Defending IKE Responders
Against Denial of Service Attacks

Agenda

* The Attack

* The Stateless Cookie

* Rate Limiting

* The Puzzle

* A Strategy for Defense

The Attack

* A Denial of Service Attack on an IKE
Responder involves initiating multiple sessions
with an IKE Responder.

e A Distributed Denial of Service Attack involves
multiple attackers. The number could be
hundreds, thousands, even a hundred
thousand attackers.

* In all cases, the attackers don’t have valid
credentials, and cannot complete the
IKE_AUTH exchange.

The Attack

* One possible attack is to fill up the half-open
SA database.

* Asingle IKE_SA_INIT request creates an entry
in the HOSA-DB. An entry can take from
dozens to hundreds of bytes.

* This attack can be launched from multiple
spoofed addresses, creating millions of entries
every second.

The Attack

* A more complex attack requires return
routability. This time the attacker sends an
IKE_SA INIT request, receives a response, and
sends an IKE_ AUTH request.

 The IKE_AUTH request is just garbage data.
The cost to the attacker is trivial, but the
Responder must complete the D-H exchange,
derive keys and attempt to decrypt.

The Attack

* An even more complex form of the attack has
the attacker sending an IKE_ AUTH request
that decrypts OK.

 The decrypted packet forces the Responder to
verify a chain of certificates, which takes even
more resources.

* This is rarely the most efficient attack,
because if requires the attacker to do a lot of
work.

The Stateless Cookie

This is the most basic defense. It's defined in
RFC 7296.

When the Responder is under load (no
definition supplied), it challenges the Initiator
with a stateless cookie.

The Initiator must repeat the IKE_SA INIT
request with the cookie included.

Prevents initiations from spoofed sources. It
does not stop attacks with return routability.

Rate Limiting

This is a defense for the HOSA-DB.

For each source IPv4 address of IPv6 prefix,
we limit the amount of concurrent half-open
SAs that the Responder is willing to keep.

The limit can be hard or soft. With a soft limit,
if the limit is exceeded, a Stateless Cookie or a
Puzzle is required. If it’s only a Cookie for the
first level, a multi-level limit is required.

Rate Limiting only works if return routability is
enforced

Retention Time

* When the Half-Open SA Database is being
attacked one way to reduce the gain for the
attacker is to reduce the time that a half-open
SA is retained.

* We'd like a long time to allow for packet loss,
so we don’t want to make the retention time
always short.

— When under attack, can be reduced to whatever it

takes to derive keys, generate the message + 1
RTT.

The Puzzle

* Rate Limiting and Stateless Cookies together
can foil the simple attack. The attacks with an
IKE_ AUTH request can still overwhelm the

Responder.
 That’s where the puzzle comes in.

* |tincreases the difficulty for the attacker by
requiring proof-of-work before accepting a
half-open SA.

The Puzzle

* The Puzzle challenge in the current draft is

based on the proof-of-work in the Bitcoin
block chain.

 The Responder sends two pieces of
information to the Initiator:

— Cookie — similar to the regular stateless cookie.

— Difficulty level — a number between 0 and 255.
 The draft limits the number to at least 8.

The Puzzle

* The Initiator returns a Cookie notification
payload, but the cookie that it sends is a bit
longer. The content of the notification is as
follows:

Notification Data = Cookie || extra bytes

* The extra bytes are chosen so that the
SHA2-256 hash of the Notification Data has a
number of trailing zero bits at least as high as

the difficulty level.

The Puzzle - Example

Cookie = fdbcfa5a430d7201282358a2a034de@d13cfe2ae
(probably the SHA-1 hash of something)

Difficulty Level = 22
Extra Bytes = 5c2880

SHA2-256 hash:
155319280d687074d0f78511f63c77¢c568a5418dd44e6467d8
£c37723d800000

Trailing Zero Bits = 23
Time on a laptop computer: 2.8 s single-core.

The Puzzle - Issues

* |nitiators differ in their ability to perform
SHA2-256 calculations.

— >12M hashes/s for a 4-core Xeon chip
— ~250K hashes/s for an ARM core

* You don’t want to set the difficulty so high
that your defense is DoS-ing the phones

* But you do want it to make a difference.

e Use the puzzles sparingly.

The Strategy

* Before an attack is detected:
— No Cookies or puzzles for the general population.
— Reasonable soft rate limit (~5) per-address/prefix
— Puzzle level set for ~2 seconds (weakest client).

— Go to the next level in two cases:

* Overall HOSA-DB passes a certain threshold. (20%?)

* Number of addresses/prefixes where puzzles are
required exceeds some level (10-207)

The Strategy

* First Level of Attack:
— Enforce Cookies for everyone

— Puzzles for suspicious prefixes and addresses.

* Suspicious means multiple half-open SAs or multiple failed
IKE_AUTH within a certain time.

e Puzzle difficulty can be increased to ~5 seconds for the
weakest legitimate Initiator.

— Reduce HOSA-DB retention time

— Go to next level if HOSA DB goes beyond a certain
level (80% ?) or failed IKE_AUTH rate crosses a certain
level.

The Strategy

* High Level Attack
— At this point any new connection is suspect.
— All Initiators are required to solve a puzzle

— Suspicious initiators are required to solve a hard
puzzle.

— Retention time is reduced to the minimum.

— Hard Puzzle difficulty level may be increased to
make it infeasible for some legitimate clients.

Comments?

