Net wor k Wor ki ng Group A. Begen

I nternet-Draft Ci sco
I ntended status: |nformational K. Streeter
Expires: April 30, 2015 Adobe Systens | ncorporated
| . Bouazi zi
Sansung Research

F. Denoua

Canon Research Centre France
Cct ober 27, 2014

MPEG DASH Requirements for a webpush Protoco
dr aft - begen- webpush- dash-reqs- 00

Abstract

This draft presents two of the ongoing core experinents for the
amendrment of the MPEG Dynanmi ¢ Adaptive Stream ng over HTTP (DASH)
speci fication and di scusses sone requirenents for a webpush protoco
in the context of these core experinments.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on April 30, 2015.
Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect

Begen, et al. Expires April 30, 2015 [Page 1]

Internet-Draft MPEG DASH Requirenents Cct ober 2014

to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

I ntroduction C e e e
DASH Requirenments in the Core Experinments .
2.1. Requirenents fromthe FDH CE . .
2.2. Requirenments fromthe SAND CE .
3. CGuidance fromthe | ETF .o
4. Security Considerations
5
6

N

. | ANA Consi der ati ons
. I nformati ve References
Aut hor s’ Addr esses

GO WWWN

1. Introduction

HTTP adapti ve stream ng (HAS) has becone the technol ogy of choice for
delivering video content over the Internet. HAS will play an
increasingly inportant role in delivering video to the primary and
secondary screens.

In HAS, streanming clients are offered multiple representations of the
same content. Cients independently choose a segnent (i.e., a piece
of the content) belonging to a representation to fetch fromthe
content delivery network, a choice that is nade at every switching
boundary (usually every 2-10 seconds). The choice is based on a
nunber of paranmeters, including the network throughput observed by
the client.

To date they have been several different HAS inpl enentations from
different vendors. To achieve interoperability, MPEG has started

wor ki ng on a specification in 2010 and published the first edition of
the Dynam ¢ Adaptive Stream ng over HTTP specification in 2012
Earlier this year, the second edition has been published

[DASH Part 1] .

To add new features and capabilities to the DASH applications, the
DASH subgroup is currently running a nunber of core experinents (CE)
[DASH-CE]. Two of these CEs are (i) DASH over Full Dupl ex HTTP-based
Protocols (FDH) and (ii) Server and Network Assisted DASH (SAND). In
these CEs, there is a need for a webpush protocol. This draft

di scusses sone requirenents for a such protocol to be used in DASH
appl i cations.

Begen, et al. Expires April 30, 2015 [Page 2]

Internet-Draft MPEG DASH Requirenents Cct ober 2014

2. DASH Requirements in the Core Experimnents
2.1. Requirements fromthe FDH CE

The FDH CE is investigating the problem of delivering nedia segnents
with shorter delay and/or reducing the request processing on the HTTP
server. The technol ogi es considered are HTTP/ 2 and WebSockets.

The main idea is that once a client is interested in stream ng a
particular content (e.g., a live channel), it may be beneficial not
to send an individual GET request for each segnent to the network.
The network may keep sendi ng segnents once they becone available to
the client for a predetermni ned anpunt of time or until the client
tells the server to stop.

We realize that a content delivery network or an operator network can
consi st of both HTTP/2 enabl ed servers and HTTP 1.1 servers as wel |
as proxy servers, sone of which could have been inpl enented
improperly. An inportant requirement for us is that the push feature
shoul d not cause any caching i nconsi stency or reduce caching
efficiency. Note that not all clients stream ng the sanme content

will necessarily use the push feature. Sone nay continue fetching
each segnent separately (the conventional way), sone may ask for the
push of the next k segments fromthe server or sonme may ask for push
till a further conmand.

An inportant issue is to decide howthe clients will be able to ask
for not one but nultiple segnents in a single GET request, i.e.
specifying a list of segnents or potentially a pattern that includes
wi | dcards or any other agreeable formats. At |least two options are
considered: a nodified URL schenme and the use of an extension header
In both cases nodifications are expected on the origin server and
possi bly the cache servers (W will likely need a special handler on
the servers). W would |ike to get advice on any of these
technol ogi es taking into account anobng ot hers backward-conpatibility,
ef ficiency, caching issues, processing |load, extensibility and

I'i kelihood of inplenentation

The DASH clients may run in browsers, nobile applications, on
personal conputers or other connected devices. Typically it cannot
be assuned that in all applications a DASH client will have access to
the HTTP stack in a given platform Such constraints should be taken
i nto account when | ooking for a broadly acceptable and highly-

scal abl e sol ution.

2.2. Requirements fromthe SAND CE

Begen, et al. Expires April 30, 2015 [Page 3]

Internet-Draft MPEG DASH Requirenents Cct ober 2014

The SAND CE has the goal of establishing a bi-directional messaging
pl ane between the clients and ot her so-call ed Dash-aware Network

El ements (DANE). The DANEs may al so conmuni cate with each other
Conmon DANEs i nclude proxies and caches as well as anal ytics servers
and ot her network devices. On the direction froma DANE to a DASH
client (or another DANE), the nessages can carry any kind of
operational information and/or assistance information so that the
DASH client (or the DANE) can take a proper action. On the direction
froma DASH client to a DANE, the nessages are expected to carry
netrics and status information.

A sinple use case for sending an operational infornmation to a DASH
client is to ask the client to switch to a particular CDN provider
Anot her use case is to ask the DASH client to fetch a particul ar
representation, sinply because that representation’s segnents are
al ready cached at the edge of the network. Yet other use cases may
i nclude network status infornmation such as bitrate guarantees,

del ays, etc.

An obvi ous choice for the protocol to carry these SAND nessages back
and forth is HITP. The DASH clients can send their nmetrics and
status nmessages upon denmand or periodically to a pre-designated
server. However, sending nessages in the other direction (froma
DANE to a DASH client) may be nore chall enging since DASH clients may
or may not be expecting such a nessage. It is inportant to note that
we do not want to put tine-sensitive client-specific feedback
messages on top of the HITP responses containing non-time-critica

and non-client-specific nmedia segnents.

To enabl e bi-directional conmunication between a DASH client and a
DANE, we can al so use WebSockets or the HTTP/2 PUSH t echnol ogi es.

However, we consider a nore |ightweight protocol that will scale to
| arge popul ati ons when sendi ng a common nessage or indivi dua
nessages.

3. @iidance fromthe | ETF

We would like to ask the webpush WG to consi der nedia delivery use
cases as part of the webpush activity, including the delivery of MPEG
DASH content. W also would like to ask the webpush WG to advi se us
on best practices on using header and URL based signaling for push
behavi or, and get feedback on proper nessage channel s for SAND.

Begen, et al. Expires April 30, 2015 [Page 4]

Internet-Draft MPEG DASH Requirenents Cct ober 2014

4. Security Considerations

There are no security considerations.
5. | ANA Consi derati ons

There are no | ANA consi derati ons.
6. Informative References

[DASH- Part 1]
Avail able at: http://standards.iso.org/ittf/
Publ i cl yAvai | abl eSt andards/i ndex. htm, , "ISO I EC
23009-1: 2014: Dynani c adaptive stream ng over HTTP (DASH)
-- Part 1: Media presentation description and segnent
formats (2nd edition)", May 2014.

[DASH- CE] Available at: http://wgll.sc29.org/doc_end user/
current _nmeeting_intermedi ate. php?i d_neeti ng=162, |,
"Descriptions of core experinments on DASH anendnent
(w14858) ", Cct. 2014.

Aut hors’ Addr esses

Al'i Begen

Ci sco

181 Bay Street
Toronto, ON WMbJ 2T3
Canada

EMai | : abegen@i sco. com
Kevin Streeter

Adobe Systens | ncorporated
345 Park Avenue

San Jose, CA 95110

USA

EMui | : kstreet e@dobe. com

Begen, et al. Expires April 30, 2015 [Page 5]

Internet-Draft MPEG DASH Requirenents Cct ober 2014

| med Bouazi zi

Samsung Research

1301 E. Lookout Dr.

Ri chardson, TX 75082
USA

EMai | : i.bouazizi @ta. sansung. com
Franck Denoua

Canon Research Centre France

Rue de | a Touche Lanbert
Cesson- Sevi gne 35517

France

EMui | : franck. denoual @rf.canon. fr

Begen, et al. Expires April 30, 2015 [Page 6]

WEBPUSH M Thonson
I nternet-Draft Mozill a
I nt ended status: Standards Track Cct ober 8, 2014
Expires: April 11, 2015

Generic Event Delivery Using HTTP Push
draft -t honson- webpush- http2-01

Abst r act

A sinple protocol for the delivery of realtime events to clients is
described. This schene uses HTTP/ 2 push

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (1ETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on April 11, 2015.
Copyright Notice

Copyright (c) 2014 |ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Thonson Expires April 11, 2015 [Page 1]

Internet-Draft HTTP Web Push Cct ober 2014

Tabl e of Contents

1. Introduction .
1.1. Conventions and Ternlnology .

Overview . .

Del i vering Push hbssages

Regi stering . .

Channel s

Moni tori ng and Recervrng Push Nbssages

Store and Forward Operation

| ANA Consi derations .

Security Consi derations . . .
.1. Confidentiality from Push Server Access
.2. Privacy Considerations
.3. Denial of Service Vectors
.4. Loggi ng Exposure
10. References .

10.1. Nornmative References
10.2. Informative References
Aut hor’ s Address

CoNoghrwN

© O OO
CQOOVWOWOVWOMOONN~NOOOOOUITOT WN

B

1. Introduction

Mobi | e conputing devices are increasingly relied upon for a great
many applications. Mbile devices typically have linmted power
reserves, so finding nore efficient ways to serve application
requirenents is an inportant part of any nobile platform

One significant contributor to power usage nobile devices is the
radi o. Radi o conmuni cations consunmes a significant portion of the
energy budget on a wirel essly connected nobile device.

Many applications require continuous access to network conmunications
so that real-time events - such as inconming calls or nessages - can
be conveyed (or "pushed") to the user in a tinely fashion
Uncoor di nat ed use of persistent connections or sessions frommultiple
applications can contribute to unnecessary use of the device radio,
since each i ndependent session independently incurs overheads. In
particul ar, keep alive traffic used to ensure that m ddl eboxes do not
prematurely time out sessions, can result in significant waste.

Mai nt enance traffic tends to dom nate over the long term since
events are relatively rare

Consolidating all real-tine events into a single session ensures nore
efficient use of network and radi o resources. A single service
consolidates all events, distributing those events to applications as
they arrive. This requires just one session, avoiding duplicated
over head costs.

Thonson Expires April 11, 2015 [Page 2]

Internet-Draft HTTP Web Push Cct ober 2014

The Web Push APl [API] describes an APl that enables the use of a
consol i dated push service fromweb applications. This expands on
that work by describing a protocol that can be used to:

0 request the delivery of an event to a device,
0 register a new device,

0 create new event delivery channels, and

o nonitor for new events.

This is intentionally split into these two categories because
requesting the delivery of events is required for imredi ate use by
the Web Push API. The registration, managenment and nonitoring
functions are currently fulfilled by proprietary protocols; these are
adequate, but do not offer any of the advantages that standardization
af f ords

The monitoring function described in this document is intended to be
repl aceabl e, enabling the use of nonitoring schenmes that are better
optinmized for the network environnment and the device. For instance,
using notification systens |ike the GSM Short Message Service (SM)
can take advantage of the native paging capabilities of a cellular
net wor k, avoi di ng the ongoi ng mai ntai nence cost of a persistent TCP
connecti on.

This docunent intentionally does not describe how a push server is

di scovered. Discovery of push servers is left for future efforts, if
it turns out to be necessary at all. Devices are expected to be
configured with a push server URL.

Simlarly, discovery of support for and negotiation of use of
alternative nonitoring schenes is left to docunents that extend this
basi ¢ protocol

1.1. Conventions and Term nol ogy

In cases where normative | anguage needs to be enphasized, this
docunent falls back on established shorthands for expressing
interoperability requirenents on inplenentations: the capitalized
words "MJST", "MJIST NOT", "SHOULD' and "MAY". The meani ng of these
is described in [RFC2119].

This docunment will use the term nology from[API], though

"application” will be used in preference to "webapp", since the
descri bed protocols are not restricted to web use. This docunent

Thonson Expires April 11, 2015 [Page 3]

Internet-Draft HTTP Web Push Cct ober 2014
i ntroduces the term "device", which refers to the consunmer of push
nessages.

2. Overview

A general nodel for push services includes three basic actors: a
devi ce, a push server, and an application

Fom e e e e - - + TSRS + TSRS +
| Device [| Push Server | | Application |
R + S + S +

I I I

| Regi st er | |

R EREEEEEE > |

| Moni t or | |

< >| [

| Get Channel | |

|- >| |

I

I

|

At the very beginning of the process, the device registers with the
push server. This establishes a shared session between the device
and push server that will be used to aggregate push nessages from al
applications that the device interacts with

The registration response includes details on how the device is
expected to nonitor for incom ng push nessages. This docunent
descri bes one such nechani sm though nore efficient nmeans of
nmoni toring could be optionally defined (and this is expressly
permitted).

A registration after creation has no channels associated with it.
New channel s can be requested by the device and then distributed to
applications. It is expected that devices will distribute a

di fferent channel to each application, with the potential for
mul ti pl e channel s being provided to the sanme application

Appli cations use channels to deliver push nessages to devices, via
the push server.

Both registrations and channels have a limted lifetime. These wll
need to be refreshed or replaced over tine.

Thonson Expires April 11, 2015 [Page 4]

Internet-Draft HTTP Web Push Cct ober 2014

3. Delivering Push Messages

A push channel is identified with an HTTP URI [RFC7230]. An
application can request the delivery of a push nessage by sending an
HTTP PUT request to this URI, including the push nessage in the body
of the request.

A push server can acknow edge the end-to-end delivery of a push
message by responding with a 200 (OK) status code. A push server
that stores the nessage for later delivery (see Section 7) could
respond with a 202 (Accepted) status code to indicate that the
message was stored, but not delivered.

4. Registering

A device that wishes to establish a new or replacenent registration
sends an HTTP POST request to its configured push server URL. The
request contains no entity body.

The push server creates a new registration in response to this
request, creating two new resources and all ocating an HTTP URl for
each. These URIs are included in link relations [RFC5988] that are
i ncluded in Link header fields in the response.

monitor: A link relation of type "...:push:nonitor"” includes the URL
of a resource that the device can nonitor for events. NMbonitoring
is described in Section 6

channel: A link relation of type "...:push:channel" includes a URL
of a resource where the device can create new channels. Creating
channel s is described in Section 5.

The push server includes the "nmonitor"” link relation in a Location
header field.

The push server MJST include expiration information in the response
to this request in either the Expires header field, or by setting a
"max-age" paraneter on a Cache-Control header field. The Cache-

Control header field MJST include the "private"” directive [RFC7235].

The push server SHOULD al so provide the "channel" |ink and expiration
information in response to requests to the "monitor" resource.

A device MJST support the 307 (Tenmporary Redirect) status code

[RFC7231], which can be used by a push server to redistribute | oad at
the tine a registration is created.

Thonson Expires April 11, 2015 [Page 5]

Internet-Draft HTTP Web Push Cct ober 2014

5. Channel s

A client sends a POST request to the "channel" resource to create a
new channel

A response with a 201 status code includes the channel URI in the
Locati on header field.

A channel can expire. Servers indicate this using the Expires header
field, or by setting a "nax-age" paraneter on a Cache-Control header
field.

A client can explicitly delete a channel by sending a DELETE request
to channel URI.

6. Mnitoring and Receiving Push Messages

A device nonitors for new events by nmaking a GET request to the
moni tor resource. The server does not respond to these request, it
i nstead uses server push [I-D.ietf-httpbis-http2] to send the
contents of push nessages as applications send them

Each push nessage consists of a synthesized GET request to the
channel URI that was the target of the push. The response body is
the entity body fromthe PUT request.

A device can request the nmonitor resource imediately by including a
Prefer header field [RFC7240] with a "wait" paraneter set to "0".
This allows clients to rapidly check for any m ssed nessages.
Clients can check the status of individual channels by sending GET
requests to the channel URI

A server that wishes to redistribute | oad can do so using the
alternative services nechanisns that are part of HITP/ 2
[I-D.ietf-httpbis-alt-svc]. The ALTSVC frane type allows for
redistribution of |oad whilst retaining the sane nonitor resource.
Once a device has established a replacenent connection, it can notify
the server of imm nent shutdown using a GOAVWAY frane, which allows
the server to respond to the |ong-standing GET request and gracefully
shut down the connection. This allows for seanl ess nigration between
servers.

7. Store and Forward Operation

Push servers are not obligated to store nmessages for any tinme. If a
client is not actively nonitoring for push nessages, nessages can be
| ost.

Thonson Expires April 11, 2015 [Page 6]

Internet-Draft HTTP Web Push Cct ober 2014

Push servers can store nessages for sonme tinme to allow for linited
recovery fromtransient faults. |If a nmessage is stored, but not
delivered, the push server can indicate the probable duration of
storage by including expiration information in the response to the
push request.

Messages that were stored and not delivered to a client MAY be
delivered when a client commences nonitoring. These nessages shoul d
include a Last-Mdified header field. |If a server stores push
messages, a GET request to a channel URI returns the |ast nessage
sent by an application to that channel

Push servers that store push nessages might need to linmit the size of
push nmessages to avoid being subject to overloading. Push servers
that don’t store can streamthe payl oad of push nessages to devices.
This can use HTTP/2 flow control to limt the state commitment this
requires. However, push servers MAY place an upper linmt on the size
of push nessages that they pernit.

8. | ANA Consi derations
TODO register link relation types, as necessary.
9. Security Considerations

This protocol MJST use HTTP over TLS [RFC2818]; this includes any
communi cati ons between devi ce and push server, plus communications
bet ween the application and the push server. This provides
confidentiality and integrity protection for registrations and push
nmessage

9.1. Confidentiality from Push Server Access

The protection afforded by TLS does not protect content fromthe push
server. A push server is able to see and nodify the content of the
nessages.

Applications are able to provide additional confidentiality,
integrity or authentication nechanisns within the push nmessage
itself. The originating application server and the device are
frequently just different instances of the sane application, this
does not require standardi zation. The process of registering a
channel endpoints provides a conveni ent nmedi um for key agreenent.

In particular, the WVBC Wb Push APl requires that each push channe

created by the browser be bound to a browser generated encryption
key. Pushed nmessages are authenticated and decrypted by the browser

Thonson Expires April 11, 2015 [Page 7]

Internet-Draft HTTP Web Push Cct ober 2014

before delivery. This ensures that the push server is unable to
exam ne the contents of push nessages.

The public key for a channel ensures that applications using a
channel can identify nessages from unknown sources and di scard them
This depends on the public key only being disclosed to entities that
are authorized to send nessages on the channel. The push server does
not require access to this public key.

9.2. Privacy Considerations

Push nessage confidentiality does not ensure that the identity of who
i s communi cati ng and when they are comunicating is protected.
However, the amount of information that is exposed can be linited.

The identifiers used by this protocol provide sone ability to
correlate conmuni cations for a given device, either across
applications or over time. Most inportant is that comuni cations for
a given device not be able to be correlated between different
application usages, or between different tines.

Channel URIs established by the same device MJUST NOT include any
information that allows themto be correlated with other channels or
the device registration. The push server is the only entity that
needs to be able to correlate channel URIs with device registrations.
Note that this can’t prevent the use of traffic analysis in
performng correl ation.

A device MJST be able to create new registrations at any tine.
Identifiers for new registrations MUST NOT include any information
that allows themto be correlated with other registrations fromthe
same device or user.

9.3. Denial of Service Vectors

Thi s protocol does not specify a single authorization framework for
managi ng access to push servers, either by devices or applications.
Thus, there is a very real possibility that this could be exploited
to nount denial of service attacks on the push server. Push servers
MAY choose to authorize requests based on any HTTP-conpati bl e neans
avai | abl e, of which there are nunerous options.

Di scardi ng unwant ed nmessages at the device based on nessage

aut henti cation doesn’t protect against a denial of service attack on
the device. Even a relatively small nunber of nessage can cause
devices to exhaust batteries. Limting the nunber of entities with
access to push channels linmts the nunber of entities that can
generate val ue push requests of the push server. An application can

Thonson Expires April 11, 2015 [Page 8]

Internet-Draft HTTP Web Push Cct ober 2014

do this by controlling the distribution of channel URIs to authorized
entities.

Only the push server can nake this denial of service protection

possi ble. A push server MJST generate channel URI that are extrenely
difficult to guess. Encoding a |arge anmount of random entropy (at

| east 128 bits) in the URI path is one technique for ensuring that
channel URIs are able to act as bearer tokens.

A malicious application can use the greater resources of a push
server to nount a denial of service attack on devices. Push servers
SHOULD |imit the rate at which push nessages are sent to devices.

Conversely, a push server is also able to deny service to devices.
Intentional failure to deliver nessages is difficult to distinguish
fromfaults, which mght occur due to transient network errors,
interruptions in device availability, or genuine service outages.
Applications that rely on reliable message delivery need to provide
means of recovering fromoccasional failures that do not rely on push
notifications.

9.4. Loggi ng Exposure

Server request logs can reveal registration and channel URIs.
Acquiring a registration URl permits the creation of new channels and
the recei pt of nmessages. Acquiring either URI pernits the generation
of push nmessages. Logging could also reveal relationships between
different channel URIs for the sane registration, or between
different registrations for the sane device.

End-to-end confidentiality mechani sms, such as those in [API],

prevent an entity with a registration URI fromlearning the contents
of push nmessages. In both cases, push nessages that are not
successfully authenticated will not be delivered by the API, but this
can present a denial of service risk. Limtations on |log retention
and strong access control nechani sns can ensure that these URIs are
not | earned.

10. References
10.1. Normative References
[I-D.ietf-httpbis-alt-svc]
Notti ngham M, MMnus, P., and J. Reschke, "HTTP

Al ternative Services", draft-ietf-httpbis-alt-svc-01 (work
in progress), April 2014.

Thonson Expires April 11, 2015 [Page 9]

Internet-Draft HTTP Web Push Cct ober 2014

[I-D.ietf-httpbis-http2]
Bel she, M, Peon, R, and M Thonson, "Hypertext Transfer
Protocol version 2", draft-ietf-httpbis-http2-12 (work in
progress), April 2014.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[RFC2818] Rescorla, E., "HITP Over TLS', RFC 2818, May 2000.

[RFC5988] Nottingham M, "Wb Linking", RFC 5988, Cctober 2010.

[RFC7230] Fielding, R and J. Reschke, "Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing", RFC 7230, June
2014.

[RFC7231] Fielding, R and J. Reschke, "Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

[RFC7235] Fielding, R and J. Reschke, "Hypertext Transfer Protocol
(HTTP/1.1): Authentication", RFC 7235, June 2014.

[RFC7240] Snell, J., "Prefer Header for HITP', RFC 7240, June 2014.

10.2. Informative References
[API'] Sullivan, B. and E. Fullea, "Wb Push API", Editor’s Draft
push-api, May 2014, <https://w3c.github.io/push-api/
i ndex. htm >.

Aut hor’ s Addr ess

Martin Thonson

Mzilla

331 E Evel yn Street
Mountain View, CA 94041
Us

Emai |l : martin.thomson@nuail.com

Thonson Expires April 11, 2015 [Page 10]

	draft-begen-webpush-dash-reqs-00
	draft-thomson-webpush-http2-01

