
DNS Transport over TCP -
Implementation
Requirements
J. Dickinson, Sinodun Internet Technologies

R. Bellis, Nominet
A. Mankin and D. Wessels, Verisign Labs

DNS Transport over TCP
• This is a -bis of RFC5966

• Aim of draft is to put TCP on the same footing as UDP
for use as a DNS transport

• In support of

• Privacy efforts

• Preventing amplification attacks

• Packet size limitations

DNS Transport over TCP
• Major changes in -bis include:

• DNS implementations are recommended not only to
support TCP but to support it on an equal footing with UDP

• DNS implementations are recommended to support reuse
of TCP connections

• DNS implementations are recommended to support
pipelining and out of order processing of the query stream

• A non-normative discussion of use of TCP Fast Open

Connection Handling
• One perceived disadvantage to DNS over TCP is

the added connection setup latency, generally
equal to one RTT.

• Both clients and servers SHOULD support
connection reuse by sending multiple queries
and responses over a single TCP connection.

• DNS currently has no connection signalling
mechanism. Clients and servers may close a
connection at any time. Clients MUST be prepared
to retry failed queries on broken connections.

• To mitigate the risk of unintentional server overload,
it is RECOMMENDED that for any given  
client - server interaction there SHOULD be no
more than one connection for

• regular queries [One for each client application]

• one for zone transfers

• one for each protocol that is being used on top of
TCP, for example, if the resolver was using TLS.

Connection Handling

Query Pipelining
• In order to achieve performance on par with

UDP, it is RECOMMENDED that DNS clients
pipeline their queries.

• Do not wait for an outstanding reply before
sending the next query.

• DNS servers SHOULD expect to receive
pipelined queries. The server should process
TCP queries in parallel, just as it would for UDP.

• Authoritative servers and recursive resolvers are
RECOMMENDED to support the sending of responses in
parallel and/or out-of-order, regardless of the transport
protocol in use.

• Stub and recursive resolvers MUST be able to process
responses that arrive in a different order to that in which the
requests were sent, regardless of the transport protocol in
use.

• Recursive resolvers SHOULD process TCP queries in
parallel and return individual responses as soon as they
are available, possibly out-of-order.

Query Pipelining

TCP Fast Open
• This section is non-normative.

• TCP fastopen [I-D.ietf-tcpm-fastopen] (TFO)
allows data to be carried in the SYN packet.

• It saves up to one RTT compared to standard
TCP.

• Currently Linux only. 3.16.0 added IPv6 support.

• TFO Code changes

• On the client, the call to connect() is replaced
with a TFO aware version of sendmsg() or
sendto().

• On server, set a socket option between the
bind() and listen() calls.

TCP Fast Open

• TFO kernel config

• change the kernel parameter
net.ipv4.tcp_fastopen (A bitmap)

• 1= client

• 2 = server

TCP Fast Open

TCP Fast Open - query

TCP Pipelining
Multiple queries in one packet

DNS Transport over TCP

• We are seeking adoption of this draft…

