
NeMo - Network Modeling for Applications
---- An Application API for Intent Driven

Networking

Topics

• Why NeMo?
• Status
• State machine
• Demo Description

Why Intent-Driven NeMo?
Application needs Intent-Driven
not prescriptive Control
• Application to state:

– A connection between two
sites with flows

– A service flow with SLA
– A customer network service

chain
• Intent Driven: What I want not

how to do it
– Let network layers figure out

how to accomplish intent
• High level

– Yang is low-level specific to
device

Applications need a Simple API

• Request virtual networks through
specific nodes with network
services at flow rate,

• When applications can aid control
of network, storage, compute –
can reach 95% utilization of net,
storage, compute

• NeMo has 3 primitive groups, 15
sentences, and 36 key words

App 1
App 2

Node
1

Use Cases Supported

Service Chaining Virtual WAN with TE

Multi-Service SDNcontroller
• Problem

– It’s hard to support multiple,
independently developed SDN
applications or services without
resource conflicts

• State of the Art
– ODL Helium has not solved this

problem which prevents
competing flow writers that
can’t be run simultaneously.

– It is not possible to run e.g.
NetVirt and SFC services in the
same controller domain.

– Commercial controllers have
not solved this problem either

NetVirt + SFC-Ctl

NeMo can enable
Multi-service SDN Controller

NeMo’s API uses REST/RPC to
talk to Nemo Language Engine

Nemo API

NeMo API at App layer rather than
ODL Policy Groups

OPL Group Policy
• Purpose:

– “higher” than neutron policy
storage and control

• Benefits:
– Intent based
– Use PCIM concepts (RFC3060,

3460, 3644) that combine policy
rules into policy groups (aka
contracts)

• Problem:
– Only Flow behavior, no create node

or specify network service so
cannot handle NFV devices or TE
channels

– Need Network flows, NFV, SFC, TE
plus compute and storage
placement

Policy Groups architecture

CLI Heat Horizon

Neutron

Policy Manager

Legacy
Policy
driver

ODL
Policy
Driver

others

Status
Completed: (July – Nov)
• API presented at network

forums
• IETF drafts + technical

Manual specify language
State Machine +

• Proof of Concept demo
created

Possible Next Steps:
• Work with Partners on

API
• Open Daylight project to

integrate NB API + Nemo
Engine running over
– Open Flow with SFC and

SFC chaining,
– I2RS yang modules ,

We welcome feedback on NEMO, proof of
concept demo, and our next steps.

NeMo State Machine

• Top down view
• Entity Model
• Capability Model
• Language primitives: 3 groups, 15 sentences,

36 key words)

Top-Down design
Network Abstraction Model

Network Information

Entity Model

Link Node

Forwarding
Node

Switch

Router

Transport

Processing
Node

FW

LBS

…

Logic Node

Data

Flow

Packet

Capability Model

Notification

Policy

Query

Transaction
model

Connect

Disconnect

Transaction

commit

Entity Model
l The entity model provides a fundamental abstraction for

both basic network objects (such as basic network element,
link, and flow) and extended objects (such as firewall, load-
balancer, and DPI).

Entity Model

name descirption version inherit properties statisticsid

Entities derived from the entity model

node

link

flow

Capability Model
l Capability model describes a set of network functions and operations that

is opened to the user
l Two operation modes are defined in the capability model:

p Synchronous mode: e.g. a creation of virtual network.
p Asynchronous mode: e.g. port failure notification.

Capability Model

URI Descrip-
tion version request responsemethod mode

Query
Capability

Policy
Capability

Notification
Capability

Capabilities derived from the capabilities model

Entity
Model

node Node/UnNode entity_id Type {FN|PN|LN} Owner node_id Properties
key1 ,value1

link Link/UnLink entity_id Endnodes (node1_id,node2_id) SLA key,value Properties
key1 ,value1 ….

flow Flow/UnFlow entity_id Match/UnMatch key1, value1|Range(value, value)
|Mask(value, value) Properties key1 ,value1

Resource Access

Capability
Model

Query Query key Value {value} From entity_id

Policy

Policy/UnPolicy policy_id Appliesto entity_id Condition {expression} Action
{ “forwardto” | “drop” | “gothrough” | “bypass” | “guaranteeSLA” | “Set”
|“Packetout“| Node | UnNode | Link | Unlink}
Commit / Withdraw

Notifica-tion Notification entity_id On key Every period RegisterListener callbackfunc

Policy and Event Handling

Model Definition and Transactions Control

NEMO Language: Concise and Flexible

Connect

Transaction

Connect <conn-id> Address <ip-prefix> Port <integer>
Disconnect <conn_id>
Transaction …. Commit

Node definition NodeModel <node_type> Property { <data_type> : <property_name> }

Link definition LinkModel <Link_type> Property { <data_type> : <property_name> }

Action definition ActionModel <Action_Name> parameter { <data_type> : <property_name> }

NeMo Language Engine

Demos and Documents
Demos – After SDNRG and NFVRG

IETF Drafts:
l draft-xia-sdnrg-service-description-language-01
l draft-xia-sdnrg-nemo-language-01

All Project documentation
l Technical Reference
l 5 page summary
l Status of Code
l Presentations

Demo

Mininet on Vbox

Three controllers

Virtual sites

Apps V-Net

Overlay to
Mininet

Example of Service Programming by
NEMO

Text
in here

Text
in here

NEM
O

OF1.X/For
warding

Instruction

Path at night

Path daytime

1. App use NEMO language to programming
their service:

l Flow sitea2siteb Match srcip:10.0.0.1
dstip:10.0.1.1;

l Policy day applyto flow sitea2siteb
condition 0800<time<2000 action
gothrough {R1,R2,R4};

l Policy night applyto flow sitea2siteb
condition 2000<time<0800 action
gothrough {R1,R3,R4}; site a site b

Compiler resolver NEMO code to
southbound instruction and
maintain a state machine for each
app.
At daytime go through path1;

Flows in Apps Virtual
Network

Q & A

