Video over ICN IETF 91 Honolulu, HI

Cedric Westphal, ed.

Draft focus

- Video composes most of the traffic in current network
- No signs for trend to abate: any new Internet architecture need to handle video
- Questions of the draft:
 - Can current Internet mechanisms for video distribution be adapted to an ICN?
 - Should new mechanisms be designed that are native to ICN?

Draft-video

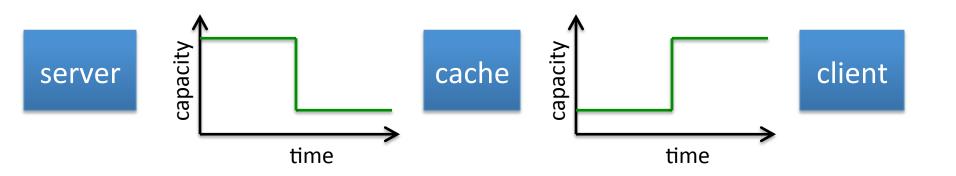
- 4th version of the draft: Berlin, London, Toronto, Honolulu
- After Toronto, official WG item
- No seismic changes: same contributors, roughly same length (32 pages to 35 pages, 10,704 words to 11,782)
- Updated to reflect discussion in IETF90
- But new organization, new abstract, modified ToC/organization, sharpened focus
 - Two new sections

ToC Deltas...

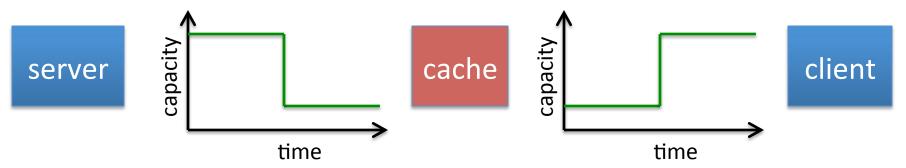
•	Table of Contents		Table of Combonts
•	1. Introduction 4		Table of Contents
•	2. Conventions used in this document 5		• 1. Introduction 4
•	3. Use case scenarios for ICN and Video Streaming 5		• 2. Conventions used in this document 4
•	4. Video download 6		• 3. Use case scenarios for ICN and Video Streaming 5
•	5. Video streaming and ICN 7		 4. Video streaming and ICN 6
•	5.1. Introduction to client-driven streaming and DASH	7	 4.1. Introduction to client-driven streaming and DASH
•	5.2. Layered Encoding 8		 4.2. Layered Encoding
•	5.3. Interactions of Video Streaming with ICN 8		 4.3. Interactions of Video Streaming with ICN 7
•	5.3.1. Interaction of DASH and ICN 8		• 4.3.1. Interaction of DASH and ICN 7
•	5.3.2. Interaction of ICN with Layered Encoding 11		4.3.2. Interaction of ICN with Layered Encoding 9
•	5.4. Possible Integration of Video streaming and ICN architecture	11	4.4. Possible Integration of Video streaming and ICN architecture
•	5.4.1. DASH over CCN 11		
•	5.4.2. Testbed, Open Source Tools, and Dataset 13		• 4.4.1. DASH over CCN 10
•	6. P2P video distribution and ICN 14		• 4.4.2. Testbed, Open Source Tools, and Dataset 12
•	6.1. Introduction to PPSP 14		• 5. P2P video distribution and ICN 13
•	6.2. PPSP over ICN: deployment concepts 16		• 5.1. Introduction to PPSP 13
•	6.2.1. PPSP short background 16		 5.2. <ppsp concepts="" deployment="" icn:="" over=""> 15</ppsp>
•	6.2.2. From PPSP messages to ICN named-data 16		• 5.2.1. PPSP short background 15
•	6.2.3. Support of PPSP interaction through a pull-based ICN API	17	• 5.2.2. From PPSP messages to ICN named-data 15
•	6.2.4. Abstract layering for PPSP over ICN 18		• 5.2.3. Support of PPSP interaction through a pull-based ICN API 16
•	6.2.5. PPSP interaction with the ICN routing plane 19		• 5.2.4. Abstract layering for PPSP over ICN 17
•	6.2.6. ICN deployment for PPSP 19		• 5.2.5. PPSP interaction with the ICN routing plane 18
•	6.3. Impact of MPEG DASH coding schemes 20 7. IPTV and ICN 21		• 5.2.6. ICN deployment for PPSP 18
•	7.1. IPTV challenges 21		• 5.3. <impact coding="" dash="" mpeg="" of="" schemes=""> 19</impact>
•	7.2. ICN benefits for IPTV delivery 22		· · · · · · · · · · · · · · · · · · ·
	8. Digital Rights Managements in ICN 24		• 6. IPTV and ICN 20
	9. Future Steps for Video in ICN 27		• 6.1. IPTV challenges 20
•	9.1. Large Scale Live Events 27		• 6.2. ICN benefits for IPTV delivery 21
•	9.2. Video Conferencing and Real-Time Communications	28	• 7. Future Steps for Video in ICN 23
•	9.3. Store-and-Forward Optimized Rate Adaptation 28	20	• 7.1. Heterogeneous Wireless Environment Dynamics 23
•	9.4. Heterogeneous Wireless Environment Dynamics	29	 7.2. Digital Rights Management of Multimedia Content in ICN 25
•	9.5. Network Coding for Video Distribution in ICN 30	23	 8. Security Considerations 28
•	10. Security Considerations 31		• 9. IANA Considerations 28
•	11. IANA Considerations 31		• 10. Conclusions 28
•	12. Conclusions 31		• 11. References 29
•	13. References 31		• 11.1. Normative References 29
•	13.1. Normative References 31		• 11.2. Informative References 29
•	13.2. Informative References 32		
•	14. Authors' Addresses 34		• 12. Authors' Addresses 31
•	15. Acknowledgements 35		• 13. Acknowledgements 32
			•

Current video mechanisms

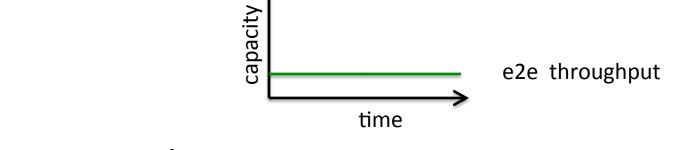
- Look at some use-cases trying to capture a range of requirements:
 - Video download
 - Netflix-like video streaming
 - Biggest share of traffic, but also simpler
 - DASH-like mechanisms exhibit similarity and complementarities with ICN architecture
 - P2P video distribution
 - Infrastructure-less scenario is one of the key selling point of ICN
 - PPSP-based ICN extensions
 - IPTV
 - Real-time delay constraints
- Other use-cases no in the draft: mentioned in research items.
 - Flash crowds/peak
 - Video-conferencing
 - (not mentioned, but discussed in Toronto: In- network DVR?)

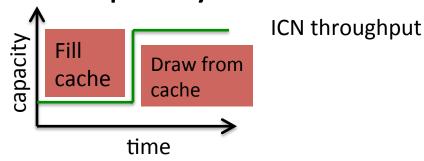

Expanded list of research Items

 Potentially the structure of a "ICN-specific video mechanisms" document


- Items thus far:
 - Real-time issues (video conferencing)
 - Requirements of flash crowd, local video distribution (stadium, concert, demonstration, etc...) for scalability, content discovery, content sharing
 - Store-and-forward benefits + transport issues
 - Short discussion next!
 - Heterogeneous environments
 - Network coding for video distribution in ICN
- What do you want to contribute?

Store&Forward, Transport issues


- Caching discussed mostly to reduce bandwidth in the network by avoiding to repeat duplicate requests
- But can be used to increase network capacity for a single transmission


Store&Forward

e2e rate adaptation achieves the minimum bandwidth

 ICN-specific/cache-aware mechanisms achieves wireless bandwidth capacity

Store&Forward

- Questions: how to adapt rate in this situation?
- What is the proper rate adaptation mechanism to avoid buffering events, rate variations while at the same time maximizing QoE for end user
- What are the mechanisms to insert cache awareness in the video stream?

Next steps?

- Move this document to Informational RFC?
 - What would it take?
- Next document: native ICN video streaming, what would it look like?
 - How to fully leverage the abstractions of, say, CCN/NDN? What transport layer? How to use cache? New ways to do rate adaptation? Multisource transport?
 - Draft list some research questions