

Segment Routing IPv6

Authors and contributors:

Stefano Previdi (sprevidi@cisco.com)

Clarence Filfsils (cfilsfil@cisco.com)

Brian Field (Brian Field@cable.comcast.com)

John Brzozowski (john brzozowski@cable.comcast.com)

John Leddy (John Leddy@cable.comcast.com)

Ida Leung (Ida.Leung@rci.rogers.com)

Roberta Maglione (robmgl@cisco.com)

* Eric Vyncke (evyncke@cisco.com)

Dave Barach (dbarach@cisco.com)

Mark Townsley (townsley@cisco.com)

Chris Martin (martincj@cisco.com)

Nagendra Kumar (naikumar@cisco.com)

David Lebrun (david.lebrun@uclouvain.be)

Pierre François (pierre.françois@imdea.org)

James Connolly (jconnolly@libertyglobal.com)

IETF91 – Honolulu, November 2014

Where is Traffic Engineering (TE)?

- TE requires RSVP to install state in every the core routers
 - => 'low' convergence
 - => TE not widely deployed mainly because of scaling and complexity issues

What Can We Do for Efficient/Flexible TE?

- Leverage IPv6 flexibility
 - Overload routing header, i.e. install state in the data packet

"End-to-End Traffic Engineering" from CPE/Set-up Box?

Segment Routing in a Nutshell

- Segment Routing:
 - Source based routing model where the source chooses a path and encodes it in the packet header as an ordered list of segments
 - Removes routing states from any node other than the source
 - A segment is an instruction applied to the packet
 - Instruction can be of any type: IGP, BGP, Service, Locator, Egress link, ...
 - Segment Routing leverages the source routing architecture defined in RFC2460 for IPv6

Source: wikimedia

Current SR-IPv6 Drafts

- draft-filsfils-spring-segment-routing
 - Describes the overall Segment Routing architecture
- draft-ietf-spring-ipv6-use-cases
 - describes the SR-IPv6 use cases
- draft-previdi-6man-segment-routing-header
 - describes a new type of the Routing Header (SRH)
- draft-vyncke-6man-segment-routing-security
 - describes the security mechanisms applied to the SRH

Segment Routing Header (SRH)

Segment Routing for IPv6 Dataplane

- A Segment is identified through its IPv6 address
 - No mapping needed between Segment IDs (SIDs) and node's addresses
 - Simplifies signaling, address == SID
- New Routing Extensions Header type
 - Segment Routing Header (SRH)
 - Contains Segment List, Policy List, and a few other bits...

SRH

- Next Header: 8-bit selector. Identifies the type of header immediately following the SRH
- Hdr Ext Len: 8-bit unsigned integer. Defines the length of the SRH header in 8-octet units, not including the first 8 octets
- Type: TBD by IANA (SRH)
- Next Segment: index, in the Segment List, of the next active segment in the SRH
- Last Segment: index, in the Segment List, of the last segment of the path
- Flags: 16 bits of flags. See SPRING WG presentation.

SRH

- Segment List[n]: 128-bit IPv6 addresses representing each segment of the path
- Policy List[n]: See SPRING WG presentation
- HMAC: SRH authentication (optional)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Next Header Hdr Ext Len Routing Type Next Segment
Last Segment Flags HMAC Key ID
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
t-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

Myth #1: Ext Hdr are dropped on the Internet

- draft-gont-v6ops-ipv6-ehs-in-real-world
 - About 20-40% of packets with Ext Hdr are dropped over the Internet
- SRH works only within one administrative domain
 - => not an issue as operator set the security/drop policy
- Test on your own: http://www.vyncke.org/sr.php
 - And let us know!

Myth 2: RH has been deprecated

- RFC 5095 only deprecates RH-0
 - Amplification / reflection attacks
- RH-2, mobile IPv6 is OK
 - Only one segment
- RH-3, RPL is also OK
 - Within a single administrative domain, not on the Internet

Segment Routing Security

- Addresses concerns of RFC5095
 - HMAC field to be used at ingress of a SR domain in order to validate/authorize the SRH
 - Inside SR domain, each node trust its brothers (RPL model)
- HMAC requires a shared secret (SDN & SR ingress routers)
 - Outside of current discussions
 - Pretty much similar to BGP session security or OSPFv3 security

Implementations

- Multiple implementations exist and interoperability has been demonstrated during IETF-90
 - Cisco,
 Comcast,
 Ecole Polytechnique (Paris),
 UCLouvain (LLN, Belgium)
- Demonstrated interoperability between multiple, independent IPv6
 Segment Routing implementations (routers and hosts)
- Illustrate interoperability between SR and non-SR capable routers and hosts
- Illustrate how SR can be leveraged for video content delivery through SR capable caches

Questions?

Ask: Becoming a WG document? (SPRING are WG doc)

Thanks!