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Abstract

   This document provides reference framework for Operations,
   Administration and Maintenance (OAM) for Service Function
   Chaining (SFC).

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 2016.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
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   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Service Function Chaining (SFC) enables the creation of composite
   services that consist of an ordered set of Service Functions (SF)
   that are be applied to packets and/or frames selected as a result of
   classification.  SFC is a concept that provides
   for more than just the application of an ordered set of SFs to
   selected traffic; rather, it describes a method for deploying SFs in
   a way that enables dynamic ordering and topological independence of
   those SFs as well as the exchange of metadata between participating
   entities.  The foundations of SFC are described in the following
   documents:

   o  SFC problem statement [I-D.ietf-sfc-problem-statement]

   o  SFC architecture [I-D.ietf-sfc-archiecture]

   The reader is assumed to familiar with the material in these drafts.

   This document provides reference framework for Operations,
   Administration and Maintenance (OAM, [RFC6291]) of SFC.
   Specifically, this document provides:

   o  In Section 2, an SFC layering model;

   o  In Section 3, aspects monitored by SFC OAM;

   o  In Section 4, functional requirements for SFC OAM;

   o  In Section 5, a gap analysis for SFC OAM.

1.1.  Document Scope

   The focus of this document is to provide an architectural framework
   for SFC OAM, particularly focused on the aspect of the Operations
   component within OAM.  Actual solutions and mechanisms are outside
   the scope of this document.

2.  SFC Layering Model

   Multiple layers come into play for implementing the SFC.  These
   include the service layer at which SFC operates and the underlying
   Network, Transport, Link, etc., layers.

   o  The service layer, refered to as the "Service Layer" in Figure 1,
      consists of classifiers and SFs, and uses the
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      transport network, which could be an overlay network, from a
      classifier to SF and from one SF to the next.

   o  The network overlay transport layer, refer to as the "Network",
      "Transport" and layers below in Figure 1, extends between the
      various SFs and is mostly transparent to the SFs themselves.  It
      can leverage various overlay network technologies
      interconnecting SFs and allows establishment of
      service function paths (SFPs).

   o  The link layer, refer to as the "Link" in Figure 1, is dependent
      upon the physical technology used.  Ethernet is a popular choice
      for this layer, but other alternatives are deployed (e.g. POS,
      DWDM, etc.).

      o----------------------Service Layer----------------------o

   +------+   +---+   +---+   +---+   +---+   +---+   +---+   +---+
   |Classi|---|SF1|---|SF2|---|SF3|---|SF4|---|SF5|---|SF6|---|SF7|
   |fier  |   +---+   +---+   +---+   +---+   +---+   +---+   +---+
   +------+
               o-N/W Elem 1----o     o-N/w Elem 2-o   o-N/W Elem 3-o

      o-----------------o-------------------o---------------o  Network

      o-----------------o-----------------------------------o  Transport

      o--------o--------o--------o--------o--------o--------o  Link

                Figure 1: SFC Layering Example

3.  Aspects Monitored by SFC OAM?

   SFC operates at the service layer.  For the purpose of defining
   the OAM framework, the following aspects of the SFC must be capable of
   monitored.

   1. Service function:

   SFs may be SFC-aware or SFC-unaware.  An SFC-aware SF is one that
   understands the SFC encapsulation has the SFF component co-resident with
   the SF sub-component .  An SFC-unware SF is one that does not understand
   the SFC encapsulation (i.e. a legacy SF) and has to be accessed via an
   separate SFF and potentially an SFC proxy function.

   In both cases, an SF is accessed through an SFF in the SFC
   architecture.  SFC OAM must be able to monitor the SFF associated
   with a given SF.

   2.  Service function path:

   The SFP comprises a set of SFs that may be ordered or unordered.
   SFC OAM must be capable of monitoring the SFP and the rendered
   service path (RSP) that may be used by specific packets.
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   3.  Classifier:

   The classifier determines which packets are mapped to an SFP.
   SFC OAM must be able to monitor the operation of the classifiers.

   The figure below illustrates the various aspects monitored by SFC OAM.

   +-SFC           +-SFC OAM
   | OAM           |
   |               |    _________________________________________
   |                \  /\         Service Function Chain         \
   |      +------+   \/  \  +---+   +---+   +---+   +---+   +---+ \
   +----> |Classi|...(+-> ) |SF1|---|SF2|---|SF4|---|SF6|---|SF7|  )
          |fier  |    \  /  +-^-+   +---+   +-|-+   +-^-+   +---+ /
          +----|-+     \/_____|_______________|_______|_________ /
               |              |               +-SFCOAM+
               +----SFCOAM----+         +---+   +---+
                                +SFCOAM>|SF3|   |SF5|
                                |       +-^-+   +-^-+
                         +------|---+     |       |
                         |Controller|     +-SFCOAM+
                         +----------+
                              Service Function OAM (SFCOAM)

                Figure 2: Aspects monitored by SFC OAM

3.1.  Operation and Performance of SFs

3.1.1.  Monitoring SF Operation

   One SFC OAM requirement for the SF component is to
   allow an SFC aware network device to monitor a
   specific SF.  This is accomplished by monitoring the SFF that
   the SF is attached to.

   A generalized way to monitor the operation of an SF is beyond the scope
   of SFC OAM, because the functions provided by the SF are not covered by
   SFC. SFs typically provide their own tools for monitoring.

   An optional capability may be provided for an SFF to monitor the
   operation of its attached SFs and report that on behalf of the SFs.

3.1.2.  Service Function Performance Measurement

   A second SFC OAM requirement for SF is to
   allow an SFC aware network device to check the loss and delay to a
   specific SF, located on the same or different network
   devices.

3.2.  Operation and Performance of SFPs
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3.2.1.  Monitoring SFP Operation

   SFC OAM must be capable of monitoring one or more SFPs or RSPs that are
   used to realize the SFC and reporting on connectivity and providing fault
   isolation.

   In order to perform service connectivity verification of an SFP, the
   OAM tools could be initiated from any SFC-aware network device for
   end-to-end paths, or partial paths terminating on a specific SF, within
   the SFP.  This OAM function is to ensure the SF’s chained together has
   connectivity as it was intended to when SFP was established.
   Necessary return code(s) should be defined to be sent back in the
   response to OAM packet, in order to qualify the verification.

   When ECMP exists at the service layer on a given SFC (e.g. multiple
   SFPs, or multiple RSPs), there must be an ability to discover and
   traverse all available paths.

3.2.2.  Service Function Chain Performance Measurement

   The ingress of the SFC or an SFC-aware network
   device must have an ability to perform loss and delay measurements
   over the SFC as a unit (i.e. end-to-end) or to a
   specific SF through the SFC.

3.3.  Monitoring the Classifier

   A classifier defines a flow and maps incoming traffic to a specific
   SFC, and it is vital that the classifier is correctly defined and
   functioning. SFC OAM must be able to test the definition of
   flows and the mapping functionality to expected SFCs.

4.  SFC OAM Functions

   Section 3 described the various aspects monitored by SFC OAM.  This
   section explores the same from the OAM functionality
   point of view, which many will be applicable to multiple SFC
   components.

   Various SFC OAM requirements provides the need for various OAM
   functions at different layers.  Many of the OAM functions at
   different layers are already defined and in existence.  In order to
   support SFC and SF’s, these functions have to be enhanced to operate
   a single SF to multiple SF’s in an SFC and also multiple SFC’s.

4.1.  Connectivity Functions

   Connectivity is mainly an on-demand function to verify that the
   connectivity exists between network elements and that the SFs are
   operational.  Ping is a common tool used to perform
   this function.  OAM messages should be encapsulated with necessary
   SFC header and with OAM markings when testing the SFC component.  OAM
   messages MAY be encapsulated with necessary SFC
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   header and with OAM markings when testing the SF
   component.  Some of the OAM functions performed by connectivity
   functions are as follows:

   o  Verify the MTU size from a source to the destination SF or through
      the SFC.  This requires the ability for OAM packet to take
      variable length packet size.

   o  Verify the packet re-ordering and corruption.

   o  Verify the policy of an SFC or SF using OAM packet.

   o  Verification and validating forwarding paths.

   o  Proactively test alternate or protected paths to ensure
      reliability of network configurations.

4.2.  Continuity Functions

   Continuity is a model where OAM messages are sent periodically to
   validate or verify the reachability to a given SF or through a given
   SFC.  This allows the operator to monitor the network device and to
   quickly detect failures such as link failures, network failures,
   SF outages or SFC outages.  BFD is one such function which helps
   in detecting failures quickly.  OAM functions supported by continuity
   check are as follows:

   o  Ability to provision continuity check to a given SF or through a
      given SFC.

   o  Notifying the failure upon failure detection for other OAM
      functions to take appropriate action.

4.3.  Trace Functions

   Tracing is an important OAM function that allows the operation to
   trigger an action (ex: response generation) from every transit device
   on the tested layer.  This function is typically useful to gather
   information from every transit devices or to isolate the failure
   point towards an SF or through an SFC.  Mechanisms must be provided so
   that the SFC OAM messages may be sent along the same path that a
   given data packet would follow.  Some of the OAM functions supported
   by trace functions are:

   o  Ability to trigger action from every transit device on the tested
      layer towards an SF or through an SFC, using TTL or other means.

   o  Ability to trigger every transit device to generate response with
      OAM code(s) on the tested layer towards an SF or through an SFC,
      using TTL or other means.

   o  Ability to discover and traverse ECMP paths within an SFC.

Aldrin, et al.           Expires January  2016                  [Page 6]



Internet-Draft              SFC OAM Framework                  July 2015

   o  Ability to skip un-supported SF’s while tracing SF’s in an SFC.

4.4.  Performance Measurement Function

   Performance management functions involve measuring of packet loss,
   delay, delay variance, etc.  These measurements could be measured
   pro-actively and on-demand.

   SFC OAM should provide the ability to test the packet loss
   for an SFC.  In an SFC, there are various SF’s chained together.

   Measuring packet loss is very important function.  Using on-demand
   function, the packet loss could be measured using statistical means.
   Using OAM packets, the approximation of packet loss for a given SFC
   could be measured.

   Delay within an SFC could be measured from the time it takes for a
   packet to traverse the SFC from ingress SF to egress SF.  As the
   SFC’s are generally unidirectional in nature, measurement of one-way
   delay is important.  In order to measure one-way delay, the clocks
   have to be synchronized using NTP, GPS, etc.

   Delay variance could also be measured by sending OAM packets and
   measuring the jitter between the packets passing through the SFC.

   Some of the OAM functions supported by the performance measurement
   functions are:

   o  Ability to measure the packet processing delay of a service
      function or a service function path along an SFC.

   o  Ability to measure the packet loss of a service function or a
      service function path along an SFC.

5.  Gap Analysis

   This Section identifies various OAM functions available at different
   levels.  It will also identify various gaps
   within the existing toolset, to perform OAM function on an SFC.

5.1.  Existing OAM Functions

   There are various OAM tool sets available to perform OAM function and
   network layer, protocol layers and link layers.  These OAM functions
   could validate some of the network overlay transport.  Tools like
   ping and trace are in existence to perform connectivity check and
   tracing intermediate hops in a network.  These tools support
   different network types like IP, MPLS, TRILL etc.  There is also an
   effort to extend the tool set to provide connectivity and continuity
   checks within overlay networks.  BFD is another tool which helps in
   detection of data forwarding failures.
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               Table 1: OAM Tool GAP Analysis

   +----------------+--------------+-------------+--------+------------+
   | Layer          | Connectivity |  Continuity |  Trace | Performance|
   +----------------+--------------+-------------+--------+------------+
   | N/W Overlay    | Ping         | BFD, NVo3   | Trace  | IPPM       |
   +----------------+--------------+-------------+--------+------------+
   | SF             | None         + None        + None   + None       |
   +----------------+--------------+-------------+--------+------------+
   | SFC            | None         + None        + None   + None       |
   +----------------+--------------+-------------+--------+------------+

5.2.  Missing OAM Functions

   As shown in Table 1, OAM functions for SFC are not yet standardized.
   Hence, there are no standards-based tools available to monitor the
   various components identified in Section 3.

5.3.  Required OAM Functions

   Primary OAM functions exist for network, transport, link and other
   layers.  Tools like ping, trace, BFD, etc., exist in order to perform
   these OAM functions.  Configuration, orchestration and manageability
   of SF and SFC could be performed using CLI, Netconf etc.

   For configuration, manageability and orchestration, providing data
   and information models for SFC is very much essential.  With
   virtualized SF and SFC, manageability of these functions has to be
   done programmatically.

   SFC OAM must provide tools that operate through various types of
   SFs including:

   o  Transparent SFs: These SFs typically do not make any
      modifications to the packet.  In such cases, the SFF may be able
      to process OAM messages.

   o  SFs that modify the packet: These SFs modify packet
      fields.  Certain SFs may modify only the headers
      corresponding to the network over which it is transported, e.g.
      the MAC headers or overlay headers.  In other cases, the IP header
      of the application’s packet may be modified, e.g.  NAT.  In yet
      other cases, the application session itself may be terminated and
      a new session initiated, e.g. a load balancer that offers HTTPS
      termination.

6.  Open Issues

   - Add more details on performance measurement.

   - Call out which OAM functions can be achieved by protocol design vs
     requiring synthetic traffic.
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7.  Security Considerations

   SFC OAM must provide mechanisms for:

   o  Preventing usage of OAM channel for DDOS attacks.

   o  Preventing leakage of OAM packets meant for a given SFC beyond
      that SFC.

   o  Preventing leakage of information about an sFC beyond its
      administrative domain.

7.  IANA Considerations

   No action is required by IANA for this document.
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Abstract

   This document describes an architecture for the specification,
   creation, and ongoing maintenance of Service Function Chains (SFC) in
   a network.  It includes architectural concepts, principles, and
   components used in the construction of composite services through
   deployment of SFCs, with a focus on those to be standardized in the
   IETF.  This document does not propose solutions, protocols, or
   extensions to existing protocols.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 25, 2016.
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   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The delivery of end-to-end services often requires various service
   functions.  These include traditional network service functions such
   as firewalls and traditional IP Network Address Translators (NATs),
   as well as application-specific functions.  The definition and
   instantiation of an ordered set of service functions and subsequent
   ’steering’ of traffic through them is termed Service Function
   Chaining (SFC).

   This document describes an architecture used for the creation and
   ongoing maintenance of Service Function Chains (SFC) in a network.
   It includes architectural concepts, principles, and components, with
   a focus on those to be standardized in the IETF.  Service function
   chains enable composite services that are constructed from one or
   more service functions.

   An overview of the issues associated with the deployment of end-to-
   end service function chains, abstract sets of service functions and
   their ordering constraints that create a composite service and the
   subsequent "steering" of traffic flows through said service
   functions, is described in [RFC7498].

   The current service function deployment models are relatively static,
   coupled to network topology and physical resources, greatly reducing
   or eliminating the ability of an operator to introduce new services
   or dynamically create service function chains.  This architecture
   presents a model addressing the problematic aspects of existing
   service deployments, including topological independence and
   configuration complexity.

1.1.  Scope

   This document defines the architecture for Service Function Chaining
   (SFC) as standardized in the IETF.  The SFC architecture is
   predicated on topological independence from the underlying forwarding
   topology.

   In this architecture packets are classified on ingress for handling
   by the required set of Service Functions (SFs) in the SFC-enabled
   domain and are then forwarded through that set of functions for
   processing by each function in turn.  Packets may be re-classified as
   a result of this processing.

   The architecture described in this document is independent of the
   planned usage of the network and deployment context and thus, for
   example, is applicable to both fixed and mobile networks as well as
   being useful in many Data Center applications.
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   The architecture described herein is assumed to be applicable to a
   single network administrative domain.  While it is possible for the
   architectural principles and components to be applied to inter-domain
   SFCs, these are left for future study.

1.2.  Assumptions

   The following assumptions are made:

   o  There is no standard definition or characterization applicable to
      all SFs, and thus the architecture considers each SF as an opaque
      processing element.

   o  There is no global or standard list of SFs enabled in a given
      administrative domain.  The set of SFs enabled in a given domain
      is a function of the currently active services which may vary with
      time and according to the networking environment.

   o  There is no global or standard SF chaining logic.  The ordered set
      of SFs that needs to be applied to deliver a given service is
      specific to each administrative entity.

   o  The chaining of SFs and the criteria to invoke them are specific
      to each administrative entity that operates an SF-enabled domain.

   o  Several SF chaining policies can be simultaneously applied within
      an administrative domain to meet various business requirements.

   o  The underlay is assumed to provide the necessary connectivity to
      interconnect the Service Function Forwarders (SFFs, see
      Section 1.4), but the architecture places no constraints on how
      that connectivity is realized other than it have the required
      bandwidth, latency, and jitter to support the SFC.

   o  No assumption is made on how Forwarding Information Bases (FIBs)
      and Routing Information Bases (RIBs) of involved nodes are
      populated.

   o  How to bind traffic to a given SF chain is policy-based.

1.3.  Specification of Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].
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1.4.  Definition of Terms

   Network Service:  An offering provided by an operator that is
        delivered using one or more service functions.  This may also be
        referred to as a composite service.  The term "service" is used
        to denote a "network service" in the context of this document.

        Note: Beyond this document, the term "service" is overloaded
        with varying definitions.  For example, to some a service is an
        offering composed of several elements within the operator’s
        network, whereas for others a service, or more specifically a
        network service, is a discrete element such as a "firewall".
        Traditionally, such services (in the latter sense) host a set of
        service functions and have a network locator where the service
        is hosted.

   Classification:  Locally instantiated matching of traffic flows
        against policy for subsequent application of the required set of
        network service functions.  The policy may be customer/network/
        service specific.

   Classifier:  An element that performs Classification.

   Service Function Chain (SFC):  A service function chain defines an
        ordered set of abstract service functions (SFs) and ordering
        constraints that must be applied to packets and/or frames and/or
        flows selected as a result of classification.  An example of an
        abstract service function is "a firewall".  The implied order
        may not be a linear progression as the architecture allows for
        SFCs that copy to more than one branch, and also allows for
        cases where there is flexibility in the order in which service
        functions need to be applied.  The term service chain is often
        used as shorthand for service function chain.

   Service Function (SF):  A function that is responsible for specific
        treatment of received packets.  A Service Function can act at
        various layers of a protocol stack (e.g., at the network layer
        or other OSI layers).  As a logical component, a Service
        Function can be realized as a virtual element or be embedded in
        a physical network element.  One or more Service Functions can
        be embedded in the same network element.  Multiple occurrences
        of the Service Function can exist in the same administrative
        domain.

        One or more Service Functions can be involved in the delivery of
        added-value services.  A non-exhaustive list of abstract Service
        Functions includes: firewalls, WAN and application acceleration,
        Deep Packet Inspection (DPI), LI (Lawful Intercept), server load
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        balancing, NAT44 [RFC3022], NAT64 [RFC6146], NPTv6 [RFC6296],
        HOST_ID injection, HTTP Header Enrichment functions, TCP
        optimizer.

        An SF may be SFC encapsulation aware, that is it receives and
        acts on information in the SFC encapsulation, or unaware, in
        which case data forwarded to the SF does not contain the SFC
        encapsulation.

   Service Function Forwarder (SFF):  A service function forwarder is
        responsible for forwarding traffic to one or more connected
        service functions according to information carried in the SFC
        encapsulation, as well as handling traffic coming back from the
        SF.  Additionally, a service function forwarder is responsible
        for delivering traffic to a classifier when needed and
        supported, transporting traffic to another SFF (in the same or
        different type of overlay), and terminating the SFP.

   Metadata:  provides the ability to exchange context information
        between classifiers and SFs and among SFs.

   Service Function Path (SFP):  The Service Function Path is a
        constrained specification of where packets assigned to a certain
        service function path must go.  While it may be so constrained
        as to identify the exact locations, it can also be less
        specific.  The SFP provides a level of indirection between the
        fully abstract notion of service chain as a sequence of abstract
        service functions to be delivered, and the fully specified
        notion of exactly which SFF/SFs the packet will visit when it
        actually traverses the network.  By allowing the control
        components to specify this level of indirection, the operator
        may control the degree of SFF/SF selection authority that is
        delegated to the network.

   SFC Encapsulation:  The SFC Encapsulation provides at a minimum SFP
        identification, and is used by the SFC-aware functions, such as
        the SFF and SFC-aware SFs.  The SFC Encapsulation is not used
        for network packet forwarding.  In addition to SFP
        identification, the SFC encapsulation carries metadata including
        data plane context information.

   Rendered Service Path (RSP):  Within an SFP, packets themselves are
        of course transmitted from and to specific places in the
        network, visiting a specific sequence of SFFs and SFs.  This
        sequence of actual visits by a packet to specific SFFs and SFs
        in the network is known as the Rendered Service Path (RSP).
        This definition is included here for use by later documents,
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        such as when solutions may need to discuss the actual sequence
        of locations the packets visit.

   SFC-enabled Domain:  A network or region of a network that implements
        SFC.  An SFC-enabled Domain is limited to a single network
        administrative domain.

   SFC Proxy:  Removes and inserts SFC Encapsulation on behalf of an
        SFC-unaware service function.  SFC proxies are logical elements.

2.  Architectural Concepts

   The following sections describe the foundational concepts of service
   function chaining and the SFC architecture.

   Service Function Chaining enables the creation of composite (network)
   services that consist of an ordered set of Service Functions (SF)
   that must be applied to packets and/or frames and/or flows selected
   as a result of classification.  Each SF is referenced using an
   identifier that is unique within an SF-enabled domain.

   Service Function Chaining is a concept that provides for more than
   just the application of an ordered set of SFs to selected traffic;
   rather, it describes a method for deploying SFs in a way that enables
   dynamic ordering and topological independence of those SFs as well as
   the exchange of metadata between participating entities.

2.1.  Service Function Chains

   In most networks, services are constructed as abstract sequences of
   SFs that represent SFCs.  At a high level, an SFC is an abstracted
   view of a service that specifies the set of required SFs as well as
   the order in which they must be executed.  Graphs, as illustrated in
   Figure 1, define an SFC, where each graph node represents the
   required existence of at least one abstract SF.  Such graph nodes
   (SFs) can be part of zero, one, or many SFCs.  A given graph node
   (SF) can appear one time or multiple times in a given SFC.

   SFCs can start from the origination point of the service function
   graph (i.e., node 1 in Figure 1), or from any subsequent node in the
   graph.  As shown, SFs may therefore become branching nodes in the
   graph, with those SFs selecting edges that move traffic to one or
   more branches.  The top and middle graphs depict such a case, where a
   second classification event occurs after node 2, and a new graph is
   selected (i.e., node 3 instead of node 6).  The bottom graph
   highlights the concept of a cycle, in which a given SF (e.g., node 7
   in the depiction) can be visited more than once within a given
   service chain.  An SFC can have more than one terminus.
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                  Figure 1: Service Function Chain Graphs

   The concepts of classification, re-classification, and branching are
   covered in subsequent sections of this architecture (see Section 4.7
   and Section 4.8).

2.2.  Service Function Chain Symmetry

   SFCs may be unidirectional or bidirectional.  A unidirectional SFC
   requires that traffic be forwarded through the ordered SFs in one
   direction (SF1 -> SF2 -> SF3), whereas a bidirectional SFC requires a
   symmetric path (SF1 -> SF2 -> SF3 and SF3 -> SF2 -> SF1), and in
   which the SF instances are the same in opposite directions.  A hybrid
   SFC has attributes of both unidirectional and bidirectional SFCs;
   that is to say some SFs require symmetric traffic, whereas other SFs
   do not process reverse traffic or are independent of the
   corresponding forward traffic.

   SFCs may contain cycles; that is traffic may need to traverse one or
   more SFs within an SFC more than once.  Solutions will need to ensure
   suitable disambiguation for such situations.

   The architectural allowance that is made for SFPs that delegate
   choice to the network for which SFs and/or SFFs a packet will visit
   creates potential issues here.  A solution that allows such
   delegation needs to also describe how the solution ensures that those
   service chains that require service function chain symmetry can
   achieve that.
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   Further, there are state tradeoffs in symmetry.  Symmetry may be
   realized in several ways depending on the SFF and classifier
   functionality.  In some cases, "mirrored" classification (i.e., from
   Source to Destination and from Destination to Source) policy may be
   deployed, whereas in others shared state between classifiers may be
   used to ensure that symmetric flows are correctly identified, then
   steered along the required SFP.  At a high level, there are various
   common cases.  In a non-exhaustive way, there can be for example:

   o  A single classifier (or a small number of classifiers), in which
      case both incoming and outgoing flows could be recognized at the
      same classifier, so the synchronization would be feasible by
      internal mechanisms internal to the classifier.

   o  Stateful classifiers where several classifiers may be clustered
      and share state.

   o  Fully distributed classifiers, where synchronization needs to be
      provided through unspecified means.

   o  A classifier that learns state from the egress packets/flows that
      is then used to provide state for the return packets/flow.

   o  Symmetry may also be provided by stateful forwarding logic in the
      SFF in some implementations.

   This is a non-comprehensive list of common cases.

2.3.  Service Function Paths

   A service function path (SFP) is a mechanism used by service chaining
   to express the result of applying more granular policy and
   operational constraints to the abstract requirements of a service
   chain (SFC).  This architecture does not mandate the degree of
   specificity of the SFP.  Architecturally, within the same SFC-enabled
   domain, some SFPs may be fully specified, selecting exactly which SFF
   and which SF are to be visited by packets using that SFP, while other
   SFPs may be quite vague, deferring to the SFF the decisions about the
   exact sequence of steps to be used to realize the SFC.  The
   specificity may be anywhere in between these extremes.

   As an example of such an intermediate specificity, there may be two
   SFPs associated with a given SFC, where one SFP specifies that any
   order of SFF and SF may be used as long as it is within data center
   1, and where the second SFP allows the same latitude, but only within
   data center 2.
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   Thus, the policies and logic of SFP selection or creation (depending
   upon the solution) produce what may be thought of as a constrained
   version of the original SFC.  Since multiple policies may apply to
   different traffic that uses the same SFC, it also follows that there
   may be multiple SFPs may be associated with a single SFC.

   The architecture allows for the same SF to be reachable through
   multiple SFFs.  In these cases, some SFPs may constrain which SFF is
   used to reach which SF, while some SFPs may leave that decision to
   the SFF itself.

   Further, the architecture allows for two or more SFs to be attached
   to the same SFF, and possibly connected via internal means allowing
   more effective communication.  In these cases, some solutions or
   deployments may choose to use some form of internal inter-process or
   inter-VM messaging (communication behind the virtual switching
   element) that is optimized for such an environment.  This must be
   coordinated with the SFF so that the service function forwarding can
   properly perform its job.  Implementation details of such mechanisms
   are considered out of scope for this document, and can include a
   spectrum of methods: for example situations including all next-hops
   explicitly, others where a list of possible next-hops is provided and
   the selection is local, or cases with just an identifier, where all
   resolution is local.

   This architecture also allows the same SF to be part of multiple
   SFPs.

2.3.1.  Service Function Chains, Service Function Paths, and Rendered
        Service Path

   As an example of this progressive refinement, consider a service
   function chain (SFC) which states that packets using this chain
   should be delivered to a firewall and a caching engine.

   A Service Function Path (SFP) could refine this, considering that
   this architecture does not mandate the degree of specificity an SFP
   has to have.  It might specify that the firewall and caching engine
   are both to be in a specific Data Center (e.g., in DC1), or it might
   specify exactly which instance of each firewall and chaching engine
   is to be used.

   The Rendered Service Path (RSP) is the actual sequence of SFFs and
   SFs that the packets will actually visit.  So if the SFP picked the
   DC, the RSP would be more specific.
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3.  Architecture Principles

   Service function chaining is predicated on several key architectural
   principles:

   1.  Topological independence: no changes to the underlay network
       forwarding topology - implicit, or explicit - are needed to
       deploy and invoke SFs or SFCs.

   2.  Plane separation: dynamic realization of SFPs is separated from
       packet handling operations (e.g., packet forwarding).

   3.  Classification: traffic that satisfies classification rules is
       forwarded according to a specific SFP.  For example,
       classification can be as simple as an explicit forwarding entry
       that forwards all traffic from one address into the SFP.
       Multiple classification points are possible within an SFC (i.e.,
       forming a service graph) thus enabling changes/updates to the SFC
       by SFs.

       Classification can occur at varying degrees of granularity; for
       example, classification can use a 5-tuple, a transport port or
       set of ports, part of the packet payload, it can be the result of
       high-level inspections, or it can come from external systems.

   4.  Shared Metadata: Metadata/context data can be shared amongst SFs
       and classifiers, between SFs, and between external systems and
       SFs (e.g., orchestration).

       One use of metadata is to provide and share the result of
       classification (that occurs within the SFC-enabled domain, or
       external to it) along an SFP.  For example, an external
       repository might provide user/subscriber information to a service
       chain classifier.  This classifier could in turn impose that
       information in the SFC encapsulation for delivery to the
       requisite SFs.  The SFs could in turn utilize the user/subscriber
       information for local policy decisions.  Metadata can also share
       SF output along the SFP.

   5.  Service definition independence: The SFC architecture does not
       depend on the details of SFs themselves.

   6.  Service function chain independence: The creation, modification,
       or deletion of an SFC has no impact on other SFCs.  The same is
       true for SFPs.

   7.  Heterogeneous control/policy points: The architecture allows SFs
       to use independent mechanisms (out of scope for this document) to
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       populate and resolve local policy and (if needed) local
       classification criteria.

4.  Core SFC Architecture Components

   The SFC Architecture is built out of architectural building blocks
   which are logical components; these logical components are
   classifiers, service function forwarders (SFF), the service functions
   themselves (SF), and SFC-proxies.  While this architecture describes
   functionally distinct logical components and promotes transport
   indepencence, they could be realized and combined in various ways in
   deployed products, and could be combined with an overlay.

   They are interconnected using the SFC Encapsulation.  This results in
   a high level logical architecture of an SFC-enabled Domain which
   comprises:

      o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      .  +--------------+                  +------------------˜˜˜
      .  |   Service    |       SFC        |  Service  +---+   +---+
      .  |Classification|  Encapsulation   | Function  |sf1|...|sfn|
   +---->|   Function   |+---------------->|   Path    +---+   +---+
      .  +--------------+                  +------------------˜˜˜
      . SFC-enabled Domain
      o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

               Figure 2: Service Function Chain Architecture

   The following sub-sections provide details on each logical component
   that form the basis of the SFC architecture.  A detailed overview of
   how some of these architectural components interact is provided in
   Figure 3:
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          +----------------+                        +----------------+
          |   SFC-aware    |                        |  SFC-unaware   |
          |Service Function|                        |Service Function|
          +-------+--------+                        +-------+--------+
                  |                                         |
            SFC Encapsulation                       No SFC Encapsulation
                  |                  SFC                    |
     +---------+  +----------------+ Encapsulation     +---------+
     |SFC-Aware|-----------------+  \     +------------|SFC Proxy|
     |    SF   | ... ----------+  \  \   /             +---------+
     +---------+                \  \  \ /
                               +-------+--------+
                               |   SF Forwarder |
                               |      (SFF)     |
                               +-------+--------+
                                       |
                               SFC Encapsulation
                                       |
                           ... SFC-enabled Domain ...
                                       |
                           Network Overlay Transport
                                       |
                                   _,....._
                                ,-’        ‘-.
                               /              ‘.
                              |     Network    |
                              ‘.              /
                                ‘.__     __,-’
                                    ‘’’’’

     Figure 3: SFC Architecture Components Post Initial Classification

   Please note that the depiction in Figure 3 shows packets post initial
   classification, and therefore including the SFC encapsulation.
   Although not included in Figure 3, the classifier is an SFC
   architectural component.

4.1.  SFC Encapsulation

   The SFC encapsulation enables service function path selection.  It
   also enables the sharing of metadata/context information when such
   metadata exchange is required.

   The SFC encapsulation carries explicit information used to identify
   the SFP.  However, the SFC encapsulation is not a transport
   encapsulation itself: it is not used to forward packets within the
   network fabric.  If packets need to flow between separate physical
   platforms, the SFC encapsulation therefore relies on an outer network
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   transport.  Transit forwarders -- such as router and switches --
   forward SFC encapsulated packets based on the outer (non-SFC)
   encapsulation.

   One of the key architecture principles of SFC is that the SFC
   encapsulation remain transport independent.  As such any network
   transport protocol may be used to carry the SFC encapsulated traffic.

4.2.  Service Function (SF)

   The concept of an SF evolves; rather than being viewed as a bump in
   the wire, an SF becomes a resource within a specified administrative
   domain that is available for consumption as part of a composite
   service.  SFs send/receive data to/from one or more SFFs.  SFC-aware
   SFs receive this traffic with the SFC encapsulation.

   While the SFC architecture defines the concept and specifies some
   characteristics of a new encapsulation - the SFC encapsulation - and
   several logical components for the construction of SFCs, existing SF
   implementations may not have the capabilities to act upon or fully
   integrate with the new SFC encapsulation.  In order to provide a
   mechanism for such SFs to participate in the architecture, an SFC
   proxy function is defined (see Section 4.6).  The SFC proxy acts as a
   gateway between the SFC encapsulation and SFC-unaware SFs.  The
   integration of SFC-unaware service functions is discussed in more
   detail in the SFC proxy section.

   This architecture allows an SF to be part of multiple SFPs and SFCs.

4.3.  Service Function Forwarder (SFF)

   The SFF is responsible for forwarding packets and/or frames received
   from the network to one or more SFs associated with a given SFF using
   information conveyed in the SFC encapsulation.  Traffic from SFs
   eventually returns to the same SFF, which is responsible for
   injecting traffic back onto the network.  Some SFs, such as
   firewalls, could also consume a packet.

   The collection of SFFs and associated SFs creates a service plane
   overlay in which SFC-aware SFs, as well as SFC-unaware SFs reside.
   Within this service plane, the SFF component connects different SFs
   that form a service function path.

   SFFs maintain the requisite SFP forwarding information.  SFP
   forwarding information is associated with a service path identifier
   that is used to uniquely identify an SFP.  The service forwarding
   state enables an SFF to identify which SFs of a given SFP should be
   applied, and in what order, as traffic flows through the associated
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   SFP.  While there may appear to the SFF to be only one available way
   to deliver the given SF, there may also be multiple choices allowed
   by the constraints of the SFP.

   If there are multiple choices, the SFF needs to preserve the property
   that all packets of a given flow are handled the same way, since the
   SF may well be stateful.  Additionally, the SFF may preserve the
   handling of packets based on other properties on top of a flow, such
   as a subscriber, session, or application instance identification.

   The SFF also has the information to allow it to forward packets to
   the next SFF after applying local service functions.  Again, while
   there may be only a single choice available, the architecture allows
   for multiple choices for the next SFF.  As with SFs, the solution
   needs to operate such that the behavior with regard to specific flows
   (see the Rendered Service Path) is stable.  The selection of
   available SFs and next SFFs may be interwoven when an SFF supports
   multiple distinct service functions and the same service function is
   available at multiple SFFs.  Solutions need to be clear about what is
   allowed in these cases.

   Even when the SFF supports and utilizes multiple choices, the
   decision as to whether to use flow-specific mechanisms or coarser
   grained means to ensure that the behavior of specific flows is stable
   is a matter for specific solutions and specific implementations.

   The SFF component has the following primary responsibilities:

   1.  SFP forwarding : Traffic arrives at an SFF from the network.  The
       SFF determines the appropriate SF the traffic should be forwarded
       to via information contained in the SFC encapsulation.  Post-SF,
       the traffic is returned to the SFF, and, if needed, is forwarded
       to another SF associated with that SFF.  If there is another non-
       local (i.e., different SFF) hop in the SFP, the SFF further
       encapsulates the traffic in the appropriate network transport
       protocol and delivers it to the network for delivery to the next
       SFF along the path.  Related to this forwarding responsibility,
       an SFF should be able to interact with metadata.

   2.  Terminating SFPs : An SFC is completely executed when traffic has
       traversed all required SFs in a chain.  When traffic arrives at
       the SFF after the last SF has finished processing it, the final
       SFF knows from the service forwarding state that the SFC is
       complete.  The SFF removes the SFC encapsulation and delivers the
       packet back to the network for forwarding.

   3.  Maintaining flow state: In some cases, the SFF may be stateful.
       It creates flows and stores flow-centric information.  This state
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       information may be used for a range of SFP-related tasks such as
       ensuring consistent treatment of all packets in a given flow,
       ensuring symmetry or for state-aware SFC Proxy functionality (see
       Section 4.8).

4.3.1.  Transport Derived SFF

   Service function forwarding, as described above, directly depends
   upon the use of the service path information contained in the SFC
   encapsulation.  However, existing implementations may not be able to
   act on the SFC encapsulation.  These platforms may opt to use
   existing transport information if it can be arranged to provide
   explicit service path information.

   This results in the same architectural behavior and meaning for
   service function forwarding and service function paths.  It is the
   responsibility of the control components to ensure that the transport
   path executed in such a case is fully aligned with the path
   identified by the information in the service chaining encapsulation.

4.4.  SFC-Enabled Domain

   Specific features may need to be enforced at the boundaries of an
   SFC-enabled domain, for example to avoid leaking SFC information.
   Using the term node to refer generically to an entity that is
   performing a set of functions, in this context, an SFC Boundary Node
   denotes a node that connects one SFC-enabled domain to a node either
   located in another SFC-enabled domain or in a domain that is SFC-
   unaware.

   An SFC Boundary node can act as egress or ingress.  An SFC Egress
   Node denotes a SFC Boundary Node that handles traffic leaving the
   SFC-enabled domain the Egress Node belongs to.  Such a node is
   required to remove any information specific to the SFC Domain,
   typically the SFC Encapsulation.  Further, from a privacy
   perspective, an SFC Egress Node is required to ensure that any
   sensitive information added as part of SFC gets removed.  In this
   context, information may be sensitive due to network concerns or end-
   customer concerns.  An SFC Ingress Node denotes an SFC Boundary Node
   that handles traffic entering the SFC-enabled domain.  In most
   solutions and deployments this will need to include a classifier, and
   will be responsible for adding the SFC encapsulation to the packet.

   An SFC Proxy and corresponding SFC-unaware Service Function (see
   Figure 3) are inside the SFC-enabled domain.

Halpern & Pignataro     Expires January 25, 2016               [Page 16]



Internet-Draft              SFC Architecture                   July 2015

4.5.  Network Overlay and Network Components

   Underneath the SFF there are components responsible for performing
   the transport (overlay) forwarding.  They do not consult the SFC
   encapsulation or inner payload for performing this forwarding.  They
   only consult the outer-transport encapsulation for the transport
   (overlay) forwarding.

4.6.  SFC Proxy

   In order for the SFC architecture to support SFC-unaware SFs (e.g.,
   legacy service functions) a logical SFC proxy function may be used.
   This function sits between an SFF and one or more SFs to which the
   SFF is directing traffic (see Figure 3).

   The proxy accepts packets from the SFF on behalf of the SF.  It
   removes the SFC encapsulation, and then uses a local attachment
   circuit to deliver packets to SFC unaware SFs.  It also receives
   packets back from the SF, reapplies the SFC encapsulation, and
   returns them to the SFF for processing along the service function
   path.

   Thus, from the point of view of the SFF, the SFC proxy appears to be
   part of an SFC aware SF.

   Communication details between the SFF and the SFC Proxy are the same
   as those between the SFF and an SFC aware SF.  The details of that
   are not part of this architecture.  The details of the communication
   methods over the local attachment circuit between the SFC proxy and
   the SFC-unaware SF are dependent upon the specific behaviors and
   capabilities of that SFC-unaware SF, and thus are also out of scope
   for this architecture.

   Specifically, for traffic received from the SFF intended for the SF
   the proxy is representing, the SFC proxy:

   o  Removes the SFC encapsulation from SFC encapsulated packets.

   o  Identifies the required SF to be applied based on available
      information including that carried in the SFC encapsulation.

   o  Selects the appropriate outbound local attachment circuit through
      which the next SF for this SFP is reachable.  This is derived from
      the identification of the SF carried in the SFC encapsulation, and
      may include local techniques.  Examples of a local attachment
      circuit include, but are not limited to, VLAN, IP-in-IP, L2TPv3,
      GRE, VXLAN.
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   o  Forwards the original payload via the selected local attachment
      circuit to the appropriate SF.

   When traffic is returned from the SF:

   o  Applies the required SFC encapsulation.  The determination of the
      encapsulation details may be inferred by the local attachment
      circuit through which the packet and/or frame was received, or via
      packet classification, or other local policy.  In some cases,
      packet ordering or modification by the SF may necessitate
      additional classification in order to re-apply the correct SFC
      encapsulation.

   o  Delivers the packet with the SFC Encapsulation to the SFF, as
      would happen with packets returned from an SFC-aware SF.

4.7.  Classification

   Traffic from the network that satisfies classification criteria is
   directed into an SFP and forwarded to the requisite service
   function(s).  Classification is handled by a service classification
   function; initial classification occurs at the ingress to the SFC
   domain.  The granularity of the initial classification is determined
   by the capabilities of the classifier and the requirements of the SFC
   policy.  For instance, classification might be relatively coarse: all
   packets from this port are subject to SFC policy X and directed into
   SFP A, or quite granular: all packets matching this 5-tuple are
   subject to SFC policy Y and directed into SFP B.

   As a consequence of the classification decision, the appropriate SFC
   encapsulation is imposed on the data, and a suitable SFP is selected
   or created.  Classification results in attaching the traffic to a
   specific SFP.

4.8.  Re-Classification and Branching

   The SFC architecture supports re-classification (or non-initial
   classification) as well.  As packets traverse an SFP, re-
   classification may occur - typically performed by a classification
   function co-resident with a service function.  Reclassification may
   result in the selection of a new SFP, an update of the associated
   metadata, or both.  This is referred to as "branching".

   For example, an initial classification results in the selection of
   SFP A: DPI_1 --> SLB_8.  However, when the DPI service function is
   executed, attack traffic is detected at the application layer.  DPI_1
   re-classifies the traffic as attack and alters the service path to
   SFP B, to include a firewall for policy enforcement: dropping the
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   traffic: DPI_1 --> FW_4.  Subsequent to FW_4, surviving traffic would
   be returned to the original SFF.  In this simple example, the DPI
   service function re-classifies the traffic based on local application
   layer classification capabilities (that were not available during the
   initial classification step).

   When traffic arrives after being steered through an SFC-unaware SF,
   the SFC Proxy must perform re-classification of traffic to determine
   the SFP.  The SFC Proxy is concerned with re-attaching information
   for SFC-unaware SFs, and a stateful SFC Proxy simplifies such
   classification to a flow lookup.

4.9.  Shared Metadata

   Sharing metadata allows the network to provide network-derived
   information to the SFs, SF-to-SF information exchange and the sharing
   of service-derived information to the network.  Some SFCs may not
   require metadata exchange.  SFC infrastructure enables the exchange
   of this shared data along the SFP.  The shared metadata serves
   several possible roles within the SFC architecture:

   o  Allows elements that typically operate as ships in the night to
      exchange information.

   o  Encodes information about the network and/or data for post-
      service forwarding.

   o  Creates an identifier used for policy binding by SFs.

   Context information can be derived in several ways:

   o  External sources

   o  Network node classification

   o  Service function classification

5.  Additional Architectural Concepts

   There are a number of issues which solutions need to address, and
   which the architecture informs but does not determine.  This section
   lays out some of those concepts.

5.1.  The Role of Policy

   Much of the behavior of service chains is driven by operator and per-
   customer policy.  This architecture is structured to isolate the
   policy interactions from the data plane and control logic.
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   Specifically, it is assumed that the service chaining control plane
   creates the service paths.  The service chaining data plane is used
   to deliver the classified packets along the service chains to the
   intended service functions.

   Policy, in contrast, interacts with the system in other places.
   Policies and policy engines may monitor service functions to decide
   if additional (or fewer) instances of services are needed.  When
   applicable, those decisions may in turn result in interactions that
   direct the control logic to change the SFP placement or packet
   classification rules.

   Similarly, operator service policy, often managed by operational or
   business support systems (OSS or BSS), will frequently determine what
   service functions are available.  Operator service policies also
   determine which sequences of functions are valid and are to be used
   or made available.

   The offering of service chains to customers, and the selection of
   which service chain a customer wishes to use, are driven by a
   combination of operator and customer policies using appropriate
   portals in conjunction with the OSS and BSS tools.  These selections
   then drive the service chaining control logic, which in turn
   establishes the appropriate packet classification rules.

5.2.  SFC Control Plane

   The SFC Control Plane is part of the overall SFC architecture, and
   this section describes its high-level functions.  However, the
   detailed definition of the SFC Control Plane is outside the scope of
   this document.

   The SFC control plane is responsible for constructing SFPs,
   translating SFCs to forwarding paths and propagating path information
   to participating nodes to achieve requisite forwarding behavior to
   construct the service overlay.  For instance, an SFC construction may
   be static; selecting exactly which SFFs and which SFs from those SFFs
   are to be used, or it may be dynamic, allowing the network to perform
   some or all of the choices of SFF or SF to use to deliver the
   selected service chain within the constraints represented by the
   service path.

   In the SFC architecture, SFs are resources; the control plane manages
   and communicates their capabilities, availability and location in
   fashions suitable for the transport and SFC operations in use.  The
   control plane is also responsible for the creation of the context
   (see below).  The control plane may be distributed (using new or
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   existing control plane protocols), or be centralized, or a
   combination of the two.

   The SFC control plane provides the following functionality:

   1.  An SFC-enabled domain wide view of all available service function
       resources as well as the network locators through which they are
       reachable.

   2.  Uses SFC policy to construct service function chains, and
       associated service function paths.

   3.  Selection of specific SFs for a requested SFC, either statically
       (using specific SFs) or dynamically (using service explicit SFs
       at the time of delivering traffic to them).

   4.  Provides requisite SFC data plane information to the SFC
       architecture components, most notably the SFF.

   5.  Provide the metadata and usage information classifiers need so
       that they in turn can provide this metadata for appropriate
       packets in the data plane.

   6.  When needed, provide information including policy information to
       other SFC elements to be able to properly interpret metadata.

5.3.  Resource Control

   The SFC system may be responsible for managing all resources
   necessary for the SFC components to function.  This includes network
   constraints used to plan and choose network path(s) between service
   function forwarders, network communication paths between service
   function forwarders and their attached service functions,
   characteristics of the nodes themselves such as memory, number of
   virtual interfaces, routes, and instantiation, configuration, and
   deletion of SFs.

   The SFC system will also be required to reflect policy decisions
   about resource control, as expressed by other components in the
   system.

   While all of these aspects are part of the overall system, they are
   beyond the scope of this architecture.
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5.4.  Infinite Loop Detection and Avoidance

   This SFC architecture is predicated on topological independence from
   the underlying forwarding topology.  Consequently, a service topology
   is created by Service Function Paths or by the local decisions of the
   Service Function Forwarders based on the constraints expressed in the
   SFP.  Due to the overlay constraints, the packet-forwarding path may
   need to visit the same SFF multiple times, and in some less common
   cases may even need to visit the same SF more than once.  The Service
   Chaining solution needs to permit these limited and policy-compliant
   loops.  At the same time, the solutions must ensure that indefinite
   and unbounded loops cannot be formed, as such would consume unbounded
   resources without delivering any value.

   In other words, this architecture requires the solution to prevent
   infinite Service Function Loops, even when Service Functions may be
   invoked multiple times in the same SFP.

5.5.  Load Balancing Considerations

   Supporting function elasticity and high-availability should not
   overly complicate SFC or lead to unnecessary scalability problems.

   In the simplest case, where there is only a single function in the
   SFP (the next hop is either the destination address of the flow or
   the appropriate next hop to that destination), one could argue that
   there may be no need for SFC.

   In the cases where the classifier is separate from the single
   function or a function at the terminal address may need sub-prefix
   (e.g., finer grained address information) or per-subscriber metadata,
   a single SFP exists (i.e., the metadata changes but the SFP does
   not), regardless of the number of potential terminal addresses for
   the flow.  This is the case of the simple load balancer.  See
   Figure 4.

                            +---+    +---++--->web server
                  source+-->|sff|+-->|sf1|+--->web server
                            +---+    +---++--->web server

                      Figure 4: Simple Load Balancing

   By extrapolation, in the case where intermediary functions within a
   chain had similar "elastic" behaviors, we do not need separate chains
   to account for this behavior - as long as the traffic coalesces to a
   common next-hop after the point of elasticity.

Halpern & Pignataro     Expires January 25, 2016               [Page 22]



Internet-Draft              SFC Architecture                   July 2015

   In Figure 5, we have a chain of five service functions between the
   traffic source and its destination.

                +---+ +---+ +---+   +---+ +---+ +---+
                |sf2| |sf2| |sf3|   |sf3| |sf4| |sf4|
                +---+ +---+ +---+   +---+ +---+ +---+
                  |     |     |       |     |     |
                  +-----+-----+       +-----+-----+
                        |                   |
                        +                   +
             +---+    +---+     +---+     +---+    +---+
   source+-->|sff|+-->|sff|+--->|sff|+--->|sff|+-->|sff|+-->destination
             +---+    +---+     +---+     +---+    +---+
               +                  +                  +
               |                  |                  |
             +---+              +---+              +---+
             |sf1|              |sf3|              |sf5|
             +---+              +---+              +---+

                         Figure 5: Load Balancing

   This would be represented as one service function path:
   sf1->sf2->sf3->sf4->sf5.  The SFF is a logical element, which may be
   made up of one or multiple components.  In this architecture, the SFF
   may handle load distribution based on policy.

   It can also be seen in the above that the same service function may
   be reachable through multiple SFFs, as discussed earlier.  The
   selection of which SFF to use to reach SF3 may be made by the control
   logic in defining the SFP, or may be left to the SFFs themselves,
   depending upon policy, solution, and deployment constraints.  In the
   latter case, it needs to be assured that exactly one SFF takes
   responsibility to steer traffic through SF3.

5.6.  MTU and Fragmentation Considerations

   This architecture prescribes additional information being added to
   packets to identify service function paths and often to represent
   metadata.  It also envisions adding transport information to carry
   packets along service function paths, at least between service
   function forwarders.  This added information increases the size of
   the packet to be carried by service chaining.  Such additions could
   potentially increase the packet size beyond the MTU supported on some
   or all of the media used in the service chaining domain.

   Such packet size increases can thus cause operational MTU problems.
   Requiring fragmentation and reassembly in an SFF would be a major
   processing increase, and might be impossible with some transports.
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   Expecting service functions to deal with packets fragmented by the
   SFC function might be onerous even when such fragmentation was
   possible.  Thus, at the very least, solutions need to pay attention
   to the size cost of their approach.  There may be alternative or
   additional means available, although any solution needs to consider
   the tradeoffs.

   These considerations apply to any generic architecture that increases
   the header size.  There are also more specific MTU considerations:
   Effects on Path MTU Discovery (PMTUD) as well as deployment
   considerations.  Deployments within a single administrative control
   or even a single Data Center complex can afford more flexibility in
   dealing with larger packets, and deploying existing mitigations that
   decrease the likelihood of fragmentation or discard.

5.7.  SFC OAM

   Operations, Administration, and Maintenance (OAM) tools are an
   integral part of the architecture.  These serve various purposes,
   including fault detection and isolation, and performance management.
   For example, there are many advantages of SFP liveness detection,
   including status reporting, support for resiliency operations and
   policies, and an enhanced ability to balance load.

   Service Function Paths create a services topology, and OAM performs
   various functions within this service layer.  Furthermore, SFC OAM
   follows the same architectural principles of SFC in general.  For
   example, topological independence (including the ability to run OAM
   over various overlay technologies) and classification-based policy.

   We can subdivide the SFC OAM architecture in two parts:

   o  In-band: OAM packets follow the same path and share fate with user
      packets, within the service topology.  For this, they also follow
      the architectural principle of consistent policy identifiers, and
      use the same path IDs as the service chain data packets.  Load
      balancing and SFC encapsulation with packet forwarding are
      particularly important here.

   o  Out-of-band: reporting beyond the actual data plane.  An
      additional layer beyond the data-plane OAM allows for additional
      alerting and measurements.

   This architecture prescribes end-to-end SFP OAM functions, which
   implies SFF understanding of whether an in-band packet is an OAM or
   user packet.  However, service function validation is outside of the
   scope of this architecture, and application-level OAM is not what
   this architecture prescribes.
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   Some of the detailed functions performed by SFC OAM include fault
   detection and isolation in a Service Function Path or a Service
   Function, verification that connectivity using SFPs is both effective
   and directing packets to the intended service functions, service path
   tracing, diagnostic and fault isolation, alarm reporting, performance
   measurement, locking and testing of service functions, validation
   with the control plane (see Section 5.2), and also allow for vendor-
   specific as well as experimental functions.  SFC should leverage, and
   if needed extend relevant existing OAM mechanisms.

5.8.  Resilience and Redundancy

   As a practical operational requirement, any service chaining solution
   needs to be able to respond effectively, and usually very quickly, to
   failure conditions.  These may be failures of connectivity in the
   network between SFFs, failures of SFFs, or failures of SFs.  Per-SF
   state, as for example stateful-firewall state, is the responsibility
   of the SF, and not addressed by this architecture.

   Multiple techniques are available to address this issue.  Solutions
   can describe both what they require and what they allow to address
   failure.  Solutions can make use of flexible specificity of service
   function paths, if the SFF can be given enough information in a
   timely fashion to do this.  Solutions can also make use of MAC or IP
   level redundancy mechanisms such as VRRP.  Also, particularly for SF
   failures, load balancers co-located with the SFF or as part of the
   service function delivery mechanism can provide such robustness.

   Similarly, operational requirements imply resilience in the face of
   load changes.  While mechanisms for managing (e.g., monitoring,
   instantiating, loading images, providing configuration to service
   function chaining control, deleting, etc.) virtual machines are out
   of scope for this architecture, solutions can and are aided by
   describing how they can make use of scaling mechanisms.

6.  Security Considerations

   The architecture described here is different from the current model,
   and moving to the new model could lead to different security
   arrangements and modeling.  In the SFC architecture, a relatively
   static topologically-dependent deployment model is replaced with the
   chaining of sets of service functions.  This can change the flow of
   data through the network, and the security and privacy considerations
   of the protocol and deployment will need to be reevaluated in light
   of the new model.

   Security considerations apply to the realization of this
   architecture, in particular to the documents that will define
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   protocols.  Such realization ought to provide means to protect
   against security and privacy attacks in the areas hereby described.

   Building from the categorization of [RFC7498], we can largely divide
   the security considerations in four areas:

   Service Overlay:  Underneath the Service Function Forwarders, the
        components that are responsible for performing the transport
        forwarding consult the outer-transport encapsulation for
        underlay forwarding.  Used transport mechanisms should satisfy
        the security requirements of the specific SFC deployment.  These
        requirements typically include varying degrees of traffic
        separation, protection against different attacks (e.g.,
        spoofing, man-in-the-middle, brute-force, or insertion attacks),
        and can also include authenticity and integrity checking, and/or
        confidentiality provisions, for both the network overlay
        transport and traffic it encapsulates.

   Boundaries:  Specific requirements may need to be enforced at the
        boundaries of an SFC-enabled domain.  These include, for
        example, to avoid leaking SFC information, and to protect its
        borders against various forms of attacks.  If untrusted parties
        can inject packets which will be treated as being properly
        classified for service chaining, there are a large range of
        attacks which can be mounted against the resulting system.
        Depending upon deployment details, these likely include spoofing
        packets from users and creating DDoS and reflection attacks of
        various kinds.  Thus, when a transport mechanisms are selected
        for use with SFC, they MUST ensure that outside parties can not
        inject SFC packets which will be accepted for processing into
        the domain.  This border security MUST include any tunnels to
        other domains.  If those tunnels are to be used for SFC without
        reclassification, then the tunnel MUST include additional
        techniques to ensure the integrity and validity of such packets.

   Classification:  Classification is used at the ingress edge of an
        SFC-enabled domain.  Policy for this classification is done
        using a plurality of methods.  Whatever method is used needs to
        consider a range of security issues.  These include appropriate
        authentication and authorization of classification policy,
        potential confidentiality issues of that policy, protection
        against corruption, and proper application of policy with needed
        segregation of application.  This includes proper controls on
        the policies which drive the application of the SFC
        Encapsulation and associated metadata to packets.  Similar
        issues need to be addressed if classification is performed
        within a service chaining domain, i.e., re-classification.
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   SFC Encapsulation:  The SFC Encapsulation provides at a minimum SFP
        identification, and carries metadata.  An operator may consider
        the SFC Metadata as sensitive.  From a privacy perspective, a
        user may be concerned about the operator revealing data about
        (and not belonging to) the customer.  Therefore, solutions
        should consider whether there is a risk of sensitive information
        slipping out of the operators control.  Issues of information
        exposure should also consider flow analysis.  Further, when a
        specific metadata element is defined, it should be carefully
        considered whether origin authentication is needed for it.

        A classifier may have privileged access to information about a
        packet or inside a packet (see Section 3, bullet 4, and
        Section 4.9) that is then communicated in the metadata.  The
        threat of leaking this private data needs to be mitigated
        [RFC6973].  As one example, if private data is represented by an
        identifier, then a new identifier can be allocated, such that
        the mapping from the private data to the new identifier is not
        broadly shared.

        Some metadata added to and carried in SFC packets is sensitive
        for various reasons, including potentially revealing personally
        identifying information.  Realizations of the architecture MUST
        protect to ensure that such information is handled with suitable
        care and precautions against inappropriate dissemination of the
        information.  This can have implications to the data plane, the
        control plane, or both.  Data plane protocol definitions for SFC
        can include suitable provision for protect such information for
        use when handling sensitive information, with packet or SFP
        granularity.  Equally, the control mechanisms use with SFC can
        have provisions to determine that such mechanisms are available,
        and to ensure that they are used when needed.  Inability to do
        so needs to result in error indications to appropriate
        management systems.  In particular, when the control systems
        know that sensitive information may potentially be added to
        packets at certain points on certain service chains, the control
        mechanism MUST verify that appropriate protective treatment of
        NSH information is available from the point where the
        information is added to the point where it will be removed.  If
        such mechanisms are unavailable, error notifications SHOULD be
        generated.

   Additionally, SFC OAM Functions need to not negatively affect the
   security considerations of an SFC-enabled domain.

   Finally, all entities (software or hardware) interacting with the
   service chaining mechanisms need to provide means of security against
   malformed, poorly configured (deliberate or not) protocol constructs
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   and loops.  These considerations are largely the same as those in any
   network, particularly an overlay network.
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   is steered through all the service functions of the SFC for the life
   of the traffic flow even though this is often not necessary.
   Steering traffic to service functions only while required and not
   otherwise, leads to optimal SFCs with improved latencies, reduced
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   protocol extensions to achieve such optimization.
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1.  Introduction

   Service function chaining involves steering traffic flows through a
   set of service functions in a specific order.  Such an ordered list
   of service functions is called a Service Function Chain (SFC).  The
   actual forwarding path used to realize an SFC is called the Service
   Function Path (SFP).

   Service functions forming an SFC are hosted at different points in
   the network, often co-located with different types of service
   functions to form logical groupings.  Applying a SFC thus requires
   traffic steering by the SFC infrastructure from one service function
   to the next until all the service functions of the SFC are applied.
   Service functions know best what type of traffic they can service and
   how much traffic needs to be delivered to them to achieve complete
   delivery of service.  As a consequence any service function may
   potentially request, within its policy constraints, traffic no longer
   be delivered to it or its function be performed by the SFC
   infrastructure, if such a mechanism is available.

   This document outlines mechanisms to not steer traffic to service
   functions, on request, while still ensuring compliance to the
   instantiated policy that mandates the SFC.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Definition Of Terms

   This document uses the following terms.  Additional terms are defined
   in [I-D.ietf-sfc-problem-statement], [I-D.ietf-sfc-architecture] and
   [I-D.quinn-sfc-nsh].  Some are reproduced here only for convenience
   and the reader is advised to consult the referenced documents.

   Service Function (SF):  A function that is responsible for specific
       treatment of received packets.  A Service Function can act at the
       network layer or other OSI layers.  A Service Function can be a
       virtual instance or be embedded in a physical network element.
       One of multiple Service Functions can be embedded in the same
       network element.  Multiple instances of the Service Function can
       be enabled in the same administrative domain.  A non-exhaustive
       list of Service Functions includes: firewalls, WAN and
       application acceleration, Deep Packet Inspection (DPI), server
       load balancers, NAT44 [RFC3022], NAT64 [RFC6146], HOST_ID

Kumar, et al.             Expires April 4, 2015                 [Page 3]



Internet-Draft            SFC SFP Optimization                  Oct 2014

       injection, HTTP Header Enrichment functions, TCP optimizer, etc.

   Service Node (SN):  A virtual or physical device that hosts one or
       more service functions, which can be accessed via the network
       location associated with it.

   Service Function Forwarder (SFF):  A service function forwarder is
       responsible for forwarding traffic along the service path, which
       includes delivery of traffic to the connected service functions.

   Network Forwarder (NF):  The entity, typically part of the network
       infrastructure, responsible for performing the transport function
       in traffic forwarding.

   Service Controller (SC):  The entity responsible for managing the
       service chains, including create/read/update/delete actions as
       well as programming the service forwarding state in the network -
       SFP distribution.

   Classifier (CF):  The entity, responsible for selecting traffic as
       well as SFP, based on policy, and forwarding the selected traffic
       on the SFP after adding the necessary encapsulation.  Classifier
       is implicitly an SFF.

   Offload:  A request or a directive from the SF to alter the SFP so as
       to remove the requesting SF from the SFP while maintaining the
       effect of the removed SF on the offloaded flow.

   Un-offload:  A request or directive to cancel the effect of Offload -
       leads to altering the SFP so as to insert the requesting SF back
       into the SFP and steer the flow to it.

3.  Service Function Path Optimization

   The packet forwarding path of a SFP involves the classifier, one or
   more SFFs and all the SFs that are part of the SFP.  Packets of a
   flow are forwarded along this path to each of the SFs, for the life
   of the flow, whether SFs perform the full function in treating the
   packet or reapply the cached result, from the last application of the
   function, on the residual packets of the flow.  In other words, every
   packet on the flow incurs the same latency and the end-to-end SFP
   latency remains more or less constant subject to the nature of the
   SFs involved.  If an SF can be removed from the SFP, for a specific
   flow, traffic steering to the SF is avoided for that flow; thus
   leading to a shorter SFP for the flow.  When multiple SFs in a SFP
   are removed, the SFP starts to converge towards the optimum path,
   which in its best case starts and terminates at the classifier itself
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   without incurring any latency associated with traversing the SFP.

   Although SFs are removed from the SFP, the corresponding SFC is not
   changed - this is subtle but an important characteristic of this
   mechanism.  In other words, this mechanism does not alter the SFC and
   still uses the SFP associated with the SFC.

   There are two primary approaches to removing an SF from the SFP.
   Namely,

   o  Bypass: Mechanism that alters the SFC.  Described in this draft
      for completeness.

   o  Simple Offload: Mechanism that alters the SFP alone, does not
      affect the SFC.  This is the primary focus of this draft.

3.1.  Bypass

   Many service functions do not deliver service to certain types of
   traffic.  For instance, typical WAN optimization service functions
   are geared towards optimizing TCP traffic and add no value to non-TCP
   traffic.  Non-TCP traffic thus can bypass such a service function.
   Even in the case of TCP, a WAN optimization SF may not be able to
   service the traffic if the corresponding TCP flow is not seen by it
   from inception.  In such a situation a WAN optimization SF can avoid
   the overhead of processing such a flow or reserving resources for it,
   if it had the ability to request such flows not be steered to it.  In
   other words such service functions need the ability to request they
   be bypassed for a specified flow from a certain time in the life of
   that flow.

   A seemingly simple alternative is to require service functions pre
   specify the traffic flow types they add value to, such as the one-
   tuple: IP protocol-type described above.  A classifier built to use
   such data exposed by SFs, may thus enable bypassing such SFs for
   specific flows by way of selecting a different SFC that does not
   contain the SF being removed.

   Although knowledge of detailed SF profiles helps SFC selection at the
   classifier starting the SFC, it leads to shortcomings.

   o  It adds to the overhead of classification at that classifier as
      all SF classification requirements have to be met by the
      classifier.

   o  It leads to conflicts in classification requirements between the
      classifier and the SFs.  Classification needs of different SFs in
      the same SFC may vary.  A classifier thus cannot classify traffic
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      based on the classification of one of the SFs in the chain.  For
      instance, even though a flow is uninteresting to one SF on an SFC,
      it may be interesting to another SF in the same SFC.

   o  The trigger for bypassing an SF may be dynamic as opposed to the
      static classification at the classifier - it may originate at the
      SFs themselves and involve the control and policy planes.  The
      policy and control planes may react to such a trigger by
      instructing the classifier to select a different SFC for the flow,
      thereby achieving SF bypass.

3.2.  Simple Offload

   Service delivery by a class of service functions involves inspecting
   the initial portion of the traffic and determining whether traffic
   should be permitted or dropped.  In some service functions, such an
   inspection may be limited to just the five tuple, in some others it
   may involve protocol headers, and in yet others it may involve
   inspection of the byte stream or application content based on the
   policy specified.  Firewall service functions fall into such a class,
   for example.  In all such instances, servicing involves determining
   whether to permit the traffic to proceed onwards or to deny the
   traffic from proceeding onwards and drop the traffic.  In some cases,
   dropping of the traffic may be accompanied with the generation of a
   response to the originator of traffic or to the destination or both.
   Once the service function determines the result - permit or deny (or
   drop), it simply applies the same result to the residual packets of
   the flow by caching the result in the flow state.

   In essence, the effect of service delivery is a PERMIT or a DENY
   action on the traffic of a flow.  This class of service functions can
   avoid all the overhead of processing such traffic at the SF, by
   simply requesting another entity in the SFP, to assume the function
   of performing the action determined by the service function.  Since
   PERMIT and DENY are very simple actions other entities in the SFP are
   very likely to be able to perform them on behalf of the requesting
   SF.  A service function can thus offload simple functions to other
   entities in the SFP.

   Since SFF is the one steering traffic to the SFs and hence is on the
   SFP, is a natural entity to assume the offload function.  An SF not
   interested in traffic being steered to it can simply perform a simple
   offload by indicating a PERMIT action along with an OFFLOAD request.
   The SFF responsible for steering the traffic to the SF takes note of
   the ACTION and offload request.  The OFFLOAD directive and the ACTION
   received from the requesting SF are cached against the SF for that
   flow.  Once cached, residual packets on the flow are serviced by the
   cached directive and action as if being serviced by the corresponding
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   SF.

3.2.1.  Stateful SFF

   SFFs are the closest SFC infrastructure entities to the service
   functions.  SFFs may be state-full and hence can cache the offload
   and action in both of the unidirectional flows of a connection.  As a
   consequence, action and offload become effective on both the flows
   simultaneously and remain so until cancelled or the flow terminates.

   SFFs may not always honor the offload requests received from SFs.
   This does not affect the correctness of the SFP in any way.  It
   implies that the SFs can expect traffic to arrive on a flow, which it
   offloaded, and hence must service them, which may involve requesting
   an offload again.  It is natural to think of an acknowledgement
   mechanism to provide offload guarantees to the SFs but such a
   mechanism just adds to the overhead while not providing significant
   benefit.  Offload serves as a best effort mechanism.

3.2.2.  Packet Re-ordering

   Offload mechanism creates short time-windows where packet re-ordering
   may occur.  While SFs request flows be offloaded to SFFs, packets may
   still be in flight at various points along the SFP, including some
   between the SFF and the SF.  Once the offload decision is received
   and committed into the flow entry at the SFF, any packets arriving
   after and destined to the offloading SF are treated to the offload
   decision and forwarded along (if it is a PERMIT action).  Inflight
   packets to the offloading SF may arrive at the SFF after one or more
   packets are already treated to the offload decision and forwarded
   along.

   This is a transitional effect and may not occur in all cases.  For
   instance, if the decision to offload a flow by an SF is based on the
   first packet of TCP flow, a reasonable time window exists between the
   offload action being committed into the SFF and arrival of subsequent
   packet of the same flow at that SFF.  Likewise, request/response
   based protocols such as HTTP may not always be subject to the re-
   ordering effects.

3.2.3.  Policy Implications

   Offload mechanism may be controlled by the policy layer.  The SFs
   themselves may have a static policy to utilize the capability offered
   by the SFC infrastructure.  They could also be dynamic and controlled
   by the specific policy layer under which the SFs operate.

   Similarly, the SFC infrastructure, specifically the classifiers and

Kumar, et al.             Expires April 4, 2015                 [Page 7]



Internet-Draft            SFC SFP Optimization                  Oct 2014

   the SFFs, may be under the SFC infrastructure control plane policy
   controlling the decision to honor offloads from an SF.  This policy
   in turn may be coarse-grain, at the SF level, and hence static.  It
   can also be fine grain and hence dynamic but it adds to the overhead
   of policy distribution.

   Policy model related to offloads is out of scope of this document.

3.2.4.  Capabilities Exchange

   Simple offloads can be exposed and negotiated a priori as a
   capability between the SFFs and the SFs or the corresponding control
   layers.  In the simplest of the implementations, this is provided by
   the SFC infrastructure and the SFs are statically configured to
   utilize them without capabilities negotiation, within the constraints
   of the SF specific policies.

   Capabilities exchange is outside the scope of this document.

4.  Methods For SFP Optimization

   There are a number of different models that may be used to facilitate
   shortest SFP realization.  We present two here.

   The shortest SFP methods discussed in the following sections require
   signaling among the participant components to communicate offload and
   permit/deny actions.  The signaling may be performed in the data-
   plane or in the control plane.

   a.  Data-plane: An SFC specific communication channel is needed for
       SNs to communicate the offload request along with the SF treated
       packet.  [NSH] defines a header specifically for carrying SFP
       along with metadata and provides such a channel for use with
       offloads.  Necessary bits need to be allocated in NSH to convey
       the action as well as the offload directive.  This signaling may
       be limited to SN and SFF or may continue from one SFF to another
       SFF or the classifier.  It may also involve signaling directly
       from the SF to the classifier.

   b.  Control-plane: Messages are required between the SN and the
       service controller as well as between the SFF and the control
       plane.  Service controller messaging is out of scope of this
       document and it is assumed to be service controller specific.
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4.1.  Hop-by-hop Offload

   SNs receive traffic on an overlay from the SFF.  SNs service the
   traffic and turn them back to the SFF on an overlay or forward the
   traffic on the underlay.  In the former case, along with returning
   the traffic to SFF, they can perform simple offload by signaling
   OFFLOAD and ACTION to the SFF.  SFF caches the OFFLOAD and ACTION
   while forwarding the serviced packet onwards to the next service hop
   on the SFP or dropping it.  SFF can now enforce the OFFLOAD and
   ACTION on the residual packets of the flow.

   Additionally, SFF may choose to signal the upstream SFFs of the
   OFFLOAD and ACTION received from an SF.  This may continue
   recursively until the first SFF is reached, which is the classifier
   itself.

   By performing such hop-by-hop offloads, SFP can be reduced to an
   optimum one, steering traffic to only those SFs that really need to
   see the traffic.

   Figure 1 to Figure 3 show an example of SF and SFF performing an
   offload operation and the effect thereafter on the SFP.

Kumar, et al.             Expires April 4, 2015                 [Page 9]



Internet-Draft            SFC SFP Optimization                  Oct 2014

                 SFID(1)            SFID(2)            SFID(3)
                +------+           +------+           +------+
            ....| SF1  |....   ....| SF2  |....   ....| SF3  |....
            .   +------+   .   .   +------+   .   .   +------+   .
            .      |       .   .      |       .   .      |       .
            .   +------+   .   .   +------+   .   .   +------+   .
            .   | SFF1 |   .   .   | SFF2 |   .   .   | SFF3 |   .
            .   +------+   .   .   +------+   .   .   +------+   .
            .      |       .   .      |       .   .      |       .  +-+
    +----+  .   +------+   .   .   +------+   .   .   +------+   .  |N|
    | CF |------| NF1  |-----------| NF2  |-----------| NF3  |------|e|
    +----+  .   +------+   .   .   +------+   .   .   +------+   .  |t|
            .              .   .              .   .              .  +-+
     SFP1 ...              .....              .....              ... >

    Service Function Chain, SFC1 = {SF1, SF2, SF3}
       where SF1, SF2 and SF3 are three service functions.
    Service Function Path SFP1 is the SFP for SFC1.
    Classifier CF starts SFP1 based on policy.

                  Figure 1: SFC1 with corresponding SFP1

                               O
                               f
                 SFID(1)       f +- SFID(2)            SFID(3)
                +------+       l | +------+           +------+
            ....| SF1  |....   o | | SF2  |       ....| SF3  |....
            .   +------+   .   a | +------+       .   +------+   .
            .      |       .   d |    |           .      |       .
            .   +------+   .     v +------+       .   +------+   .
            .   | SFF1 |   .   ....| SFF2 |....   .   | SFF3 |   .
            .   +------+   .   .   +------+   .   .   +------+   .
            .      |       .   .      |       .   .      |       .  +-+
    +----+  .   +------+   .   .   +------+   .   .   +------+   .  |N|
    | CF |------| NF1  |-----------| NF2  |-----------|  NF3  |-----|e|
    +----+  .   +------+   .   .   +------+   .   .   +------+   .  |t|
            .              .   .              .   .              .  +-+
     SFP1 ...              .....              .....              ... >

             Figure 2: SFP1 after SFID(2) performs an Offload
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                               O
                 SFID(1)       f    SFID(2)            SFID(3)
                +------+       f   +------+           +------+
            ....| SF1  |....   l   | SF2  |       ....| SF3  |....
            .   +------+   .   o   +------+       .   +------+   .
            .      |       .   a      |           .      |       .
            .   +------+   .   d   +------+       .   +------+   .
            .   | SFF1 | <-------- | SFF2 |       .   | SFF3 |   .
            .   +------+   .       +------+       .   +------+   .
            .      |       .          |           .      |       .  +-+
    +----+  .   +------+   .       +------+       .   +------+   .  |N|
    | CF |------| NF1  |-----------| NF2  |-----------| NF3  |------|e|
    +----+  .   +------+   .       +------+       .   +------+   .  |t|
            .              .                      .              .  +-+
     SFP1 ...              ........................              ... >

     Figure 3: SFP1 after SFF2 propagates the Offload upstream to SFF1

4.1.1.  Progression Of SFP Optimization

   SFP optimization happens at two levels:

   Level-1:  Collapsing of the SFF-to-SF hops into the SFF or the SFC
             infrastructure.

   Level-2:  Reduction of the (collapsed) SFP within the SFC
             infrastructure to the shortest possible.

   Figure 1 to Figure 3 show one sequence of offload events leading to a
   shorter SFP.  Although not shown in these figures, further offload
   events ultimately lead to an optimum SFP.

   Below steps show one such sequence of offload events that lead to
   such an optimum SFP.

   Stage-1:  Prior to any offloads, service function path SFP1
             (corresponding to SFC1) has the following actual forwarding
             path as shown in Figure 1:
             CF ->
             NF1 -> SFF1 -> SF1 -> SFF1 -> NF1 ->
             NF2 -> SFF2 -> SF2 -> SFF2 -> NF2 ->
             NF3 -> SFF3 -> SF3 -> SFF3 -> NF3 ->
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   Stage-2:  After SF2 performs a simple offload, which is signaled to
             upstream SFFs - SFF1, Classifier, SFP1 forwarding path
             changes to the below as shown in Figure 3:
             CF ->
             NF1 -> SFF1 -> SF1 -> SFF1 -> NF1 ->
             NF3 -> SFF3 -> SF3 -> SFF3 -> NF3 ->

   Stage-3:  After SF3 performs simple offload, which is signaled to
             upstream SFFs - SFF2, SFF1, and Classifier, SFP1 forwarding
             path changes to the below (figure not shown) />:
             CF ->
             NF1 -> SFF1 -> SF1 -> SFF1 -> NF1 ->

   Stage-4:  After SF1 performs simple offload, which is signaled to
             upstream SFFs - Classifier, SFP1 forwarding path changes to
             the below (figure not shown):
             CF ->

4.2.  Service Controller Offload

   Each SN signals the service controller of the OFFLOAD and ACTION via
   control plane messaging for a specific flow.  The service controller
   then signals the appropriate SFFs to offload the requested SFs, there
   by achieving the hop-by-hop offload behavior.

   The service controller has full knowledge of all the SFs of the SFP
   offloading the flow and hence can determine the optimum SFP within
   the Service Controller and program the appropriate SFFs to achieve
   SFP optimization.

5.  Offload Data-plane Signaling

   Since Offload and action are signaled at the time of returning the
   traffic to SFF, post servicing the traffic, such signaling can be
   integrated into the service header of the packet.  Figure 4 shows the
   bits necessary to achieve the signaling using the SFC encapsulation
   as described in [I-D.quinn-sfc-nsh].
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       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Base Header                                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Service Path Header                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Network Platform Context                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |F|D|             Network Shared Context                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Service Platform Context                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Service Shared Context                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ˜             Optional Variable Length Context Headers          ˜
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   F : Offload bit; indicates offload request when F is set to 1
   D : Drop (or Deny) bit, drop when D=1 and permit when D=0;
       Drop bit is valid only when F is set to 1

                   Figure 4: NSH Offload and ACTION Bits

   Although SFs can signal SFFs by piggy backing on the serviced packet,
   SFFs cannot signal in a similar fashion.  This is because the traffic
   is forwarded along the SFP to the next or downstream SFF.  The
   offload signaling has to go to the upstream SFFs, in the opposite
   direction.  SFFs have a choice: perform out-of-band signaling towards
   the upstream SFFs or wait until traffic arrives on the opposite flow
   on the reverse SFP, where SFPs are symmetric.  SFFs can then
   piggyback the offload signaling on the reverse traffic towards the
   upstream SFFs.  The actual method employed to signal offload between
   the SFFs is implementation specific.
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8.  Security Considerations

   Security of the offload signaling mechanism is very important.  This
   document does not advocate any additional security mechanisms other
   the data plane and control plane signaling security mechanisms.
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Abstract

   A Service Function Chain (SFC) defines a set of abstract Service
   Functions (SF) and ordering constraints that must be applied to
   packets and/or frames selected as a result of classification.  One
   assumption of this document is that legacy service functions can
   participate in service function chains without supporting the SFC
   header, or even being aware of it.  This document provides some of
   the mechanisms between an SFC proxy and an SFC-unaware service
   function (herein termed "legacy SF"), to identify the SFC header
   associated with a packet that is returned from a legacy SF, without
   an SFC header being explicitly carried in the wired protocol between
   SFC proxy and legacy SF.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 10, 2017.
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1.  Introduction

   A Service Function Chain (SFC) [RFC7665] defines a set of abstract
   service functions and ordering constraints that must be applied to
   packets and/or frames selected as a result of classification.  One
   assumption of this document is that some service functions may remain
   as legacy implementations, i.e. SFC-unaware SFs.  The SFC proxy is
   proposed to act as a gateway between the SFC encapsulation and SFC-
   unaware SFs.  The SFC proxy removes the SFC header and then sends the
   packet to a legacy SF for processing, but how to associate the
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   original SFC header with the packet returned from the legacy SF needs
   to be considered.

   This document describes some of the mechanisms between an SFC proxy
   and a legacy SF, to identify the SFC header associated with a packet
   that is returned from a legacy SF.  The benefit for supporting legacy
   SF is that SFC-unaware SFs can exist in the SFC-enabled domain.  An
   SFC proxy allows a legacy SF to function in the SFC-enabled domain
   without modification of the legacy SF.

                   +----------------+
                   |SFC-unaware     |
                   |Service Function|
                   | (Legacy SF)    |
                   +----+----+------+
                        ^    |
                        |    |
                   +----+----+------+
                   |Switch(optional)|
                   +----+----+------+
                        |    |
                     (2)|    |(3)
                        |    |
                   +----+----V--------+
             (1)   |      SFC         | (4)
          -------->|      Proxy       +------->
                   +------------------+

         Figure 1: Procedure of a packet processed by a legacy SF

   Different classes of legacy SF may have variable support for
   different types of packets with respect to parsing and semantics
   (e.g., some classes of legacy SF may accept VLAN-tagged traffic;
   others may not), usually depending on device configuration.  For
   example, by creation of VLANs, traffic is steered through a firewall.

   This document focuses heavily on legacy SFs that are transparent at
   layer 2.  In particular we assume the following conditions apply in
   the class of legacy SF we are considering proxying:

      1.  Traffic is forwarded between pairs of interfaces, such that
      packets received on the "left" are forwarded on the "right" and
      vice versa.

      2.  A packet is forwarded between interfaces without modifying the
      layer 2 header; i.e., neither source MAC nor destination MAC is
      modified.
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      3.  When supported, VLAN-tagged or Q-in-Q packets are forwarded
      with the original VLAN tag(s) intact (S-tags and C-tags).

      4.  Traffic may be discarded by some functions (e.g., by a
      firewall).

      5.  Traffic may be injected in either direction by some functions
      (e.g., extra data coming from a cache, or simply TCP
      retransmissions).  We assume injected traffic relates to a layer 3
      or layer 4 flow, and the SF clones layer 2 headers from exemplar
      packets of the same flow.

      6.  Traffic may be modified by some functions at layer 3 (e.g.,
      DSCP marking) or higher layers (e.g., HTTP header enrichment or
      anonymization).  Note that modification can be considered a
      special case of discarding followed by injection.

      7.  Traffic may be reordered by some functions (e.g., due to
      queuing/scheduling).

   We leave the legacy SFs which modify the original layer 2 packet
   headers as an open issue for further study.

   To support this class of legacy SF, if the payload in the SFC
   encapsulation is layer 3 traffic, the SFC proxy will extract the
   layer 3 payload from SFC encapsulation and prepend a new layer 2
   header before sending the packet to the SF.  However if the payload
   in the SFC encapsulation is layer 2 traffic, the SFC proxy may
   extract the layer 2 packet from SFC encapsulation, modify the
   original source MAC address and use the new source MAC address for
   mapping to the stored SFC and layer 2 headers when the packets are
   returned to the SFC proxy.  This will not impact the SF processing.
   The SF will send the traffic back after processing.

   As shown in Figure 1, there are four steps.  The SFC proxy receives a
   packet (1) from an SFF, and removes its SFC header, which may
   optionally contain metadata, and store the SFC header locally, and
   then (2) sends the de-encapsulated packet to the SF.  After the SF
   processes the packet, the packet will be sent back (3) to the SFC
   proxy.  The SFC proxy retrieves the pre-stored SFC header
   accordingly, determines the SFC header for the next stage of the path
   and encapsulates the packet with the next SFC header, returning the
   packet to an SFF (4).
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2.  Terminology

   The terminology used in this document is defined below:

      Legacy SF: A conventional service function that does not support
      SFC header, i.e., SFC-unaware SF.

      Transparent SF: A service function that does not change any bit of
      the layer 2/3/4 packet header sent to it, but it may drop the
      packet.

      Non-transparent SF: A service function that changes some bits of
      the layer 2/3/4 packet header sent to it.

      SFC Proxy: Removes and inserts SFC encapsulation on behalf of an
      SFC-unaware service function.  SFC proxies are logical elements.

3.  Mechanisms

   The mapping mechanisms between the SFC proxy and the transparent or
   non-transparent legacy SFs are discussed in this section.  The
   mechanisms used in this document require that each forwarding entity
   (i.e., SFC proxy) and its connected service functions are in the same
   layer 2 network.  The detailed definitions of SFC proxy and SFC-
   unaware SFs is discussed in [RFC7665].

3.1.  For Transparent Service Functions

3.1.1.  VLAN

   If the service function is transparent to packet headers, for
   example, layer-2-transparent SF, then VLAN can be used for mapping
   between the SFC proxy and SF.  It is assumed that the switch between
   the SFC proxy and SF delivers traffic for all VLANs, or the SFC proxy
   and SF may be directly connected.

   The SFC proxy removes the SFC header and sends the packet to the SF,
   with encapsulating a certain VLAN ID that can represent the SFC
   header.  The legacy SF is supposed to accept VLAN-tagged packets and
   send them back on the same VLAN.  It is assumed that the SF is able
   to process Ethernet packets with VLAN tags and also accept a wide
   range of VLAN tags.  The SFC proxy locally maintains the mapping
   between VLAN ID/direction and the SFC header.

   When receiving the returned packet from the SF, the SFC proxy removes
   the VLAN part from the packet and retrieves the corresponding SFC
   header according to the VLAN ID and the direction of packet travel,
   and then encapsulates SFC header into that packet before sending to
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   the next service function.  Packet direction is required because the
   SFC header for left-to-right packets is different than the SFC header
   for right-to-left packets.

3.1.2.  VXLAN

   If the SFC proxy and SF are already deployed in a nested VLAN
   network, the VLAN mapping method is not applicable.  Then VXLAN
   [RFC7348] can be used for the mapping, i.e. VNI can be used for the
   mapping between them.  VXLAN is a Layer 2 overlay scheme over a Layer
   3 network.  It uses MAC Address-in-User Datagram Protocol (MAC-in-
   UDP) encapsulation.  The drawback of this mechanism is that it
   requires both SFC proxy and SF to support VXLAN.

   This approach has similar features and drawbacks of the VLAN scheme,
   but the number of possible VNIs is larger.

3.1.3.  Ethernet MAC Address

   The MAC address also can be used to associate an SFC header between
   the SFC proxy and SF; i.e., each SFC header will be assigned a source
   MAC address on the SFC proxy.  When the SFC proxy receives the
   returned packet from the SF, it retrieves the packet’s original SFC
   header by using the source MAC address as a key.  And then it
   encapsulates the packet with that SFC header and sends to the next
   hop.

   An issue with the source-MAC address approach is that there is not
   symmetry between packets going left-to-right with packets going
   right-to-left.  Such symmetry might be assumed by some legacy SFs.
   For example, if a layer-2-transparent SF responds to a TCP SYN with a
   TCP RST, it might do so by reversing the source and destination of
   the layer 2 header.  Such a packet received by the SFC proxy would
   not result in finding of the correct SFC header.  It is assumed that
   the SF passes the MAC header through without even reversal.  A
   variation that is symmetric assigns a unique source/destination pair
   for each unique SFC header.

3.1.4.  5-tuple

   The 5-tuple of a packet carried within SFC encapsulation can be used
   by the SFC proxy as a key to associate an SFC header when the 5-tuple
   is not modified by the legacy SF.  The SFC proxy maintains a mapping
   table for the 5-tuple and the SFC header.  When the packet returns
   from the SF instance, the original SFC header for this packet can be
   retrieved by inquiring the mapping table using 5-tuple as the key.
   However, this method may not work in multi-tenant scenario, as such
   uniqueness could be valid only within the scope of a single tenant.
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   So if the SFC is provided as a multi-tenant service, this method
   would fail.

3.2.  For Non-transparent Service Functions

   Non transparent service functions including NAT (Network Address
   Translation), WOC (WAN Optimization Controller) and etc, are more
   complicated, as they may change any part of the original packet sent
   to them.  It is better to analyze case by case, to utilize a specific
   field that the SF does not change for the mapping and retrieving the
   SFC header.  We would like to leave it for open discussion.

   The Figure below shows an example procedure that SFC proxy can learn
   the behavior of the SF changing the packet.  In this example, the
   following method is used for SFC header mapping.  The SF needs to
   report its mapping rules (e.g., 5-tuple mapping rules) to the control
   plane (e.g., by static configuration), and then the control plane can
   notify the SFC proxy the mapping information (step 1) via interface
   C4 [I-D.ietf-sfc-control-plane].  According to the mapping
   information, the SFC proxy can establish a mapping table for the SFC
   header, the original header, and the processed header of the packet.
   After receiving the packet from the SF (step 4), the SFC proxy
   retrieves the SFC header from the mapping table by using the
   processed header as a key.

                          +------------------------+
                          |                        |
                          |   SFC Control Plane    |
                          |                        |
                          +---^------------^-------+
                              |            |
                              |C2          |  (1)
                              |            |
                          +---V----+       |C4
                     -----+  SFF   +------ |
                          |        |       |
                          +----+---+       |
                               |       +---V----+
                               +-------+  SFC   |
                                 (2)   | Proxy  |
                                       +---^----+
                                           |
                                        (3)|(4)
                                    +------V---------+
                                    |SFC-unaware     |
                                    |Service Function|
                                    +----------------+
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4.  Operation Considerations

4.1.  Examplar Mechanisms

   The following table gives some examplar methods and the conditions to
   use.

                     Table 1: Mapping Examples

+-----------+--------+-------------------------------+-------------------+
|           |Methods |    Stored Key-Value           |Application        |
|           |        |                               |Scenario           |
+-----------+--------+-------------------------------+-------------------+
|           |VLAN    | (Direction, VLAN ID,          |L2 header won’t    |
| For Trans-|        |  SFC header)                  |be modified by the |
| parent SF |        |e.g., assign a VLAN ID per     |SF.                |
|           |        |bidirectional path-pair        |                   |
|           +--------+-------------------------------+-------------------+
|           |VXLAN   | (Direction, VNI, SFC header)  |The SF is required |
|           |        |e.g., assign a VNI per         |to support VXLAN.  |
|           |        |bidirectional path-pair        |VNI is not modified|
|           |        |                               |by the SF.         |
|           +--------+-------------------------------+-------------------+
|           |5-tuple |(5-tuple, SFC header)          |5-tuple is not     |
|           |        |                               |modified by the    |
|           |        |The SFC proxy maintains the    |SF.                |
|           |        |mapping table for 5-tuple and  |                   |
|           |        |the SFC header.                |                   |
|           |        |Note: an SFC header for each   |                   |
|           |        |direction of a TCP flow.       |                   |
+-----------+--------+----------------- -------------+-------------------+
|           |Case-by-|Mapping rules:                 |The SFC proxy is   |
|For        |case    |e.g. 5-tuple -> 5-tuple’       |configured or is   |
|Non-trans- |        |                               |able to obtain the |
|parent SF  |        |SFC Proxy:                     |mapping rules of   |
|           |        |5-tuple -> 5-tuple’            |the SF. The SF     |
|           |        |5-tuple’-> SFC header          |modifies the       |
|           |        |                               |5-tuple based on   |
|           |        |                               |the mapping        |
|           |        |                               |rules.             |
+-----------+--------+---------------------------------------------------+

4.2.  Challenges to Support Legacy SF

   The key problem contemplated in this document is: what packet header
   should be put on the packets sent to a legacy SF such that packets
   returned from the legacy SF can be mapped to the original SFC header.
   We need to consider the relationship between an SFC path and flows
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   within the path.  Should the path act as a qualifier to the flow, or
   should a flow be allowed to change paths?  We assume flows can change
   path; this means that a given legacy SF cannot handle traffic from
   more than one routing domain.  (Private IP addresses cannot be
   qualified by the SFC header; different VPNs must use different legacy
   SFs.)

   Because we’ve assumed that a flow can be on multiple paths, or change
   paths, or if metadata can vary during the life of a flow, we need to
   ask to what extent packet accuracy matters.  If the SFC header used
   with a flow is changed from one path to another by the classifier,
   does it matter if packets retain exactly the original SFC header?  If
   the change is to handle routing updates or fail-over then it would be
   acceptable to put all packets returning from the legacy SF onto the
   most recently updated header.  If metadata is changed, can that
   update be applied to all packets of a flow, or does it apply to a
   specific packet?

   In the case that changes to paths and metadata are considered updates
   to the flow vs. packet properties, the SFC proxy can find the SFC
   header based on flow (e.g., the 5-tuple of the returning IP packet).
   If, in contrast, packet accuracy of SFC headers does matter, (e.g.,
   the metadata says something about the specific packet associated with
   it), then some form of per-packet bookkeeping must be done by the SFC
   proxy and the 5-tuple cannot be used for the mapping to retrieve the
   original SFC header.

   When packet accuracy does matter, packets injected by the legacy SF
   pose a fundamental problem.  Is there any correct SFC header that can
   be added?  Observation: the same problem exists for a normal (not
   legacy) SF that wishes to modify or inject a packet.

   Because the SFC proxy needs to keep dynamic state by storing packet
   headers, an expiration time should be used for each mapping entry in
   the SFC proxy.  If the SFC header in that entry has not been
   witnessed or retrieved after the expiration time, the entry will be
   deleted from the entry table.

   Observation: if metadata is not used, the number distinct SFC headers
   is known at configuration time, equivalent to the number of paths
   configured to pass through the SF.  The mappings between SFC headers
   and layer 2 encodings could be configured at this time vs. at run
   time.  However, if metadata is used, a combinatorial explosion of
   distinct SFC headers may result, which is a problem for any device
   attempting to store them for later retrieval.
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4.3.  Metadata

   Some classes of SF may need to inject new packets, for example a
   transparent cache sending content from its disk.  The legacy SF
   usually encapsulates the new packets with the same encapsulation with
   the related received packets, e.g. with the same 5-tuple, or V-LAN
   ID.  The SFC proxy would associate the new packet with the
   corresponding SFC header based on the mechanisms discussed in
   Section 3.  However, per-packet metadata should be prohibited for
   this case.

   Some classes of SF may need to inject a packet in the opposite
   direction of a received packet, for example a firewall responding to
   a TCP SYN with a RST.  If the RST generator is VLAN-type legacy, it
   may know what VLAN to use; then the SFC proxy would translate VLAN
   into a reverse SFP and attach a corresponding SFC header insetad of
   the original SFC header.  In this case, the SFC proxy should be
   configured with the bidirectional SFP, i.e. SFC proxy needs to be
   designed according to the properties of the SF.  Similarly, packet-
   specific metadata is not recommended to be used.

   We leave the metadata model as an open issue that will be documented
   in other documents.  In some cases this information will also assist
   normal (non-legacy) SFs that wish to modify or inject packets.

5.  Security Considerations

   When the layer 2 header of the original packet is modified and sent
   to the SF, if the SF needs to make use of the layer 2 header, it may
   cause security threats.  There may be security issues with state
   exhaustion on the SFC proxy, e.g., exhausting VLAN IDs, or exhausting
   5-tuple state memory.
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