draft-lam-lime-summary-l0-l2-layer-independent-01

Kam Lam, Eve Varma, Scott Mansfield, Yuji Tochio, Huub van Helvoort, Maarten Vissers, Paul Doolan

From the LIME charter

- Absence of common approach makes it difficult to:
 - Suppress large numbers of unnecessary alarms and notifications related to defects and failures arising in lower layers and visible in each higher layer
 - Quickly identify root causes of network failures
 - Coordinate end-to-end performance measurement with the results of performance monitoring at different layers in the network
 - Correlate defects, faults, and network failures between the different layers to improve efficiency of defect and fault localization and provide better OAM visibility
- Therefore, it is anticipated that the working group will closely coordinate its activities with other SDOs (including, but not limited to the ITU-T, MEF, IEEE, BBF and 3GPP) to ensure that the generic models are harmonized with work done in those SDOs and are applicable to many technologies.

Well which is it?

- OAM = Operation, Administration, Maintenance
- OAM = Operations, Administration, Management
- OAM = Operations and Maintenance
- OAM = Operations and Management
- OAM&P = Operations, Administration, Maintenance and Provisioning
- OAMP&T = Operations, Administration,
 Maintenance, Provisioning and Troubleshooting

And don't forget FCAPS - Fault, Configuration, Accounting, Performance and Security

Note: see also RFC 6291, Guidelines for the Use of the "OAM" Acronym in the IETF

ISO allergy alert

6 characteristics of approach to OAM for Transport in ITU-T

- OAM behaviour is the same across different technologies
- Defect/alarm correlation rules are generic
- OAM behaviour is deterministic
- OAM shares fate with payload
- OAM in client layer is transported transparently in the server layer
- OAM operates independent of a control plane

Transport Carriage of OAM

- Originally circuit but successfully extende to packet
- In TDM transport part of overhead in the signal
- In packet transport uses dedicated packets between MEPs

	+				
	Transport Tech. -	Trans	Transport Technology Specific +		
.	Generic 	OTN	Carrier MPLS-TP SDH Ethernet Note 2		
Transport Architecture	G.800 G.805	G.872	G.8010 G.8110.1 G.803		
Equipment Function	G.806	G.798	G.8021 G.8121.x G.783 series		
Management Requirement	G.7710	G.874	G.8051 G.8151 G.784		
Mgmt Interface Protocol-neutra Info Model		 G.874.1 	G.8052 G.8152 series		

Note 1: The model had been specified, but not in a protocol neutral manner.

Note 2: MPLS-TP is actually L2.5; it is included as it falls under the generic transport management umbrella (as per design).

Figure 1: L0-L2 Architecture and Management Standards

Next Steps

- Comments and feedback are welcome
- If none, is it ready to become WG draft?