbell, et al. Expires May 16, 2015 [Page 3]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 supported types of client authentication, are policy decisions at the
 discretion of the authorization server.

 The process by which the client obtains the SAML Assertion, prior to
 exchanging it with the authorization server or using it for client
 authentication, is out of scope.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 All terms are as defined in The OAuth 2.0 Authorization Framework
 [RFC6749], the Assertion Framework for OAuth 2.0 Client
 Authentication and Authorization Grants [I-D.ietf-oauth-assertions],
 and the Security Assertion Markup Language (SAML) 2.0
 [OASIS.saml-core-2.0-os] specifications.

2. HTTP Parameter Bindings for Transporting Assertions

 The Assertion Framework for OAuth 2.0 Client Authentication and
 Authorization Grants [I-D.ietf-oauth-assertions] specification
 defines generic HTTP parameters for transporting Assertions during
 interactions with a token endpoint. This section defines specific
 parameters and treatments of those parameters for use with SAML 2.0
 Bearer Assertions.

2.1. Using SAML Assertions as Authorization Grants

 To use a SAML Bearer Assertion as an authorization grant, the client
 uses an access token request as defined in Section 4 of the Assertion
 Framework for OAuth 2.0 Client Authentication and Authorization
 Grants [I-D.ietf-oauth-assertions] specification with the following
 specific parameter values and encodings.

 The value of the "grant_type" parameter is
 "urn:ietf:params:oauth:grant-type:saml2-bearer".

 The value of the "assertion" parameter contains a single SAML 2.0
 Assertion. It MUST NOT contain more than one SAML 2.0 assertion.
 The SAML Assertion XML data MUST be encoded using base64url, where
 the encoding adheres to the definition in Section 5 of RFC 4648

Campbell, et al. Expires May 16, 2015 [Page 4]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 [RFC4648] and where the padding bits are set to zero. To avoid the
 need for subsequent encoding steps (by "application/x-www-form-
 urlencoded" [W3C.REC-html401-19991224], for example), the base64url
 encoded data MUST NOT be line wrapped and pad characters ("=") MUST
 NOT be included.

 The "scope" parameter may be used, as defined in the Assertion
 Framework for OAuth 2.0 Client Authentication and Authorization
 Grants [I-D.ietf-oauth-assertions] specification, to indicate the
 requested scope.

 Authentication of the client is optional, as described in
 Section 3.2.1 of OAuth 2.0 [RFC6749] and consequently, the
 "client_id" is only needed when a form of client authentication that
 relies on the parameter is used.

 The following example demonstrates an Access Token Request with an
 assertion as an authorization grant (with extra line breaks for
 display purposes only):

 POST /token.oauth2 HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Asaml2-bearer&
 assertion=PHNhbWxwOl...[omitted for brevity]...ZT4

2.2. Using SAML Assertions for Client Authentication

 To use a SAML Bearer Assertion for client authentication, the client
 uses the following parameter values and encodings.

 The value of the "client_assertion_type" parameter is
 "urn:ietf:params:oauth:client-assertion-type:saml2-bearer".

 The value of the "client_assertion" parameter MUST contain a single
 SAML 2.0 Assertion. The SAML Assertion XML data MUST be encoded
 using base64url, where the encoding adheres to the definition in
 Section 5 of RFC 4648 [RFC4648] and where the padding bits are set to
 zero. To avoid the need for subsequent encoding steps (by
 "application/x-www-form-urlencoded" [W3C.REC-html401-19991224], for
 example), the base64url encoded data SHOULD NOT be line wrapped and
 pad characters ("=") SHOULD NOT be included.

 The following example demonstrates a client authenticating using an
 assertion during the presentation of an authorization code grant in
 an Access Token Request (with extra line breaks for display purposes
 only):

Campbell, et al. Expires May 16, 2015 [Page 5]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 POST /token.oauth2 HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=vAZEIHjQTHuGgaSvyW9hO0RpusLzkvTOww3trZBxZpo&
 client_assertion_type=urn%3Aietf%3Aparams%3Aoauth
 %3Aclient-assertion-type%3Asaml2-bearer&
 client_assertion=PHNhbW...[omitted for brevity]...ZT

3. Assertion Format and Processing Requirements

 In order to issue an access token response as described in OAuth 2.0
 [RFC6749] or to rely on an Assertion for client authentication, the
 authorization server MUST validate the Assertion according to the
 criteria below. Application of additional restrictions and policy
 are at the discretion of the authorization server.

 1. The Assertion’s <Issuer> element MUST contain a unique
 identifier for the entity that issued the Assertion. In the
 absence of an application profile specifying otherwise,
 compliant applications MUST compare Issuer values using the
 Simple String Comparison method defined in Section 6.2.1 of RFC
 3986 [RFC3986].

 2. The Assertion MUST contain a <Conditions> element with an
 <AudienceRestriction> element with an <Audience> element that
 identifies the authorization server as an intended audience.
 Section 2.5.1.4 of Assertions and Protocols for the OASIS
 Security Assertion Markup Language [OASIS.saml-core-2.0-os]
 defines the <AudienceRestriction> and <Audience> elements and,
 in addition to the URI references discussed there, the token
 endpoint URL of the authorization server MAY be used as a URI
 that identifies the authorization server as an intended
 audience. The Authorization Server MUST reject any assertion
 that does not contain its own identity as the intended audience.
 In the absence of an application profile specifying otherwise,
 compliant applications MUST compare the audience values using
 the Simple String Comparison method defined in Section 6.2.1 of
 RFC 3986 [RFC3986]. As noted in Section 5, the precise strings
 to be used as the audience for a given Authorization Server must
 be configured out-of-band by the Authorization Server and the
 Issuer of the assertion.

 3. The Assertion MUST contain a <Subject> element identifying the
 principal that is the subject of the Assertion. Additional
 information identifying the subject/principal MAY be included in
 an <AttributeStatement>.

Campbell, et al. Expires May 16, 2015 [Page 6]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 A. For the authorization grant, the Subject typically
 identifies an authorized accessor for which the access token
 is being requested (i.e., the resource owner or an
 authorized delegate), but in some cases, may be a
 pseudonymous identifier or other value denoting an anonymous
 user.

 B. For client authentication, the Subject MUST be the
 "client_id" of the OAuth client.

 4. The Assertion MUST have an expiry that limits the time window
 during which it can be used. The expiry can be expressed either
 as the NotOnOrAfter attribute of the <Conditions> element or as
 the NotOnOrAfter attribute of a suitable
 <SubjectConfirmationData> element.

 5. The <Subject> element MUST contain at least one
 <SubjectConfirmation> element that has a Method attribute with a
 value of "urn:oasis:names:tc:SAML:2.0:cm:bearer". If the
 Assertion does not have a suitable NonOnOrAfter attribute on the
 <Conditions> element, the <SubjectConfirmation> element MUST
 contain a <SubjectConfirmationData> element. When present, the
 <SubjectConfirmationData> element MUST have a Recipient
 attribute with a value indicating the token endpoint URL of the
 authorization server (or an acceptable alias). The
 authorization server MUST verify that the value of the Recipient
 attribute matches the token endpoint URL (or an acceptable
 alias) to which the Assertion was delivered. The
 <SubjectConfirmationData> element MUST have a NotOnOrAfter
 attribute that limits the window during which the Assertion can
 be confirmed. The <SubjectConfirmationData> element MAY also
 contain an Address attribute limiting the client address from
 which the Assertion can be delivered. Verification of the
 Address is at the discretion of the authorization server.

 6. The authorization server MUST reject the entire Assertion if the
 NotOnOrAfter instant on the <Conditions> element has passed
 (subject to allowable clock skew between systems). The
 authorization server MUST reject the <SubjectConfirmation> (but
 MAY still use the rest of the Assertion) if the NotOnOrAfter
 instant on the <SubjectConfirmationData> has passed (subject to
 allowable clock skew). Note that the authorization server may
 reject Assertions with a NotOnOrAfter instant that is
 unreasonably far in the future. The authorization server MAY
 ensure that Bearer Assertions are not replayed, by maintaining
 the set of used ID values for the length of time for which the
 Assertion would be considered valid based on the applicable
 NotOnOrAfter instant.

Campbell, et al. Expires May 16, 2015 [Page 7]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 7. If the Assertion issuer directly authenticated the subject, the
 Assertion SHOULD contain a single <AuthnStatement> representing
 that authentication event. If the Assertion was issued with the
 intention that the client act autonomously on behalf of the
 subject, an <AuthnStatement> SHOULD NOT be included and the
 client presenting the assertion SHOULD be identified in the
 <NameID> or similar element in the <SubjectConfirmation>
 element, or by other available means like SAML V2.0 Condition
 for Delegation Restriction [OASIS.saml-deleg-cs].

 8. Other statements, in particular <AttributeStatement> elements,
 MAY be included in the Assertion.

 9. The Assertion MUST be digitally signed or have a Message
 Authentication Code applied by the issuer. The authorization
 server MUST reject assertions with an invalid signature or
 Message Authentication Code.

 10. Encrypted elements MAY appear in place of their plain text
 counterparts as defined in [OASIS.saml-core-2.0-os].

 11. The authorization server MUST reject an Assertion that is not
 valid in all other respects per [OASIS.saml-core-2.0-os], such
 as (but not limited to) all content within the Conditions
 element including the NotOnOrAfter and NotBefore attributes,
 unknown condition types, etc.

3.1. Authorization Grant Processing

 Assertion authorization grants may be used with or without client
 authentication or identification. Whether or not client
 authentication is needed in conjunction with an assertion
 authorization grant, as well as the supported types of client
 authentication, are policy decisions at the discretion of the
 authorization server. However, if client credentials are present in
 the request, the authorization server MUST validate them.

 If the Assertion is not valid (including if its subject confirmation
 requirements cannot be met), the authorization server constructs an
 error response as defined in OAuth 2.0 [RFC6749]. The value of the
 "error" parameter MUST be the "invalid_grant" error code. The
 authorization server MAY include additional information regarding the
 reasons the Assertion was considered invalid using the
 "error_description" or "error_uri" parameters.

Campbell, et al. Expires May 16, 2015 [Page 8]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error":"invalid_grant",
 "error_description":"Audience validation failed"
 }

3.2. Client Authentication Processing

 If the client Assertion is not valid (including if its subject
 confirmation requirements cannot be met), the authorization server
 constructs an error response as defined in OAuth 2.0 [RFC6749]. The
 value of the "error" parameter MUST be the "invalid_client" error
 code. The authorization server MAY include additional information
 regarding the reasons the Assertion was considered invalid using the
 "error_description" or "error_uri" parameters.

4. Authorization Grant Example

 The following examples illustrate what a conforming Assertion and an
 access token request would look like.

 The example shows an assertion issued and signed by the SAML Identity
 Provider identified as "https://saml-idp.example.com". The subject
 of the assertion is identified by email address as
 "brian@example.com", who authenticated to the Identity Provider by
 means of a digital signature where the key was validated as part of
 an X.509 Public Key Infrastructure. The intended audience of the
 assertion is "https://saml-sp.example.net", which is an identifier
 for a SAML Service Provider with which the authorization server
 identifies itself. The assertion is sent as part of an access token
 request to the authorization server’s token endpoint at
 "https://authz.example.net/token.oauth2".

Campbell, et al. Expires May 16, 2015 [Page 9]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 Below is an example SAML 2.0 Assertion (whitespace formatting is for
 display purposes only):

 <Assertion IssueInstant="2010-10-01T20:07:34.619Z"
 ID="ef1xsbZxPV2oqjd7HTLRLIBlBb7"
 Version="2.0"
 xmlns="urn:oasis:names:tc:SAML:2.0:assertion">
 <Issuer>https://saml-idp.example.com</Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 [...omitted for brevity...]
 </ds:Signature>
 <Subject>
 <NameID
 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
 brian@example.com
 </NameID>
 <SubjectConfirmation
 Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <SubjectConfirmationData
 NotOnOrAfter="2010-10-01T20:12:34.619Z"
 Recipient="https://authz.example.net/token.oauth2"/>
 </SubjectConfirmation>
 </Subject>
 <Conditions>
 <AudienceRestriction>
 <Audience>https://saml-sp.example.net</Audience>
 </AudienceRestriction>
 </Conditions>
 <AuthnStatement AuthnInstant="2010-10-01T20:07:34.371Z">
 <AuthnContext>
 <AuthnContextClassRef>
 urn:oasis:names:tc:SAML:2.0:ac:classes:X509
 </AuthnContextClassRef>
 </AuthnContext>
 </AuthnStatement>
 </Assertion>

 Figure 1: Example SAML 2.0 Assertion

Campbell, et al. Expires May 16, 2015 [Page 10]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 To present the Assertion shown in the previous example as part of an
 access token request, for example, the client might make the
 following HTTPS request (with extra line breaks for display purposes
 only):

 POST /token.oauth2 HTTP/1.1
 Host: authz.example.net
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Asaml2-
 bearer&assertion=PEFzc2VydGlvbiBJc3N1ZUluc3RhbnQ9IjIwMTEtMDU
 [...omitted for brevity...]aG5TdGF0ZW1lbnQ-PC9Bc3NlcnRpb24-

 Figure 2: Example Request

5. Interoperability Considerations

 Agreement between system entities regarding identifiers, keys, and
 endpoints is required in order to achieve interoperable deployments
 of this profile. Specific items that require agreement are as
 follows: values for the issuer and audience identifiers, the location
 of the token endpoint, the key used to apply and verify the digital
 signature over the assertion, one-time use restrictions on
 assertions, maximum assertion lifetime allowed, and the specific
 subject and attribute requirements of the assertion. The exchange of
 such information is explicitly out of scope for this specification
 and typical deployment of it will be done alongside existing SAML Web
 SSO deployments that have already established a means of exchanging
 such information. Metadata for the OASIS Security Assertion Markup
 Language (SAML) V2.0 [OASIS.saml-metadata-2.0-os] is one common
 method of exchanging SAML related information about system entities.

 The RSA-SHA256 algorithm, from [RFC6931], is a mandatory to implement
 XML signature algorithm for this profile.

6. Security Considerations

 The security considerations described within the Assertion Framework
 for OAuth 2.0 Client Authentication and Authorization Grants
 [I-D.ietf-oauth-assertions], The OAuth 2.0 Authorization Framework
 [RFC6749], and the Security and Privacy Considerations for the OASIS
 Security Assertion Markup Language (SAML) V2.0
 [OASIS.saml-sec-consider-2.0-os] specifications are all applicable to
 this document.

 The specification does not mandate replay protection for the SAML
 assertion usage for either the authorization grant or for client

Campbell, et al. Expires May 16, 2015 [Page 11]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 authentication. It is an optional feature, which implementations may
 employ at their own discretion.

7. Privacy Considerations

 A SAML Assertion may contain privacy-sensitive information and, to
 prevent disclosure of such information to unintended parties, should
 only be transmitted over encrypted channels, such as TLS. In cases
 where it is desirable to prevent disclosure of certain information to
 the client, the Subject and/or individual attributes of a SAML
 Assertion should be encrypted to the authorization server.

 Deployments should determine the minimum amount of information
 necessary to complete the exchange and include only that information
 in an Assertion (typically by limiting what information is included
 in an <AttributeStatement> or omitting it altogether). In some
 cases, the Subject can be a value representing an anonymous or
 pseudonymous user, as described in Section 6.3.1 of the Assertion
 Framework for OAuth 2.0 Client Authentication and Authorization
 Grants [I-D.ietf-oauth-assertions].

8. IANA Considerations

8.1. Sub-Namespace Registration of urn:ietf:params:oauth:grant-
 type:saml2-bearer

 This is a request to IANA to please register the value "grant-
 type:saml2-bearer" in the registry urn:ietf:params:oauth established
 in An IETF URN Sub-Namespace for OAuth [RFC6755].

 o URN: urn:ietf:params:oauth:grant-type:saml2-bearer

 o Common Name: SAML 2.0 Bearer Assertion Grant Type Profile for
 OAuth 2.0

 o Change controller: IESG

 o Specification Document: [[this document]]

8.2. Sub-Namespace Registration of urn:ietf:params:oauth:client-
 assertion-type:saml2-bearer

 This is a request to IANA to please register the value "client-
 assertion-type:saml2-bearer" in the registry urn:ietf:params:oauth
 established in An IETF URN Sub-Namespace for OAuth [RFC6755].

 o URN: urn:ietf:params:oauth:client-assertion-type:saml2-bearer

Campbell, et al. Expires May 16, 2015 [Page 12]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 o Common Name: SAML 2.0 Bearer Assertion Profile for OAuth 2.0
 Client Authentication

 o Change controller: IESG

 o Specification Document: [[this document]]

9. References

9.1. Normative References

 [I-D.ietf-oauth-assertions]
 Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", draft-ietf-oauth-assertions
 (work in progress), October 2014.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005, <http://docs.oasis-
 open.org/security/saml/v2.0/saml-core-2.0-os.pdf>.

 [OASIS.saml-deleg-cs]
 Cantor, S., Ed., "SAML V2.0 Condition for Delegation
 Restriction", Nov 2009.

 [OASIS.saml-sec-consider-2.0-os]
 Hirsch, F., Philpott, R., and E. Maler, "Security and
 Privacy Considerations for the OASIS Security Markup
 Language (SAML) V2.0", OASIS Standard saml-sec-consider-
 2.0-os, March 2005, <http://docs.oasis-
 open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

Campbell, et al. Expires May 16, 2015 [Page 13]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 [RFC6931] Eastlake, D., "Additional XML Security Uniform Resource
 Identifiers (URIs)", RFC 6931, April 2013.

9.2. Informative References

 [OASIS.WS-Fed]
 Goodner, M. and T. Nadalin, "Web Services Federation
 Language (WS-Federation) Version 1.2", May 2009,
 <http://docs.oasis-open.org/wsfed/federation/v1.2/os/
 ws-federation-1.2-spec-os.html>.

 [OASIS.WSS-SAMLTokenProfile]
 Monzillo, R., Kaler, C., Nadalin, T., Hallam-Baker, P.,
 and C. Milono, "Web Services Security SAML Token Profile
 Version 1.1.1", May 2012, <http://docs.oasis-open.org/wss-
 m/wss/v1.1.1/wss-SAMLTokenProfile-v1.1.1.html>.

 [OASIS.saml-metadata-2.0-os]
 Cantor, S., Moreh, J., Philpott, R., and E. Maler,
 "Metadata for the Security Assertion Markup Language
 (SAML) V2.0", OASIS Standard saml-metadata-2.0-os, March
 2005, <http://docs.oasis-open.org/security/saml/v2.0/
 saml-metadata-2.0-os.pdf>.

 [OASIS.saml-profiles-2.0-os]
 Hughes, J., Cantor, S., Hodges, J., Hirsch, F., Mishra,
 P., Philpott, R., and E. Maler, "Profiles for the OASIS
 Security Assertion Markup Language (SAML) V2.0", OASIS
 Standard OASIS.saml-profiles-2.0-os, March 2005,
 <http://docs.oasis-open.org/security/saml/v2.0/
 saml-profiles-2.0-os.pdf>.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, October 2012.

 [W3C.REC-html401-19991224]
 Raggett, D., Hors, A., and I. Jacobs, "HTML 4.01
 Specification", World Wide Web Consortium Recommendation
 REC-html401-19991224, December 1999,
 <http://www.w3.org/TR/1999/REC-html401-19991224>.

Appendix A. Acknowledgements

 The following people contributed wording and concepts to this
 document: Paul Madsen, Patrick Harding, Peter Motykowski, Eran
 Hammer, Peter Saint-Andre, Ian Barnett, Eric Fazendin, Torsten
 Lodderstedt, Susan Harper, Scott Tomilson, Scott Cantor, Hannes
 Tschofenig, David Waite, Phil Hunt, and Mukesh Bhatnagar.

Campbell, et al. Expires May 16, 2015 [Page 14]

Internet-Draft OAuth SAML Assertion Profiles November 2014

Appendix B. Document History

 [[to be removed by RFC editor before publication as an RFC]]

 draft-ietf-oauth-saml2-bearer-23

 o Fix typo per http://www.ietf.org/mail-archive/web/oauth/current/
 msg13790.html

 draft-ietf-oauth-saml2-bearer-22

 o Changes/suggestions from IESG reviews.

 draft-ietf-oauth-saml2-bearer-21

 o Added Privacy Considerations section per AD review discussion
 http://www.ietf.org/mail-archive/web/oauth/current/msg13148.html
 and http://www.ietf.org/mail-archive/web/oauth/current/
 msg13144.html

 draft-ietf-oauth-saml2-bearer-20

 o Clarified some text around the treatment of subject based on the
 rough rough consensus from the thread staring at
 http://www.ietf.org/mail-archive/web/oauth/current/msg12630.html

 draft-ietf-oauth-saml2-bearer-19

 o Updated references.

 draft-ietf-oauth-saml2-bearer-18

 o Clean up language around subject per http://www.ietf.org/mail-
 archive/web/oauth/current/msg12254.html.

 o As suggested in http://www.ietf.org/mail-
 archive/web/oauth/current/msg12253.html stated that "In the
 absence of an application profile specifying otherwise, compliant
 applications MUST compare the audience/issuer values using the
 Simple String Comparison method defined in Section 6.2.1 of RFC
 3986."

 o Clarify the potentially confusing language about the AS confirming
 the assertion http://www.ietf.org/mail-archive/web/oauth/current/
 msg12255.html.

Campbell, et al. Expires May 16, 2015 [Page 15]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 o Combine the two items about AuthnStatement and drop the word
 presenter as discussed in http://www.ietf.org/mail-
 archive/web/oauth/current/msg12257.html.

 o Added one-time use, maximum lifetime, and specific subject and
 attribute requirements to Interoperability Considerations based on
 http://www.ietf.org/mail-archive/web/oauth/current/msg12252.html.

 o Reword security considerations and mention that replay protection
 is not mandated based on http://www.ietf.org/mail-
 archive/web/oauth/current/msg12259.html.

 draft-ietf-oauth-saml2-bearer-17

 o Stated that issuer and audience values SHOULD be compared using
 the Simple String Comparison method defined in Section 6.2.1 of
 RFC 3986 unless otherwise specified by the application.

 draft-ietf-oauth-saml2-bearer-16

 o Changed title from "SAML 2.0 Bearer Assertion Profiles for OAuth
 2.0" to "SAML 2.0 Profile for OAuth 2.0 Client Authentication and
 Authorization Grants" to be more explicit about the scope of the
 document per http://www.ietf.org/mail-archive/web/oauth/current/
 msg11063.html.

 o Fixed typo in text identifying the presenter from "or similar
 element, the" to "or similar element in the".

 o Numbered the list of processing rules.

 o Smallish editorial cleanups to try and improve readability and
 comprehensibility.

 o Cleaner split out of the processing rules in cases where they
 differ for client authentication and authorization grants.

 o Clarified the parameters that are used/available for authorization
 grants.

 o Added Interoperability Considerations section and info reference
 to SAML Metadata.

 o Added more explanatory context to the example in Section 4.

 draft-ietf-oauth-saml2-bearer-15

 o Reference RFC 6749 and RFC 6755.

Campbell, et al. Expires May 16, 2015 [Page 16]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 o Update draft-ietf-oauth-assertions reference to -06.

 o Remove extraneous word per http://www.ietf.org/mail-
 archive/web/oauth/current/msg10055.html

 draft-ietf-oauth-saml2-bearer-14

 o Add more text to intro explaining that an assertion grant type can
 be used with or without client authentication/identification and
 that client assertion authentication is nothing more than an
 alternative way for a client to authenticate to the token endpoint

 o Add examples to Sections 2.1 and 2.2

 o Update references

 draft-ietf-oauth-saml2-bearer-13

 o Update references: oauth-assertions-04, oauth-urn-sub-ns-05, oauth
 -28

 o Changed "Description" to "Specification Document" in both
 registration requests in IANA Considerations per changes to the
 template in ietf-oauth-urn-sub-ns(-03)

 o Added "(or an acceptable alias)" so that it’s in both sentences
 about Recipient and the token endpoint URL so there’s no ambiguity

 o Update area and workgroup (now Security and OAuth was Internet and
 nothing)

 draft-ietf-oauth-saml2-bearer-12

 o updated reference to draft-ietf-oauth-v2 from -25 to -26 and
 draft-ietf-oauth-assertions from -02 to -03

 draft-ietf-oauth-saml2-bearer-11

 o Removed text about limited lifetime access tokens and the SHOULD
 NOT on issuing refresh tokens. The text was moved to draft-ietf-
 oauth-assertions-02 and somewhat modified per http://www.ietf.org/
 mail-archive/web/oauth/current/msg08298.html.

 o Fixed typo/missing word per http://www.ietf.org/mail-
 archive/web/oauth/current/msg08733.html.

 o Added Terminology section.

Campbell, et al. Expires May 16, 2015 [Page 17]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 draft-ietf-oauth-saml2-bearer-10

 o fix a spelling mistake

 draft-ietf-oauth-saml2-bearer-09

 o Attempt to address an ambiguity around validation requirements
 when the Conditions element contain a NotOnOrAfter and
 SubjectConfirmation/SubjectConfirmationData does too. Basically
 it needs to have at least one bearer SubjectConfirmation element
 but that element can omit SubjectConfirmationData, if Conditions
 has an expiry on it. Otherwise, a valid SubjectConfirmation must
 have a SubjectConfirmationData with Recipient and NotOnOrAfter.
 And any SubjectConfirmationData that has those elements needs to
 have them checked.

 o clarified that AudienceRestriction is under Conditions (even
 though it’s implied by schema)

 o fix a typo

 draft-ietf-oauth-saml2-bearer-08

 o fix some typos

 draft-ietf-oauth-saml2-bearer-07

 o update reference from draft-campbell-oauth-urn-sub-ns to draft-
 ietf-oauth-urn-sub-ns

 o Updated to reference draft-ietf-oauth-v2-20

 draft-ietf-oauth-saml2-bearer-06

 o Fix three typos NamseID->NameID and (2x) Namspace->Namespace

 draft-ietf-oauth-saml2-bearer-05

 o Allow for subject confirmation data to be optional when Conditions
 contain audience and NotOnOrAfter

 o Rework most of the spec to profile draft-ietf-oauth-assertions for
 both authn and authz including (but not limited to):

 * remove requirement for issuer to be
 urn:oasis:names:tc:SAML:2.0:nameid-format:entity

 * change wording on Subject requirements

Campbell, et al. Expires May 16, 2015 [Page 18]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 o using a MAY, explicitly say that the Audience can be token
 endpoint URL of the authorization server

 o Change title to be more generic (allowing for client authn too)

 o added client authentication to the abstract

 o register and use urn:ietf:params:oauth:grant-type:saml2-bearer for
 grant type rather than http://oauth.net/grant_type/saml/2.0/bearer

 o register urn:ietf:params:oauth:client-assertion-type:saml2-bearer

 o remove scope parameter as it is defined in
 http://tools.ietf.org/html/draft-ietf-oauth-assertions

 o remove assertion param registration because it [should] be in
 http://tools.ietf.org/html/draft-ietf-oauth-assertions

 o fix typo(s) and update/add references

 draft-ietf-oauth-saml2-bearer-04

 o Changed the grant_type URI from
 "http://oauth.net/grant_type/assertion/saml/2.0/bearer" to
 "http://oauth.net/grant_type/saml/2.0/bearer" - dropping the word
 assertion from the path. Recent versions of draft-ietf-oauth-v2
 no longer refer to extension grants using the word assertion so
 this URI is more reflective of that. It also more closely aligns
 with the grant type URI in draft-jones-oauth-jwt-bearer-00 which
 is "http://oauth.net/grant_type/jwt/1.0/bearer".

 o Added "case sensitive" to scope definition to align with draft-
 ietf-oauth-v2-15/16.

 o Updated to reference draft-ietf-oauth-v2-16

 draft-ietf-oauth-saml2-bearer-03

 o Cleanup of some editorial issues.

 draft-ietf-oauth-saml2-bearer-02

 o Added scope parameter with text copied from draft-ietf-oauth-v2-12
 (the reorg of draft-ietf-oauth-v2-12 made it so scope wasn’t
 really inherited by this spec anymore)

Campbell, et al. Expires May 16, 2015 [Page 19]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 o Change definition of the assertion parameter to be more generally
 applicable per the suggestion near the end of http://www.ietf.org/
 mail-archive/web/oauth/current/msg05253.html

 o Editorial changes based on feedback

 draft-ietf-oauth-saml2-bearer-01

 o Update spec name when referencing draft-ietf-oauth-v2 (The OAuth
 2.0 Protocol Framework -> The OAuth 2.0 Authorization Protocol)

 o Update wording in Introduction to talk about extension grant types
 rather than the assertion grant type which is a term no longer
 used in OAuth 2.0

 o Updated to reference draft-ietf-oauth-v2-12 and denote as work in
 progress

 o Update Parameter Registration Request to use similar terms as
 draft-ietf-oauth-v2-12 and remove Related information part

 o Add some text giving discretion to AS on rejecting assertions with
 unreasonably long validity window.

 draft-ietf-oauth-saml2-bearer-00

 o Added Parameter Registration Request for "assertion" to IANA
 Considerations.

 o Changed document name to draft-ietf-oauth-saml2-bearer in
 anticipation of becoming an OAUTH WG item.

 o Attempt to move the entire definition of the ’assertion’ parameter
 into this draft (it will no longer be defined in OAuth 2 Protocol
 Framework).

 draft-campbell-oauth-saml-01

 o Updated to reference draft-ietf-oauth-v2-11 and reflect changes
 from -10 to -11.

 o Updated examples.

 o Relaxed processing rules to allow for more than one
 SubjectConfirmation element.

 o Removed the ’MUST NOT contain a NotBefore attribute’ on
 SubjectConfirmationData.

Campbell, et al. Expires May 16, 2015 [Page 20]

Internet-Draft OAuth SAML Assertion Profiles November 2014

 o Relaxed wording that ties the subject of the Assertion to the
 resource owner.

 o Added some wording about identifying the client when the subject
 hasn’t directly authenticated including an informative reference
 to SAML V2.0 Condition for Delegation Restriction.

 o Added a few examples to the language about verifying that the
 Assertion is valid in all other respects.

 o Added some wording to the introduction about the similarities to
 Web SSO in the format and processing rules

 o Changed the grant_type (was assertion_type) URI from
 http://oauth.net/assertion_type/saml/2.0/bearer to
 http://oauth.net/grant_type/assertion/saml/2.0/bearer

 o Changed title to include "Grant Type" in it.

 o Editorial updates based on feedback from the WG and others
 (including capitalization of Assertion when referring to SAML).

 draft-campbell-oauth-saml-00

 o Initial I-D

Authors’ Addresses

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com

 Chuck Mortimore
 Salesforce.com

 Email: cmortimore@salesforce.com

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

Campbell, et al. Expires May 16, 2015 [Page 21]

OAuth Working Group J. Richer, Ed.
Internet-Draft
Intended status: Standards Track J. Bradley
Expires: February 9, 2017 Ping Identity
 H. Tschofenig
 ARM Limited
 August 08, 2016

 A Method for Signing HTTP Requests for OAuth
 draft-ietf-oauth-signed-http-request-03

Abstract

 This document a method for offering data origin authentication and
 integrity protection of HTTP requests. To convey the relevant data
 items in the request a JSON-based encapsulation is used and the JSON
 Web Signature (JWS) technique is re-used. JWS offers integrity
 protection using symmetric as well as asymmetric cryptography.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 9, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Richer, et al. Expires February 9, 2017 [Page 1]

Internet-Draft HTTP Signed Messages August 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Generating a JSON Object from an HTTP Request 3
 3.1. Calculating the query parameter list and hash 4
 3.2. Calculating the header list and hash 5
 4. Sending the signed object 6
 4.1. HTTP Authorization header 6
 4.2. HTTP Form body . 6
 4.3. HTTP Query parameter 7
 5. Validating the request 7
 5.1. Validating the query parameter list and hash 7
 5.2. Validating the header list and hash 8
 6. IANA Considerations . 9
 6.1. The ’pop’ OAuth Access Token Type 9
 6.2. JSON Web Signature and Encryption Type Values
 Registration . 9
 7. Security Considerations 9
 7.1. Offering Confidentiality Protection for Access to
 Protected Resources 9
 7.2. Plaintext Storage of Credentials 10
 7.3. Entropy of Keys . 10
 7.4. Denial of Service . 10
 7.5. Validating the integrity of HTTP message 11
 8. Privacy Considerations 12
 9. Acknowledgements . 12
 10. Normative References . 12
 Authors’ Addresses . 13

1. Introduction

 In order to prove possession of an access token and its associated
 key, an OAuth 2.0 client needs to compute some cryptographic function
 and present the results to the protected resource as a signature.
 The protected resource then needs to verify the signature and compare
 that to the expected keys associated with the access token. This is
 in addition to the normal token protections provided by a bearer
 token [RFC6750] and transport layer security (TLS).

 Furthermore, it is desirable to bind the signature to the HTTP
 request. Ideally, this should be done without replicating the
 information already present in the HTTP request more than required.
 However, many HTTP application frameworks insert extra headers, query

Richer, et al. Expires February 9, 2017 [Page 2]

Internet-Draft HTTP Signed Messages August 2016

 parameters, and otherwise manipulate the HTTP request on its way from
 the web server into the application code itself. It is the goal of
 this draft to have a signature protection mechanism that is
 sufficiently robust against such deployment constraints while still
 providing sufficient security benefits.

 The key required for this signature calculation is distributed via
 mechanisms described in companion documents (see
 [I-D.ietf-oauth-pop-key-distribution] and
 [I-D.ietf-oauth-pop-architecture]). The JSON Web Signature (JWS)
 specification [RFC7515] is used for computing a digital signature
 (which uses asymmetric cryptography) or a keyed message digest (in
 case of symmetric cryptography).

 The mechanism described in this document assumes that a client is in
 possession of an access token and asociated key. That client then
 creates a JSON object including the access token, signs the JSON
 object using JWS, and issues an request to a resource server for
 access to a protected resource using the signed object as its
 authorization. The protected resource validates the JWS signature
 and parses the JSON object to obtain token information.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 Other terms such as "client", "authorization server", "access token",
 and "protected resource" are inherited from OAuth 2.0 [RFC6749].

 We use the term ’sign’ (or ’signature’) to denote both a keyed
 message digest and a digital signature operation.

3. Generating a JSON Object from an HTTP Request

 This specification uses JSON Web Signatures [RFC7515] to protect the
 access token and, optionally, parts of the request.

 This section describes how to generate a JSON [RFC7159] object from
 the HTTP request. Each value below is included as a member of the
 JSON object at the top level.

 at REQUIRED. The access token value. This string is assumed to have
 no particular format or structure and remains opaque to the
 client.

Richer, et al. Expires February 9, 2017 [Page 3]

Internet-Draft HTTP Signed Messages August 2016

 ts RECOMMENDED. The timestamp. This integer provides replay
 protection of the signed JSON object. Its value MUST be a number
 containing an integer value representing number of whole integer
 seconds from midnight, January 1, 1970 GMT.

 m OPTIONAL. The HTTP Method used to make this request. This MUST
 be the uppercase HTTP verb as a JSON string.

 u OPTIONAL. The HTTP URL host component as a JSON string. This MAY
 include the port separated from the host by a colon in host:port
 format.

 p OPTIONAL. The HTTP URL path component of the request as an HTTP
 string.

 q OPTIONAL. The hashed HTTP URL query parameter map of the request
 as a two-part JSON array. The first part of this array is a JSON
 array listing all query parameters that were used in the
 calculation of the hash in the order that they were added to the
 hashed value as described below. The second part of this array is
 a JSON string containing the Base64URL encoded hash itself,
 calculated as described below.

 h OPTIONAL. The hashed HTTP request headers as a two-part JSON
 array. The first part of this array is a JSON array listing all
 headers that were used in the calculation of the hash in the order
 that they were added to the hashed value as described below. The
 second part of this array is a JSON string containing the
 Base64URL encoded hash itself, calculated as described below.

 b OPTIONAL. The base64URL encoded hash of the HTTP Request body,
 calculated as the SHA256 of the byte array of the body

 All hashes SHALL be calculated using the SHA256 algorithm. [[Note to
 WG: do we want crypto agility here? If so how do we signal this]]

 The JSON object is signed using the algorithm appropriate to the
 associated access token key, usually communicated as part of key
 distribution [I-D.ietf-oauth-pop-key-distribution].

3.1. Calculating the query parameter list and hash

 To generate the query parameter list and hash, the client creates two
 data objects: an ordered list of strings to hold the query parameter
 names and a string buffer to hold the data to be hashed.

 The client iterates through all query parameters in whatever order it
 chooses and for each query parameter it does the following:

Richer, et al. Expires February 9, 2017 [Page 4]

Internet-Draft HTTP Signed Messages August 2016

 1. Adds the name of the query parameter to the end of the list.

 2. Percent-encodes the name and value of the parameter as specified
 in [RFC3986]. Note that if the name and value have already been
 percent-encoded for transit, they are not re-encoded for this
 step.

 3. Encodes the name and value of the query parameter as "name=value"
 and appends it to the string buffer separated by the ampersand
 "&" character.

 Repeated parameter names are processed separately with no special
 handling. Parameters MAY be skipped by the client if they are not
 required (or desired) to be covered by the signature.

 The client then calculates the hash over the resulting string buffer.
 The list and the hash result are added to a list as the value of the
 "q" member.

 For example, the query parameter set of "b=bar", "a=foo", "c=duck" is
 concatenated into the string:

 b=bar&a=foo&c=duck

 When added to the JSON structure using this process, the results are:

 "q": [["b", "a", "c"], "u4LgkGUWhP9MsKrEjA4dizIllDXluDku6ZqCeyuR-JY"]

3.2. Calculating the header list and hash

 To generate the header list and hash, the client creates two data
 objects: an ordered list of strings to hold the header names and a
 string buffer to hold the data to be hashed.

 The client iterates through all query parameters in whatever order it
 chooses and for each query parameter it does the following:

 1. Lowercases the header name.

 2. Adds the name of the header to the end of the list.

 3. Encodes the name and value of the header as "name: value" and
 appends it to the string buffer separated by a newline "\n"
 character.

 Repeated header names are processed separately with no special
 handling. Headers MAY be skipped by the client if they are not
 required (or desired) to be covered by the signature.

Richer, et al. Expires February 9, 2017 [Page 5]

Internet-Draft HTTP Signed Messages August 2016

 The client then calculates the hash over the resulting string buffer.
 The list and the hash result are added to a list as the value of the
 "h" member.

 For example, the headers "Content-Type: application/json" and "Etag:
 742-3u8f34-3r2nvv3" are concatenated into the string:

 content-type: application/json
 etag: 742-3u8f34-3r2nvv3

 "h": [["content-type", "etag"],
 "bZA981YJBrPlIzOvplbu3e7ueREXXr38vSkxIBYOaxI"]

4. Sending the signed object

 In order to send the signed object to the protected resource, the
 client includes it in one of the following three places.

4.1. HTTP Authorization header

 The client SHOULD send the signed object to the protected resource in
 the Authorization header. The value of the signed object in JWS
 compact form is appended to the Authorization header as a PoP value.
 This is the preferred method. Note that if this method is used, the
 Authorization header MUST NOT be included in the protected elements
 of the signed object.

 GET /resource/foo
 Authorization: PoP eyJ....omitted for brevity...

4.2. HTTP Form body

 If the client is sending the request as a form-encoded HTTP message
 with parameters in the body, the client MAY send the signed object as
 part of that form body. The value of the signed object in JWS
 compact form is sent as the form parameter pop_access_token. Note
 that if this method is used, the body hash cannot be included in the
 protected elements of the signed object.

 POST /resource
 Content-type: application/www-form-encoded

 pop_access_token=eyJ....omitted for brevity...

Richer, et al. Expires February 9, 2017 [Page 6]

Internet-Draft HTTP Signed Messages August 2016

4.3. HTTP Query parameter

 If neither the Authorization header nor the form-encoded body
 parameter are available to the client, the client MAY send the signed
 object as a query parameter. The value of the signed object in JWS
 compact form is sent as the query parameter pop_access_token. Note
 that if this method is used, the pop_access_token parameter MUST NOT
 be included in the protected elements of the signed object.

 GET /resource?pop_access_token=eyJ....

5. Validating the request

 Just like with a bearer token [RFC6750], while the access token value
 included in the signed object is opaque to the client, it MUST be
 understood by the protected resource in order to fulfill the request.
 Also like a bearer token, the protected resource traditionally has
 several methods at its disposal for understanding the access token.
 It can look up the token locally (such as in a database), it can
 parse a structured token (such as JWT [RFC7519]), or it can use a
 service to look up token information (such as introspection
 [RFC7662]). Whatever method is used to look up token information,
 the protected resource MUST have access to the key associated with
 the access token, as this key is required to validate the signature
 of the incoming request. Validation of the signature is done using
 normal JWS validation for the signature and key type.

 Additionally, in order to trust any of the hashed components of the
 HTTP request, the protected resource MUST re-create and verify a hash
 for each component as described below. This process is a mirror of
 the process used to create the hashes in the first place, with a mind
 toward the fact that order may have changed and that elements may
 have been added or deleted. The protected resource MUST similarly
 compare the replicated values included in various JSON fields with
 the corresponding actual values from the request. Failure to do so
 will allow an attacker to modify the underlying request while at the
 same time having the application layer verify the signature
 correctly.

5.1. Validating the query parameter list and hash

 The client has at its disposal a map that indexes the query parameter
 names to the values given. The client creates a string buffer for
 calculating the hash. The client then iterates through the "list"
 portion of the "p" parameter. For each item in the list (in the
 order of the list) it does the following:

Richer, et al. Expires February 9, 2017 [Page 7]

Internet-Draft HTTP Signed Messages August 2016

 1. Fetch the value of the parameter from the HTTP request query
 parameter map. If a parameter is found in the list of signed
 parameters but not in the map, the validation fails.

 2. Percent-encodes the name and value of the parameter as specified
 in [RFC3986]. Note that if the name and value have already been
 percent-encoded for transit, they are not re-encoded for this
 step.

 3. Encode the parameter as "name=value" and concatenate it to the
 end of the string buffer, separated by an ampersand character.

 The client calculates the hash of the string buffer and base64url
 encodes it. The protected resource compares that string to the
 string passed in as the hash. If the two match, the hash validates,
 and all named parameters and their values are considered covered by
 the signature.

 There MAY be additional query parameters that are not listed in the
 list and are therefore not covered by the signature. The client MUST
 decide whether or not to accept a request with these uncovered
 parameters.

5.2. Validating the header list and hash

 The client has at its disposal a map that indexes the header names to
 the values given. The client creates a string buffer for calculating
 the hash. The client then iterates through the "list" portion of the
 "h" parameter. For each item in the list (in the order of the list)
 it does the following:

 1. Fetch the value of the header from the HTTP request header map.
 If a header is found in the list of signed parameters but not in
 the map, the validation fails.

 2. Encode the parameter as "name: value" and concatenate it to the
 end of the string buffer, separated by a newline character.

 The client calculates the hash of the string buffer and base64url
 encodes it. The protected resource compares that string to the
 string passed in as the hash. If the two match, the hash validates,
 and all named headers and their values are considered covered by the
 signature.

 There MAY be additional headers that are not listed in the list and
 are therefore not covered by the signature. The client MUST decide
 whether or not to accept a request with these uncovered headers.

Richer, et al. Expires February 9, 2017 [Page 8]

Internet-Draft HTTP Signed Messages August 2016

6. IANA Considerations

6.1. The ’pop’ OAuth Access Token Type

 Section 11.1 of [RFC6749] defines the OAuth Access Token Type
 Registry and this document adds another token type to this registry.

 Type name: pop

 Additional Token Endpoint Response Parameters: (none)

 HTTP Authentication Scheme(s): Proof-of-possession access token for
 use with OAuth 2.0

 Change controller: IETF

 Specification document(s): [[this document]]

6.2. JSON Web Signature and Encryption Type Values Registration

 This specification registers the "pop" type value in the IANA JSON
 Web Signature and Encryption Type Values registry [RFC7515]:

 o "typ" Header Parameter Value: "pop"

 o Abbreviation for MIME Type: None

 o Change Controller: IETF

 o Specification Document(s): [[this document]]

7. Security Considerations

7.1. Offering Confidentiality Protection for Access to Protected
 Resources

 This specification can be used with and without Transport Layer
 Security (TLS).

 Without TLS this protocol provides a mechanism for verifying the
 integrity of requests, it provides no confidentiality protection.
 Consequently, eavesdroppers will have full access to communication
 content and any further messages exchanged between the client and the
 resource server. This could be problematic when data is exchanged
 that requires care, such as personal data.

 When TLS is used then confidentiality of the transmission can be
 ensured between endpoints, including both the request and the

Richer, et al. Expires February 9, 2017 [Page 9]

Internet-Draft HTTP Signed Messages August 2016

 response. The use of TLS in combination with the signed HTTP request
 mechanism is highly recommended to ensure the confidentiality of the
 data returned from the protected resource.

7.2. Plaintext Storage of Credentials

 The mechanism described in this document works in a similar way to
 many three-party authentication and key exchange mechanisms. In
 order to compute the signature over the HTTP request, the client must
 have access to a key bound to the access token in plaintext form. If
 an attacker were to gain access to these stored secrets at the client
 or (in case of symmetric keys) at the resource server they would be
 able to perform any action on behalf of any client just as if they
 had stolen a bearer token.

 It is therefore paramount to the security of the protocol that the
 private keys associated with the access tokens are protected from
 unauthorized access.

7.3. Entropy of Keys

 Unless TLS is used between the client and the resource server,
 eavesdroppers will have full access to requests sent by the client.
 They will thus be able to mount off-line brute-force attacks to
 attempt recovery of the session key or private key used to compute
 the keyed message digest or digital signature, respectively.

 This specification assumes that the key used herein has been
 distributed via other mechanisms, such as
 [I-D.ietf-oauth-pop-key-distribution]. Hence, it is the
 responsibility of the authorization server and or the client to be
 careful when generating fresh and unique keys with sufficient entropy
 to resist such attacks for at least the length of time that the
 session keys (and the access tokens) are valid.

 For example, if the key bound to the access token is valid for one
 day, authorization servers must ensure that it is not possible to
 mount a brute force attack that recovers that key in less than one
 day. Of course, servers are urged to err on the side of caution, and
 use the longest key length possible within reason.

7.4. Denial of Service

 This specification includes a number of features which may make
 resource exhaustion attacks against resource servers possible. For
 example, a resource server may need to process the incoming request,
 verify the access token, perform signature verification, and might
 (in certain circumstances) have to consult back-end databases or the

Richer, et al. Expires February 9, 2017 [Page 10]

Internet-Draft HTTP Signed Messages August 2016

 authorization server before granting access to the protected
 resource. Many of these actions are shared with bearer tokens, but
 the additional cryptographic overhead of validating the signed
 request needs to be taken into consideration with deployment of this
 specification.

 An attacker may exploit this to perform a denial of service attack by
 sending a large number of invalid requests to the server. The
 computational overhead of verifying the keyed message digest alone is
 not likely sufficient to mount a denial of service attack. To help
 combat this, it is RECOMMENDED that the protected resource validate
 the access token (contained in the "at" member of the signed
 structure) before performing any cryptographic verification
 calculations.

7.5. Validating the integrity of HTTP message

 This specification provides flexibility for selectively validating
 the integrity of the HTTP request, including header fields, query
 parameters, and message bodies. Since all components of the HTTP
 request are only optionally validated by this method, and even some
 components may be validated only in part (e.g., some headers but not
 others) it is up to protected resource developers to verify that any
 vital parameters in a request are actually covered by the signature.
 Failure to do so could allow an attacker to inject vital parameters
 or headers into the request, ouside of the protection of the
 signature.

 The application verifying this signature MUST NOT assume that any
 particular parameter is appropriately covered by the signature unless
 it is included in the signed structure and the hash is verified. Any
 applications that are sensitive of header or query parameter order
 MUST verify the order of the parameters on their own. The
 application MUST also compare the values in the JSON container with
 the actual parameters received with the HTTP request (using a direct
 comparison or a hash calculation, as appropriate). Failure to make
 this comparison will render the signature mechanism useless for
 protecting these elements.

 The behavior of repeated query parameters or repeated HTTP headers is
 undefined by this specification. If a header or query parameter is
 repeated on either the outgoing request from the client or the
 incoming request to the protected resource, that query parameter or
 header name MUST NOT be covered by the hash and signature.

 This specification records the order in which query parameters and
 headers are hashed, but it does not guarantee that order is preserved
 between the client and protected resource. If the order of

Richer, et al. Expires February 9, 2017 [Page 11]

Internet-Draft HTTP Signed Messages August 2016

 parameters or headers are significant to the underlying application,
 it MUST confirm their order on its own, apart from the signature and
 HTTP message validation.

8. Privacy Considerations

 This specification addresses machine to machine communications and
 raises no privacy considerations beyond existing OAuth transactions.

9. Acknowledgements

 The authors thank the OAuth Working Group for input into this work.

10. Normative References

 [I-D.ietf-oauth-pop-architecture]
 Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-ietf-oauth-pop-architecture-08 (work
 in progress), July 2016.

 [I-D.ietf-oauth-pop-key-distribution]
 Bradley, J., Hunt, P., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Proof-of-Possession: Authorization Server to
 Client Key Distribution", draft-ietf-oauth-pop-key-
 distribution-02 (work in progress), October 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <http://www.rfc-editor.org/info/rfc6750>.

Richer, et al. Expires February 9, 2017 [Page 12]

Internet-Draft HTTP Signed Messages August 2016

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <http://www.rfc-editor.org/info/rfc7662>.

Authors’ Addresses

 Justin Richer (editor)

 Email: ietf@justin.richer.org

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Hannes Tschofenig
 ARM Limited
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Richer, et al. Expires February 9, 2017 [Page 13]

OAuth Working Group N. Sakimura, Ed.
Internet-Draft Nomura Research Institute
Intended status: Standards Track J. Bradley
Expires: January 9, 2016 Ping Identity
 N. Agarwal
 Google
 July 8, 2015

 Proof Key for Code Exchange by OAuth Public Clients
 draft-ietf-oauth-spop-15

Abstract

 OAuth 2.0 public clients utilizing the Authorization Code Grant are
 susceptible to the authorization code interception attack. This
 specification describes the attack as well as a technique to mitigate
 against the threat through the use of Proof Key for Code Exchange
 (PKCE, pronounced "pixy").

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Sakimura, et al. Expires January 9, 2016 [Page 1]

Internet-Draft oauth_pkce July 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Protocol Flow . 5
 2. Notational Conventions 6
 3. Terminology . 7
 3.1. Abbreviations . 7
 4. Protocol . 7
 4.1. Client creates a code verifier 7
 4.2. Client creates the code challenge 8
 4.3. Client sends the code challenge with the authorization
 request . 8
 4.4. Server returns the code 9
 4.4.1. Error Response 9
 4.5. Client sends the Authorization Code and the Code Verifier
 to the token endpoint 9
 4.6. Server verifies code_verifier before returning the tokens 10
 5. Compatibility . 10
 6. IANA Considerations . 10
 6.1. OAuth Parameters Registry 10
 6.2. PKCE Code Challenge Method Registry 11
 6.2.1. Registration Template 11
 6.2.2. Initial Registry Contents 12
 7. Security Considerations 12
 7.1. Entropy of the code_verifier 12
 7.2. Protection against eavesdroppers 13
 7.3. Salting the code_challenge 13
 7.4. OAuth security considerations 14
 7.5. TLS security considerations 14
 8. Acknowledgements . 14
 9. Revision History . 15
 10. References . 17
 10.1. Normative References 18
 10.2. Informative References 18
 Appendix A. Notes on implementing base64url encoding without
 padding . 18
 Appendix B. Example for the S256 code_challenge_method 19
 Authors’ Addresses . 20

1. Introduction

 OAuth 2.0 [RFC6749] public clients are susceptible to the
 authorization code interception attack.

Sakimura, et al. Expires January 9, 2016 [Page 2]

Internet-Draft oauth_pkce July 2015

 The attacker thereby intercepts the authorization code returned from
 the authorization endpoint within communication path not protected by
 TLS, such as inter-app communication within the operating system of
 the client.

 Once the attacker has gained access to the authorization code it can
 use it to obtain the access token.

 Figure 1 shows the attack graphically. In step (1) the native app
 running on the end device, such as a smart phone, issues an OAuth 2.0
 Authorization Request via the browser/operating system. The
 Redirection Endpoint URI in this case typically uses a custom URI
 scheme. Step (1) happens through a secure API that cannot be
 intercepted, though it may potentially be observed in advanced attack
 scenarios. The request then gets forwarded to the OAuth 2.0
 authorization server in step (2). Because OAuth requires the use of
 TLS, this communication is protected by TLS, and also cannot be
 intercepted. The authorization server returns the authorization code
 in step (3). In step (4), the Authorization Code is returned to the
 requester via the Redirection Endpoint URI that was provided in step
 (1).

 A malicious app that has been designed to attack this native app has
 previously registered itself as a handler for the custom URI scheme
 is now able to intercept the Authorization Code in step (4). This
 allows the attacker to request and obtain an access token in steps
 (5) and (6), respectively.

Sakimura, et al. Expires January 9, 2016 [Page 3]

Internet-Draft oauth_pkce July 2015

 +˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜+
 | End Device (e.g., Smart Phone) |
 | |
 | +-------------+ +----------+ | (6) Access Token +----------+
 | |Legitimate | | Malicious|<--------------------| |
 | |OAuth 2.0 App| | App |-------------------->| |
 | +-------------+ +----------+ | (5) Authorization | |
 | | ^ ^ | Grant | |
 | | \ | | | |
 | | \ (4) | | | |
 | (1) | \ Authz| | | |
 | Authz| \ Code | | | Authz |
 | Request| \ | | | Server |
 | | \ | | | |
 | | \ | | | |
 | v \ | | | |
 | +----------------------------+ | | |
 | | | | (3) Authz Code | |
 | | Operating System/ |<--------------------| |
 | | Browser |-------------------->| |
 | | | | (2) Authz Request | |
 | +----------------------------+ | +----------+
 +˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜+

 Figure 1: Authorization Code Interception Attack.

 A number of pre-conditions need to hold in order for this attack to
 work:

 1) The attacker manages to register a malicious application on the
 client device and registers a custom URI scheme that is also used
 by another application.
 The operating systems must allow a custom URI schemes to be
 registered by multiple applications.
 2) The OAuth 2.0 authorization code grant is used.
 3) The attacker has access to the OAuth 2.0 [RFC6749] client_id and
 client_secret(if provisioned). All OAuth 2.0 native app client-
 instances use the same client_id. Secrets provisioned in client
 binary applications cannot be considered confidential.
 4a) The attacker (via the installed app) is able to observe only the
 responses from the authorization endpoint. The plain
 code_challenge_method mitigates only this attack.
 4b) A more sophisticated attack scenario allows the attacker to
 observe requests (in addition to responses) to the authorization
 endpoint. The attacker is, however, not able to act as a man-in-
 the-middle. This has been caused by leaking http log information
 in the OS. To mitigate this the S256 code_challenge_method or

Sakimura, et al. Expires January 9, 2016 [Page 4]

Internet-Draft oauth_pkce July 2015

 cryptographically secure code_challenge_method extension must be
 used.

 While this is a long list of pre-conditions the described attack has
 been observed in the wild and has to be considered in OAuth 2.0
 deployments.
 While the OAuth 2.0 Threat Model Section 4.4.1 [RFC6819] describes
 mitigation techniques they are, unfortunately, not applicable since
 they rely on a per-client instance secret or aper client instance
 redirect URI.

 To mitigate this attack, this extension utilizes a dynamically
 created cryptographically random key called "code verifier". A
 unique code verifier is created for every authorization request and
 its transformed value, called "code challenge", is sent to the
 authorization server to obtain the authorization code. The
 authorization code obtained is then sent to the token endpoint with
 the "code verifier" and the server compares it with the previously
 received request code so that it can perform the proof of possession
 of the "code verifier" by the client. This works as the mitigation
 since the attacker would not know this one-time key, since it is sent
 over TLS and cannot be intercepted.

1.1. Protocol Flow

 +-------------------+
 | Authz Server |
 +--------+ | +---------------+ |
 | |--(A)- Authorization Request ---->| | | |
 | | + t(code_verifier), t_m | | Authorization | |
 | | | | Endpoint | |
 | |<-(B)---- Authorization Code -----| | |
 | | | +---------------+ |
 | Client | | |
 | | | +---------------+ |
 | |--(C)-- Access Token Request ---->| | |
 | | + code_verifier | | Token | |
 | | | | Endpoint | |
 | |<-(D)------ Access Token ---------| | |
 +--------+ | +---------------+ |
 +-------------------+

 Figure 2: Abstract Protocol Flow

 This specification adds additional parameters to the OAuth 2.0
 Authorization and Access Token Requests, shown in abstract form in
 Figure 1.

Sakimura, et al. Expires January 9, 2016 [Page 5]

Internet-Draft oauth_pkce July 2015

 A. The client creates and records a secret named the "code_verifier",
 and derives a transformed version "t(code_verifier)" (referred to
 as the "code_challenge") which is sent in the OAuth 2.0
 Authorization Request, along with the transformation method "t_m".
 B. The Authorization Endpoint responds as usual, but records
 "t(code_verifier)" and the transformation method.
 C. The client then sends the authorization code in the Access Token
 Request as usual, but includes the "code_verifier" secret
 generated at (A).
 D. The authorization server transforms "code_verifier" and compares
 it to "t(code_verifier)" from (B). Access is denied if they are
 not equal.

 An attacker who intercepts the Authorization Grant at (B) is unable
 to redeem it for an Access Token, as they are not in possession of
 the "code_verifier" secret.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in Key
 words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
 these words are used without being spelled in uppercase then they are
 to be interpreted with their normal natural language meanings.

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234].

 STRING denotes a sequence of zero or more ASCII [RFC0020] characters.

 OCTETS denotes a sequence of zero or more octets.

 ASCII(STRING) denotes the octets of the ASCII [RFC0020]
 representation of STRING where STRING is a sequence of zero or more
 ASCII characters.

 BASE64URL-ENCODE(OCTETS) denotes the base64url encoding of OCTETS,
 per Section 3 producing a STRING.

 BASE64URL-DECODE(STRING) denotes the base64url decoding of STRING,
 per Section 3, producing a sequence of octets.

 SHA256(OCTETS) denotes a SHA2 256bit hash [RFC6234] of OCTETS.

Sakimura, et al. Expires January 9, 2016 [Page 6]

Internet-Draft oauth_pkce July 2015

3. Terminology

 In addition to the terms defined in OAuth 2.0 [RFC6749], this
 specification defines the following terms:

 code verifier
 A cryptographically random string that is used to correlate the
 authorization request to the token request.
 code challenge
 A challenge derived from the code verifier that is sent in the
 authorization request, to be verified against later.
 Base64url Encoding
 Base64 encoding using the URL- and filename-safe character set
 defined in Section 5 of [RFC4648], with all trailing ’=’
 characters omitted (as permitted by Section 3.2 of [RFC4648]) and
 without the inclusion of any line breaks, whitespace, or other
 additional characters. (See Appendix A for notes on implementing
 base64url encoding without padding.)

3.1. Abbreviations

 ABNF Augmented Backus-Naur Form
 Authz Authorization
 PKCE Proof Key for Code Exchange
 MITM Man-in-the-middle
 MTI Mandatory To Implement

4. Protocol

4.1. Client creates a code verifier

 The client first creates a code verifier, "code_verifier", for each
 OAuth 2.0 [RFC6749] Authorization Request, in the following manner:

 code_verifier = high entropy cryptographic random STRING using the
 Unreserved Characters [A-Z] / [a-z] / [0-9] / "-" / "." / "_" / "˜"
 from Sec 2.3 of [RFC3986], with a minimum length of 43 characters and
 a maximum length of 128 characters.

 ABNF for "code_verifier" is as follows.

 code-verifier = 43*128unreserved
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 ALPHA = %x41-5A / %x61-7A
 DIGIT = %x30-39

 NOTE: code verifier SHOULD have enough entropy to make it impractical
 to guess the value. It is RECOMMENDED that the output of a suitable

Sakimura, et al. Expires January 9, 2016 [Page 7]

Internet-Draft oauth_pkce July 2015

 random number generator be used to create a 32-octet sequence. The
 Octet sequence is then base64url encoded to produce a 43-octet URL
 safe string to use as the code verifier.

4.2. Client creates the code challenge

 The client then creates a code challenge derived from the code
 verifier by using one of the following transformations on the code
 verifier:

 plain
 code_challenge = code_verifier
 S256
 code_challenge = BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

 If the client is capable of using "S256", it MUST use "S256", as
 "S256" is Mandatory To Implement (MTI) on the server. Clients are
 permitted to use "plain" only if they cannot support "S256" for some
 technical reason and know via out of band configuration that the
 server supports "plain".

 The plain transformation is for compatibility with existing
 deployments and for constrained environments that can’t use the S256
 transformation.

 ABNF for "code_challenge" is as follows.

 code-challenge = 43*128unreserved
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 ALPHA = %x41-5A / %x61-7A
 DIGIT = %x30-39

4.3. Client sends the code challenge with the authorization request

 The client sends the code challenge as part of the OAuth 2.0
 Authorization Request (Section 4.1.1 of [RFC6749].) using the
 following additional parameters:

 code_challenge REQUIRED. Code challenge.

 code_challenge_method OPTIONAL, defaults to "plain" if not present
 in the request. Code verifier transformation method, "S256" or
 "plain".

Sakimura, et al. Expires January 9, 2016 [Page 8]

Internet-Draft oauth_pkce July 2015

4.4. Server returns the code

 When the server issues the authorization code in the authorization
 response, it MUST associate the "code_challenge" and
 "code_challenge_method" values with the authorization code so it can
 be verified later.

 Typically, the "code_challenge" and "code_challenge_method" values
 are stored in encrypted form in the "code" itself, but could
 alternatively be stored on the server, associated with the code. The
 server MUST NOT include the "code_challenge" value in client requests
 in a form that other entities can extract.

 The exact method that the server uses to associate the
 "code_challenge" with the issued "code" is out of scope for this
 specification.

4.4.1. Error Response

 If the server requires Proof Key for Code Exchange (PKCE) by OAuth
 Public Clients, and the client does not send the "code_challenge" in
 the request, the authorization endpoint MUST return the authorization
 error response with "error" value set to "invalid_request". The
 "error_description" or the response of "error_uri" SHOULD explain the
 nature of error, e.g., code challenge required.

 If the server supporting PKCE does not support the requested
 transform, the authorization endpoint MUST return the authorization
 error response with "error" value set to "invalid_request". The
 "error_description" or the response of "error_uri" SHOULD explain the
 nature of error, e.g., transform algorithm not supported.

4.5. Client sends the Authorization Code and the Code Verifier to the
 token endpoint

 Upon receipt of the Authorization Code, the client sends the Access
 Token Request to the token endpoint. In addition to the parameters
 defined in the OAuth 2.0 Access Token Request (Section 4.1.3 of
 [RFC6749]), it sends the following parameter:

 code_verifier REQUIRED. Code verifier

 The code_challenge_method is bound to the Authorization Code when the
 Authorization Code is issued. That is the method that the token
 endpoint MUST use to verify the code_verifier.

Sakimura, et al. Expires January 9, 2016 [Page 9]

Internet-Draft oauth_pkce July 2015

4.6. Server verifies code_verifier before returning the tokens

 Upon receipt of the request at the Access Token endpoint, the server
 verifies it by calculating the code challenge from received
 "code_verifier" and comparing it with the previously associated
 "code_challenge", after first transforming it according to the
 "code_challenge_method" method specified by the client.

 If the "code_challenge_method" from Section 4.2 was "S256", the
 received "code_verifier" is hashed by SHA-256, then base64url
 encoded, and then compared to the "code_challenge". i.e.,

 BASE64URL-ENCODE(SHA256(ASCII("code_verifier"))) == "code_challenge"

 If the "code_challenge_method" from Section 4.2 was "plain", they are
 compared directly. i.e.,

 "code_verifier" == "code_challenge".

 If the values are equal, the Access Token endpoint MUST continue
 processing as normal (as defined by OAuth 2.0 [RFC6749]). If the
 values are not equal, an error response indicating "invalid_grant" as
 described in section 5.2 of [RFC6749] MUST be returned.

5. Compatibility

 Server implementations of this specification MAY accept OAuth2.0
 Clients that do not implement this extension. If the "code_verifier"
 is not received from the client in the Authorization Request, servers
 supporting backwards compatibility revert to a normal OAuth 2.0
 [RFC6749] protocol.

 As the OAuth 2.0 [RFC6749] server responses are unchanged by this
 specification, client implementations of this specification do not
 need to know if the server has implemented this specification or not,
 and SHOULD send the additional parameters as defined in Section 3. to
 all servers.

6. IANA Considerations

 This specification makes a registration request as follows:

6.1. OAuth Parameters Registry

 This specification registers the following parameters in the IANA
 OAuth Parameters registry defined in OAuth 2.0 [RFC6749].

 o Parameter name: code_verifier

Sakimura, et al. Expires January 9, 2016 [Page 10]

Internet-Draft oauth_pkce July 2015

 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): this document

 o Parameter name: code_challenge
 o Parameter usage location: authorization request
 o Change controller: IESG
 o Specification document(s): this document

 o Parameter name: code_challenge_method
 o Parameter usage location: authorization request
 o Change controller: IESG
 o Specification document(s): this document

6.2. PKCE Code Challenge Method Registry

 This specification establishes the PKCE Code Challenge Method
 registry. The new registry should be a sub-registry of OAuth
 Parameters registry.

 Additional code_challenge_method types for use with the authorization
 endpoint are registered using the Specification Required policy
 [RFC5226], which includes review of the request by one or more
 Designated Experts. The DEs will ensure there is at least a two-week
 review of the request on the oauth-ext-review@ietf.org mailing list,
 and that any discussion on that list converges before they respond to
 the request. To allow for the allocation of values prior to
 publication, the Designated Expert(s) may approve registration once
 they are satisfied that an acceptable specification will be
 published.

 Registration requests and discussion on the oauth-ext-review@ietf.org
 mailing list should use an appropriate subject, such as "Request for
 PKCE code_challenge_method: example").

 The Designated Expert(s) should consider the discussion on the
 mailing list, as well as the overall security properties of the
 challenge Method when evaluating registration requests. New methods
 should not disclose the value of the code_verifier in the request to
 the Authorization endpoint. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

6.2.1. Registration Template

 Code Challenge Method Parameter Name:
 The name requested (e.g., "example"). Because a core goal of this
 specification is for the resulting representations to be compact,

Sakimura, et al. Expires January 9, 2016 [Page 11]

Internet-Draft oauth_pkce July 2015

 it is RECOMMENDED that the name be short -- not to exceed 8
 characters without a compelling reason to do so. This name is
 case-sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Expert(s) state that
 there is a compelling reason to allow an exception in this
 particular case.
 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.
 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

6.2.2. Initial Registry Contents

 This specification registers the Code Challenge Method Parameter
 names defined in Section 4.2 in this registry.

 o Code Challenge Method Parameter Name: "plain"
 o Change Controller: IESG
 o Specification Document(s): Section 4.2 of [[this document]]

 o Code Challenge Method Parameter Name: "S256"
 o Change Controller: IESG
 o Specification Document(s): Section 4.2 of [[this document]]

7. Security Considerations

7.1. Entropy of the code_verifier

 The security model relies on the fact that the code verifier is not
 learned or guessed by the attacker. It is vitally important to
 adhere to this principle. As such, the code verifier has to be
 created in such a manner that it is cryptographically random and has
 high entropy that it is not practical for the attacker to guess.

 The client SHOULD create a code_verifier with a minimum of 256bits of
 entropy. This can be done by having a suitable random number
 generator create a 32-octet sequence. The Octet sequence can then be
 base64url encoded to produce a 43-octet URL safe string to use as a
 code_challenge that has the required entropy.

Sakimura, et al. Expires January 9, 2016 [Page 12]

Internet-Draft oauth_pkce July 2015

7.2. Protection against eavesdroppers

 Clients MUST NOT downgrade to "plain" after trying "S256" method.
 Servers that support PKCE are required to support "S256", and servers
 that do not support PKCE will simply ignore the unknown
 "code_verifier" OAuth 2.0 (see Section 3.2 of [RFC6749]. Because of
 that, an error when "S256" is presented can only mean that the server
 is faulty or that a MITM attacker is trying a downgrade attack.

 "S256" method protects against eavesdroppers observing or
 intercepting the "code_challenge", because the challenge cannot be
 used without the verifier. With the "plain" method, there is a
 chance that "code_challenge" will be observed by the attacker on the
 device, or in the http request. Since the code challenge is the same
 as the code verifier in this case, "plain" method does not protect
 against the eavesdropping of the initial request.

 The use of "S256" protects against disclosure of "code_verifier"
 value to an attacker.

 Because of this, "plain" SHOULD NOT be used, and exists only for
 compatibility with deployed implementations where the request path is
 already protected. The "plain" method SHOULD NOT be used in new
 implementations, unless they cannot support "S256" for some technical
 reason.

 The "S256" code_challenge_method or other cryptographically secure
 code_challenge_method extension SHOULD be used. The plain
 code_challenge_method relies on the operating system and transport
 security not to disclose the request to an attacker.

 If the code_challenge_method is plain, and the "code_challenge" is to
 be returned inside authorization "code" to achieve a stateless
 server, it MUST be encrypted in such a manner that only the server
 can decrypt and extract it.

7.3. Salting the code_challenge

 In order to reduce implementation complexity Salting is not used in
 the production of the code_challenge, as the code_verifier contains
 sufficient entropy to prevent brute force attacks. Concatenating a
 publicly known value to a code_verifier (containing 256 bits of
 entropy) and then hashing it with SHA256 to produce a code_challenge
 would not increase the number of attempts necessary to brute force a
 valid value for code_verifier.

 While the S256 transformation is like hashing a password there are
 important differences. Passwords tend to be relatively low entropy

Sakimura, et al. Expires January 9, 2016 [Page 13]

Internet-Draft oauth_pkce July 2015

 words that can be hashed offline and the hash looked up in a
 dictionary. By concatenating a unique though public value to each
 password prior to hashing, the dictionary space that an attacker
 needs to search is greatly expanded.

 Modern graphics processors now allow attackers to calculate hashes in
 real time faster than they could be looked up from a disk. This
 eliminates the value of the salt in increasing the complexity of a
 brute force attack for even low entropy passwords.

7.4. OAuth security considerations

 All the OAuth security analysis presented in [RFC6819] applies so
 readers SHOULD carefully follow it.

7.5. TLS security considerations

 Curent security considerations can be found in Recommendations for
 Secure Use of TLS and DTLS [BCP195]. This supersedes the TLS version
 recommendations in OAuth 2.0 [RFC6749].

8. Acknowledgements

 The initial draft of this specification was created by the OpenID AB/
 Connect Working Group of the OpenID Foundation.

 This specification is the work of the OAuth Working Group, which
 includes dozens of active and dedicated participants. In particular,
 the following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

 Anthony Nadalin, Microsoft
 Axel Nenker, Deutsche Telekom
 Breno de Medeiros, Google
 Brian Campbell, Ping Identity
 Chuck Mortimore, Salesforce
 Dirk Balfanz, Google
 Eduardo Gueiros, Jive Communications
 Hannes Tschonfenig, ARM
 James Manger, Telstra
 John Bradley, Ping Identity
 Justin Richer, MIT Kerberos
 Josh Mandel, Boston Children’s Hospital
 Lewis Adam, Motorola Solutions
 Madjid Nakhjiri, Samsung
 Michael B. Jones, Microsoft
 Nat Sakimura, Nomura Research Institute
 Naveen Agarwal, Google

Sakimura, et al. Expires January 9, 2016 [Page 14]

Internet-Draft oauth_pkce July 2015

 Paul Madsen, Ping Identity
 Phil Hunt, Oracle
 Prateek Mishra, Oracle
 Ryo Ito, mixi
 Scott Tomilson, Ping Identity
 Sergey Beryozkin
 Takamichi Saito
 Torsten Lodderstedt, Deutsche Telekom
 William Denniss, Google

9. Revision History

 -15

 o Addressed Barry’s IESG comments around IANA Registration
 o Addressed Barry’s IESG comments around Sec 7.2 downgrade attack
 o fix a typo for William and make a small change to Fig 1.1
 clarifying t_m
 o more wording changes to sec 7.2 re Barry
 o made the two SHOULD NOT use plain recommendations consistent.
 o slightly cleaned up grammer in Sec 7.2

 -14

 o #38. Expanded Section 7.2 to explain why plain should not be
 used.
 o #39. Modified Section 4.4.1 to discourage the use of plain.
 o #40. Modified Intro text to explain the attack better.
 o #41. Added explanation that the token request is protected in the
 Last paragraph of the Introduction.
 o #42. Sec 4.2: Removed redundant double quotes caused by spanx.
 o #43. Sec 4.4: Replaced code with authorization code.
 o #44. Sec 4.5: say "code_verifier" rather than "secret"
 o #45. Sec 4.4.1: Expanded PKCE.
 o #46. Sec 5: SHOULD in para 1 removed.
 o Added abbreviations section.

 -13

 o Fix the parameter usage locations for the OAuth Parameters
 Registry per Hannes response.
 o Clarify for IANA that the new registry is a sub-registry of OAuth
 Parameters registry
 o aded text on why the code_challenge_method is not sent to the
 token endpoint.

 -12

Sakimura, et al. Expires January 9, 2016 [Page 15]

Internet-Draft oauth_pkce July 2015

 o clarify that the client secret we are talking about in the
 Introduction is a OAuth 2 client_secret.
 o Update salting security consideration based on Ben’s feedback

 -11

 o add spanx for plain in sec 4.4 RE Kathleen’s comment
 o Add security consideration on TLS and reference BCP195
 o Update to make clearer that plain can only be used for backwards
 compatibility and constrained environments

 -10

 o re #33 specify lower limit to code_verifier in prose
 o remove base64url decode from draft, all steps now use encode only
 o Expanded MTI
 o re #33 change length of 32 octet base64url encoded string back to
 43 octets

 -09

 o clean up some external references so they don’t point at internal
 sections

 -08

 o changed BASE64URL to BASE64URL-ENCODE to be more consistent with
 appendix A Fixed lowercase base64url in appendix B
 o Added appendix B as an example of S256 processing
 o Change reference for unreserved characters to RFC3986 from
 base64URL

 -07

 o removed unused discovery reference and UTF8
 o re #32 added ASCII(STRING) to make clear that it is the byte array
 that is being hashed
 o re #2 Remove discovery requirement section.
 o updated Acknowledgement
 o re #32 remove unneeded UTF8(STRING) definition, and define STRING
 for ASCII(STRING)
 o re #32 remove unneeded utf8 reference from BASE64URL-
 DECODE(STRING) def
 o resolves #31 unused definition of concatenation
 o re #30 Update figure text call out the endpoints
 o re #30 Update figure to call out the endpoints
 o small wording change to the introduction

Sakimura, et al. Expires January 9, 2016 [Page 16]

Internet-Draft oauth_pkce July 2015

 -06

 o fix date
 o replace spop with pkce for registry and other references
 o re #29 change name again
 o re #27 removed US-ASCII reference
 o re #27 updated ABNF for code_verifier
 o resolves #24 added security consideration for salting
 o resolves #29 Changed title
 o updated reference to RFC4634 to RFC6234 re #27
 o changed reference for US-ASCII to RFC20 re #27
 o resolves #28 added Acknowledgements
 o resolves #27 updated ABNF
 o resolves #26 updated abstract and added Hannes figure

 -05

 o Added IANA registry for code_challenge_method + fixed some broken
 internal references.

 -04

 o Added error response to authorization response.

 -03

 o Added an abstract protocol diagram and explanation

 -02

 o Copy edits

 -01

 o Specified exactly two supported transformations
 o Moved discovery steps to security considerations.
 o Incorporated readability comments by Eduardo Gueiros.
 o Changed MUST in 3.1 to SHOULD.

 -00

 o Initial IETF version.

10. References

Sakimura, et al. Expires January 9, 2016 [Page 17]

Internet-Draft oauth_pkce July 2015

10.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, May 2015.

 [RFC0020] Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6234] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

10.2. Informative References

 [RFC6819] Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 January 2013.

Appendix A. Notes on implementing base64url encoding without padding

 This appendix describes how to implement a base64url encoding
 function without padding based upon standard base64 encoding function
 that uses padding.

 To be concrete, example C# code implementing these functions is shown
 below. Similar code could be used in other languages.

Sakimura, et al. Expires January 9, 2016 [Page 18]

Internet-Draft oauth_pkce July 2015

 static string base64urlencode(byte [] arg)
 {
 string s = Convert.ToBase64String(arg); // Regular base64 encoder
 s = s.Split(’=’)[0]; // Remove any trailing ’=’s
 s = s.Replace(’+’, ’-’); // 62nd char of encoding
 s = s.Replace(’/’, ’_’); // 63rd char of encoding
 return s;
 }

 An example correspondence between unencoded and encoded values
 follows. The octet sequence below encodes into the string below,
 which when decoded, reproduces the octet sequence.

 3 236 255 224 193

 A-z_4ME

Appendix B. Example for the S256 code_challenge_method

 The client uses output of a suitable random number generator to
 create a 32-octet sequence. The octets representing the value in
 this example (using JSON array notation) are:"

 [116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,
 187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
 132, 141, 121]

 Encoding this octet sequence as a Base64url provides the value of the
 code_verifier:

 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 The code_verifier is then hashed via the SHA256 hash function to
 produce:

 [19, 211, 30, 150, 26, 26, 216, 236, 47, 22, 177, 12, 76, 152, 46,
 8, 118, 168, 120, 173, 109, 241, 68, 86, 110, 225, 137, 74, 203,
 112, 249, 195]

 Encoding this octet sequence as a base64url provides the value of the
 code_challenge:

 E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

 The authorization request includes:

Sakimura, et al. Expires January 9, 2016 [Page 19]

Internet-Draft oauth_pkce July 2015

 code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM
 &code_challange_method=S256

 The Authorization server then records the code_challenge and
 code_challenge_method along with the code that is granted to the
 client.

 in the request to the token_endpoint the client includes the code
 received in the authorization response as well as the additional
 paramater:

 code_verifier=dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 The Authorization server retrieves the information for the code
 grant. Based on the recorded code_challange_method being S256, it
 then hashes and base64url encodes the value of code_verifier.
 BASE64URL-ENCODE(SHA256(ASCII("code_verifier")))

 The calculated value is then compared with the value of
 "code_challenge":

 BASE64URL-ENCODE(SHA256(ASCII("code_verifier"))) == code_challenge

 If the two values are equal then the Authorization server can provide
 the tokens as long as there are no other errors in the request. If
 the values are not equal then the request must be rejected, and an
 error returned.

Authors’ Addresses

 Nat Sakimura (editor)
 Nomura Research Institute
 1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
 Chiyoda-ku, Tokyo 100-0005
 Japan

 Phone: +81-3-5533-2111
 Email: n-sakimura@nri.co.jp
 URI: http://nat.sakimura.org/

Sakimura, et al. Expires January 9, 2016 [Page 20]

Internet-Draft oauth_pkce July 2015

 John Bradley
 Ping Identity
 Casilla 177, Sucursal Talagante
 Talagante, RM
 Chile

 Phone: +44 20 8133 3718
 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Naveen Agarwal
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 USA

 Phone: +1 650-253-0000
 Email: naa@google.com
 URI: http://google.com/

Sakimura, et al. Expires January 9, 2016 [Page 21]

OAuth Working Group M. Jones

Internet-Draft A. Nadalin

Intended status: Standards Track Microsoft

Expires: January 21, 2020 B. Campbell, Ed.

 Ping Identity

 J. Bradley

 Yubico

 C. Mortimore

 Salesforce

 July 20, 2019

 OAuth 2.0 Token Exchange

 draft-ietf-oauth-token-exchange-19

Abstract

 This specification defines a protocol for an HTTP- and JSON- based

 Security Token Service (STS) by defining how to request and obtain

 security tokens from OAuth 2.0 authorization servers, including

 security tokens employing impersonation and delegation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 21, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

Jones, et al. Expires January 21, 2020 [Page 1]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Delegation vs. Impersonation Semantics 4

 1.2. Requirements Notation and Conventions 6

 1.3. Terminology . 6

 2. Token Exchange Request and Response 6

 2.1. Request . 6

 2.1.1. Relationship Between Resource, Audience and Scope . . 9

 2.2. Response . 9

 2.2.1. Successful Response 9

 2.2.2. Error Response 11

 2.3. Example Token Exchange 11

 3. Token Type Identifiers 13

 4. JSON Web Token Claims and Introspection Response Parameters . 15

 4.1. "act" (Actor) Claim 15

 4.2. "scope" (Scopes) Claim 17

 4.3. "client_id" (Client Identifier) Claim 18

 4.4. "may_act" (Authorized Actor) Claim 18

 5. Security Considerations 19

 6. Privacy Considerations 20

 7. IANA Considerations . 20

 7.1. OAuth URI Registration 20

 7.1.1. Registry Contents 20

 7.2. OAuth Parameters Registration 21

 7.2.1. Registry Contents 21

 7.3. OAuth Access Token Type Registration 22

 7.3.1. Registry Contents 22

 7.4. JSON Web Token Claims Registration 22

 7.4.1. Registry Contents 22

 7.5. OAuth Token Introspection Response Registration 23

 7.5.1. Registry Contents 23

 7.6. OAuth Extensions Error Registration 23

 7.6.1. Registry Contents 23

 8. References . 24

 8.1. Normative References 24

 8.2. Informative References 24

 Appendix A. Additional Token Exchange Examples 26

 A.1. Impersonation Token Exchange Example 26

 A.1.1. Token Exchange Request 26

 A.1.2. Subject Token Claims 26

 A.1.3. Token Exchange Response 27

Jones, et al. Expires January 21, 2020 [Page 2]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 A.1.4. Issued Token Claims 27

 A.2. Delegation Token Exchange Example 28

 A.2.1. Token Exchange Request 28

 A.2.2. Subject Token Claims 29

 A.2.3. Actor Token Claims 29

 A.2.4. Token Exchange Response 29

 A.2.5. Issued Token Claims 30

 Appendix B. Acknowledgements 31

 Appendix C. Document History 31

 Authors’ Addresses . 35

1. Introduction

 A security token is a set of information that facilitates the sharing

 of identity and security information in heterogeneous environments or

 across security domains. Examples of security tokens include JSON

 Web Tokens (JWTs) [JWT] and SAML 2.0 Assertions

 [OASIS.saml-core-2.0-os]. Security tokens are typically signed to

 achieve integrity and sometimes also encrypted to achieve

 confidentiality. Security tokens are also sometimes described as

 Assertions, such as in [RFC7521].

 A Security Token Service (STS) is a service capable of validating

 security tokens provided to it and issuing new security tokens in

 response, which enables clients to obtain appropriate access

 credentials for resources in heterogeneous environments or across

 security domains. Web Service clients have used WS-Trust [WS-Trust]

 as the protocol to interact with an STS for token exchange. While

 WS-Trust uses XML and SOAP, the trend in modern Web development has

 been towards RESTful patterns and JSON. The OAuth 2.0 Authorization

 Framework [RFC6749] and OAuth 2.0 Bearer Tokens [RFC6750] have

 emerged as popular standards for authorizing third-party

 applications’ access to HTTP and RESTful resources. The conventional

 OAuth 2.0 interaction involves the exchange of some representation of

 resource owner authorization for an access token, which has proven to

 be an extremely useful pattern in practice. However, its input and

 output are somewhat too constrained as is to fully accommodate a

 security token exchange framework.

 This specification defines a protocol extending OAuth 2.0 that

 enables clients to request and obtain security tokens from

 authorization servers acting in the role of an STS. Similar to OAuth

 2.0, this specification focuses on client developer simplicity and

 requires only an HTTP client and JSON parser, which are nearly

 universally available in modern development environments. The STS

 protocol defined in this specification is not itself RESTful (an STS

 doesn’t lend itself particularly well to a REST approach) but does

Jones, et al. Expires January 21, 2020 [Page 3]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 utilize communication patterns and data formats that should be

 familiar to developers accustomed to working with RESTful systems.

 A new grant type for a token exchange request and the associated

 specific parameters for such a request to the token endpoint are

 defined by this specification. A token exchange response is a normal

 OAuth 2.0 response from the token endpoint with a few additional

 parameters defined herein to provide information to the client.

 The entity that makes the request to exchange tokens is considered

 the client in the context of the token exchange interaction.

 However, that does not restrict usage of this profile to traditional

 OAuth clients. An OAuth resource server, for example, might assume

 the role of the client during token exchange in order to trade an

 access token that it received in a protected resource request for a

 new token that is appropriate to include in a call to a backend

 service. The new token might be an access token that is more

 narrowly scoped for the downstream service or it could be an entirely

 different kind of token.

 The scope of this specification is limited to the definition of a

 basic request-and-response protocol for an STS-style token exchange

 utilizing OAuth 2.0. Although a few new JWT claims are defined that

 enable delegation semantics to be expressed, the specific syntax,

 semantics and security characteristics of the tokens themselves (both

 those presented to the authorization server and those obtained by the

 client) are explicitly out of scope and no requirements are placed on

 the trust model in which an implementation might be deployed.

 Additional profiles may provide more detailed requirements around the

 specific nature of the parties and trust involved, such as whether

 signing and/or encryption of tokens is needed or if proof-of-

 possession style tokens will be required or issued; however, such

 details will often be policy decisions made with respect to the

 specific needs of individual deployments and will be configured or

 implemented accordingly.

 The security tokens obtained may be used in a number of contexts, the

 specifics of which are also beyond the scope of this specification.

1.1. Delegation vs. Impersonation Semantics

 One common use case for an STS (as alluded to in the previous

 section) is to allow a resource server A to make calls to a backend

 service C on behalf of the requesting user B. Depending on the local

 site policy and authorization infrastructure, it may be desirable for

 A to use its own credentials to access C along with an annotation of

 some form that A is acting on behalf of B ("delegation"), or for A to

 be granted a limited access credential to C but that continues to

Jones, et al. Expires January 21, 2020 [Page 4]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 identify B as the authorized entity ("impersonation"). Delegation

 and impersonation can be useful concepts in other scenarios involving

 multiple participants as well.

 When principal A impersonates principal B, A is given all the rights

 that B has within some defined rights context and is

 indistinguishable from B in that context. Thus, when principal A

 impersonates principal B, then insofar as any entity receiving such a

 token is concerned, they are actually dealing with B. It is true

 that some members of the identity system might have awareness that

 impersonation is going on, but it is not a requirement. For all

 intents and purposes, when A is impersonating B, A is B within the

 context of the rights authorized by the token. A’s ability to

 impersonate B could be limited in scope or time, or even with a one-

 time-use restriction, whether via the contents of the token or an

 out-of-band mechanism.

 Delegation semantics are different than impersonation semantics,

 though the two are closely related. With delegation semantics,

 principal A still has its own identity separate from B and it is

 explicitly understood that while B may have delegated some of its

 rights to A, any actions taken are being taken by A representing B.

 In a sense, A is an agent for B.

 Delegation and impersonation are not inclusive of all situations.

 When a principal is acting directly on its own behalf, for example,

 neither delegation nor impersonation are in play. They are, however,

 the more common semantics operating for token exchange and, as such,

 are given more direct treatment in this specification.

 Delegation semantics are typically expressed in a token by including

 information about both the primary subject of the token as well as

 the actor to whom that subject has delegated some of its rights.

 Such a token is sometimes referred to as a composite token because it

 is composed of information about multiple subjects. Typically, in

 the request, the "subject_token" represents the identity of the party

 on behalf of whom the token is being requested while the

 "actor_token" represents the identity of the party to whom the access

 rights of the issued token are being delegated. A composite token

 issued by the authorization server will contain information about

 both parties. When and if a composite token is issued is at the

 discretion of the authorization server and applicable policy and

 configuration.

 The specifics of representing a composite token and even whether or

 not such a token will be issued depend on the details of the

 implementation and the kind of token. The representations of

 composite tokens that are not JWTs are beyond the scope of this

Jones, et al. Expires January 21, 2020 [Page 5]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 specification. The "actor_token" request parameter, however, does

 provide a means for providing information about the desired actor and

 the JWT "act" claim can provide a representation of a chain of

 delegation.

1.2. Requirements Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

1.3. Terminology

 This specification uses the terms "access token type", "authorization

 server", "client", "client identifier", "resource server", "token

 endpoint", "token request", and "token response" defined by OAuth 2.0

 [RFC6749], and the terms "Base64url Encoding", "Claim", and "JWT

 Claims Set" defined by JSON Web Token (JWT) [JWT].

2. Token Exchange Request and Response

2.1. Request

 A client requests a security token by making a token request to the

 authorization server’s token endpoint using the extension grant type

 mechanism defined in Section 4.5 of [RFC6749].

 Client authentication to the authorization server is done using the

 normal mechanisms provided by OAuth 2.0. Section 2.3.1 of [RFC6749]

 defines password-based authentication of the client, however, client

 authentication is extensible and other mechanisms are possible. For

 example, [RFC7523] defines client authentication using bearer JSON

 Web Tokens (JWTs) [JWT]. The supported methods of client

 authentication and whether or not to allow unauthenticated or

 unidentified clients are deployment decisions that are at the

 discretion of the authorization server. Note that omitting client

 authentication allows for a compromised token to be leveraged via an

 STS into other tokens by anyone possessing the compromised token.

 Thus client authentication allows for additional authorization checks

 by the STS as to which entities are permitted to impersonate or

 receive delegations from other entities.

 The client makes a token exchange request to the token endpoint with

 an extension grant type using the HTTP "POST" method. The following

 parameters are included in the HTTP request entity-body using the

Jones, et al. Expires January 21, 2020 [Page 6]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 "application/x-www-form-urlencoded" format with a character encoding

 of UTF-8 as described in Appendix B of RFC6749 [RFC6749].

 grant_type

 REQUIRED. The value "urn:ietf:params:oauth:grant-type:token-

 exchange" indicates that a token exchange is being performed.

 resource

 OPTIONAL. A URI that indicates the target service or resource

 where the client intends to use the requested security token.

 This enables the authorization server to apply policy as

 appropriate for the target, such as determining the type and

 content of the token to be issued or if and how the token is to be

 encrypted. In many cases, a client will not have knowledge of the

 logical organization of the systems with which it interacts and

 will only know a URI of the service where it intends to use the

 token. The "resource" parameter allows the client to indicate to

 the authorization server where it intends to use the issued token

 by providing the location, typically as an https URL, in the token

 exchange request in the same form that will be used to access that

 resource. The authorization server will typically have the

 capability to map from a resource URI value to an appropriate

 policy. The value of the "resource" parameter MUST be an absolute

 URI, as specified by Section 4.3 of [RFC3986], which MAY include a

 query component and MUST NOT include a fragment component.

 Multiple "resource" parameters may be used to indicate that the

 issued token is intended to be used at the multiple resources

 listed. See [I-D.ietf-oauth-resource-indicators] for additional

 background and uses of the "resource" parameter.

 audience

 OPTIONAL. The logical name of the target service where the client

 intends to use the requested security token. This serves a

 purpose similar to the "resource" parameter, but with the client

 providing a logical name for the target service. Interpretation

 of the name requires that the value be something that both the

 client and the authorization server understand. An OAuth client

 identifier, a SAML entity identifier [OASIS.saml-core-2.0-os], an

 OpenID Connect Issuer Identifier [OpenID.Core], are examples of

 things that might be used as "audience" parameter values.

 However, "audience" values used with a given authorization server

 must be unique within that server, to ensure that they are

 properly interpreted as the intended type of value. Multiple

 "audience" parameters may be used to indicate that the issued

 token is intended to be used at the multiple audiences listed.

 The "audience" and "resource" parameters may be used together to

 indicate multiple target services with a mix of logical names and

 resource URIs.

Jones, et al. Expires January 21, 2020 [Page 7]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 scope

 OPTIONAL. A list of space-delimited, case-sensitive strings, as

 defined in Section 3.3 of [RFC6749], that allow the client to

 specify the desired scope of the requested security token in the

 context of the service or resource where the token will be used.

 The values and associated semantics of scope are service specific

 and expected to be described in the relevant service

 documentation.

 requested_token_type

 OPTIONAL. An identifier, as described in Section 3, for the type

 of the requested security token. If the requested type is

 unspecified, the issued token type is at the discretion of the

 authorization server and may be dictated by knowledge of the

 requirements of the service or resource indicated by the

 "resource" or "audience" parameter.

 subject_token

 REQUIRED. A security token that represents the identity of the

 party on behalf of whom the request is being made. Typically, the

 subject of this token will be the subject of the security token

 issued in response to the request.

 subject_token_type

 REQUIRED. An identifier, as described in Section 3, that

 indicates the type of the security token in the "subject_token"

 parameter.

 actor_token

 OPTIONAL. A security token that represents the identity of the

 acting party. Typically, this will be the party that is

 authorized to use the requested security token and act on behalf

 of the subject.

 actor_token_type

 An identifier, as described in Section 3, that indicates the type

 of the security token in the "actor_token" parameter. This is

 REQUIRED when the "actor_token" parameter is present in the

 request but MUST NOT be included otherwise.

 In processing the request, the authorization server MUST perform the

 appropriate validation procedures for the indicated token type and,

 if the actor token is present, also perform the appropriate

 validation procedures for its indicated token type. The validity

 criteria and details of any particular token are beyond the scope of

 this document and are specific to the respective type of token and

 its content.

Jones, et al. Expires January 21, 2020 [Page 8]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 In the absence of one-time-use or other semantics specific to the

 token type, the act of performing a token exchange has no impact on

 the validity of the subject token or actor token. Furthermore, the

 exchange is a one-time event and does not create a tight linkage

 between the input and output tokens, so that (for example) while the

 expiration time of the output token may be influenced by that of the

 input token, renewal or extension of the input token is not expected

 to be reflected in the output token’s properties. It may still be

 appropriate or desirable to propagate token revocation events.

 However, doing so is not a general property of the STS protocol and

 would be specific to a particular implementation, token type or

 deployment.

2.1.1. Relationship Between Resource, Audience and Scope

 When requesting a token, the client can indicate the desired target

 service(s) where it intends to use that token by way of the

 "audience" and "resource" parameters, as well as indicating the

 desired scope of the requested token using the "scope" parameter.

 The semantics of such a request are that the client is asking for a

 token with the requested scope that is usable at all the requested

 target services. Effectively, the requested access rights of the

 token are the cartesian product of all the scopes at all the target

 services.

 An authorization server may be unwilling or unable to fulfill any

 token request but the likelihood of an unfulfillable request is

 significantly higher when very broad access rights are being

 solicited. As such, in the absence of specific knowledge about the

 relationship of systems in a deployment, clients should exercise

 discretion in the breadth of the access requested, particularly the

 number of target services. An authorization server can use the

 "invalid_target" error code, defined in Section 2.2.2, to inform a

 client that it requested access to too many target services

 simultaneously.

2.2. Response

 The authorization server responds to a token exchange request with a

 normal OAuth 2.0 response from the token endpoint, as specified in

 Section 5 of [RFC6749]. Additional details and explanation are

 provided in the following subsections.

2.2.1. Successful Response

 If the request is valid and meets all policy and other criteria of

 the authorization server, a successful token response is constructed

 by adding the following parameters to the entity-body of the HTTP

Jones, et al. Expires January 21, 2020 [Page 9]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 response using the "application/json" media type, as specified by

 [RFC8259], and an HTTP 200 status code. The parameters are

 serialized into a JavaScript Object Notation (JSON) structure by

 adding each parameter at the top level. Parameter names and string

 values are included as JSON strings. Numerical values are included

 as JSON numbers. The order of parameters does not matter and can

 vary.

 access_token

 REQUIRED. The security token issued by the authorization server

 in response to the token exchange request. The "access_token"

 parameter from Section 5.1 of [RFC6749] is used here to carry the

 requested token, which allows this token exchange protocol to use

 the existing OAuth 2.0 request and response constructs defined for

 the token endpoint. The identifier "access_token" is used for

 historical reasons and the issued token need not be an OAuth

 access token.

 issued_token_type

 REQUIRED. An identifier, as described in Section 3, for the

 representation of the issued security token.

 token_type

 REQUIRED. A case-insensitive value specifying the method of using

 the access token issued, as specified in Section 7.1 of [RFC6749].

 It provides the client with information about how to utilize the

 access token to access protected resources. For example, a value

 of "Bearer", as specified in [RFC6750], indicates that the issued

 security token is a bearer token and the client can simply present

 it as is without any additional proof of eligibility beyond the

 contents of the token itself. Note that the meaning of this

 parameter is different from the meaning of the "issued_token_type"

 parameter, which declares the representation of the issued

 security token; the term "token type" is more typically used with

 the aforementioned meaning as the structural or syntactical

 representation of the security token, as it is in all

 "*_token_type" parameters in this specification. If the issued

 token is not an access token or usable as an access token, then

 the "token_type" value "N_A" is used to indicate that an OAuth 2.0

 "token_type" identifier is not applicable in that context.

 expires_in

 RECOMMENDED. The validity lifetime, in seconds, of the token

 issued by the authorization server. Oftentimes the client will

 not have the inclination or capability to inspect the content of

 the token and this parameter provides a consistent and token-type-

 agnostic indication of how long the token can be expected to be

Jones, et al. Expires January 21, 2020 [Page 10]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 valid. For example, the value 1800 denotes that the token will

 expire in thirty minutes from the time the response was generated.

 scope

 OPTIONAL, if the scope of the issued security token is identical

 to the scope requested by the client; otherwise, REQUIRED.

 refresh_token

 OPTIONAL. A refresh token will typically not be issued when the

 exchange is of one temporary credential (the subject_token) for a

 different temporary credential (the issued token) for use in some

 other context. A refresh token can be issued in cases where the

 client of the token exchange needs the ability to access a

 resource even when the original credential is no longer valid

 (e.g., user-not-present or offline scenarios where there is no

 longer any user entertaining an active session with the client).

 Profiles or deployments of this specification should clearly

 document the conditions under which a client should expect a

 refresh token in response to "urn:ietf:params:oauth:grant-

 type:token-exchange" grant type requests.

2.2.2. Error Response

 If the request itself is not valid or if either the "subject_token"

 or "actor_token" are invalid for any reason, or are unacceptable

 based on policy, the authorization server MUST construct an error

 response, as specified in Section 5.2 of [RFC6749]. The value of the

 "error" parameter MUST be the "invalid_request" error code.

 If the authorization server is unwilling or unable to issue a token

 for any target service indicated by the "resource" or "audience"

 parameters, the "invalid_target" error code SHOULD be used in the

 error response.

 The authorization server MAY include additional information regarding

 the reasons for the error using the "error_description" as discussed

 in Section 5.2 of [RFC6749].

 Other error codes may also be used, as appropriate.

2.3. Example Token Exchange

 The following example demonstrates a hypothetical token exchange in

 which an OAuth resource server assumes the role of the client during

 the exchange. It trades an access token, which it received in a

 protected resource request, for a new token that it will use to call

 to a backend service (extra line breaks and indentation in the

 examples are for display purposes only).

Jones, et al. Expires January 21, 2020 [Page 11]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 Figure 1 shows the resource server receiving a protected resource

 request containing an OAuth access token in the Authorization header,

 as specified in Section 2.1 of [RFC6750].

 GET /resource HTTP/1.1

 Host: frontend.example.com

 Authorization: Bearer accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC

 Figure 1: Protected Resource Request

 In Figure 2, the resource server assumes the role of client for the

 token exchange and the access token from the request in Figure 1 is

 sent to the authorization server using a request as specified in

 Section 2.1. The value of the "subject_token" parameter carries the

 access token and the value of the "subject_token_type" parameter

 indicates that it is an OAuth 2.0 access token. The resource server,

 acting in the role of the client, uses its identifier and secret to

 authenticate to the authorization server using the HTTP Basic

 authentication scheme. The "resource" parameter indicates the

 location of the backend service, https://backend.example.com/api,

 where the issued token will be used.

 POST /as/token.oauth2 HTTP/1.1

 Host: as.example.com

 Authorization: Basic cnMwODpsb25nLXNlY3VyZS1yYW5kb20tc2VjcmV0

 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Atoken-exchange

 &resource=https%3A%2F%2Fbackend.example.com%2Fapi

 &subject_token=accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC

 &subject_token_type=

 urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Aaccess_token

 Figure 2: Token Exchange Request

 The authorization server validates the client credentials and the

 "subject_token" presented in the token exchange request. From the

 "resource" parameter, the authorization server is able to determine

 the appropriate policy to apply to the request and issues a token

 suitable for use at https://backend.example.com. The "access_token"

 parameter of the response shown in Figure 3 contains the new token,

 which is itself a bearer OAuth access token that is valid for one

 minute. The token happens to be a JWT; however, its structure and

 format are opaque to the client so the "issued_token_type" indicates

 only that it is an access token.

Jones, et al. Expires January 21, 2020 [Page 12]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 HTTP/1.1 200 OK

 Content-Type: application/json

 Cache-Control: no-cache, no-store

 {

 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6IjllciJ9.eyJhdWQiOiJo

 dHRwczovL2JhY2tlbmQuZXhhbXBsZS5jb20iLCJpc3MiOiJodHRwczovL2FzLmV

 4YW1wbGUuY29tIiwiZXhwIjoxNDQxOTE3NTkzLCJpYXQiOjE0NDE5MTc1MzMsIn

 N1YiI6ImJkY0BleGFtcGxlLmNvbSIsInNjb3BlIjoiYXBpIn0.40y3ZgQedw6rx

 f59WlwHDD9jryFOr0_Wh3CGozQBihNBhnXEQgU85AI9x3KmsPottVMLPIWvmDCM

 y5-kdXjwhw",

 "issued_token_type":

 "urn:ietf:params:oauth:token-type:access_token",

 "token_type":"Bearer",

 "expires_in":60

 }

 Figure 3: Token Exchange Response

 The resource server can then use the newly acquired access token in

 making a request to the backend server as illustrated in Figure 4.

 GET /api HTTP/1.1

 Host: backend.example.com

 Authorization: Bearer eyJhbGciOiJFUzI1NiIsImtpZCI6IjllciJ9.eyJhdWQ

 iOiJodHRwczovL2JhY2tlbmQuZXhhbXBsZS5jb20iLCJpc3MiOiJodHRwczovL2

 FzLmV4YW1wbGUuY29tIiwiZXhwIjoxNDQxOTE3NTkzLCJpYXQiOjE0NDE5MTc1M

 zMsInN1YiI6ImJkY0BleGFtcGxlLmNvbSIsInNjb3BlIjoiYXBpIn0.40y3ZgQe

 dw6rxf59WlwHDD9jryFOr0_Wh3CGozQBihNBhnXEQgU85AI9x3KmsPottVMLPIW

 vmDCMy5-kdXjwhw

 Figure 4: Backend Protected Resource Request

 Additional examples can be found in Appendix A.

3. Token Type Identifiers

 Several parameters in this specification utilize an identifier as the

 value to describe the token in question. Specifically, they are the

 "requested_token_type", "subject_token_type", "actor_token_type"

 parameters of the request and the "issued_token_type" member of the

 response. Token type identifiers are URIs. Token Exchange can work

 with both tokens issued by other parties and tokens from the given

 authorization server. For the former the token type identifier

 indicates the syntax (e.g., JWT or SAML 2.0) so the authorization

 server can parse it; for the latter it indicates what the given

 authorization server issued it for (e.g., access_token or

 refresh_token).

Jones, et al. Expires January 21, 2020 [Page 13]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 The following token type identifiers are defined by this

 specification. Other URIs MAY be used to indicate other token types.

 urn:ietf:params:oauth:token-type:access_token

 Indicates that the token is an OAuth 2.0 access token issued by

 the given authorization server.

 urn:ietf:params:oauth:token-type:refresh_token

 Indicates that the token is an OAuth 2.0 refresh token issued by

 the given authorization server.

 urn:ietf:params:oauth:token-type:id_token

 Indicates that the token is an ID Token, as defined in Section 2

 of [OpenID.Core].

 urn:ietf:params:oauth:token-type:saml1

 Indicates that the token is a base64url-encoded SAML 1.1

 [OASIS.saml-core-1.1] assertion.

 urn:ietf:params:oauth:token-type:saml2

 Indicates that the token is a base64url-encoded SAML 2.0

 [OASIS.saml-core-2.0-os] assertion.

 The value "urn:ietf:params:oauth:token-type:jwt", which is defined in

 Section 9 of [JWT], indicates that the token is a JWT.

 The distinction between an access token and a JWT is subtle. An

 access token represents a delegated authorization decision, whereas

 JWT is a token format. An access token can be formatted as a JWT but

 doesn’t necessarily have to be. And a JWT might well be an access

 token but not all JWTs are access tokens. The intent of this

 specification is that "urn:ietf:params:oauth:token-type:access_token"

 be an indicator that the token is a typical OAuth access token issued

 by the authorization server in question, opaque to the client, and

 usable the same manner as any other access token obtained from that

 authorization server. (It could well be a JWT, but the client isn’t

 and needn’t be aware of that fact.) Whereas,

 "urn:ietf:params:oauth:token-type:jwt" is to indicate specifically

 that a JWT is being requested or sent (perhaps in a cross-domain use-

 case where the JWT is used as an authorization grant to obtain an

 access token from a different authorization server as is facilitated

 by [RFC7523]).

 Note that for tokens which are binary in nature, the URI used for

 conveying them needs to be associated with the semantics of a base64

 or other encoding suitable for usage with HTTP and OAuth.

Jones, et al. Expires January 21, 2020 [Page 14]

Internet-Draft OAuth 2.0 Token Exchange July 2019

4. JSON Web Token Claims and Introspection Response Parameters

 It is useful to have defined mechanisms to express delegation within

 a token as well as to express authorization to delegate or

 impersonate. Although the token exchange protocol described herein

 can be used with any type of token, this section defines claims to

 express such semantics specifically for JWTs and in an OAuth 2.0

 Token Introspection [RFC7662] response. Similar definitions for

 other types of tokens are possible but beyond the scope of this

 specification.

 Note that the claims not established herein but used in examples and

 descriptions, such as "iss", "sub", "exp", etc., are defined by

 [JWT].

4.1. "act" (Actor) Claim

 The "act" (actor) claim provides a means within a JWT to express that

 delegation has occurred and identify the acting party to whom

 authority has been delegated. The "act" claim value is a JSON object

 and members in the JSON object are claims that identify the actor.

 The claims that make up the "act" claim identify and possibly provide

 additional information about the actor. For example, the combination

 of the two claims "iss" and "sub" might be necessary to uniquely

 identify an actor.

 However, claims within the "act" claim pertain only to the identity

 of the actor and are not relevant to the validity of the containing

 JWT in the same manner as the top-level claims. Consequently, non-

 identity claims (e.g., "exp", "nbf", and "aud") are not meaningful

 when used within an "act" claim, and therefore are not used.

Jones, et al. Expires January 21, 2020 [Page 15]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 Figure 5 illustrates the "act" (actor) claim within a JWT Claims Set.

 The claims of the token itself are about user@example.com while the

 "act" claim indicates that admin@example.com is the current actor.

 {

 "aud":"https://consumer.example.com",

 "iss":"https://issuer.example.com",

 "exp":1443904177,

 "nbf":1443904077,

 "sub":"user@example.com",

 "act":

 {

 "sub":"admin@example.com"

 }

 }

 Figure 5: Actor Claim

 A chain of delegation can be expressed by nesting one "act" claim

 within another. The outermost "act" claim represents the current

 actor while nested "act" claims represent prior actors. The least

 recent actor is the most deeply nested. The nested "act" claims

 serve as a history trail that connects the initial request and

 subject through the various delegation steps undertaken before

 reaching the current actor. In this sense, the current actor is

 considered to include the entire authorization/delegation history,

 leading naturally to the nested structure described here.

 For the purpose of applying access control policy, the consumer of a

 token MUST only consider the token’s top-level claims and the party

 identified as the current actor by the "act" claim. Prior actors

 identified by any nested "act" claims are informational only and are

 not to be considered in access control decisions.

Jones, et al. Expires January 21, 2020 [Page 16]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 The following example in Figure 6 illustrates nested "act" (actor)

 claims within a JWT Claims Set. The claims of the token itself are

 about user@example.com while the "act" claim indicates that the

 system https://service16.example.com is the current actor and

 https://service77.example.com was a prior actor. Such a token might

 come about as the result of service16 receiving a token in a call

 from service77 and exchanging it for a token suitable to call

 service26 while the authorization server notes the situation in the

 newly issued token.

 {

 "aud":"https://service26.example.com",

 "iss":"https://issuer.example.com",

 "exp":1443904100,

 "nbf":1443904000,

 "sub":"user@example.com",

 "act":

 {

 "sub":"https://service16.example.com",

 "act":

 {

 "sub":"https://service77.example.com"

 }

 }

 }

 Figure 6: Nested Actor Claim

 When included as a top-level member of an OAuth token introspection

 response, "act" has the same semantics and format as the claim of the

 same name.

4.2. "scope" (Scopes) Claim

 The value of the "scope" claim is a JSON string containing a space-

 separated list of scopes associated with the token, in the format

 described in Section 3.3 of [RFC6749].

Jones, et al. Expires January 21, 2020 [Page 17]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 Figure 7 illustrates the "scope" claim within a JWT Claims Set.

 {

 "aud":"https://consumer.example.com",

 "iss":"https://issuer.example.com",

 "exp":1443904177,

 "nbf":1443904077,

 "sub":"dgaf4mvfs75Fci_FL3heQA",

 "scope":"email profile phone address"

 }

 Figure 7: Scopes Claim

 OAuth 2.0 Token Introspection [RFC7662] already defines the "scope"

 parameter to convey the scopes associated with the token.

4.3. "client_id" (Client Identifier) Claim

 The "client_id" claim carries the client identifier of the OAuth 2.0

 [RFC6749] client that requested the token.

 The following example in Figure 8 illustrates the "client_id" claim

 within a JWT Claims Set indicating an OAuth 2.0 client with

 "s6BhdRkqt3" as its identifier.

 {

 "aud":"https://consumer.example.com",

 "iss":"https://issuer.example.com",

 "exp":1443904177,

 "sub":"user@example.com",

 "client_id":"s6BhdRkqt3"

 }

 Figure 8: Client Identifier Claim

 OAuth 2.0 Token Introspection [RFC7662] already defines the

 "client_id" parameter as the client identifier for the OAuth 2.0

 client that requested the token.

4.4. "may_act" (Authorized Actor) Claim

 The "may_act" claim makes a statement that one party is authorized to

 become the actor and act on behalf of another party. The claim might

 be used, for example, when a "subject_token" is presented to the

 token endpoint in a token exchange request and "may_act" claim in the

 subject token can be used by the authorization server to determine

 whether the client (or party identified in the "actor_token") is

 authorized to engage in the requested delegation or impersonation.

Jones, et al. Expires January 21, 2020 [Page 18]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 The claim value is a JSON object and members in the JSON object are

 claims that identify the party that is asserted as being eligible to

 act for the party identified by the JWT containing the claim. The

 claims that make up the "may_act" claim identify and possibly provide

 additional information about the authorized actor. For example, the

 combination of the two claims "iss" and "sub" are sometimes necessary

 to uniquely identify an authorized actor, while the "email" claim

 might be used to provide additional useful information about that

 party.

 However, claims within the "may_act" claim pertain only to the

 identity of that party and are not relevant to the validity of the

 containing JWT in the same manner as top-level claims. Consequently,

 claims such as "exp", "nbf", and "aud" are not meaningful when used

 within a "may_act" claim, and therefore are not used.

 Figure 9 illustrates the "may_act" claim within a JWT Claims Set.

 The claims of the token itself are about user@example.com while the

 "may_act" claim indicates that admin@example.com is authorized to act

 on behalf of user@example.com.

 {

 "aud":"https://consumer.example.com",

 "iss":"https://issuer.example.com",

 "exp":1443904177,

 "nbf":1443904077,

 "sub":"user@example.com",

 "may_act":

 {

 "sub":"admin@example.com"

 }

 }

 Figure 9: Authorized Actor Claim

 When included as a top-level member of an OAuth token introspection

 response, "may_act" has the same semantics and format as the claim of

 the same name.

5. Security Considerations

 Much of the guidance from Section 10 of [RFC6749], the Security

 Considerations in The OAuth 2.0 Authorization Framework, is also

 applicable here. Furthermore, [RFC6819] provides additional security

 considerations for OAuth and [I-D.ietf-oauth-security-topics] has

 updated security guidance based on deployment experience and new

 threats that have emerged since OAuth 2.0 was originally published.

Jones, et al. Expires January 21, 2020 [Page 19]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 All of the normal security issues that are discussed in [JWT],

 especially in relationship to comparing URIs and dealing with

 unrecognized values, also apply here.

 In addition, both delegation and impersonation introduce unique

 security issues. Any time one principal is delegated the rights of

 another principal, the potential for abuse is a concern. The use of

 the "scope" claim (in addition to other typical constraints such as a

 limited token lifetime) is suggested to mitigate potential for such

 abuse, as it restricts the contexts in which the delegated rights can

 be exercised.

6. Privacy Considerations

 Tokens employed in the context of the functionality described herein

 may contain privacy-sensitive information and, to prevent disclosure

 of such information to unintended parties, MUST only be transmitted

 over encrypted channels, such as Transport Layer Security (TLS). In

 cases where it is desirable to prevent disclosure of certain

 information to the client, the token MUST be encrypted to its

 intended recipient. Deployments SHOULD determine the minimally

 necessary amount of data and only include such information in issued

 tokens. In some cases, data minimization may include representing

 only an anonymous or pseudonymous user.

7. IANA Considerations

7.1. OAuth URI Registration

 This specification registers the following values in the IANA "OAuth

 URI" registry [IANA.OAuth.Parameters] established by [RFC6755].

7.1.1. Registry Contents

 o URN: urn:ietf:params:oauth:grant-type:token-exchange

 o Common Name: Token exchange grant type for OAuth 2.0

 o Change controller: IESG

 o Specification Document: Section 2.1 of [[this specification]]

 o URN: urn:ietf:params:oauth:token-type:access_token

 o Common Name: Token type URI for an OAuth 2.0 access token

 o Change controller: IESG

 o Specification Document: Section 3 of [[this specification]]

 o URN: urn:ietf:params:oauth:token-type:refresh_token

 o Common Name: Token type URI for an OAuth 2.0 refresh token

 o Change controller: IESG

 o Specification Document: Section 3 of [[this specification]]

Jones, et al. Expires January 21, 2020 [Page 20]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 o URN: urn:ietf:params:oauth:token-type:id_token

 o Common Name: Token type URI for an ID Token

 o Change controller: IESG

 o Specification Document: Section 3 of [[this specification]]

 o URN: urn:ietf:params:oauth:token-type:saml1

 o Common Name: Token type URI for a base64url-encoded SAML 1.1

 assertion

 o Change Controller: IESG

 o Specification Document: Section 3 of [[this specification]]

 o URN: urn:ietf:params:oauth:token-type:saml2

 o Common Name: Token type URI for a base64url-encoded SAML 2.0

 assertion

 o Change Controller: IESG

 o Specification Document: Section 3 of [[this specification]]

7.2. OAuth Parameters Registration

 This specification registers the following values in the IANA "OAuth

 Parameters" registry [IANA.OAuth.Parameters] established by

 [RFC6749].

7.2.1. Registry Contents

 o Parameter name: resource

 o Parameter usage location: token request

 o Change controller: IESG

 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: audience

 o Parameter usage location: token request

 o Change controller: IESG

 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: requested_token_type

 o Parameter usage location: token request

 o Change controller: IESG

 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: subject_token

 o Parameter usage location: token request

 o Change controller: IESG

 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: subject_token_type

 o Parameter usage location: token request

 o Change controller: IESG

Jones, et al. Expires January 21, 2020 [Page 21]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: actor_token

 o Parameter usage location: token request

 o Change controller: IESG

 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: actor_token_type

 o Parameter usage location: token request

 o Change controller: IESG

 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: issued_token_type

 o Parameter usage location: token response

 o Change controller: IESG

 o Specification document(s): Section 2.2.1 of [[this specification

]]

7.3. OAuth Access Token Type Registration

 This specification registers the following access token type in the

 IANA "OAuth Access Token Types" registry [IANA.OAuth.Parameters]

 established by [RFC6749].

7.3.1. Registry Contents

 o Type name: N_A

 o Additional Token Endpoint Response Parameters: (none)

 o HTTP Authentication Scheme(s): (none)

 o Change controller: IESG

 o Specification document(s): Section 2.2.1 of [[this specification

]]

7.4. JSON Web Token Claims Registration

 This specification registers the following Claims in the IANA "JSON

 Web Token Claims" registry [IANA.JWT.Claims] established by [JWT].

7.4.1. Registry Contents

 o Claim Name: "act"

 o Claim Description: Actor

 o Change Controller: IESG

 o Specification Document(s): Section 4.1 of [[this specification]]

 o Claim Name: "scope"

 o Claim Description: Scope Values

 o Change Controller: IESG

Jones, et al. Expires January 21, 2020 [Page 22]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 o Specification Document(s): Section 4.2 of [[this specification]]

 o Claim Name: "client_id"

 o Claim Description: Client Identifier

 o Change Controller: IESG

 o Specification Document(s): Section 4.3 of [[this specification]]

 o Claim Name: "may_act"

 o Claim Description: Authorized Actor - the party that is authorized

 to become the actor

 o Change Controller: IESG

 o Specification Document(s): Section 4.4 of [[this specification]]

7.5. OAuth Token Introspection Response Registration

 This specification registers the following values in the IANA "OAuth

 Token Introspection Response" registry [IANA.OAuth.Parameters]

 established by [RFC7662].

7.5.1. Registry Contents

 o Claim Name: "act"

 o Claim Description: Actor

 o Change Controller: IESG

 o Specification Document(s): Section 4.1 of [[this specification]]

 o Claim Name: "may_act"

 o Claim Description: Authorized Actor - the party that is authorized

 to become the actor

 o Change Controller: IESG

 o Specification Document(s): Section 4.4 of [[this specification]]

7.6. OAuth Extensions Error Registration

 This specification registers the following values in the IANA "OAuth

 Extensions Error" registry [IANA.OAuth.Parameters] established by

 [RFC6749].

7.6.1. Registry Contents

 o Error Name: "invalid_target"

 o Error Usage Location: token error response

 o Related Protocol Extension: OAuth 2.0 Token Exchange

 o Change Controller: IETF

 o Specification Document(s): Section 2.2.2 of [[this specification

]]

Jones, et al. Expires January 21, 2020 [Page 23]

Internet-Draft OAuth 2.0 Token Exchange July 2019

8. References

8.1. Normative References

 [IANA.JWT.Claims]

 IANA, "JSON Web Token Claims",

 <http://www.iana.org/assignments/jwt>.

 [IANA.OAuth.Parameters]

 IANA, "OAuth Parameters",

 <http://www.iana.org/assignments/oauth-parameters>.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

 <http://tools.ietf.org/html/rfc7519>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

 Resource Identifier (URI): Generic Syntax", STD 66,

 RFC 3986, DOI 10.17487/RFC3986, January 2005,

 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

 RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",

 RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data

 Interchange Format", STD 90, RFC 8259,

 DOI 10.17487/RFC8259, December 2017,

 <https://www.rfc-editor.org/info/rfc8259>.

8.2. Informative References

Jones, et al. Expires January 21, 2020 [Page 24]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 [I-D.ietf-oauth-resource-indicators]

 Campbell, B., Bradley, J., and H. Tschofenig, "Resource

 Indicators for OAuth 2.0", draft-ietf-oauth-resource-

 indicators-02 (work in progress), January 2019.

 [I-D.ietf-oauth-security-topics]

 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,

 "OAuth 2.0 Security Best Current Practice", draft-ietf-

 oauth-security-topics-13 (work in progress), July 2019.

 [OASIS.saml-core-1.1]

 Maler, E., Mishra, P., and R. Philpott, "Assertions and

 Protocol for the OASIS Security Assertion Markup Language

 (SAML) V1.1", OASIS Standard oasis-sstc-saml-core-1.1,

 September 2003.

 [OASIS.saml-core-2.0-os]

 Cantor, S., Kemp, J., Philpott, R., and E. Maler,

 "Assertions and Protocol for the OASIS Security Assertion

 Markup Language (SAML) V2.0", OASIS Standard saml-core-

 2.0-os, March 2005.

 [OpenID.Core]

 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and

 C. Mortimore, "OpenID Connect Core 1.0", November 2014,

 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

 Framework: Bearer Token Usage", RFC 6750,

 DOI 10.17487/RFC6750, October 2012,

 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace

 for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,

 <https://www.rfc-editor.org/info/rfc6755>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0

 Threat Model and Security Considerations", RFC 6819,

 DOI 10.17487/RFC6819, January 2013,

 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7521] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,

 "Assertion Framework for OAuth 2.0 Client Authentication

 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,

 May 2015, <https://www.rfc-editor.org/info/rfc7521>.

Jones, et al. Expires January 21, 2020 [Page 25]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token

 (JWT) Profile for OAuth 2.0 Client Authentication and

 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May

 2015, <https://www.rfc-editor.org/info/rfc7523>.

 [WS-Trust]

 Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., and H.

 Granqvist, "WS-Trust 1.4", February 2012,

 <http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/

 ws-trust.html>.

Appendix A. Additional Token Exchange Examples

 Two example token exchanges are provided in the following sections

 illustrating impersonation and delegation, respectively (with extra

 line breaks and indentation for display purposes only).

A.1. Impersonation Token Exchange Example

A.1.1. Token Exchange Request

 In the following token exchange request, a client is requesting a

 token with impersonation semantics (with only a "subject_token" and

 no "actor_token", delegation is impossible). The client tells the

 authorization server that it needs a token for use at the target

 service with the logical name "urn:example:cooperation-context".

 POST /as/token.oauth2 HTTP/1.1

 Host: as.example.com

 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Atoken-exchange

 &audience=urn%3Aexample%3Acooperation-context

 &subject_token=eyJhbGciOiJFUzI1NiIsImtpZCI6IjE2In0.eyJhdWQiOiJodHRwc

 zovL2FzLmV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9vcmlnaW5hbC1pc3N1ZXI

 uZXhhbXBsZS5uZXQiLCJleHAiOjE0NDE5MTA2MDAsIm5iZiI6MTQ0MTkwOTAwMCwic

 3ViIjoiYmRjQGV4YW1wbGUubmV0Iiwic2NvcGUiOiJvcmRlcnMgcHJvZmlsZSBoaXN

 0b3J5In0.PRBg-jXn4cJuj1gmYXFiGkZzRuzbXZ_sDxdE98ddW44ufsbWLKd3JJ1VZ

 hF64pbTtfjy4VXFVBDaQpKjn5JzAw

 &subject_token_type=urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Ajwt

 Figure 10: Token Exchange Request

A.1.2. Subject Token Claims

 The "subject_token" in the prior request is a JWT and the decoded JWT

 Claims Set is shown here. The JWT is intended for consumption by the

 authorization server within a specific time window. The subject of

Jones, et al. Expires January 21, 2020 [Page 26]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 the JWT ("bdc@example.net") is the party on behalf of whom the new

 token is being requested.

 {

 "aud":"https://as.example.com",

 "iss":"https://original-issuer.example.net",

 "exp":1441910600,

 "nbf":1441909000,

 "sub":"bdc@example.net",

 "scope":"orders profile history"

 }

 Figure 11: Subject Token Claims

A.1.3. Token Exchange Response

 The "access_token" parameter of the token exchange response shown

 below contains the new token that the client requested. The other

 parameters of the response indicate that the token is a bearer access

 token that expires in an hour.

 HTTP/1.1 200 OK

 Content-Type: application/json

 Cache-Control: no-cache, no-store

 {

 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6IjcyIn0.eyJhdWQiOiJ1cm4

 6ZXhhbXBsZTpjb29wZXJhdGlvbi1jb250ZXh0IiwiaXNzIjoiaHR0cHM6Ly9hcy5l

 eGFtcGxlLmNvbSIsImV4cCI6MTQ0MTkxMzYxMCwic3ViIjoiYmRjQGV4YW1wbGUub

 mV0Iiwic2NvcGUiOiJvcmRlcnMgcHJvZmlsZSBoaXN0b3J5In0.rMdWpSGNACTvnF

 uOL74sYZ6MVuld2Z2WkGLmQeR9ztj6w2OXraQlkJmGjyiCq24kcB7AI2VqVxl3wSW

 nVKh85A",

 "issued_token_type":

 "urn:ietf:params:oauth:token-type:access_token",

 "token_type":"Bearer",

 "expires_in":3600

 }

 Figure 12: Token Exchange Response

A.1.4. Issued Token Claims

 The decoded JWT Claims Set of the issued token is shown below. The

 new JWT is issued by the authorization server and intended for

 consumption by a system entity known by the logical name

 "urn:example:cooperation-context" any time before its expiration.

 The subject ("sub") of the JWT is the same as the subject the token

 used to make the request, which effectively enables the client to

Jones, et al. Expires January 21, 2020 [Page 27]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 impersonate that subject at the system entity known by the logical

 name of "urn:example:cooperation-context" by using the token.

 {

 "aud":"urn:example:cooperation-context",

 "iss":"https://as.example.com",

 "exp":1441913610,

 "sub":"bdc@example.net",

 "scope":"orders profile history"

 }

 Figure 13: Issued Token Claims

A.2. Delegation Token Exchange Example

A.2.1. Token Exchange Request

 In the following token exchange request, a client is requesting a

 token and providing both a "subject_token" and an "actor_token". The

 client tells the authorization server that it needs a token for use

 at the target service with the logical name "urn:example:cooperation-

 context". Policy at the authorization server dictates that the

 issued token be a composite.

 POST /as/token.oauth2 HTTP/1.1

 Host: as.example.com

 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Atoken-exchange

 &audience=urn%3Aexample%3Acooperation-context

 &subject_token=eyJhbGciOiJFUzI1NiIsImtpZCI6IjE2In0.eyJhdWQiOiJodHRwc

 zovL2FzLmV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9vcmlnaW5hbC1pc3N1ZXI

 uZXhhbXBsZS5uZXQiLCJleHAiOjE0NDE5MTAwNjAsInNjb3BlIjoic3RhdHVzIGZlZ

 WQiLCJzdWIiOiJ1c2VyQGV4YW1wbGUubmV0IiwibWF5X2FjdCI6eyJzdWIiOiJhZG1

 pbkBleGFtcGxlLm5ldCJ9fQ.4rPRSWihQbpMIgAmAoqaJojAxj-p2X8_fAtAGTXrvM

 xU-eEZHnXqY0_AOZgLdxw5DyLzua8H_I10MCcckF-Q_g

 &subject_token_type=urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Ajwt

 &actor_token=eyJhbGciOiJFUzI1NiIsImtpZCI6IjE2In0.eyJhdWQiOiJodHRwczo

 vL2FzLmV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9vcmlnaW5hbC1pc3N1ZXIuZ

 XhhbXBsZS5uZXQiLCJleHAiOjE0NDE5MTAwNjAsInN1YiI6ImFkbWluQGV4YW1wbGU

 ubmV0In0.7YQ-3zPfhUvzje5oqw8COCvN5uP6NsKik9CVV6cAOf4QKgM-tKfiOwcgZ

 oUuDL2tEs6tqPlcBlMjiSzEjm3yBg

 &actor_token_type=urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Ajwt

 Figure 14: Token Exchange Request

Jones, et al. Expires January 21, 2020 [Page 28]

Internet-Draft OAuth 2.0 Token Exchange July 2019

A.2.2. Subject Token Claims

 The "subject_token" in the prior request is a JWT and the decoded JWT

 Claims Set is shown here. The JWT is intended for consumption by the

 authorization server before a specific expiration time. The subject

 of the JWT ("user@example.net") is the party on behalf of whom the

 new token is being requested.

 {

 "aud":"https://as.example.com",

 "iss":"https://original-issuer.example.net",

 "exp":1441910060,

 "scope":"status feed",

 "sub":"user@example.net",

 "may_act":

 {

 "sub":"admin@example.net"

 }

 }

 Figure 15: Subject Token Claims

A.2.3. Actor Token Claims

 The "actor_token" in the prior request is a JWT and the decoded JWT

 Claims Set is shown here. This JWT is also intended for consumption

 by the authorization server before a specific expiration time. The

 subject of the JWT ("admin@example.net") is the actor that will wield

 the security token being requested.

 {

 "aud":"https://as.example.com",

 "iss":"https://original-issuer.example.net",

 "exp":1441910060,

 "sub":"admin@example.net"

 }

 Figure 16: Actor Token Claims

A.2.4. Token Exchange Response

 The "access_token" parameter of the token exchange response shown

 below contains the new token that the client requested. The other

 parameters of the response indicate that the token is a JWT that

 expires in an hour and that the access token type is not applicable

 since the issued token is not an access token.

Jones, et al. Expires January 21, 2020 [Page 29]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 HTTP/1.1 200 OK

 Content-Type: application/json

 Cache-Control: no-cache, no-store

 {

 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6IjcyIn0.eyJhdWQiOiJ1cm4

 6ZXhhbXBsZTpjb29wZXJhdGlvbi1jb250ZXh0IiwiaXNzIjoiaHR0cHM6Ly9hcy5l

 eGFtcGxlLmNvbSIsImV4cCI6MTQ0MTkxMzYxMCwic2NvcGUiOiJzdGF0dXMgZmVlZ

 CIsInN1YiI6InVzZXJAZXhhbXBsZS5uZXQiLCJhY3QiOnsic3ViIjoiYWRtaW5AZX

 hhbXBsZS5uZXQifX0.3paKl9UySKYB5ng6_cUtQ2qlO8Rc_y7Mea7IwEXTcYbNdwG

 9-G1EKCFe5fW3H0hwX-MSZ49Wpcb1SiAZaOQBtw",

 "issued_token_type":"urn:ietf:params:oauth:token-type:jwt",

 "token_type":"N_A",

 "expires_in":3600

 }

 Figure 17: Token Exchange Response

A.2.5. Issued Token Claims

 The decoded JWT Claims Set of the issued token is shown below. The

 new JWT is issued by the authorization server and intended for

 consumption by a system entity known by the logical name

 "urn:example:cooperation-context" any time before its expiration.

 The subject ("sub") of the JWT is the same as the subject of the

 "subject_token" used to make the request. The actor ("act") of the

 JWT is the same as the subject of the "actor_token" used to make the

 request. This indicates delegation and identifies

 "admin@example.net" as the current actor to whom authority has been

 delegated to act on behalf of "user@example.net".

 {

 "aud":"urn:example:cooperation-context",

 "iss":"https://as.example.com",

 "exp":1441913610,

 "scope":"status feed",

 "sub":"user@example.net",

 "act":

 {

 "sub":"admin@example.net"

 }

 }

 Figure 18: Issued Token Claims

Jones, et al. Expires January 21, 2020 [Page 30]

Internet-Draft OAuth 2.0 Token Exchange July 2019

Appendix B. Acknowledgements

 This specification was developed within the OAuth Working Group,

 which includes dozens of active and dedicated participants. It was

 produced under the chairmanship of Hannes Tschofenig, Derek Atkins,

 and Rifaat Shekh-Yusef with Kathleen Moriarty, Stephen Farrell, Eric

 Rescorla, Roman Danyliw, and Benjamin Kaduk serving as Security Area

 Directors. The following individuals contributed ideas, feedback,

 and wording to this specification:

 Caleb Baker, Vittorio Bertocci, Mike Brown, Thomas Broyer, Roman

 Danyliw, William Denniss, Vladimir Dzhuvinov, Eric Fazendin, Phil

 Hunt, Benjamin Kaduk, Jason Keglovitz, Torsten Lodderstedt, Barry

 Leiba, Adam Lewis, James Manger, Nov Matake, Matt Miller, Hilarie

 Orman, Matthew Perry, Eric Rescorla, Justin Richer, Adam Roach,

 Rifaat Shekh-Yusef, Scott Tomilson, and Hannes Tschofenig.

Appendix C. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -19

 o Fix-up changes introduced in -18.

 o Fix invalid JSON in the Nested Actor Claim example.

 o Reference figure numbers in text when introducing the examples in

 Section 2 and 4.

 o Editorial updates from additional IESG evaluation comments.

 o Add an informational reference to ietf-oauth-resource-indicators

 o Update ietf-oauth-security-topics ref to 13

 -18

 o Editorial updates based on a few more IESG evaluation comments.

 -17

 o Editorial improvements and example fixes resulting from IESG

 evaluation comments.

 o Added a pointer to RFC6749’s Appendix B. on the "Use of

 application/x-www-form-urlencoded Media Type" as a way of

 providing a normative citation (by reference) for the media type.

 o Strengthened some of the wording in the privacy considerations to

 bring it inline with RFC 7519 Sec. 12 and RFC 6749 Sec. 10.8.

 -16

 o Fixed typo and added an AD to Acknowledgements.

Jones, et al. Expires January 21, 2020 [Page 31]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 -15

 o Updated the nested actor claim example to (hopefully) be more

 straightforward.

 o Reworked Privacy Considerations to say to use TLS in transit,

 minimize the amount of information in the token, and encrypt the

 token if disclosure of its information to the client is a concern

 per https://mailarchive.ietf.org/arch/msg/secdir/

 KJhx4aq_U5uk3k6zpYP-CEHbpVM

 o Moved the Security and Privacy Considerations sections to before

 the IANA Considerations.

 -14

 o Added text in Section 4.1 about the "act" claim stating that only

 the top-level claims and the current actor are to be considered in

 applying access control decisions.

 -13

 o Updated the claim name and value syntax for scope to be consistent

 with the treatment of scope in RFC 7662 OAuth 2.0 Token

 Introspection.

 o Updated the client identifier claim name to be consistent with the

 treatment of client id in RFC 7662 OAuth 2.0 Token Introspection.

 -12

 o Updated to use the boilerplate from RFC 8174.

 -11

 o Added new WG chair and AD to the Acknowledgements.

 o Applied clarifications suggested during AD review by EKR.

 -10

 o Defined token type URIs for base64url-encoded SAML 1.1 and SAML

 2.0 assertions.

 o Applied editorial fixes.

 -09

 o Changed "security tokens obtained could be used in a number of

 contexts" to "security tokens obtained may be used in a number of

 contexts" per a WGLC suggestion.

Jones, et al. Expires January 21, 2020 [Page 32]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 o Clarified that the validity of the subject or actor token have no

 impact on the validity of the issued token after the exchange has

 occurred per a WGLC comment.

 o Changed use of invalid_target error code to a SHOULD per a WGLC

 comment.

 o Clarified text about non-identity claims within the "act" claim

 being meaningless per a WGLC comment.

 o Added brief Privacy Considerations section per WGLC comments.

 -08

 o Use the bibxml reference for OpenID.Core rather than defining it

 inline.

 o Added editor role for Campbell.

 o Minor clarification of the text for actor_token.

 -07

 o Fixed typo (desecration -> discretion).

 o Added an explanation of the relationship between scope, audience

 and resource in the request and added an "invalid_target" error

 code enabling the AS to tell the client that the requested

 audiences/resources were too broad.

 -06

 o Drop "An STS for the REST of Us" from the title.

 o Drop "heavyweight" and "lightweight" from the abstract and

 introduction.

 o Clarifications on the language around xxxxxx_token_type.

 o Remove the want_composite parameter.

 o Add a short mention of proof-of-possession style tokens to the

 introduction and remove the respective open issue.

 -05

 o Defined the JWT claim "cid" to express the OAuth 2.0 client

 identifier of the client that requested the token.

 o Defined and requested registration for "act" and "may_act" as

 Token introspection response parameters (in addition to being JWT

 claims).

 o Loosen up the language about refresh_token in the response to

 OPTIONAL from NOT RECOMMENDED based on feedback form real world

 deployment experience.

 o Add clarifying text about the distinction between JWT and access

 token URIs.

 o Close out (remove) some of the Open Issues bullets that have been

 resolved.

Jones, et al. Expires January 21, 2020 [Page 33]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 -04

 o Clarified that the "resource" and "audience" request parameters

 can be used at the same time (via http://www.ietf.org/mail-

 archive/web/oauth/current/msg15335.html).

 o Clarified subject/actor token validity after token exchange and

 explained a bit more about the recommendation to not issue refresh

 tokens (via http://www.ietf.org/mail-archive/web/oauth/current/

 msg15318.html).

 o Updated the examples appendix to use an issuer value that doesn’t

 imply that the client issued and signed the tokens and used

 "Bearer" and "urn:ietf:params:oauth:token-type:access_token" in

 one of the responses (via http://www.ietf.org/mail-

 archive/web/oauth/current/msg15335.html).

 o Defined and registered urn:ietf:params:oauth:token-type:id_token,

 since some use cases perform token exchanges for ID Tokens and no

 URI to indicate that a token is an ID Token had previously been

 defined.

 -03

 o Updated the document editors (adding Campbell, Bradley, and

 Mortimore).

 o Added to the title.

 o Added to the abstract and introduction.

 o Updated the format of the request to use application/x-www-form-

 urlencoded request parameters and the response to use the existing

 token endpoint JSON parameters defined in OAuth 2.0.

 o Changed the grant type identifier to urn:ietf:params:oauth:grant-

 type:token-exchange.

 o Added RFC 6755 registration requests for

 urn:ietf:params:oauth:token-type:refresh_token,

 urn:ietf:params:oauth:token-type:access_token, and

 urn:ietf:params:oauth:grant-type:token-exchange.

 o Added RFC 6749 registration requests for request/response

 parameters.

 o Removed the Implementation Considerations and the requirement to

 support JWTs.

 o Clarified many aspects of the text.

 o Changed "on_behalf_of" to "subject_token",

 "on_behalf_of_token_type" to "subject_token_type", "act_as" to

 "actor_token", and "act_as_token_type" to "actor_token_type".

 o Added an "audience" request parameter used to indicate the logical

 names of the target services at which the client intends to use

 the requested security token.

 o Added a "want_composite" request parameter used to indicate the

 desire for a composite token rather than trying to infer it from

 the presence/absence of token(s) in the request.

Jones, et al. Expires January 21, 2020 [Page 34]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 o Added a "resource" request parameter used to indicate the URLs of

 resources at which the client intends to use the requested

 security token.

 o Specified that multiple "audience" and "resource" request

 parameter values may be used.

 o Defined the JWT claim "act" (actor) to express the current actor

 or delegation principal.

 o Defined the JWT claim "may_act" to express that one party is

 authorized to act on behalf of another party.

 o Defined the JWT claim "scp" (scopes) to express OAuth 2.0 scope-

 token values.

 o Added the "N_A" (not applicable) OAuth Access Token Type

 definition for use in contexts in which the token exchange syntax

 requires a "token_type" value, but in which the token being issued

 is not an access token.

 o Added examples.

 -02

 o Enabled use of Security Token types other than JWTs for "act_as"

 and "on_behalf_of" request values.

 o Referenced the JWT and OAuth Assertions RFCs.

 -01

 o Updated references.

 -00

 o Created initial working group draft from draft-jones-oauth-token-

 exchange-01.

Authors’ Addresses

 Michael B. Jones

 Microsoft

 Email: mbj@microsoft.com

 URI: http://self-issued.info/

 Anthony Nadalin

 Microsoft

 Email: tonynad@microsoft.com

Jones, et al. Expires January 21, 2020 [Page 35]

Internet-Draft OAuth 2.0 Token Exchange July 2019

 Brian Campbell (editor)

 Ping Identity

 Email: brian.d.campbell@gmail.com

 John Bradley

 Yubico

 Email: ve7jtb@ve7jtb.com

 Chuck Mortimore

 Salesforce

 Email: cmortimore@salesforce.com

Jones, et al. Expires January 21, 2020 [Page 36]

	draft-ietf-oauth-assertions-18
	draft-ietf-oauth-dyn-reg-30
	draft-ietf-oauth-dyn-reg-management-15
	draft-ietf-oauth-introspection-11
	draft-ietf-oauth-json-web-token-32
	draft-ietf-oauth-jwsreq-19
	draft-ietf-oauth-jwt-bearer-12
	draft-ietf-oauth-pop-architecture-08
	draft-ietf-oauth-pop-key-distribution-07
	draft-ietf-oauth-proof-of-possession-11
	draft-ietf-oauth-saml2-bearer-23
	draft-ietf-oauth-signed-http-request-03
	draft-ietf-oauth-spop-15
	draft-ietf-oauth-token-exchange-19

