
Internet Engineering Task Force S. Aldrin
Internet-Draft Google
Intended status: Informational R. Krishnan
Expires: January 22, 2016 Dell
 N. Akiya
 Big Switch
 C. Pignataro
 Cisco Systems
 A. Ghanwani
 Dell
 July 23, 2015

 Service Function Chaining
 Operation, Administration and Maintenance Framework
 draft-aldrin-sfc-oam-framework-02

Abstract

 This document provides reference framework for Operations,
 Administration and Maintenance (OAM) for Service Function
 Chaining (SFC).

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 2016.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Aldrin, et al. Expires January 2016 [Page 1]

Internet-Draft SFC OAM Framework July 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction

 Service Function Chaining (SFC) enables the creation of composite
 services that consist of an ordered set of Service Functions (SF)
 that are be applied to packets and/or frames selected as a result of
 classification. SFC is a concept that provides
 for more than just the application of an ordered set of SFs to
 selected traffic; rather, it describes a method for deploying SFs in
 a way that enables dynamic ordering and topological independence of
 those SFs as well as the exchange of metadata between participating
 entities. The foundations of SFC are described in the following
 documents:

 o SFC problem statement [I-D.ietf-sfc-problem-statement]

 o SFC architecture [I-D.ietf-sfc-archiecture]

 The reader is assumed to familiar with the material in these drafts.

 This document provides reference framework for Operations,
 Administration and Maintenance (OAM, [RFC6291]) of SFC.
 Specifically, this document provides:

 o In Section 2, an SFC layering model;

 o In Section 3, aspects monitored by SFC OAM;

 o In Section 4, functional requirements for SFC OAM;

 o In Section 5, a gap analysis for SFC OAM.

1.1. Document Scope

 The focus of this document is to provide an architectural framework
 for SFC OAM, particularly focused on the aspect of the Operations
 component within OAM. Actual solutions and mechanisms are outside
 the scope of this document.

2. SFC Layering Model

 Multiple layers come into play for implementing the SFC. These
 include the service layer at which SFC operates and the underlying
 Network, Transport, Link, etc., layers.

 o The service layer, refered to as the "Service Layer" in Figure 1,
 consists of classifiers and SFs, and uses the

Aldrin, et al. Expires January 2016 [Page 2]

Internet-Draft SFC OAM Framework July 2015

 transport network, which could be an overlay network, from a
 classifier to SF and from one SF to the next.

 o The network overlay transport layer, refer to as the "Network",
 "Transport" and layers below in Figure 1, extends between the
 various SFs and is mostly transparent to the SFs themselves. It
 can leverage various overlay network technologies
 interconnecting SFs and allows establishment of
 service function paths (SFPs).

 o The link layer, refer to as the "Link" in Figure 1, is dependent
 upon the physical technology used. Ethernet is a popular choice
 for this layer, but other alternatives are deployed (e.g. POS,
 DWDM, etc.).

 o----------------------Service Layer----------------------o

 +------+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
 |Classi|---|SF1|---|SF2|---|SF3|---|SF4|---|SF5|---|SF6|---|SF7|
 |fier | +---+ +---+ +---+ +---+ +---+ +---+ +---+
 +------+
 o-N/W Elem 1----o o-N/w Elem 2-o o-N/W Elem 3-o

 o-----------------o-------------------o---------------o Network

 o-----------------o-----------------------------------o Transport

 o--------o--------o--------o--------o--------o--------o Link

 Figure 1: SFC Layering Example

3. Aspects Monitored by SFC OAM?

 SFC operates at the service layer. For the purpose of defining
 the OAM framework, the following aspects of the SFC must be capable of
 monitored.

 1. Service function:

 SFs may be SFC-aware or SFC-unaware. An SFC-aware SF is one that
 understands the SFC encapsulation has the SFF component co-resident with
 the SF sub-component . An SFC-unware SF is one that does not understand
 the SFC encapsulation (i.e. a legacy SF) and has to be accessed via an
 separate SFF and potentially an SFC proxy function.

 In both cases, an SF is accessed through an SFF in the SFC
 architecture. SFC OAM must be able to monitor the SFF associated
 with a given SF.

 2. Service function path:

 The SFP comprises a set of SFs that may be ordered or unordered.
 SFC OAM must be capable of monitoring the SFP and the rendered
 service path (RSP) that may be used by specific packets.

Aldrin, et al. Expires January 2016 [Page 3]

Internet-Draft SFC OAM Framework July 2015

 3. Classifier:

 The classifier determines which packets are mapped to an SFP.
 SFC OAM must be able to monitor the operation of the classifiers.

 The figure below illustrates the various aspects monitored by SFC OAM.

 +-SFC +-SFC OAM
 | OAM |
 | | ___
 | \ /\ Service Function Chain \
 | +------+ \/ \ +---+ +---+ +---+ +---+ +---+ \
 +----> |Classi|...(+->) |SF1|---|SF2|---|SF4|---|SF6|---|SF7|)
 |fier | \ / +-^-+ +---+ +-|-+ +-^-+ +---+ /
 +----|-+ \/_____|_______________|_______|_________ /
 | | +-SFCOAM+
 +----SFCOAM----+ +---+ +---+
 +SFCOAM>|SF3| |SF5|
 | +-^-+ +-^-+
 +------|---+ | |
 |Controller| +-SFCOAM+
 +----------+
 Service Function OAM (SFCOAM)

 Figure 2: Aspects monitored by SFC OAM

3.1. Operation and Performance of SFs

3.1.1. Monitoring SF Operation

 One SFC OAM requirement for the SF component is to
 allow an SFC aware network device to monitor a
 specific SF. This is accomplished by monitoring the SFF that
 the SF is attached to.

 A generalized way to monitor the operation of an SF is beyond the scope
 of SFC OAM, because the functions provided by the SF are not covered by
 SFC. SFs typically provide their own tools for monitoring.

 An optional capability may be provided for an SFF to monitor the
 operation of its attached SFs and report that on behalf of the SFs.

3.1.2. Service Function Performance Measurement

 A second SFC OAM requirement for SF is to
 allow an SFC aware network device to check the loss and delay to a
 specific SF, located on the same or different network
 devices.

3.2. Operation and Performance of SFPs

Aldrin, et al. Expires January 2016 [Page 4]

Internet-Draft SFC OAM Framework July 2015

3.2.1. Monitoring SFP Operation

 SFC OAM must be capable of monitoring one or more SFPs or RSPs that are
 used to realize the SFC and reporting on connectivity and providing fault
 isolation.

 In order to perform service connectivity verification of an SFP, the
 OAM tools could be initiated from any SFC-aware network device for
 end-to-end paths, or partial paths terminating on a specific SF, within
 the SFP. This OAM function is to ensure the SF’s chained together has
 connectivity as it was intended to when SFP was established.
 Necessary return code(s) should be defined to be sent back in the
 response to OAM packet, in order to qualify the verification.

 When ECMP exists at the service layer on a given SFC (e.g. multiple
 SFPs, or multiple RSPs), there must be an ability to discover and
 traverse all available paths.

3.2.2. Service Function Chain Performance Measurement

 The ingress of the SFC or an SFC-aware network
 device must have an ability to perform loss and delay measurements
 over the SFC as a unit (i.e. end-to-end) or to a
 specific SF through the SFC.

3.3. Monitoring the Classifier

 A classifier defines a flow and maps incoming traffic to a specific
 SFC, and it is vital that the classifier is correctly defined and
 functioning. SFC OAM must be able to test the definition of
 flows and the mapping functionality to expected SFCs.

4. SFC OAM Functions

 Section 3 described the various aspects monitored by SFC OAM. This
 section explores the same from the OAM functionality
 point of view, which many will be applicable to multiple SFC
 components.

 Various SFC OAM requirements provides the need for various OAM
 functions at different layers. Many of the OAM functions at
 different layers are already defined and in existence. In order to
 support SFC and SF’s, these functions have to be enhanced to operate
 a single SF to multiple SF’s in an SFC and also multiple SFC’s.

4.1. Connectivity Functions

 Connectivity is mainly an on-demand function to verify that the
 connectivity exists between network elements and that the SFs are
 operational. Ping is a common tool used to perform
 this function. OAM messages should be encapsulated with necessary
 SFC header and with OAM markings when testing the SFC component. OAM
 messages MAY be encapsulated with necessary SFC

Aldrin, et al. Expires January 2016 [Page 5]

Internet-Draft SFC OAM Framework July 2015

 header and with OAM markings when testing the SF
 component. Some of the OAM functions performed by connectivity
 functions are as follows:

 o Verify the MTU size from a source to the destination SF or through
 the SFC. This requires the ability for OAM packet to take
 variable length packet size.

 o Verify the packet re-ordering and corruption.

 o Verify the policy of an SFC or SF using OAM packet.

 o Verification and validating forwarding paths.

 o Proactively test alternate or protected paths to ensure
 reliability of network configurations.

4.2. Continuity Functions

 Continuity is a model where OAM messages are sent periodically to
 validate or verify the reachability to a given SF or through a given
 SFC. This allows the operator to monitor the network device and to
 quickly detect failures such as link failures, network failures,
 SF outages or SFC outages. BFD is one such function which helps
 in detecting failures quickly. OAM functions supported by continuity
 check are as follows:

 o Ability to provision continuity check to a given SF or through a
 given SFC.

 o Notifying the failure upon failure detection for other OAM
 functions to take appropriate action.

4.3. Trace Functions

 Tracing is an important OAM function that allows the operation to
 trigger an action (ex: response generation) from every transit device
 on the tested layer. This function is typically useful to gather
 information from every transit devices or to isolate the failure
 point towards an SF or through an SFC. Mechanisms must be provided so
 that the SFC OAM messages may be sent along the same path that a
 given data packet would follow. Some of the OAM functions supported
 by trace functions are:

 o Ability to trigger action from every transit device on the tested
 layer towards an SF or through an SFC, using TTL or other means.

 o Ability to trigger every transit device to generate response with
 OAM code(s) on the tested layer towards an SF or through an SFC,
 using TTL or other means.

 o Ability to discover and traverse ECMP paths within an SFC.

Aldrin, et al. Expires January 2016 [Page 6]

Internet-Draft SFC OAM Framework July 2015

 o Ability to skip un-supported SF’s while tracing SF’s in an SFC.

4.4. Performance Measurement Function

 Performance management functions involve measuring of packet loss,
 delay, delay variance, etc. These measurements could be measured
 pro-actively and on-demand.

 SFC OAM should provide the ability to test the packet loss
 for an SFC. In an SFC, there are various SF’s chained together.

 Measuring packet loss is very important function. Using on-demand
 function, the packet loss could be measured using statistical means.
 Using OAM packets, the approximation of packet loss for a given SFC
 could be measured.

 Delay within an SFC could be measured from the time it takes for a
 packet to traverse the SFC from ingress SF to egress SF. As the
 SFC’s are generally unidirectional in nature, measurement of one-way
 delay is important. In order to measure one-way delay, the clocks
 have to be synchronized using NTP, GPS, etc.

 Delay variance could also be measured by sending OAM packets and
 measuring the jitter between the packets passing through the SFC.

 Some of the OAM functions supported by the performance measurement
 functions are:

 o Ability to measure the packet processing delay of a service
 function or a service function path along an SFC.

 o Ability to measure the packet loss of a service function or a
 service function path along an SFC.

5. Gap Analysis

 This Section identifies various OAM functions available at different
 levels. It will also identify various gaps
 within the existing toolset, to perform OAM function on an SFC.

5.1. Existing OAM Functions

 There are various OAM tool sets available to perform OAM function and
 network layer, protocol layers and link layers. These OAM functions
 could validate some of the network overlay transport. Tools like
 ping and trace are in existence to perform connectivity check and
 tracing intermediate hops in a network. These tools support
 different network types like IP, MPLS, TRILL etc. There is also an
 effort to extend the tool set to provide connectivity and continuity
 checks within overlay networks. BFD is another tool which helps in
 detection of data forwarding failures.

Aldrin, et al. Expires January 2016 [Page 7]

Internet-Draft SFC OAM Framework July 2015

 Table 1: OAM Tool GAP Analysis

 +----------------+--------------+-------------+--------+------------+
 | Layer | Connectivity | Continuity | Trace | Performance|
 +----------------+--------------+-------------+--------+------------+
 | N/W Overlay | Ping | BFD, NVo3 | Trace | IPPM |
 +----------------+--------------+-------------+--------+------------+
 | SF | None + None + None + None |
 +----------------+--------------+-------------+--------+------------+
 | SFC | None + None + None + None |
 +----------------+--------------+-------------+--------+------------+

5.2. Missing OAM Functions

 As shown in Table 1, OAM functions for SFC are not yet standardized.
 Hence, there are no standards-based tools available to monitor the
 various components identified in Section 3.

5.3. Required OAM Functions

 Primary OAM functions exist for network, transport, link and other
 layers. Tools like ping, trace, BFD, etc., exist in order to perform
 these OAM functions. Configuration, orchestration and manageability
 of SF and SFC could be performed using CLI, Netconf etc.

 For configuration, manageability and orchestration, providing data
 and information models for SFC is very much essential. With
 virtualized SF and SFC, manageability of these functions has to be
 done programmatically.

 SFC OAM must provide tools that operate through various types of
 SFs including:

 o Transparent SFs: These SFs typically do not make any
 modifications to the packet. In such cases, the SFF may be able
 to process OAM messages.

 o SFs that modify the packet: These SFs modify packet
 fields. Certain SFs may modify only the headers
 corresponding to the network over which it is transported, e.g.
 the MAC headers or overlay headers. In other cases, the IP header
 of the application’s packet may be modified, e.g. NAT. In yet
 other cases, the application session itself may be terminated and
 a new session initiated, e.g. a load balancer that offers HTTPS
 termination.

6. Open Issues

 - Add more details on performance measurement.

 - Call out which OAM functions can be achieved by protocol design vs
 requiring synthetic traffic.

Aldrin, et al. Expires January 2016 [Page 8]

Internet-Draft SFC OAM Framework July 2015

7. Security Considerations

 SFC OAM must provide mechanisms for:

 o Preventing usage of OAM channel for DDOS attacks.

 o Preventing leakage of OAM packets meant for a given SFC beyond
 that SFC.

 o Preventing leakage of information about an sFC beyond its
 administrative domain.

7. IANA Considerations

 No action is required by IANA for this document.

8. Acknowledgements

 TBD

9. Contributing Authors

 Pedro A. Aranda Gutierrez
 Telefonica I+D
 Email: pedroa.aranda@tid.es

 Diego Lopez
 Telefonica I+D
 Email: diego@tid.es

 Joel Halpern
 Ericsson
 Email: joel.halpern@ericsson.com

 Sriganesh Kini
 Ericsson
 Email: sriganesh.kini@ericsson.com

 Andy Reid
 BT
 Email: andy.bd.reid@bt.com

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [I-D.ietf-sfc-problem-statement]
 Quinn, P. and T. Nadeau, "Service Function Chaining
 Problem Statement", draft-ietf-sfc-problem-statement-10
 (work in progress), August 2014.

Aldrin, et al. Expires January 2016 [Page 9]

Internet-Draft SFC OAM Framework July 2015

 [I-D.ietf-sfc-architecture]
 Halpern J. and C. Pignataro, "Service Function Chaining
 (SFC) Architecture", draft-ietf-sfc-architecture-09
 (work in progress), June 2015.

10.2. Informative References

 [RFC6291] Andersson, L., van Helvoort, H., Bonica, R., Romascanu,
 D., and S. Mansfield, "Guidelines for the Use of the "OAM"
 Acronym in the IETF", BCP 161, RFC 6291, June 2011.

Authors’ Addresses

 Sam K. Aldrin
 Google
 Email: aldrin.ietf@gmail.com

 Ram Krishnan
 Dell
 Email: ramkri123@gmail.com

 Nobo Akiya
 Big Switch
 Email: nobo.akiya.dev@gmail.com

 Carlos Pignataro
 Cisco Systems
 Email: cpignata@cisco.com

 Anoop Ghanwani
 Dell
 Email: anoop@alumni.duke.edu

Aldrin, et al. Expires January 2016 [Page 10]

Network Working Group J. Halpern, Ed.
Internet-Draft Ericsson
Intended status: Informational C. Pignataro, Ed.
Expires: January 25, 2016 Cisco
 July 24, 2015

 Service Function Chaining (SFC) Architecture
 draft-ietf-sfc-architecture-11

Abstract

 This document describes an architecture for the specification,
 creation, and ongoing maintenance of Service Function Chains (SFC) in
 a network. It includes architectural concepts, principles, and
 components used in the construction of composite services through
 deployment of SFCs, with a focus on those to be standardized in the
 IETF. This document does not propose solutions, protocols, or
 extensions to existing protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 25, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Halpern & Pignataro Expires January 25, 2016 [Page 1]

Internet-Draft SFC Architecture July 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Scope . 3
 1.2. Assumptions . 4
 1.3. Specification of Requirements 4
 1.4. Definition of Terms 5
 2. Architectural Concepts 7
 2.1. Service Function Chains 7
 2.2. Service Function Chain Symmetry 8
 2.3. Service Function Paths 9
 2.3.1. Service Function Chains, Service Function Paths, and
 Rendered Service Path 10
 3. Architecture Principles 11
 4. Core SFC Architecture Components 12
 4.1. SFC Encapsulation . 13
 4.2. Service Function (SF) 14
 4.3. Service Function Forwarder (SFF) 14
 4.3.1. Transport Derived SFF 16
 4.4. SFC-Enabled Domain 16
 4.5. Network Overlay and Network Components 17
 4.6. SFC Proxy . 17
 4.7. Classification . 18
 4.8. Re-Classification and Branching 18
 4.9. Shared Metadata . 19
 5. Additional Architectural Concepts 19
 5.1. The Role of Policy 19
 5.2. SFC Control Plane . 20
 5.3. Resource Control . 21
 5.4. Infinite Loop Detection and Avoidance 22
 5.5. Load Balancing Considerations 22
 5.6. MTU and Fragmentation Considerations 23
 5.7. SFC OAM . 24
 5.8. Resilience and Redundancy 25
 6. Security Considerations 25
 7. Contributors and Acknowledgments 28
 8. IANA Considerations . 29
 9. Informative References 29
 Authors’ Addresses . 30

Halpern & Pignataro Expires January 25, 2016 [Page 2]

Internet-Draft SFC Architecture July 2015

1. Introduction

 The delivery of end-to-end services often requires various service
 functions. These include traditional network service functions such
 as firewalls and traditional IP Network Address Translators (NATs),
 as well as application-specific functions. The definition and
 instantiation of an ordered set of service functions and subsequent
 ’steering’ of traffic through them is termed Service Function
 Chaining (SFC).

 This document describes an architecture used for the creation and
 ongoing maintenance of Service Function Chains (SFC) in a network.
 It includes architectural concepts, principles, and components, with
 a focus on those to be standardized in the IETF. Service function
 chains enable composite services that are constructed from one or
 more service functions.

 An overview of the issues associated with the deployment of end-to-
 end service function chains, abstract sets of service functions and
 their ordering constraints that create a composite service and the
 subsequent "steering" of traffic flows through said service
 functions, is described in [RFC7498].

 The current service function deployment models are relatively static,
 coupled to network topology and physical resources, greatly reducing
 or eliminating the ability of an operator to introduce new services
 or dynamically create service function chains. This architecture
 presents a model addressing the problematic aspects of existing
 service deployments, including topological independence and
 configuration complexity.

1.1. Scope

 This document defines the architecture for Service Function Chaining
 (SFC) as standardized in the IETF. The SFC architecture is
 predicated on topological independence from the underlying forwarding
 topology.

 In this architecture packets are classified on ingress for handling
 by the required set of Service Functions (SFs) in the SFC-enabled
 domain and are then forwarded through that set of functions for
 processing by each function in turn. Packets may be re-classified as
 a result of this processing.

 The architecture described in this document is independent of the
 planned usage of the network and deployment context and thus, for
 example, is applicable to both fixed and mobile networks as well as
 being useful in many Data Center applications.

Halpern & Pignataro Expires January 25, 2016 [Page 3]

Internet-Draft SFC Architecture July 2015

 The architecture described herein is assumed to be applicable to a
 single network administrative domain. While it is possible for the
 architectural principles and components to be applied to inter-domain
 SFCs, these are left for future study.

1.2. Assumptions

 The following assumptions are made:

 o There is no standard definition or characterization applicable to
 all SFs, and thus the architecture considers each SF as an opaque
 processing element.

 o There is no global or standard list of SFs enabled in a given
 administrative domain. The set of SFs enabled in a given domain
 is a function of the currently active services which may vary with
 time and according to the networking environment.

 o There is no global or standard SF chaining logic. The ordered set
 of SFs that needs to be applied to deliver a given service is
 specific to each administrative entity.

 o The chaining of SFs and the criteria to invoke them are specific
 to each administrative entity that operates an SF-enabled domain.

 o Several SF chaining policies can be simultaneously applied within
 an administrative domain to meet various business requirements.

 o The underlay is assumed to provide the necessary connectivity to
 interconnect the Service Function Forwarders (SFFs, see
 Section 1.4), but the architecture places no constraints on how
 that connectivity is realized other than it have the required
 bandwidth, latency, and jitter to support the SFC.

 o No assumption is made on how Forwarding Information Bases (FIBs)
 and Routing Information Bases (RIBs) of involved nodes are
 populated.

 o How to bind traffic to a given SF chain is policy-based.

1.3. Specification of Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Halpern & Pignataro Expires January 25, 2016 [Page 4]

Internet-Draft SFC Architecture July 2015

1.4. Definition of Terms

 Network Service: An offering provided by an operator that is
 delivered using one or more service functions. This may also be
 referred to as a composite service. The term "service" is used
 to denote a "network service" in the context of this document.

 Note: Beyond this document, the term "service" is overloaded
 with varying definitions. For example, to some a service is an
 offering composed of several elements within the operator’s
 network, whereas for others a service, or more specifically a
 network service, is a discrete element such as a "firewall".
 Traditionally, such services (in the latter sense) host a set of
 service functions and have a network locator where the service
 is hosted.

 Classification: Locally instantiated matching of traffic flows
 against policy for subsequent application of the required set of
 network service functions. The policy may be customer/network/
 service specific.

 Classifier: An element that performs Classification.

 Service Function Chain (SFC): A service function chain defines an
 ordered set of abstract service functions (SFs) and ordering
 constraints that must be applied to packets and/or frames and/or
 flows selected as a result of classification. An example of an
 abstract service function is "a firewall". The implied order
 may not be a linear progression as the architecture allows for
 SFCs that copy to more than one branch, and also allows for
 cases where there is flexibility in the order in which service
 functions need to be applied. The term service chain is often
 used as shorthand for service function chain.

 Service Function (SF): A function that is responsible for specific
 treatment of received packets. A Service Function can act at
 various layers of a protocol stack (e.g., at the network layer
 or other OSI layers). As a logical component, a Service
 Function can be realized as a virtual element or be embedded in
 a physical network element. One or more Service Functions can
 be embedded in the same network element. Multiple occurrences
 of the Service Function can exist in the same administrative
 domain.

 One or more Service Functions can be involved in the delivery of
 added-value services. A non-exhaustive list of abstract Service
 Functions includes: firewalls, WAN and application acceleration,
 Deep Packet Inspection (DPI), LI (Lawful Intercept), server load

Halpern & Pignataro Expires January 25, 2016 [Page 5]

Internet-Draft SFC Architecture July 2015

 balancing, NAT44 [RFC3022], NAT64 [RFC6146], NPTv6 [RFC6296],
 HOST_ID injection, HTTP Header Enrichment functions, TCP
 optimizer.

 An SF may be SFC encapsulation aware, that is it receives and
 acts on information in the SFC encapsulation, or unaware, in
 which case data forwarded to the SF does not contain the SFC
 encapsulation.

 Service Function Forwarder (SFF): A service function forwarder is
 responsible for forwarding traffic to one or more connected
 service functions according to information carried in the SFC
 encapsulation, as well as handling traffic coming back from the
 SF. Additionally, a service function forwarder is responsible
 for delivering traffic to a classifier when needed and
 supported, transporting traffic to another SFF (in the same or
 different type of overlay), and terminating the SFP.

 Metadata: provides the ability to exchange context information
 between classifiers and SFs and among SFs.

 Service Function Path (SFP): The Service Function Path is a
 constrained specification of where packets assigned to a certain
 service function path must go. While it may be so constrained
 as to identify the exact locations, it can also be less
 specific. The SFP provides a level of indirection between the
 fully abstract notion of service chain as a sequence of abstract
 service functions to be delivered, and the fully specified
 notion of exactly which SFF/SFs the packet will visit when it
 actually traverses the network. By allowing the control
 components to specify this level of indirection, the operator
 may control the degree of SFF/SF selection authority that is
 delegated to the network.

 SFC Encapsulation: The SFC Encapsulation provides at a minimum SFP
 identification, and is used by the SFC-aware functions, such as
 the SFF and SFC-aware SFs. The SFC Encapsulation is not used
 for network packet forwarding. In addition to SFP
 identification, the SFC encapsulation carries metadata including
 data plane context information.

 Rendered Service Path (RSP): Within an SFP, packets themselves are
 of course transmitted from and to specific places in the
 network, visiting a specific sequence of SFFs and SFs. This
 sequence of actual visits by a packet to specific SFFs and SFs
 in the network is known as the Rendered Service Path (RSP).
 This definition is included here for use by later documents,

Halpern & Pignataro Expires January 25, 2016 [Page 6]

Internet-Draft SFC Architecture July 2015

 such as when solutions may need to discuss the actual sequence
 of locations the packets visit.

 SFC-enabled Domain: A network or region of a network that implements
 SFC. An SFC-enabled Domain is limited to a single network
 administrative domain.

 SFC Proxy: Removes and inserts SFC Encapsulation on behalf of an
 SFC-unaware service function. SFC proxies are logical elements.

2. Architectural Concepts

 The following sections describe the foundational concepts of service
 function chaining and the SFC architecture.

 Service Function Chaining enables the creation of composite (network)
 services that consist of an ordered set of Service Functions (SF)
 that must be applied to packets and/or frames and/or flows selected
 as a result of classification. Each SF is referenced using an
 identifier that is unique within an SF-enabled domain.

 Service Function Chaining is a concept that provides for more than
 just the application of an ordered set of SFs to selected traffic;
 rather, it describes a method for deploying SFs in a way that enables
 dynamic ordering and topological independence of those SFs as well as
 the exchange of metadata between participating entities.

2.1. Service Function Chains

 In most networks, services are constructed as abstract sequences of
 SFs that represent SFCs. At a high level, an SFC is an abstracted
 view of a service that specifies the set of required SFs as well as
 the order in which they must be executed. Graphs, as illustrated in
 Figure 1, define an SFC, where each graph node represents the
 required existence of at least one abstract SF. Such graph nodes
 (SFs) can be part of zero, one, or many SFCs. A given graph node
 (SF) can appear one time or multiple times in a given SFC.

 SFCs can start from the origination point of the service function
 graph (i.e., node 1 in Figure 1), or from any subsequent node in the
 graph. As shown, SFs may therefore become branching nodes in the
 graph, with those SFs selecting edges that move traffic to one or
 more branches. The top and middle graphs depict such a case, where a
 second classification event occurs after node 2, and a new graph is
 selected (i.e., node 3 instead of node 6). The bottom graph
 highlights the concept of a cycle, in which a given SF (e.g., node 7
 in the depiction) can be visited more than once within a given
 service chain. An SFC can have more than one terminus.

Halpern & Pignataro Expires January 25, 2016 [Page 7]

Internet-Draft SFC Architecture July 2015

 ,-+-. ,---. ,---. ,---.
 / \ / \ / \ / \
 (1)+--->(2)+---->(6)+---->(8)
 \ / \ / \ / \ /
 ‘---’ ‘---’ ‘---’ ‘---’

 ,-+-. ,---. ,---. ,---. ,---.
 / \ / \ / \ / \ / \
 (1)+--->(2)+---->(3)+---->(7)+---->(9)
 \ / \ / \ / \ / \ /
 ‘---’ ‘---’ ‘---’ ‘---’ ‘---’

 ,-+-. ,---. ,---. ,---. ,---.
 / \ / \ / \ / \ / \
 (1)+--->(7)+---->(8)+---->(4)+---->(7)
 \ / \ / \ / \ / \ /
 ‘---’ ‘---’ ‘---’ ‘---’ ‘---’

 Figure 1: Service Function Chain Graphs

 The concepts of classification, re-classification, and branching are
 covered in subsequent sections of this architecture (see Section 4.7
 and Section 4.8).

2.2. Service Function Chain Symmetry

 SFCs may be unidirectional or bidirectional. A unidirectional SFC
 requires that traffic be forwarded through the ordered SFs in one
 direction (SF1 -> SF2 -> SF3), whereas a bidirectional SFC requires a
 symmetric path (SF1 -> SF2 -> SF3 and SF3 -> SF2 -> SF1), and in
 which the SF instances are the same in opposite directions. A hybrid
 SFC has attributes of both unidirectional and bidirectional SFCs;
 that is to say some SFs require symmetric traffic, whereas other SFs
 do not process reverse traffic or are independent of the
 corresponding forward traffic.

 SFCs may contain cycles; that is traffic may need to traverse one or
 more SFs within an SFC more than once. Solutions will need to ensure
 suitable disambiguation for such situations.

 The architectural allowance that is made for SFPs that delegate
 choice to the network for which SFs and/or SFFs a packet will visit
 creates potential issues here. A solution that allows such
 delegation needs to also describe how the solution ensures that those
 service chains that require service function chain symmetry can
 achieve that.

Halpern & Pignataro Expires January 25, 2016 [Page 8]

Internet-Draft SFC Architecture July 2015

 Further, there are state tradeoffs in symmetry. Symmetry may be
 realized in several ways depending on the SFF and classifier
 functionality. In some cases, "mirrored" classification (i.e., from
 Source to Destination and from Destination to Source) policy may be
 deployed, whereas in others shared state between classifiers may be
 used to ensure that symmetric flows are correctly identified, then
 steered along the required SFP. At a high level, there are various
 common cases. In a non-exhaustive way, there can be for example:

 o A single classifier (or a small number of classifiers), in which
 case both incoming and outgoing flows could be recognized at the
 same classifier, so the synchronization would be feasible by
 internal mechanisms internal to the classifier.

 o Stateful classifiers where several classifiers may be clustered
 and share state.

 o Fully distributed classifiers, where synchronization needs to be
 provided through unspecified means.

 o A classifier that learns state from the egress packets/flows that
 is then used to provide state for the return packets/flow.

 o Symmetry may also be provided by stateful forwarding logic in the
 SFF in some implementations.

 This is a non-comprehensive list of common cases.

2.3. Service Function Paths

 A service function path (SFP) is a mechanism used by service chaining
 to express the result of applying more granular policy and
 operational constraints to the abstract requirements of a service
 chain (SFC). This architecture does not mandate the degree of
 specificity of the SFP. Architecturally, within the same SFC-enabled
 domain, some SFPs may be fully specified, selecting exactly which SFF
 and which SF are to be visited by packets using that SFP, while other
 SFPs may be quite vague, deferring to the SFF the decisions about the
 exact sequence of steps to be used to realize the SFC. The
 specificity may be anywhere in between these extremes.

 As an example of such an intermediate specificity, there may be two
 SFPs associated with a given SFC, where one SFP specifies that any
 order of SFF and SF may be used as long as it is within data center
 1, and where the second SFP allows the same latitude, but only within
 data center 2.

Halpern & Pignataro Expires January 25, 2016 [Page 9]

Internet-Draft SFC Architecture July 2015

 Thus, the policies and logic of SFP selection or creation (depending
 upon the solution) produce what may be thought of as a constrained
 version of the original SFC. Since multiple policies may apply to
 different traffic that uses the same SFC, it also follows that there
 may be multiple SFPs may be associated with a single SFC.

 The architecture allows for the same SF to be reachable through
 multiple SFFs. In these cases, some SFPs may constrain which SFF is
 used to reach which SF, while some SFPs may leave that decision to
 the SFF itself.

 Further, the architecture allows for two or more SFs to be attached
 to the same SFF, and possibly connected via internal means allowing
 more effective communication. In these cases, some solutions or
 deployments may choose to use some form of internal inter-process or
 inter-VM messaging (communication behind the virtual switching
 element) that is optimized for such an environment. This must be
 coordinated with the SFF so that the service function forwarding can
 properly perform its job. Implementation details of such mechanisms
 are considered out of scope for this document, and can include a
 spectrum of methods: for example situations including all next-hops
 explicitly, others where a list of possible next-hops is provided and
 the selection is local, or cases with just an identifier, where all
 resolution is local.

 This architecture also allows the same SF to be part of multiple
 SFPs.

2.3.1. Service Function Chains, Service Function Paths, and Rendered
 Service Path

 As an example of this progressive refinement, consider a service
 function chain (SFC) which states that packets using this chain
 should be delivered to a firewall and a caching engine.

 A Service Function Path (SFP) could refine this, considering that
 this architecture does not mandate the degree of specificity an SFP
 has to have. It might specify that the firewall and caching engine
 are both to be in a specific Data Center (e.g., in DC1), or it might
 specify exactly which instance of each firewall and chaching engine
 is to be used.

 The Rendered Service Path (RSP) is the actual sequence of SFFs and
 SFs that the packets will actually visit. So if the SFP picked the
 DC, the RSP would be more specific.

Halpern & Pignataro Expires January 25, 2016 [Page 10]

Internet-Draft SFC Architecture July 2015

3. Architecture Principles

 Service function chaining is predicated on several key architectural
 principles:

 1. Topological independence: no changes to the underlay network
 forwarding topology - implicit, or explicit - are needed to
 deploy and invoke SFs or SFCs.

 2. Plane separation: dynamic realization of SFPs is separated from
 packet handling operations (e.g., packet forwarding).

 3. Classification: traffic that satisfies classification rules is
 forwarded according to a specific SFP. For example,
 classification can be as simple as an explicit forwarding entry
 that forwards all traffic from one address into the SFP.
 Multiple classification points are possible within an SFC (i.e.,
 forming a service graph) thus enabling changes/updates to the SFC
 by SFs.

 Classification can occur at varying degrees of granularity; for
 example, classification can use a 5-tuple, a transport port or
 set of ports, part of the packet payload, it can be the result of
 high-level inspections, or it can come from external systems.

 4. Shared Metadata: Metadata/context data can be shared amongst SFs
 and classifiers, between SFs, and between external systems and
 SFs (e.g., orchestration).

 One use of metadata is to provide and share the result of
 classification (that occurs within the SFC-enabled domain, or
 external to it) along an SFP. For example, an external
 repository might provide user/subscriber information to a service
 chain classifier. This classifier could in turn impose that
 information in the SFC encapsulation for delivery to the
 requisite SFs. The SFs could in turn utilize the user/subscriber
 information for local policy decisions. Metadata can also share
 SF output along the SFP.

 5. Service definition independence: The SFC architecture does not
 depend on the details of SFs themselves.

 6. Service function chain independence: The creation, modification,
 or deletion of an SFC has no impact on other SFCs. The same is
 true for SFPs.

 7. Heterogeneous control/policy points: The architecture allows SFs
 to use independent mechanisms (out of scope for this document) to

Halpern & Pignataro Expires January 25, 2016 [Page 11]

Internet-Draft SFC Architecture July 2015

 populate and resolve local policy and (if needed) local
 classification criteria.

4. Core SFC Architecture Components

 The SFC Architecture is built out of architectural building blocks
 which are logical components; these logical components are
 classifiers, service function forwarders (SFF), the service functions
 themselves (SF), and SFC-proxies. While this architecture describes
 functionally distinct logical components and promotes transport
 indepencence, they could be realized and combined in various ways in
 deployed products, and could be combined with an overlay.

 They are interconnected using the SFC Encapsulation. This results in
 a high level logical architecture of an SFC-enabled Domain which
 comprises:

 o .
 . +--------------+ +------------------˜˜˜
 . | Service | SFC | Service +---+ +---+
 . |Classification| Encapsulation | Function |sf1|...|sfn|
 +---->| Function |+---------------->| Path +---+ +---+
 . +--------------+ +------------------˜˜˜
 . SFC-enabled Domain
 o .

 Figure 2: Service Function Chain Architecture

 The following sub-sections provide details on each logical component
 that form the basis of the SFC architecture. A detailed overview of
 how some of these architectural components interact is provided in
 Figure 3:

Halpern & Pignataro Expires January 25, 2016 [Page 12]

Internet-Draft SFC Architecture July 2015

 +----------------+ +----------------+
 | SFC-aware | | SFC-unaware |
 |Service Function| |Service Function|
 +-------+--------+ +-------+--------+
 | |
 SFC Encapsulation No SFC Encapsulation
 | SFC |
 +---------+ +----------------+ Encapsulation +---------+
 |SFC-Aware|-----------------+ \ +------------|SFC Proxy|
 | SF | ... ----------+ \ \ / +---------+
 +---------+ \ \ \ /
 +-------+--------+
 | SF Forwarder |
 | (SFF) |
 +-------+--------+
 |
 SFC Encapsulation
 |
 ... SFC-enabled Domain ...
 |
 Network Overlay Transport
 |
 ,.....
 ,-’ ‘-.
 / ‘.
 | Network |
 ‘. /
 ‘.__ __,-’
 ‘’’’’

 Figure 3: SFC Architecture Components Post Initial Classification

 Please note that the depiction in Figure 3 shows packets post initial
 classification, and therefore including the SFC encapsulation.
 Although not included in Figure 3, the classifier is an SFC
 architectural component.

4.1. SFC Encapsulation

 The SFC encapsulation enables service function path selection. It
 also enables the sharing of metadata/context information when such
 metadata exchange is required.

 The SFC encapsulation carries explicit information used to identify
 the SFP. However, the SFC encapsulation is not a transport
 encapsulation itself: it is not used to forward packets within the
 network fabric. If packets need to flow between separate physical
 platforms, the SFC encapsulation therefore relies on an outer network

Halpern & Pignataro Expires January 25, 2016 [Page 13]

Internet-Draft SFC Architecture July 2015

 transport. Transit forwarders -- such as router and switches --
 forward SFC encapsulated packets based on the outer (non-SFC)
 encapsulation.

 One of the key architecture principles of SFC is that the SFC
 encapsulation remain transport independent. As such any network
 transport protocol may be used to carry the SFC encapsulated traffic.

4.2. Service Function (SF)

 The concept of an SF evolves; rather than being viewed as a bump in
 the wire, an SF becomes a resource within a specified administrative
 domain that is available for consumption as part of a composite
 service. SFs send/receive data to/from one or more SFFs. SFC-aware
 SFs receive this traffic with the SFC encapsulation.

 While the SFC architecture defines the concept and specifies some
 characteristics of a new encapsulation - the SFC encapsulation - and
 several logical components for the construction of SFCs, existing SF
 implementations may not have the capabilities to act upon or fully
 integrate with the new SFC encapsulation. In order to provide a
 mechanism for such SFs to participate in the architecture, an SFC
 proxy function is defined (see Section 4.6). The SFC proxy acts as a
 gateway between the SFC encapsulation and SFC-unaware SFs. The
 integration of SFC-unaware service functions is discussed in more
 detail in the SFC proxy section.

 This architecture allows an SF to be part of multiple SFPs and SFCs.

4.3. Service Function Forwarder (SFF)

 The SFF is responsible for forwarding packets and/or frames received
 from the network to one or more SFs associated with a given SFF using
 information conveyed in the SFC encapsulation. Traffic from SFs
 eventually returns to the same SFF, which is responsible for
 injecting traffic back onto the network. Some SFs, such as
 firewalls, could also consume a packet.

 The collection of SFFs and associated SFs creates a service plane
 overlay in which SFC-aware SFs, as well as SFC-unaware SFs reside.
 Within this service plane, the SFF component connects different SFs
 that form a service function path.

 SFFs maintain the requisite SFP forwarding information. SFP
 forwarding information is associated with a service path identifier
 that is used to uniquely identify an SFP. The service forwarding
 state enables an SFF to identify which SFs of a given SFP should be
 applied, and in what order, as traffic flows through the associated

Halpern & Pignataro Expires January 25, 2016 [Page 14]

Internet-Draft SFC Architecture July 2015

 SFP. While there may appear to the SFF to be only one available way
 to deliver the given SF, there may also be multiple choices allowed
 by the constraints of the SFP.

 If there are multiple choices, the SFF needs to preserve the property
 that all packets of a given flow are handled the same way, since the
 SF may well be stateful. Additionally, the SFF may preserve the
 handling of packets based on other properties on top of a flow, such
 as a subscriber, session, or application instance identification.

 The SFF also has the information to allow it to forward packets to
 the next SFF after applying local service functions. Again, while
 there may be only a single choice available, the architecture allows
 for multiple choices for the next SFF. As with SFs, the solution
 needs to operate such that the behavior with regard to specific flows
 (see the Rendered Service Path) is stable. The selection of
 available SFs and next SFFs may be interwoven when an SFF supports
 multiple distinct service functions and the same service function is
 available at multiple SFFs. Solutions need to be clear about what is
 allowed in these cases.

 Even when the SFF supports and utilizes multiple choices, the
 decision as to whether to use flow-specific mechanisms or coarser
 grained means to ensure that the behavior of specific flows is stable
 is a matter for specific solutions and specific implementations.

 The SFF component has the following primary responsibilities:

 1. SFP forwarding : Traffic arrives at an SFF from the network. The
 SFF determines the appropriate SF the traffic should be forwarded
 to via information contained in the SFC encapsulation. Post-SF,
 the traffic is returned to the SFF, and, if needed, is forwarded
 to another SF associated with that SFF. If there is another non-
 local (i.e., different SFF) hop in the SFP, the SFF further
 encapsulates the traffic in the appropriate network transport
 protocol and delivers it to the network for delivery to the next
 SFF along the path. Related to this forwarding responsibility,
 an SFF should be able to interact with metadata.

 2. Terminating SFPs : An SFC is completely executed when traffic has
 traversed all required SFs in a chain. When traffic arrives at
 the SFF after the last SF has finished processing it, the final
 SFF knows from the service forwarding state that the SFC is
 complete. The SFF removes the SFC encapsulation and delivers the
 packet back to the network for forwarding.

 3. Maintaining flow state: In some cases, the SFF may be stateful.
 It creates flows and stores flow-centric information. This state

Halpern & Pignataro Expires January 25, 2016 [Page 15]

Internet-Draft SFC Architecture July 2015

 information may be used for a range of SFP-related tasks such as
 ensuring consistent treatment of all packets in a given flow,
 ensuring symmetry or for state-aware SFC Proxy functionality (see
 Section 4.8).

4.3.1. Transport Derived SFF

 Service function forwarding, as described above, directly depends
 upon the use of the service path information contained in the SFC
 encapsulation. However, existing implementations may not be able to
 act on the SFC encapsulation. These platforms may opt to use
 existing transport information if it can be arranged to provide
 explicit service path information.

 This results in the same architectural behavior and meaning for
 service function forwarding and service function paths. It is the
 responsibility of the control components to ensure that the transport
 path executed in such a case is fully aligned with the path
 identified by the information in the service chaining encapsulation.

4.4. SFC-Enabled Domain

 Specific features may need to be enforced at the boundaries of an
 SFC-enabled domain, for example to avoid leaking SFC information.
 Using the term node to refer generically to an entity that is
 performing a set of functions, in this context, an SFC Boundary Node
 denotes a node that connects one SFC-enabled domain to a node either
 located in another SFC-enabled domain or in a domain that is SFC-
 unaware.

 An SFC Boundary node can act as egress or ingress. An SFC Egress
 Node denotes a SFC Boundary Node that handles traffic leaving the
 SFC-enabled domain the Egress Node belongs to. Such a node is
 required to remove any information specific to the SFC Domain,
 typically the SFC Encapsulation. Further, from a privacy
 perspective, an SFC Egress Node is required to ensure that any
 sensitive information added as part of SFC gets removed. In this
 context, information may be sensitive due to network concerns or end-
 customer concerns. An SFC Ingress Node denotes an SFC Boundary Node
 that handles traffic entering the SFC-enabled domain. In most
 solutions and deployments this will need to include a classifier, and
 will be responsible for adding the SFC encapsulation to the packet.

 An SFC Proxy and corresponding SFC-unaware Service Function (see
 Figure 3) are inside the SFC-enabled domain.

Halpern & Pignataro Expires January 25, 2016 [Page 16]

Internet-Draft SFC Architecture July 2015

4.5. Network Overlay and Network Components

 Underneath the SFF there are components responsible for performing
 the transport (overlay) forwarding. They do not consult the SFC
 encapsulation or inner payload for performing this forwarding. They
 only consult the outer-transport encapsulation for the transport
 (overlay) forwarding.

4.6. SFC Proxy

 In order for the SFC architecture to support SFC-unaware SFs (e.g.,
 legacy service functions) a logical SFC proxy function may be used.
 This function sits between an SFF and one or more SFs to which the
 SFF is directing traffic (see Figure 3).

 The proxy accepts packets from the SFF on behalf of the SF. It
 removes the SFC encapsulation, and then uses a local attachment
 circuit to deliver packets to SFC unaware SFs. It also receives
 packets back from the SF, reapplies the SFC encapsulation, and
 returns them to the SFF for processing along the service function
 path.

 Thus, from the point of view of the SFF, the SFC proxy appears to be
 part of an SFC aware SF.

 Communication details between the SFF and the SFC Proxy are the same
 as those between the SFF and an SFC aware SF. The details of that
 are not part of this architecture. The details of the communication
 methods over the local attachment circuit between the SFC proxy and
 the SFC-unaware SF are dependent upon the specific behaviors and
 capabilities of that SFC-unaware SF, and thus are also out of scope
 for this architecture.

 Specifically, for traffic received from the SFF intended for the SF
 the proxy is representing, the SFC proxy:

 o Removes the SFC encapsulation from SFC encapsulated packets.

 o Identifies the required SF to be applied based on available
 information including that carried in the SFC encapsulation.

 o Selects the appropriate outbound local attachment circuit through
 which the next SF for this SFP is reachable. This is derived from
 the identification of the SF carried in the SFC encapsulation, and
 may include local techniques. Examples of a local attachment
 circuit include, but are not limited to, VLAN, IP-in-IP, L2TPv3,
 GRE, VXLAN.

Halpern & Pignataro Expires January 25, 2016 [Page 17]

Internet-Draft SFC Architecture July 2015

 o Forwards the original payload via the selected local attachment
 circuit to the appropriate SF.

 When traffic is returned from the SF:

 o Applies the required SFC encapsulation. The determination of the
 encapsulation details may be inferred by the local attachment
 circuit through which the packet and/or frame was received, or via
 packet classification, or other local policy. In some cases,
 packet ordering or modification by the SF may necessitate
 additional classification in order to re-apply the correct SFC
 encapsulation.

 o Delivers the packet with the SFC Encapsulation to the SFF, as
 would happen with packets returned from an SFC-aware SF.

4.7. Classification

 Traffic from the network that satisfies classification criteria is
 directed into an SFP and forwarded to the requisite service
 function(s). Classification is handled by a service classification
 function; initial classification occurs at the ingress to the SFC
 domain. The granularity of the initial classification is determined
 by the capabilities of the classifier and the requirements of the SFC
 policy. For instance, classification might be relatively coarse: all
 packets from this port are subject to SFC policy X and directed into
 SFP A, or quite granular: all packets matching this 5-tuple are
 subject to SFC policy Y and directed into SFP B.

 As a consequence of the classification decision, the appropriate SFC
 encapsulation is imposed on the data, and a suitable SFP is selected
 or created. Classification results in attaching the traffic to a
 specific SFP.

4.8. Re-Classification and Branching

 The SFC architecture supports re-classification (or non-initial
 classification) as well. As packets traverse an SFP, re-
 classification may occur - typically performed by a classification
 function co-resident with a service function. Reclassification may
 result in the selection of a new SFP, an update of the associated
 metadata, or both. This is referred to as "branching".

 For example, an initial classification results in the selection of
 SFP A: DPI_1 --> SLB_8. However, when the DPI service function is
 executed, attack traffic is detected at the application layer. DPI_1
 re-classifies the traffic as attack and alters the service path to
 SFP B, to include a firewall for policy enforcement: dropping the

Halpern & Pignataro Expires January 25, 2016 [Page 18]

Internet-Draft SFC Architecture July 2015

 traffic: DPI_1 --> FW_4. Subsequent to FW_4, surviving traffic would
 be returned to the original SFF. In this simple example, the DPI
 service function re-classifies the traffic based on local application
 layer classification capabilities (that were not available during the
 initial classification step).

 When traffic arrives after being steered through an SFC-unaware SF,
 the SFC Proxy must perform re-classification of traffic to determine
 the SFP. The SFC Proxy is concerned with re-attaching information
 for SFC-unaware SFs, and a stateful SFC Proxy simplifies such
 classification to a flow lookup.

4.9. Shared Metadata

 Sharing metadata allows the network to provide network-derived
 information to the SFs, SF-to-SF information exchange and the sharing
 of service-derived information to the network. Some SFCs may not
 require metadata exchange. SFC infrastructure enables the exchange
 of this shared data along the SFP. The shared metadata serves
 several possible roles within the SFC architecture:

 o Allows elements that typically operate as ships in the night to
 exchange information.

 o Encodes information about the network and/or data for post-
 service forwarding.

 o Creates an identifier used for policy binding by SFs.

 Context information can be derived in several ways:

 o External sources

 o Network node classification

 o Service function classification

5. Additional Architectural Concepts

 There are a number of issues which solutions need to address, and
 which the architecture informs but does not determine. This section
 lays out some of those concepts.

5.1. The Role of Policy

 Much of the behavior of service chains is driven by operator and per-
 customer policy. This architecture is structured to isolate the
 policy interactions from the data plane and control logic.

Halpern & Pignataro Expires January 25, 2016 [Page 19]

Internet-Draft SFC Architecture July 2015

 Specifically, it is assumed that the service chaining control plane
 creates the service paths. The service chaining data plane is used
 to deliver the classified packets along the service chains to the
 intended service functions.

 Policy, in contrast, interacts with the system in other places.
 Policies and policy engines may monitor service functions to decide
 if additional (or fewer) instances of services are needed. When
 applicable, those decisions may in turn result in interactions that
 direct the control logic to change the SFP placement or packet
 classification rules.

 Similarly, operator service policy, often managed by operational or
 business support systems (OSS or BSS), will frequently determine what
 service functions are available. Operator service policies also
 determine which sequences of functions are valid and are to be used
 or made available.

 The offering of service chains to customers, and the selection of
 which service chain a customer wishes to use, are driven by a
 combination of operator and customer policies using appropriate
 portals in conjunction with the OSS and BSS tools. These selections
 then drive the service chaining control logic, which in turn
 establishes the appropriate packet classification rules.

5.2. SFC Control Plane

 The SFC Control Plane is part of the overall SFC architecture, and
 this section describes its high-level functions. However, the
 detailed definition of the SFC Control Plane is outside the scope of
 this document.

 The SFC control plane is responsible for constructing SFPs,
 translating SFCs to forwarding paths and propagating path information
 to participating nodes to achieve requisite forwarding behavior to
 construct the service overlay. For instance, an SFC construction may
 be static; selecting exactly which SFFs and which SFs from those SFFs
 are to be used, or it may be dynamic, allowing the network to perform
 some or all of the choices of SFF or SF to use to deliver the
 selected service chain within the constraints represented by the
 service path.

 In the SFC architecture, SFs are resources; the control plane manages
 and communicates their capabilities, availability and location in
 fashions suitable for the transport and SFC operations in use. The
 control plane is also responsible for the creation of the context
 (see below). The control plane may be distributed (using new or

Halpern & Pignataro Expires January 25, 2016 [Page 20]

Internet-Draft SFC Architecture July 2015

 existing control plane protocols), or be centralized, or a
 combination of the two.

 The SFC control plane provides the following functionality:

 1. An SFC-enabled domain wide view of all available service function
 resources as well as the network locators through which they are
 reachable.

 2. Uses SFC policy to construct service function chains, and
 associated service function paths.

 3. Selection of specific SFs for a requested SFC, either statically
 (using specific SFs) or dynamically (using service explicit SFs
 at the time of delivering traffic to them).

 4. Provides requisite SFC data plane information to the SFC
 architecture components, most notably the SFF.

 5. Provide the metadata and usage information classifiers need so
 that they in turn can provide this metadata for appropriate
 packets in the data plane.

 6. When needed, provide information including policy information to
 other SFC elements to be able to properly interpret metadata.

5.3. Resource Control

 The SFC system may be responsible for managing all resources
 necessary for the SFC components to function. This includes network
 constraints used to plan and choose network path(s) between service
 function forwarders, network communication paths between service
 function forwarders and their attached service functions,
 characteristics of the nodes themselves such as memory, number of
 virtual interfaces, routes, and instantiation, configuration, and
 deletion of SFs.

 The SFC system will also be required to reflect policy decisions
 about resource control, as expressed by other components in the
 system.

 While all of these aspects are part of the overall system, they are
 beyond the scope of this architecture.

Halpern & Pignataro Expires January 25, 2016 [Page 21]

Internet-Draft SFC Architecture July 2015

5.4. Infinite Loop Detection and Avoidance

 This SFC architecture is predicated on topological independence from
 the underlying forwarding topology. Consequently, a service topology
 is created by Service Function Paths or by the local decisions of the
 Service Function Forwarders based on the constraints expressed in the
 SFP. Due to the overlay constraints, the packet-forwarding path may
 need to visit the same SFF multiple times, and in some less common
 cases may even need to visit the same SF more than once. The Service
 Chaining solution needs to permit these limited and policy-compliant
 loops. At the same time, the solutions must ensure that indefinite
 and unbounded loops cannot be formed, as such would consume unbounded
 resources without delivering any value.

 In other words, this architecture requires the solution to prevent
 infinite Service Function Loops, even when Service Functions may be
 invoked multiple times in the same SFP.

5.5. Load Balancing Considerations

 Supporting function elasticity and high-availability should not
 overly complicate SFC or lead to unnecessary scalability problems.

 In the simplest case, where there is only a single function in the
 SFP (the next hop is either the destination address of the flow or
 the appropriate next hop to that destination), one could argue that
 there may be no need for SFC.

 In the cases where the classifier is separate from the single
 function or a function at the terminal address may need sub-prefix
 (e.g., finer grained address information) or per-subscriber metadata,
 a single SFP exists (i.e., the metadata changes but the SFP does
 not), regardless of the number of potential terminal addresses for
 the flow. This is the case of the simple load balancer. See
 Figure 4.

 +---+ +---++--->web server
 source+-->|sff|+-->|sf1|+--->web server
 +---+ +---++--->web server

 Figure 4: Simple Load Balancing

 By extrapolation, in the case where intermediary functions within a
 chain had similar "elastic" behaviors, we do not need separate chains
 to account for this behavior - as long as the traffic coalesces to a
 common next-hop after the point of elasticity.

Halpern & Pignataro Expires January 25, 2016 [Page 22]

Internet-Draft SFC Architecture July 2015

 In Figure 5, we have a chain of five service functions between the
 traffic source and its destination.

 +---+ +---+ +---+ +---+ +---+ +---+
 |sf2| |sf2| |sf3| |sf3| |sf4| |sf4|
 +---+ +---+ +---+ +---+ +---+ +---+
 | | | | | |
 +-----+-----+ +-----+-----+
 | |
 + +
 +---+ +---+ +---+ +---+ +---+
 source+-->|sff|+-->|sff|+--->|sff|+--->|sff|+-->|sff|+-->destination
 +---+ +---+ +---+ +---+ +---+
 + + +
 | | |
 +---+ +---+ +---+
 |sf1| |sf3| |sf5|
 +---+ +---+ +---+

 Figure 5: Load Balancing

 This would be represented as one service function path:
 sf1->sf2->sf3->sf4->sf5. The SFF is a logical element, which may be
 made up of one or multiple components. In this architecture, the SFF
 may handle load distribution based on policy.

 It can also be seen in the above that the same service function may
 be reachable through multiple SFFs, as discussed earlier. The
 selection of which SFF to use to reach SF3 may be made by the control
 logic in defining the SFP, or may be left to the SFFs themselves,
 depending upon policy, solution, and deployment constraints. In the
 latter case, it needs to be assured that exactly one SFF takes
 responsibility to steer traffic through SF3.

5.6. MTU and Fragmentation Considerations

 This architecture prescribes additional information being added to
 packets to identify service function paths and often to represent
 metadata. It also envisions adding transport information to carry
 packets along service function paths, at least between service
 function forwarders. This added information increases the size of
 the packet to be carried by service chaining. Such additions could
 potentially increase the packet size beyond the MTU supported on some
 or all of the media used in the service chaining domain.

 Such packet size increases can thus cause operational MTU problems.
 Requiring fragmentation and reassembly in an SFF would be a major
 processing increase, and might be impossible with some transports.

Halpern & Pignataro Expires January 25, 2016 [Page 23]

Internet-Draft SFC Architecture July 2015

 Expecting service functions to deal with packets fragmented by the
 SFC function might be onerous even when such fragmentation was
 possible. Thus, at the very least, solutions need to pay attention
 to the size cost of their approach. There may be alternative or
 additional means available, although any solution needs to consider
 the tradeoffs.

 These considerations apply to any generic architecture that increases
 the header size. There are also more specific MTU considerations:
 Effects on Path MTU Discovery (PMTUD) as well as deployment
 considerations. Deployments within a single administrative control
 or even a single Data Center complex can afford more flexibility in
 dealing with larger packets, and deploying existing mitigations that
 decrease the likelihood of fragmentation or discard.

5.7. SFC OAM

 Operations, Administration, and Maintenance (OAM) tools are an
 integral part of the architecture. These serve various purposes,
 including fault detection and isolation, and performance management.
 For example, there are many advantages of SFP liveness detection,
 including status reporting, support for resiliency operations and
 policies, and an enhanced ability to balance load.

 Service Function Paths create a services topology, and OAM performs
 various functions within this service layer. Furthermore, SFC OAM
 follows the same architectural principles of SFC in general. For
 example, topological independence (including the ability to run OAM
 over various overlay technologies) and classification-based policy.

 We can subdivide the SFC OAM architecture in two parts:

 o In-band: OAM packets follow the same path and share fate with user
 packets, within the service topology. For this, they also follow
 the architectural principle of consistent policy identifiers, and
 use the same path IDs as the service chain data packets. Load
 balancing and SFC encapsulation with packet forwarding are
 particularly important here.

 o Out-of-band: reporting beyond the actual data plane. An
 additional layer beyond the data-plane OAM allows for additional
 alerting and measurements.

 This architecture prescribes end-to-end SFP OAM functions, which
 implies SFF understanding of whether an in-band packet is an OAM or
 user packet. However, service function validation is outside of the
 scope of this architecture, and application-level OAM is not what
 this architecture prescribes.

Halpern & Pignataro Expires January 25, 2016 [Page 24]

Internet-Draft SFC Architecture July 2015

 Some of the detailed functions performed by SFC OAM include fault
 detection and isolation in a Service Function Path or a Service
 Function, verification that connectivity using SFPs is both effective
 and directing packets to the intended service functions, service path
 tracing, diagnostic and fault isolation, alarm reporting, performance
 measurement, locking and testing of service functions, validation
 with the control plane (see Section 5.2), and also allow for vendor-
 specific as well as experimental functions. SFC should leverage, and
 if needed extend relevant existing OAM mechanisms.

5.8. Resilience and Redundancy

 As a practical operational requirement, any service chaining solution
 needs to be able to respond effectively, and usually very quickly, to
 failure conditions. These may be failures of connectivity in the
 network between SFFs, failures of SFFs, or failures of SFs. Per-SF
 state, as for example stateful-firewall state, is the responsibility
 of the SF, and not addressed by this architecture.

 Multiple techniques are available to address this issue. Solutions
 can describe both what they require and what they allow to address
 failure. Solutions can make use of flexible specificity of service
 function paths, if the SFF can be given enough information in a
 timely fashion to do this. Solutions can also make use of MAC or IP
 level redundancy mechanisms such as VRRP. Also, particularly for SF
 failures, load balancers co-located with the SFF or as part of the
 service function delivery mechanism can provide such robustness.

 Similarly, operational requirements imply resilience in the face of
 load changes. While mechanisms for managing (e.g., monitoring,
 instantiating, loading images, providing configuration to service
 function chaining control, deleting, etc.) virtual machines are out
 of scope for this architecture, solutions can and are aided by
 describing how they can make use of scaling mechanisms.

6. Security Considerations

 The architecture described here is different from the current model,
 and moving to the new model could lead to different security
 arrangements and modeling. In the SFC architecture, a relatively
 static topologically-dependent deployment model is replaced with the
 chaining of sets of service functions. This can change the flow of
 data through the network, and the security and privacy considerations
 of the protocol and deployment will need to be reevaluated in light
 of the new model.

 Security considerations apply to the realization of this
 architecture, in particular to the documents that will define

Halpern & Pignataro Expires January 25, 2016 [Page 25]

Internet-Draft SFC Architecture July 2015

 protocols. Such realization ought to provide means to protect
 against security and privacy attacks in the areas hereby described.

 Building from the categorization of [RFC7498], we can largely divide
 the security considerations in four areas:

 Service Overlay: Underneath the Service Function Forwarders, the
 components that are responsible for performing the transport
 forwarding consult the outer-transport encapsulation for
 underlay forwarding. Used transport mechanisms should satisfy
 the security requirements of the specific SFC deployment. These
 requirements typically include varying degrees of traffic
 separation, protection against different attacks (e.g.,
 spoofing, man-in-the-middle, brute-force, or insertion attacks),
 and can also include authenticity and integrity checking, and/or
 confidentiality provisions, for both the network overlay
 transport and traffic it encapsulates.

 Boundaries: Specific requirements may need to be enforced at the
 boundaries of an SFC-enabled domain. These include, for
 example, to avoid leaking SFC information, and to protect its
 borders against various forms of attacks. If untrusted parties
 can inject packets which will be treated as being properly
 classified for service chaining, there are a large range of
 attacks which can be mounted against the resulting system.
 Depending upon deployment details, these likely include spoofing
 packets from users and creating DDoS and reflection attacks of
 various kinds. Thus, when a transport mechanisms are selected
 for use with SFC, they MUST ensure that outside parties can not
 inject SFC packets which will be accepted for processing into
 the domain. This border security MUST include any tunnels to
 other domains. If those tunnels are to be used for SFC without
 reclassification, then the tunnel MUST include additional
 techniques to ensure the integrity and validity of such packets.

 Classification: Classification is used at the ingress edge of an
 SFC-enabled domain. Policy for this classification is done
 using a plurality of methods. Whatever method is used needs to
 consider a range of security issues. These include appropriate
 authentication and authorization of classification policy,
 potential confidentiality issues of that policy, protection
 against corruption, and proper application of policy with needed
 segregation of application. This includes proper controls on
 the policies which drive the application of the SFC
 Encapsulation and associated metadata to packets. Similar
 issues need to be addressed if classification is performed
 within a service chaining domain, i.e., re-classification.

Halpern & Pignataro Expires January 25, 2016 [Page 26]

Internet-Draft SFC Architecture July 2015

 SFC Encapsulation: The SFC Encapsulation provides at a minimum SFP
 identification, and carries metadata. An operator may consider
 the SFC Metadata as sensitive. From a privacy perspective, a
 user may be concerned about the operator revealing data about
 (and not belonging to) the customer. Therefore, solutions
 should consider whether there is a risk of sensitive information
 slipping out of the operators control. Issues of information
 exposure should also consider flow analysis. Further, when a
 specific metadata element is defined, it should be carefully
 considered whether origin authentication is needed for it.

 A classifier may have privileged access to information about a
 packet or inside a packet (see Section 3, bullet 4, and
 Section 4.9) that is then communicated in the metadata. The
 threat of leaking this private data needs to be mitigated
 [RFC6973]. As one example, if private data is represented by an
 identifier, then a new identifier can be allocated, such that
 the mapping from the private data to the new identifier is not
 broadly shared.

 Some metadata added to and carried in SFC packets is sensitive
 for various reasons, including potentially revealing personally
 identifying information. Realizations of the architecture MUST
 protect to ensure that such information is handled with suitable
 care and precautions against inappropriate dissemination of the
 information. This can have implications to the data plane, the
 control plane, or both. Data plane protocol definitions for SFC
 can include suitable provision for protect such information for
 use when handling sensitive information, with packet or SFP
 granularity. Equally, the control mechanisms use with SFC can
 have provisions to determine that such mechanisms are available,
 and to ensure that they are used when needed. Inability to do
 so needs to result in error indications to appropriate
 management systems. In particular, when the control systems
 know that sensitive information may potentially be added to
 packets at certain points on certain service chains, the control
 mechanism MUST verify that appropriate protective treatment of
 NSH information is available from the point where the
 information is added to the point where it will be removed. If
 such mechanisms are unavailable, error notifications SHOULD be
 generated.

 Additionally, SFC OAM Functions need to not negatively affect the
 security considerations of an SFC-enabled domain.

 Finally, all entities (software or hardware) interacting with the
 service chaining mechanisms need to provide means of security against
 malformed, poorly configured (deliberate or not) protocol constructs

Halpern & Pignataro Expires January 25, 2016 [Page 27]

Internet-Draft SFC Architecture July 2015

 and loops. These considerations are largely the same as those in any
 network, particularly an overlay network.

7. Contributors and Acknowledgments

 The editors would like to thank Sam Aldrin, Alia Atlas, Nicolas
 Bouthors, Stewart Bryant, Linda Dunbar, Alla Goldner, Ken Gray, Barry
 Greene, Anil Gunturu, David Harrington, Shunsuke Homma, Dave Hood,
 Chris Inacio, Nagendra Kumar, Hongyu Li, Andrew Malis, Guy Meador
 III, Kengo Naito, Thomas Narten, Ron Parker, Reinaldo Penno, Naiming
 Shen, Xiaohu Xu, and Lucy Yong for a thorough review and useful
 comments.

 The initial version of this "Service Function Chaining (SFC)
 Architecture" document is the result of merging two previous
 documents, and this section lists the aggregate of authors, editors,
 contributors and acknowledged participants, all who provided
 important ideas and text that fed into this architecture.

 [I-D.boucadair-sfc-framework]:

 Authors:

 Mohamed Boucadair
 Christian Jacquenet
 Ron Parker
 Diego R. Lopez
 Jim Guichard
 Carlos Pignataro

 Contributors:

 Parviz Yegani
 Paul Quinn
 Linda Dunbar

 Acknowledgements:

 Many thanks to D. Abgrall, D. Minodier, Y. Le Goff, D.
 Cheng, R. White, and B. Chatras for their review and
 comments.

 [I-D.quinn-sfc-arch]:

 Authors:

 Paul Quinn (editor)
 Joel Halpern (editor)

Halpern & Pignataro Expires January 25, 2016 [Page 28]

Internet-Draft SFC Architecture July 2015

 Contributors:

 Puneet Agarwal
 Andre Beliveau
 Kevin Glavin
 Ken Gray
 Jim Guichard
 Surendra Kumar
 Darrel Lewis
 Nic Leymann
 Rajeev Manur
 Thomas Nadeau
 Carlos Pignataro
 Michael Smith
 Navindra Yadav

 Acknowledgements:

 The authors would like to thank David Ward, Abhijit Patra,
 Nagaraj Bagepalli, Darrel Lewis, Ron Parker, Lucy Yong and
 Christian Jacquenet for their review and comments.

8. IANA Considerations

 [RFC Editor: please remove this section prior to publication.]

 This document has no IANA actions.

9. Informative References

 [I-D.boucadair-sfc-framework]
 Boucadair, M., Jacquenet, C., Parker, R., Lopez, D.,
 Guichard, J., and C. Pignataro, "Service Function
 Chaining: Framework & Architecture", draft-boucadair-sfc-
 framework-02 (work in progress), February 2014.

 [I-D.quinn-sfc-arch]
 Quinn, P. and J. Halpern, "Service Function Chaining (SFC)
 Architecture", draft-quinn-sfc-arch-05 (work in progress),
 May 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3022] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022, January
 2001.

Halpern & Pignataro Expires January 25, 2016 [Page 29]

Internet-Draft SFC Architecture July 2015

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, April 2011.

 [RFC6296] Wasserman, M. and F. Baker, "IPv6-to-IPv6 Network Prefix
 Translation", RFC 6296, June 2011.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973, July
 2013.

 [RFC7498] Quinn, P. and T. Nadeau, "Problem Statement for Service
 Function Chaining", RFC 7498, April 2015.

Authors’ Addresses

 Joel Halpern (editor)
 Ericsson

 Email: jmh@joelhalpern.com

 Carlos Pignataro (editor)
 Cisco Systems, Inc.

 Email: cpignata@cisco.com

Halpern & Pignataro Expires January 25, 2016 [Page 30]

Service Function Chaining S. Kumar
Internet-Draft J. Guichard
Intended status: Informational P. Quinn
Expires: April 4, 2015 Cisco Systems, Inc.
 J. Halpern
 Ericsson
 Oct 2014

 Service Function Path Optimization
 draft-kumar-sfc-sfp-optimization-01

Abstract

 Service Function Chaining (SFC) enables services to be delivered by
 selective traffic steering through an ordered set of service
 functions. Once classified into an SFC, the traffic for a given flow
 is steered through all the service functions of the SFC for the life
 of the traffic flow even though this is often not necessary.
 Steering traffic to service functions only while required and not
 otherwise, leads to optimal SFCs with improved latencies, reduced
 resource consumption and better user experience.

 This document describes the rationale, techniques and necessary
 protocol extensions to achieve such optimization.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 4, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Kumar, et al. Expires April 4, 2015 [Page 1]

Internet-Draft SFC SFP Optimization Oct 2014

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 3
 2. Definition Of Terms . 3
 3. Service Function Path Optimization 4
 3.1. Bypass . 5
 3.2. Simple Offload . 6
 3.2.1. Stateful SFF . 7
 3.2.2. Packet Re-ordering 7
 3.2.3. Policy Implications 7
 3.2.4. Capabilities Exchange 8
 4. Methods For SFP Optimization 8
 4.1. Hop-by-hop Offload . 9
 4.1.1. Progression Of SFP Optimization 11
 4.2. Service Controller Offload 12
 5. Offload Data-plane Signaling 12
 6. Acknowledgements . 13
 7. IANA Considerations . 13
 8. Security Considerations 14
 9. References . 14
 9.1. Normative References 14
 9.2. Informative References 14
 Authors’ Addresses . 14

Kumar, et al. Expires April 4, 2015 [Page 2]

Internet-Draft SFC SFP Optimization Oct 2014

1. Introduction

 Service function chaining involves steering traffic flows through a
 set of service functions in a specific order. Such an ordered list
 of service functions is called a Service Function Chain (SFC). The
 actual forwarding path used to realize an SFC is called the Service
 Function Path (SFP).

 Service functions forming an SFC are hosted at different points in
 the network, often co-located with different types of service
 functions to form logical groupings. Applying a SFC thus requires
 traffic steering by the SFC infrastructure from one service function
 to the next until all the service functions of the SFC are applied.
 Service functions know best what type of traffic they can service and
 how much traffic needs to be delivered to them to achieve complete
 delivery of service. As a consequence any service function may
 potentially request, within its policy constraints, traffic no longer
 be delivered to it or its function be performed by the SFC
 infrastructure, if such a mechanism is available.

 This document outlines mechanisms to not steer traffic to service
 functions, on request, while still ensuring compliance to the
 instantiated policy that mandates the SFC.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Definition Of Terms

 This document uses the following terms. Additional terms are defined
 in [I-D.ietf-sfc-problem-statement], [I-D.ietf-sfc-architecture] and
 [I-D.quinn-sfc-nsh]. Some are reproduced here only for convenience
 and the reader is advised to consult the referenced documents.

 Service Function (SF): A function that is responsible for specific
 treatment of received packets. A Service Function can act at the
 network layer or other OSI layers. A Service Function can be a
 virtual instance or be embedded in a physical network element.
 One of multiple Service Functions can be embedded in the same
 network element. Multiple instances of the Service Function can
 be enabled in the same administrative domain. A non-exhaustive
 list of Service Functions includes: firewalls, WAN and
 application acceleration, Deep Packet Inspection (DPI), server
 load balancers, NAT44 [RFC3022], NAT64 [RFC6146], HOST_ID

Kumar, et al. Expires April 4, 2015 [Page 3]

Internet-Draft SFC SFP Optimization Oct 2014

 injection, HTTP Header Enrichment functions, TCP optimizer, etc.

 Service Node (SN): A virtual or physical device that hosts one or
 more service functions, which can be accessed via the network
 location associated with it.

 Service Function Forwarder (SFF): A service function forwarder is
 responsible for forwarding traffic along the service path, which
 includes delivery of traffic to the connected service functions.

 Network Forwarder (NF): The entity, typically part of the network
 infrastructure, responsible for performing the transport function
 in traffic forwarding.

 Service Controller (SC): The entity responsible for managing the
 service chains, including create/read/update/delete actions as
 well as programming the service forwarding state in the network -
 SFP distribution.

 Classifier (CF): The entity, responsible for selecting traffic as
 well as SFP, based on policy, and forwarding the selected traffic
 on the SFP after adding the necessary encapsulation. Classifier
 is implicitly an SFF.

 Offload: A request or a directive from the SF to alter the SFP so as
 to remove the requesting SF from the SFP while maintaining the
 effect of the removed SF on the offloaded flow.

 Un-offload: A request or directive to cancel the effect of Offload -
 leads to altering the SFP so as to insert the requesting SF back
 into the SFP and steer the flow to it.

3. Service Function Path Optimization

 The packet forwarding path of a SFP involves the classifier, one or
 more SFFs and all the SFs that are part of the SFP. Packets of a
 flow are forwarded along this path to each of the SFs, for the life
 of the flow, whether SFs perform the full function in treating the
 packet or reapply the cached result, from the last application of the
 function, on the residual packets of the flow. In other words, every
 packet on the flow incurs the same latency and the end-to-end SFP
 latency remains more or less constant subject to the nature of the
 SFs involved. If an SF can be removed from the SFP, for a specific
 flow, traffic steering to the SF is avoided for that flow; thus
 leading to a shorter SFP for the flow. When multiple SFs in a SFP
 are removed, the SFP starts to converge towards the optimum path,
 which in its best case starts and terminates at the classifier itself

Kumar, et al. Expires April 4, 2015 [Page 4]

Internet-Draft SFC SFP Optimization Oct 2014

 without incurring any latency associated with traversing the SFP.

 Although SFs are removed from the SFP, the corresponding SFC is not
 changed - this is subtle but an important characteristic of this
 mechanism. In other words, this mechanism does not alter the SFC and
 still uses the SFP associated with the SFC.

 There are two primary approaches to removing an SF from the SFP.
 Namely,

 o Bypass: Mechanism that alters the SFC. Described in this draft
 for completeness.

 o Simple Offload: Mechanism that alters the SFP alone, does not
 affect the SFC. This is the primary focus of this draft.

3.1. Bypass

 Many service functions do not deliver service to certain types of
 traffic. For instance, typical WAN optimization service functions
 are geared towards optimizing TCP traffic and add no value to non-TCP
 traffic. Non-TCP traffic thus can bypass such a service function.
 Even in the case of TCP, a WAN optimization SF may not be able to
 service the traffic if the corresponding TCP flow is not seen by it
 from inception. In such a situation a WAN optimization SF can avoid
 the overhead of processing such a flow or reserving resources for it,
 if it had the ability to request such flows not be steered to it. In
 other words such service functions need the ability to request they
 be bypassed for a specified flow from a certain time in the life of
 that flow.

 A seemingly simple alternative is to require service functions pre
 specify the traffic flow types they add value to, such as the one-
 tuple: IP protocol-type described above. A classifier built to use
 such data exposed by SFs, may thus enable bypassing such SFs for
 specific flows by way of selecting a different SFC that does not
 contain the SF being removed.

 Although knowledge of detailed SF profiles helps SFC selection at the
 classifier starting the SFC, it leads to shortcomings.

 o It adds to the overhead of classification at that classifier as
 all SF classification requirements have to be met by the
 classifier.

 o It leads to conflicts in classification requirements between the
 classifier and the SFs. Classification needs of different SFs in
 the same SFC may vary. A classifier thus cannot classify traffic

Kumar, et al. Expires April 4, 2015 [Page 5]

Internet-Draft SFC SFP Optimization Oct 2014

 based on the classification of one of the SFs in the chain. For
 instance, even though a flow is uninteresting to one SF on an SFC,
 it may be interesting to another SF in the same SFC.

 o The trigger for bypassing an SF may be dynamic as opposed to the
 static classification at the classifier - it may originate at the
 SFs themselves and involve the control and policy planes. The
 policy and control planes may react to such a trigger by
 instructing the classifier to select a different SFC for the flow,
 thereby achieving SF bypass.

3.2. Simple Offload

 Service delivery by a class of service functions involves inspecting
 the initial portion of the traffic and determining whether traffic
 should be permitted or dropped. In some service functions, such an
 inspection may be limited to just the five tuple, in some others it
 may involve protocol headers, and in yet others it may involve
 inspection of the byte stream or application content based on the
 policy specified. Firewall service functions fall into such a class,
 for example. In all such instances, servicing involves determining
 whether to permit the traffic to proceed onwards or to deny the
 traffic from proceeding onwards and drop the traffic. In some cases,
 dropping of the traffic may be accompanied with the generation of a
 response to the originator of traffic or to the destination or both.
 Once the service function determines the result - permit or deny (or
 drop), it simply applies the same result to the residual packets of
 the flow by caching the result in the flow state.

 In essence, the effect of service delivery is a PERMIT or a DENY
 action on the traffic of a flow. This class of service functions can
 avoid all the overhead of processing such traffic at the SF, by
 simply requesting another entity in the SFP, to assume the function
 of performing the action determined by the service function. Since
 PERMIT and DENY are very simple actions other entities in the SFP are
 very likely to be able to perform them on behalf of the requesting
 SF. A service function can thus offload simple functions to other
 entities in the SFP.

 Since SFF is the one steering traffic to the SFs and hence is on the
 SFP, is a natural entity to assume the offload function. An SF not
 interested in traffic being steered to it can simply perform a simple
 offload by indicating a PERMIT action along with an OFFLOAD request.
 The SFF responsible for steering the traffic to the SF takes note of
 the ACTION and offload request. The OFFLOAD directive and the ACTION
 received from the requesting SF are cached against the SF for that
 flow. Once cached, residual packets on the flow are serviced by the
 cached directive and action as if being serviced by the corresponding

Kumar, et al. Expires April 4, 2015 [Page 6]

Internet-Draft SFC SFP Optimization Oct 2014

 SF.

3.2.1. Stateful SFF

 SFFs are the closest SFC infrastructure entities to the service
 functions. SFFs may be state-full and hence can cache the offload
 and action in both of the unidirectional flows of a connection. As a
 consequence, action and offload become effective on both the flows
 simultaneously and remain so until cancelled or the flow terminates.

 SFFs may not always honor the offload requests received from SFs.
 This does not affect the correctness of the SFP in any way. It
 implies that the SFs can expect traffic to arrive on a flow, which it
 offloaded, and hence must service them, which may involve requesting
 an offload again. It is natural to think of an acknowledgement
 mechanism to provide offload guarantees to the SFs but such a
 mechanism just adds to the overhead while not providing significant
 benefit. Offload serves as a best effort mechanism.

3.2.2. Packet Re-ordering

 Offload mechanism creates short time-windows where packet re-ordering
 may occur. While SFs request flows be offloaded to SFFs, packets may
 still be in flight at various points along the SFP, including some
 between the SFF and the SF. Once the offload decision is received
 and committed into the flow entry at the SFF, any packets arriving
 after and destined to the offloading SF are treated to the offload
 decision and forwarded along (if it is a PERMIT action). Inflight
 packets to the offloading SF may arrive at the SFF after one or more
 packets are already treated to the offload decision and forwarded
 along.

 This is a transitional effect and may not occur in all cases. For
 instance, if the decision to offload a flow by an SF is based on the
 first packet of TCP flow, a reasonable time window exists between the
 offload action being committed into the SFF and arrival of subsequent
 packet of the same flow at that SFF. Likewise, request/response
 based protocols such as HTTP may not always be subject to the re-
 ordering effects.

3.2.3. Policy Implications

 Offload mechanism may be controlled by the policy layer. The SFs
 themselves may have a static policy to utilize the capability offered
 by the SFC infrastructure. They could also be dynamic and controlled
 by the specific policy layer under which the SFs operate.

 Similarly, the SFC infrastructure, specifically the classifiers and

Kumar, et al. Expires April 4, 2015 [Page 7]

Internet-Draft SFC SFP Optimization Oct 2014

 the SFFs, may be under the SFC infrastructure control plane policy
 controlling the decision to honor offloads from an SF. This policy
 in turn may be coarse-grain, at the SF level, and hence static. It
 can also be fine grain and hence dynamic but it adds to the overhead
 of policy distribution.

 Policy model related to offloads is out of scope of this document.

3.2.4. Capabilities Exchange

 Simple offloads can be exposed and negotiated a priori as a
 capability between the SFFs and the SFs or the corresponding control
 layers. In the simplest of the implementations, this is provided by
 the SFC infrastructure and the SFs are statically configured to
 utilize them without capabilities negotiation, within the constraints
 of the SF specific policies.

 Capabilities exchange is outside the scope of this document.

4. Methods For SFP Optimization

 There are a number of different models that may be used to facilitate
 shortest SFP realization. We present two here.

 The shortest SFP methods discussed in the following sections require
 signaling among the participant components to communicate offload and
 permit/deny actions. The signaling may be performed in the data-
 plane or in the control plane.

 a. Data-plane: An SFC specific communication channel is needed for
 SNs to communicate the offload request along with the SF treated
 packet. [NSH] defines a header specifically for carrying SFP
 along with metadata and provides such a channel for use with
 offloads. Necessary bits need to be allocated in NSH to convey
 the action as well as the offload directive. This signaling may
 be limited to SN and SFF or may continue from one SFF to another
 SFF or the classifier. It may also involve signaling directly
 from the SF to the classifier.

 b. Control-plane: Messages are required between the SN and the
 service controller as well as between the SFF and the control
 plane. Service controller messaging is out of scope of this
 document and it is assumed to be service controller specific.

Kumar, et al. Expires April 4, 2015 [Page 8]

Internet-Draft SFC SFP Optimization Oct 2014

4.1. Hop-by-hop Offload

 SNs receive traffic on an overlay from the SFF. SNs service the
 traffic and turn them back to the SFF on an overlay or forward the
 traffic on the underlay. In the former case, along with returning
 the traffic to SFF, they can perform simple offload by signaling
 OFFLOAD and ACTION to the SFF. SFF caches the OFFLOAD and ACTION
 while forwarding the serviced packet onwards to the next service hop
 on the SFP or dropping it. SFF can now enforce the OFFLOAD and
 ACTION on the residual packets of the flow.

 Additionally, SFF may choose to signal the upstream SFFs of the
 OFFLOAD and ACTION received from an SF. This may continue
 recursively until the first SFF is reached, which is the classifier
 itself.

 By performing such hop-by-hop offloads, SFP can be reduced to an
 optimum one, steering traffic to only those SFs that really need to
 see the traffic.

 Figure 1 to Figure 3 show an example of SF and SFF performing an
 offload operation and the effect thereafter on the SFP.

Kumar, et al. Expires April 4, 2015 [Page 9]

Internet-Draft SFC SFP Optimization Oct 2014

 SFID(1) SFID(2) SFID(3)
 +------+ +------+ +------+
 | SF1 |.... | SF2 |.... | SF3 |....
 . +------+ . . +------+ . . +------+ .
 . | . . | . . | .
 . +------+ . . +------+ . . +------+ .
 . | SFF1 | . . | SFF2 | . . | SFF3 | .
 . +------+ . . +------+ . . +------+ .
 . | . . | . . | . +-+
 +----+ . +------+ . . +------+ . . +------+ . |N|
 | CF |------| NF1 |-----------| NF2 |-----------| NF3 |------|e|
 +----+ . +------+ . . +------+ . . +------+ . |t|
 +-+
 SFP1 >

 Service Function Chain, SFC1 = {SF1, SF2, SF3}
 where SF1, SF2 and SF3 are three service functions.
 Service Function Path SFP1 is the SFP for SFC1.
 Classifier CF starts SFP1 based on policy.

 Figure 1: SFC1 with corresponding SFP1

 O
 f
 SFID(1) f +- SFID(2) SFID(3)
 +------+ l | +------+ +------+
 | SF1 |.... o | | SF2 | | SF3 |....
 . +------+ . a | +------+ . +------+ .
 . | . d | | . | .
 . +------+ . v +------+ . +------+ .
 . | SFF1 | | SFF2 |.... . | SFF3 | .
 . +------+ . . +------+ . . +------+ .
 . | . . | . . | . +-+
 +----+ . +------+ . . +------+ . . +------+ . |N|
 | CF |------| NF1 |-----------| NF2 |-----------| NF3 |-----|e|
 +----+ . +------+ . . +------+ . . +------+ . |t|
 +-+
 SFP1 >

 Figure 2: SFP1 after SFID(2) performs an Offload

Kumar, et al. Expires April 4, 2015 [Page 10]

Internet-Draft SFC SFP Optimization Oct 2014

 O
 SFID(1) f SFID(2) SFID(3)
 +------+ f +------+ +------+
 | SF1 |.... l | SF2 | | SF3 |....
 . +------+ . o +------+ . +------+ .
 . | . a | . | .
 . +------+ . d +------+ . +------+ .
 . | SFF1 | <-------- | SFF2 | . | SFF3 | .
 . +------+ . +------+ . +------+ .
 . | . | . | . +-+
 +----+ . +------+ . +------+ . +------+ . |N|
 | CF |------| NF1 |-----------| NF2 |-----------| NF3 |------|e|
 +----+ . +------+ . +------+ . +------+ . |t|
 +-+
 SFP1 >

 Figure 3: SFP1 after SFF2 propagates the Offload upstream to SFF1

4.1.1. Progression Of SFP Optimization

 SFP optimization happens at two levels:

 Level-1: Collapsing of the SFF-to-SF hops into the SFF or the SFC
 infrastructure.

 Level-2: Reduction of the (collapsed) SFP within the SFC
 infrastructure to the shortest possible.

 Figure 1 to Figure 3 show one sequence of offload events leading to a
 shorter SFP. Although not shown in these figures, further offload
 events ultimately lead to an optimum SFP.

 Below steps show one such sequence of offload events that lead to
 such an optimum SFP.

 Stage-1: Prior to any offloads, service function path SFP1
 (corresponding to SFC1) has the following actual forwarding
 path as shown in Figure 1:
 CF ->
 NF1 -> SFF1 -> SF1 -> SFF1 -> NF1 ->
 NF2 -> SFF2 -> SF2 -> SFF2 -> NF2 ->
 NF3 -> SFF3 -> SF3 -> SFF3 -> NF3 ->

Kumar, et al. Expires April 4, 2015 [Page 11]

Internet-Draft SFC SFP Optimization Oct 2014

 Stage-2: After SF2 performs a simple offload, which is signaled to
 upstream SFFs - SFF1, Classifier, SFP1 forwarding path
 changes to the below as shown in Figure 3:
 CF ->
 NF1 -> SFF1 -> SF1 -> SFF1 -> NF1 ->
 NF3 -> SFF3 -> SF3 -> SFF3 -> NF3 ->

 Stage-3: After SF3 performs simple offload, which is signaled to
 upstream SFFs - SFF2, SFF1, and Classifier, SFP1 forwarding
 path changes to the below (figure not shown) />:
 CF ->
 NF1 -> SFF1 -> SF1 -> SFF1 -> NF1 ->

 Stage-4: After SF1 performs simple offload, which is signaled to
 upstream SFFs - Classifier, SFP1 forwarding path changes to
 the below (figure not shown):
 CF ->

4.2. Service Controller Offload

 Each SN signals the service controller of the OFFLOAD and ACTION via
 control plane messaging for a specific flow. The service controller
 then signals the appropriate SFFs to offload the requested SFs, there
 by achieving the hop-by-hop offload behavior.

 The service controller has full knowledge of all the SFs of the SFP
 offloading the flow and hence can determine the optimum SFP within
 the Service Controller and program the appropriate SFFs to achieve
 SFP optimization.

5. Offload Data-plane Signaling

 Since Offload and action are signaled at the time of returning the
 traffic to SFF, post servicing the traffic, such signaling can be
 integrated into the service header of the packet. Figure 4 shows the
 bits necessary to achieve the signaling using the SFC encapsulation
 as described in [I-D.quinn-sfc-nsh].

Kumar, et al. Expires April 4, 2015 [Page 12]

Internet-Draft SFC SFP Optimization Oct 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Base Header |
 +-+
 | Service Path Header |
 +-+
 | Network Platform Context |
 +-+
 |F|D| Network Shared Context |
 +-+
 | Service Platform Context |
 +-+
 | Service Shared Context |
 +-+
 | |
 ˜ Optional Variable Length Context Headers ˜
 | |
 +-+

 F : Offload bit; indicates offload request when F is set to 1
 D : Drop (or Deny) bit, drop when D=1 and permit when D=0;
 Drop bit is valid only when F is set to 1

 Figure 4: NSH Offload and ACTION Bits

 Although SFs can signal SFFs by piggy backing on the serviced packet,
 SFFs cannot signal in a similar fashion. This is because the traffic
 is forwarded along the SFP to the next or downstream SFF. The
 offload signaling has to go to the upstream SFFs, in the opposite
 direction. SFFs have a choice: perform out-of-band signaling towards
 the upstream SFFs or wait until traffic arrives on the opposite flow
 on the reverse SFP, where SFPs are symmetric. SFFs can then
 piggyback the offload signaling on the reverse traffic towards the
 upstream SFFs. The actual method employed to signal offload between
 the SFFs is implementation specific.

6. Acknowledgements

 The authors would like to thank Nagaraj Bagepalli for his review
 comments.

7. IANA Considerations

 This memo includes no request to IANA.

Kumar, et al. Expires April 4, 2015 [Page 13]

Internet-Draft SFC SFP Optimization Oct 2014

8. Security Considerations

 Security of the offload signaling mechanism is very important. This
 document does not advocate any additional security mechanisms other
 the data plane and control plane signaling security mechanisms.

9. References

9.1. Normative References

 [I-D.ietf-sfc-architecture]
 Halpern, J. and C. Pignataro, "Service Function Chaining
 (SFC) Architecture", draft-ietf-sfc-architecture-02 (work
 in progress), September 2014.

 [I-D.quinn-sfc-nsh]
 Quinn, P., Guichard, J., Fernando, R., Surendra, S.,
 Smith, M., Yadav, N., Agarwal, P., Manur, R., Chauhan, A.,
 Elzur, U., Garg, P., McConnell, B., and C. Wright,
 "Network Service Header", draft-quinn-sfc-nsh-03 (work in
 progress), July 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

9.2. Informative References

 [I-D.ietf-sfc-problem-statement]
 Quinn, P. and T. Nadeau, "Service Function Chaining
 Problem Statement", draft-ietf-sfc-problem-statement-10
 (work in progress), August 2014.

 [RFC3022] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 January 2001.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, April 2011.

Kumar, et al. Expires April 4, 2015 [Page 14]

Internet-Draft SFC SFP Optimization Oct 2014

Authors’ Addresses

 Surendra Kumar
 Cisco Systems, Inc.
 170 W. Tasman Dr.
 San Jose, CA 95134

 Email: smkumar@cisco.com

 Jim Guichard
 Cisco Systems, Inc.

 Email: jguichar@cisco.com

 Paul Quinn
 Cisco Systems, Inc.

 Email: paulq@cisco.com

 Joel Halpern
 Ericsson

 Email: joel.halpern@ericsson.com

Kumar, et al. Expires April 4, 2015 [Page 15]

SFC working group H. Song
Internet-Draft J. You
Intended status: Informational L. Yong
Expires: March 10, 2017 Y. Jiang
 L. Dunbar
 Huawei
 N. Bouthors
 Qosmos
 D. Dolson
 Sandvine
 September 6, 2016

 SFC Header Mapping for Legacy SF
 draft-song-sfc-legacy-sf-mapping-08

Abstract

 A Service Function Chain (SFC) defines a set of abstract Service
 Functions (SF) and ordering constraints that must be applied to
 packets and/or frames selected as a result of classification. One
 assumption of this document is that legacy service functions can
 participate in service function chains without supporting the SFC
 header, or even being aware of it. This document provides some of
 the mechanisms between an SFC proxy and an SFC-unaware service
 function (herein termed "legacy SF"), to identify the SFC header
 associated with a packet that is returned from a legacy SF, without
 an SFC header being explicitly carried in the wired protocol between
 SFC proxy and legacy SF.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 10, 2017.

Song, et al. Expires March 10, 2017 [Page 1]

Internet-Draft Legacy SF Mapping September 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 5
 3. Mechanisms . 5
 3.1. For Transparent Service Functions 5
 3.1.1. VLAN . 5
 3.1.2. VXLAN . 6
 3.1.3. Ethernet MAC Address 6
 3.1.4. 5-tuple . 6
 3.2. For Non-transparent Service Functions 7
 4. Operation Considerations 8
 4.1. Examplar Mechanisms 8
 4.2. Challenges to Support Legacy SF 8
 4.3. Metadata . 10
 5. Security Considerations 10
 6. Acknowledgement . 10
 7. References . 10
 7.1. Normative References 10
 7.2. Informative References 11
 Authors’ Addresses . 11

1. Introduction

 A Service Function Chain (SFC) [RFC7665] defines a set of abstract
 service functions and ordering constraints that must be applied to
 packets and/or frames selected as a result of classification. One
 assumption of this document is that some service functions may remain
 as legacy implementations, i.e. SFC-unaware SFs. The SFC proxy is
 proposed to act as a gateway between the SFC encapsulation and SFC-
 unaware SFs. The SFC proxy removes the SFC header and then sends the
 packet to a legacy SF for processing, but how to associate the

Song, et al. Expires March 10, 2017 [Page 2]

Internet-Draft Legacy SF Mapping September 2016

 original SFC header with the packet returned from the legacy SF needs
 to be considered.

 This document describes some of the mechanisms between an SFC proxy
 and a legacy SF, to identify the SFC header associated with a packet
 that is returned from a legacy SF. The benefit for supporting legacy
 SF is that SFC-unaware SFs can exist in the SFC-enabled domain. An
 SFC proxy allows a legacy SF to function in the SFC-enabled domain
 without modification of the legacy SF.

 +----------------+
 |SFC-unaware |
 |Service Function|
 | (Legacy SF) |
 +----+----+------+
 ^ |
 | |
 +----+----+------+
 |Switch(optional)|
 +----+----+------+
 | |
 (2)| |(3)
 | |
 +----+----V--------+
 (1) | SFC | (4)
 -------->| Proxy +------->
 +------------------+

 Figure 1: Procedure of a packet processed by a legacy SF

 Different classes of legacy SF may have variable support for
 different types of packets with respect to parsing and semantics
 (e.g., some classes of legacy SF may accept VLAN-tagged traffic;
 others may not), usually depending on device configuration. For
 example, by creation of VLANs, traffic is steered through a firewall.

 This document focuses heavily on legacy SFs that are transparent at
 layer 2. In particular we assume the following conditions apply in
 the class of legacy SF we are considering proxying:

 1. Traffic is forwarded between pairs of interfaces, such that
 packets received on the "left" are forwarded on the "right" and
 vice versa.

 2. A packet is forwarded between interfaces without modifying the
 layer 2 header; i.e., neither source MAC nor destination MAC is
 modified.

Song, et al. Expires March 10, 2017 [Page 3]

Internet-Draft Legacy SF Mapping September 2016

 3. When supported, VLAN-tagged or Q-in-Q packets are forwarded
 with the original VLAN tag(s) intact (S-tags and C-tags).

 4. Traffic may be discarded by some functions (e.g., by a
 firewall).

 5. Traffic may be injected in either direction by some functions
 (e.g., extra data coming from a cache, or simply TCP
 retransmissions). We assume injected traffic relates to a layer 3
 or layer 4 flow, and the SF clones layer 2 headers from exemplar
 packets of the same flow.

 6. Traffic may be modified by some functions at layer 3 (e.g.,
 DSCP marking) or higher layers (e.g., HTTP header enrichment or
 anonymization). Note that modification can be considered a
 special case of discarding followed by injection.

 7. Traffic may be reordered by some functions (e.g., due to
 queuing/scheduling).

 We leave the legacy SFs which modify the original layer 2 packet
 headers as an open issue for further study.

 To support this class of legacy SF, if the payload in the SFC
 encapsulation is layer 3 traffic, the SFC proxy will extract the
 layer 3 payload from SFC encapsulation and prepend a new layer 2
 header before sending the packet to the SF. However if the payload
 in the SFC encapsulation is layer 2 traffic, the SFC proxy may
 extract the layer 2 packet from SFC encapsulation, modify the
 original source MAC address and use the new source MAC address for
 mapping to the stored SFC and layer 2 headers when the packets are
 returned to the SFC proxy. This will not impact the SF processing.
 The SF will send the traffic back after processing.

 As shown in Figure 1, there are four steps. The SFC proxy receives a
 packet (1) from an SFF, and removes its SFC header, which may
 optionally contain metadata, and store the SFC header locally, and
 then (2) sends the de-encapsulated packet to the SF. After the SF
 processes the packet, the packet will be sent back (3) to the SFC
 proxy. The SFC proxy retrieves the pre-stored SFC header
 accordingly, determines the SFC header for the next stage of the path
 and encapsulates the packet with the next SFC header, returning the
 packet to an SFF (4).

Song, et al. Expires March 10, 2017 [Page 4]

Internet-Draft Legacy SF Mapping September 2016

2. Terminology

 The terminology used in this document is defined below:

 Legacy SF: A conventional service function that does not support
 SFC header, i.e., SFC-unaware SF.

 Transparent SF: A service function that does not change any bit of
 the layer 2/3/4 packet header sent to it, but it may drop the
 packet.

 Non-transparent SF: A service function that changes some bits of
 the layer 2/3/4 packet header sent to it.

 SFC Proxy: Removes and inserts SFC encapsulation on behalf of an
 SFC-unaware service function. SFC proxies are logical elements.

3. Mechanisms

 The mapping mechanisms between the SFC proxy and the transparent or
 non-transparent legacy SFs are discussed in this section. The
 mechanisms used in this document require that each forwarding entity
 (i.e., SFC proxy) and its connected service functions are in the same
 layer 2 network. The detailed definitions of SFC proxy and SFC-
 unaware SFs is discussed in [RFC7665].

3.1. For Transparent Service Functions

3.1.1. VLAN

 If the service function is transparent to packet headers, for
 example, layer-2-transparent SF, then VLAN can be used for mapping
 between the SFC proxy and SF. It is assumed that the switch between
 the SFC proxy and SF delivers traffic for all VLANs, or the SFC proxy
 and SF may be directly connected.

 The SFC proxy removes the SFC header and sends the packet to the SF,
 with encapsulating a certain VLAN ID that can represent the SFC
 header. The legacy SF is supposed to accept VLAN-tagged packets and
 send them back on the same VLAN. It is assumed that the SF is able
 to process Ethernet packets with VLAN tags and also accept a wide
 range of VLAN tags. The SFC proxy locally maintains the mapping
 between VLAN ID/direction and the SFC header.

 When receiving the returned packet from the SF, the SFC proxy removes
 the VLAN part from the packet and retrieves the corresponding SFC
 header according to the VLAN ID and the direction of packet travel,
 and then encapsulates SFC header into that packet before sending to

Song, et al. Expires March 10, 2017 [Page 5]

Internet-Draft Legacy SF Mapping September 2016

 the next service function. Packet direction is required because the
 SFC header for left-to-right packets is different than the SFC header
 for right-to-left packets.

3.1.2. VXLAN

 If the SFC proxy and SF are already deployed in a nested VLAN
 network, the VLAN mapping method is not applicable. Then VXLAN
 [RFC7348] can be used for the mapping, i.e. VNI can be used for the
 mapping between them. VXLAN is a Layer 2 overlay scheme over a Layer
 3 network. It uses MAC Address-in-User Datagram Protocol (MAC-in-
 UDP) encapsulation. The drawback of this mechanism is that it
 requires both SFC proxy and SF to support VXLAN.

 This approach has similar features and drawbacks of the VLAN scheme,
 but the number of possible VNIs is larger.

3.1.3. Ethernet MAC Address

 The MAC address also can be used to associate an SFC header between
 the SFC proxy and SF; i.e., each SFC header will be assigned a source
 MAC address on the SFC proxy. When the SFC proxy receives the
 returned packet from the SF, it retrieves the packet’s original SFC
 header by using the source MAC address as a key. And then it
 encapsulates the packet with that SFC header and sends to the next
 hop.

 An issue with the source-MAC address approach is that there is not
 symmetry between packets going left-to-right with packets going
 right-to-left. Such symmetry might be assumed by some legacy SFs.
 For example, if a layer-2-transparent SF responds to a TCP SYN with a
 TCP RST, it might do so by reversing the source and destination of
 the layer 2 header. Such a packet received by the SFC proxy would
 not result in finding of the correct SFC header. It is assumed that
 the SF passes the MAC header through without even reversal. A
 variation that is symmetric assigns a unique source/destination pair
 for each unique SFC header.

3.1.4. 5-tuple

 The 5-tuple of a packet carried within SFC encapsulation can be used
 by the SFC proxy as a key to associate an SFC header when the 5-tuple
 is not modified by the legacy SF. The SFC proxy maintains a mapping
 table for the 5-tuple and the SFC header. When the packet returns
 from the SF instance, the original SFC header for this packet can be
 retrieved by inquiring the mapping table using 5-tuple as the key.
 However, this method may not work in multi-tenant scenario, as such
 uniqueness could be valid only within the scope of a single tenant.

Song, et al. Expires March 10, 2017 [Page 6]

Internet-Draft Legacy SF Mapping September 2016

 So if the SFC is provided as a multi-tenant service, this method
 would fail.

3.2. For Non-transparent Service Functions

 Non transparent service functions including NAT (Network Address
 Translation), WOC (WAN Optimization Controller) and etc, are more
 complicated, as they may change any part of the original packet sent
 to them. It is better to analyze case by case, to utilize a specific
 field that the SF does not change for the mapping and retrieving the
 SFC header. We would like to leave it for open discussion.

 The Figure below shows an example procedure that SFC proxy can learn
 the behavior of the SF changing the packet. In this example, the
 following method is used for SFC header mapping. The SF needs to
 report its mapping rules (e.g., 5-tuple mapping rules) to the control
 plane (e.g., by static configuration), and then the control plane can
 notify the SFC proxy the mapping information (step 1) via interface
 C4 [I-D.ietf-sfc-control-plane]. According to the mapping
 information, the SFC proxy can establish a mapping table for the SFC
 header, the original header, and the processed header of the packet.
 After receiving the packet from the SF (step 4), the SFC proxy
 retrieves the SFC header from the mapping table by using the
 processed header as a key.

 +------------------------+
 | |
 | SFC Control Plane |
 | |
 +---^------------^-------+
 | |
 |C2 | (1)
 | |
 +---V----+ |C4
 -----+ SFF +------ |
 | | |
 +----+---+ |
 | +---V----+
 +-------+ SFC |
 (2) | Proxy |
 +---^----+
 |
 (3)|(4)
 +------V---------+
 |SFC-unaware |
 |Service Function|
 +----------------+

Song, et al. Expires March 10, 2017 [Page 7]

Internet-Draft Legacy SF Mapping September 2016

4. Operation Considerations

4.1. Examplar Mechanisms

 The following table gives some examplar methods and the conditions to
 use.

 Table 1: Mapping Examples

+-----------+--------+-------------------------------+-------------------+
| |Methods | Stored Key-Value |Application |
| | | |Scenario |
+-----------+--------+-------------------------------+-------------------+
	VLAN	(Direction, VLAN ID,	L2 header won’t
For Trans-		SFC header)	be modified by the
parent SF		e.g., assign a VLAN ID per	SF.
		bidirectional path-pair	
+--------+-------------------------------+-------------------+			
	VXLAN	(Direction, VNI, SFC header)	The SF is required
		e.g., assign a VNI per	to support VXLAN.
		bidirectional path-pair	VNI is not modified
			by the SF.
+--------+-------------------------------+-------------------+			
	5-tuple	(5-tuple, SFC header)	5-tuple is not
			modified by the
		The SFC proxy maintains the	SF.
		mapping table for 5-tuple and	
		the SFC header.	
		Note: an SFC header for each	
		direction of a TCP flow.	
+-----------+--------+----------------- -------------+-------------------+			
	Case-by-	Mapping rules:	The SFC proxy is
For	case	e.g. 5-tuple -> 5-tuple’	configured or is
Non-trans-			able to obtain the
parent SF		SFC Proxy:	mapping rules of
		5-tuple -> 5-tuple’	the SF. The SF
		5-tuple’-> SFC header	modifies the
			5-tuple based on
			the mapping
			rules.
+-----------+--------+---+

4.2. Challenges to Support Legacy SF

 The key problem contemplated in this document is: what packet header
 should be put on the packets sent to a legacy SF such that packets
 returned from the legacy SF can be mapped to the original SFC header.
 We need to consider the relationship between an SFC path and flows

Song, et al. Expires March 10, 2017 [Page 8]

Internet-Draft Legacy SF Mapping September 2016

 within the path. Should the path act as a qualifier to the flow, or
 should a flow be allowed to change paths? We assume flows can change
 path; this means that a given legacy SF cannot handle traffic from
 more than one routing domain. (Private IP addresses cannot be
 qualified by the SFC header; different VPNs must use different legacy
 SFs.)

 Because we’ve assumed that a flow can be on multiple paths, or change
 paths, or if metadata can vary during the life of a flow, we need to
 ask to what extent packet accuracy matters. If the SFC header used
 with a flow is changed from one path to another by the classifier,
 does it matter if packets retain exactly the original SFC header? If
 the change is to handle routing updates or fail-over then it would be
 acceptable to put all packets returning from the legacy SF onto the
 most recently updated header. If metadata is changed, can that
 update be applied to all packets of a flow, or does it apply to a
 specific packet?

 In the case that changes to paths and metadata are considered updates
 to the flow vs. packet properties, the SFC proxy can find the SFC
 header based on flow (e.g., the 5-tuple of the returning IP packet).
 If, in contrast, packet accuracy of SFC headers does matter, (e.g.,
 the metadata says something about the specific packet associated with
 it), then some form of per-packet bookkeeping must be done by the SFC
 proxy and the 5-tuple cannot be used for the mapping to retrieve the
 original SFC header.

 When packet accuracy does matter, packets injected by the legacy SF
 pose a fundamental problem. Is there any correct SFC header that can
 be added? Observation: the same problem exists for a normal (not
 legacy) SF that wishes to modify or inject a packet.

 Because the SFC proxy needs to keep dynamic state by storing packet
 headers, an expiration time should be used for each mapping entry in
 the SFC proxy. If the SFC header in that entry has not been
 witnessed or retrieved after the expiration time, the entry will be
 deleted from the entry table.

 Observation: if metadata is not used, the number distinct SFC headers
 is known at configuration time, equivalent to the number of paths
 configured to pass through the SF. The mappings between SFC headers
 and layer 2 encodings could be configured at this time vs. at run
 time. However, if metadata is used, a combinatorial explosion of
 distinct SFC headers may result, which is a problem for any device
 attempting to store them for later retrieval.

Song, et al. Expires March 10, 2017 [Page 9]

Internet-Draft Legacy SF Mapping September 2016

4.3. Metadata

 Some classes of SF may need to inject new packets, for example a
 transparent cache sending content from its disk. The legacy SF
 usually encapsulates the new packets with the same encapsulation with
 the related received packets, e.g. with the same 5-tuple, or V-LAN
 ID. The SFC proxy would associate the new packet with the
 corresponding SFC header based on the mechanisms discussed in
 Section 3. However, per-packet metadata should be prohibited for
 this case.

 Some classes of SF may need to inject a packet in the opposite
 direction of a received packet, for example a firewall responding to
 a TCP SYN with a RST. If the RST generator is VLAN-type legacy, it
 may know what VLAN to use; then the SFC proxy would translate VLAN
 into a reverse SFP and attach a corresponding SFC header insetad of
 the original SFC header. In this case, the SFC proxy should be
 configured with the bidirectional SFP, i.e. SFC proxy needs to be
 designed according to the properties of the SF. Similarly, packet-
 specific metadata is not recommended to be used.

 We leave the metadata model as an open issue that will be documented
 in other documents. In some cases this information will also assist
 normal (non-legacy) SFs that wish to modify or inject packets.

5. Security Considerations

 When the layer 2 header of the original packet is modified and sent
 to the SF, if the SF needs to make use of the layer 2 header, it may
 cause security threats. There may be security issues with state
 exhaustion on the SFC proxy, e.g., exhausting VLAN IDs, or exhausting
 5-tuple state memory.

6. Acknowledgement

 The authors would like to thank Ron Parker and Joel Halpern for their
 valuable comments.

7. References

7.1. Normative References

 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
 eXtensible Local Area Network (VXLAN): A Framework for
 Overlaying Virtualized Layer 2 Networks over Layer 3
 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
 <http://www.rfc-editor.org/info/rfc7348>.

Song, et al. Expires March 10, 2017 [Page 10]

Internet-Draft Legacy SF Mapping September 2016

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <http://www.rfc-editor.org/info/rfc7665>.

7.2. Informative References

 [I-D.ietf-sfc-control-plane]
 Boucadair, M., "Service Function Chaining (SFC) Control
 Plane Components & Requirements", draft-ietf-sfc-control-
 plane-07 (work in progress), August 2016.

Authors’ Addresses

 Haibin Song
 Huawei
 101 Software Avenue, Yuhuatai District
 Nanjing, Jiangsu 210012
 China

 Email: haibin.song@huawei.com

 Jianjie You
 Huawei
 101 Software Avenue, Yuhuatai District
 Nanjing, 210012
 China

 Email: youjianjie@huawei.com

 Lucy Yong
 Huawei
 5340 Legacy Drive
 Plano, TX 75025
 U.S.A.

 Email: lucy.yong@huawei.com

 Yuanlong Jiang
 Huawei
 Bantian, Longgang district
 Shenzhen 518129
 China

 Email: jiangyuanlong@huawei.com

Song, et al. Expires March 10, 2017 [Page 11]

Internet-Draft Legacy SF Mapping September 2016

 Linda Dunbar
 Huawei
 1700 Alma Drive, Suite 500
 Plano, TX 75075
 U.S.A.

 Email: ldunbar@huawei.com

 Nicolas Bouthors
 Qosmos

 Email: nicolas.bouthors@qosmos.com

 David Dolson
 Sandvine
 408 Albert Street
 Waterloo, ON N2L 3V3
 Canada

 Email: ddolson@sandvine.com

Song, et al. Expires March 10, 2017 [Page 12]

	draft-aldrin-sfc-oam-framework-02
	draft-ietf-sfc-architecture-11
	draft-kumar-sfc-sfp-optimization-01
	draft-song-sfc-legacy-sf-mapping-08

