Private DNS

Phill Hallam-Baker

Design Origin

* DNSSEC
— Limited to authenticity of authoritative DNS
— Requires a clean port 53 for client/resolver

e DNSCurve

— Transport layer security to Authoritative DNS

— Public key in the client/server transaction loop
* DDoS potential

— Assumes non-DNS syntax works on port 53

Port 53 Interference

e Stupidity
— Limit DNS packets to 500/512 bytes
— Disable TCP fallback
— Strip out unknown RRs

e Malice
— Redirect all DNS traffic to own service
— Strip out ‘undesirable’ RRs

Observation

Privacy requirements assume malice.

Objectives

100% Connectivity

Performance equal or better than existing
Stateless transactions with no public key
Bypass interference

Eliminate amplification and relay attacks
Low footprint, complexity

Enable curated DNS

(Confidentiality)

Approach

* RP (User or Enterprise) chooses service
— Binds each device to their chosen service
— Devices only use the nominated service*

* Except for bootstrap situations, e.g. WiFi

Protocol Architecture

* Key Agreement / Device Binding
— Negotiate crypto parameters
— Agree shared secret and session ID
— Specify IP addresses, services for Hosts

* Service Transports
— UDP — works for 97% of cases

— Web Service — guarantees connectivity

Enterprise User

* Alice is new hire at Example corp
— Wants to access corporate net from his mobile
— IT gives him
e Connection service domain name [example.com]
* One time passcode [wej2i-h23i0-d209d-jeiqi]
— Alice enters above into device

— Device negotiates connection:
* |P addresses, session keys, protocols of Alice’s hosts
e Session ldentifier (opaque)

Casual User

* Bobis somewhat privacy conscious
— Enters public DNS provider [pdns.comodo.com]

* Provider does not require authentication
— But can link all Bob’s traffic by session ID

Privacy Sensitive User

e Carol is very privacy conscious
— Does not want public provider to track her
— Enters multiple public DNS providers
— Checks the ‘renegotiate’ option in device

* Device pre-negotiates multiple sessions
— Caches pre-negotiated sessions for future use.

— Provides privacy but loses other protections

Connection Service Example Response

HTTP/1.1 OK Success
Content-Length: 578
Date: Fri, 09 May 2014 20:58:44 GMT
Server: Microsoft-HTTPAPI/2.0

{
"TicketResponse": {
"Status": 200,
"StatusDescription": "Success",
"Cryptographic":],
"Service": [{
"Service": "private-dns-resolver",
"Name": "localhost",
"Port": 9090,
"Priority": 100,
"Weight": 100,
"Transport": "UDP",
"Cryptographic": {
"Secret": "
SwVyt3p_tkMeneeYtqnw5g",
"Encryption": "A128CBC",
"Authentication": "HS256T128",
"Ticket": "
bHO0g4n8XQOWbjStHsVCzAzS3fbkV2mbx-HUC8Bxw7r31HXcXRvPp4xWORxS098N4
M6uklYZEEC50vIYBQOKETabpBz7-dYo7nYCD6yCFIVE"}}1}}

Securing the Connection

* Current
— Just relies on TLS transport
— Requires a TLS stack for device binding

e But not necessarily on the target device

* Future
— Add ephemeral DH for additional security
— Lightweight version for constrained devices

Why not DTLS

* Too much complexity
— DTLS has all the features of TLS plus extras
— There is no escape from the complexity
— DNS should be a minimal service

* Missing required features
— User registration process
— Device binding mechanism.

UDP Request

struct {
TransactionlD transactionl|D;
SecurityContextID securityContextlD;

opaque
encryptedPayload<1..65535>;

opaque authenticationCode<1..255>;
} Request;

UDP Response

struct {
TransactionlD transactioniD;

uint8 index;

uint8 maxlIndex;

uintl6 clearResponse;

opague encryptedPayloadSegment<0..65535>;
opaque authenticationCode<1..255>;

} Response;

Related Work

e SXS-Confirm

— JSON based 2" factor protocol
* ‘New Printer X wants to join your network Accept/Reject’

e Omnibroker

— JSON based Meta-discovery protocol
* ‘Tell X how to connect to Y using protocol Z’

* Omnipublish
— JSON based provisioning protocol

‘| offer service P on address Q using credential R’
* ‘Give me credential R to offer service P on address Q’

