NeMo - Network Modeling for Applications

---- An Application API for Intent Driven
Networking

Why NeMo?
Status

State machine
Demo Description

Topics

Why Intent-Driven NeMo?

Application needs Intent-Driven Applications need a Simple API
not prescriptive Control

Request virtual networks through
specific nodes with network
services at flow rate,

e When applications can aid control
of network, storage, compute —

— A customer network service can reach 95% utilization of net,
chain storage, compute

* Intent Driven: What | want not * NeMo has 3 primitive groups, 15
how to do it sentences, and 36 key words

— Let network layers figure out
how to accomplish intent
e High level

— Yang is low-level specific to
device

e Application to state:

— A connection between two
sites with flows

— A service flow with SLA

Use Cases Supported

Service Chaining

SW1

SW2

Virtual WAN with TE

R

WAN

‘R4

9l

o

NeMo can enable

Multi-service SDN Controller

Multi-Service SDNcontroller NeMo’s APl uses REST/RPC to
e Problem talk to Nemo Language Engine

— It’s hard to support multiple,
independently developed SDN

applications or services without Third Party Third Party N—
resource conflicts App Orchestrator

e State of the Art

— ODL Helium has not solved this
P roblem which prevents NEMO Language Engine
competing flow writers that
can’t be run simultaneously.

— Itis not possible to run e.g. VINMTENEIG
NetVirt and SFC services in the
same controller domain.

— Commercial controllers have
not solved this problem either

Physical Network
NetVirt + SFC-Ctl

Mulu-Vendor SDN Controller

Network Behavior

Service Information _
Control Acqulsmon NEMO _ SDNApp

. Developer

\

/ NEMO . End User

] \ Network Resource /
' NEMO Secript

Model Abstraction Layer

Condition Model Model NEMO _ Network Service
machine repository Definition a Provider

plug into

SDN
o ERAEE

MBS Model Lo gic

NeMo API at App layer rather than
ODL Policy Groups

OPL Group Policy

* Purpose:

— “higher” than neutron policy
storage and control

e Benefits:

— Intent based

— Use PCIM concepts (RFC3060,
3460, 3644) that combine policy
rules into policy groups (aka
contracts)

e Problem:

— Only Flow behavior, no create node
or specify network service so
cannot handle NFV devices or TE
channels

— Need Network flows, NFV, SFC, TE
plus compute and storage
placement

@ ©

Policy Groups architecture

CLI

Heat

Horizon

v

v

Neutron

¥

Policy Manager

Vv

vV

Vv

Legacy
Policy
driver

ODL
Policy
Driver

others

Status

Completed: (July — Nov) Possible Next Steps:

APl presented at network ¢ Work with Partners on
forums API

e |ETF drafts + technical e Open Daylight project to
Manual specify language integrate NB APl + Nemo
State Machine + Engine running over

* Proof of Concept demo — Open Flow with SFC and
created SFC chaining,

— 12RS yang modules,

We welcome feedback on NEMO, proof of
concept demo, and our next steps.

NeMo State Machine

Top down view
Entity Model
Capability Model

Language primitives: 3 groups, 15 sentences,
36 key words)

Top-Down design
Network Abstraction Model

Network Information

Transaction
Entity Model Capability Model

model
1 1 | | 1
Link Node Data — Notification [Connect
[
] | |
Forwarding Processing . — Disconnect
Logic Node —~ Flow - i
Node Node & Policy
— Transaction
— Switch — FW — Packet —— Query
— Router — LBS — commit

— Transport

Entity Model

e The entity model provides a fundamental abstraction for
both basic network objects (such as basic network element,

link, and flow) and extended objects (such as firewall, load-
balancer, and DPI).

p —

Entity Model

node

: . : : : : o IIIII‘= link
id descirption version inherit properties statistics

o flow

Entities derived from the entity model

Capability Model

Capability model describes a set of network functions and operations that

is opened to the user

Two operation modes are defined in the capability model:

o Synchronous mode: e.g. a creation of virtual network.

o Asynchronous mode: e.g. port failure notification.

- Query
Capability

URI

method

mode

Capability Model

Policy
Capability
Notification
Capability

Descrip-
tion

version request response

—

Capabilities derived from the capabilities model

NEMO Language: Concise and Flexible

Resource Access

Node/UnNode entity id Type {FN|PN|LN} Owner node_id Properties
keyl ,valuel

Link/UnLink entity id Endnodes (nodel_id,node2_id) SLA key,value Properties
keyl ,valuel

Flow/UnFlow entity id Match/UnMatch key1, valuel|Range(value, value)
| Mask(value, value) Properties keyl ,valuel

Policy and Event Handling
Query Query key Value {value} From entity id

Policy/UnPolicy policy_id Appliesto entity_id Condition {expression} Action
Capability Policy { “forwardto” | “drop” | “gothrough” | “bypass” | “guaranteeSLA” | “Set”

“Packetout”| Node | UnNode | Link | Unlink}
Model |
Commit / Withdraw

Notifica-tion Notification entity_id On key Every period RegisterListener callbackfunc

Model Definition and Transactions Control

Connect Connect <conn-id> Address <ip-prefix> Port <integer>
Disconnect <conn_id>
Transaction Transaction Commit

Node definition = NodeModel <node_type> Property { <data_type> : <property_name> }

Link definition LinkModel <Link_type> Property { <data_type> : <property_name> }

Action definition ActionModel <Action_Name> parameter { <data_type> : <property_name> }

NeMo Language Engine

Updating

Event
collection

Updating Updating
policy notification

<policy cu>|<policy del> <notification cu>|<notification del>

<connect cmd>

disconnected connected

<disconnect cmd>

<node cu>|<node del>|<link cu>|

<link del>|<flow cu>|<flow del> <query cmd>

<node definition>|<link definition>|
<flow_definition>|<action definition>

Updatin
Updating 2 2

resource

model
collection

response

Demos and Documents
Demos — After SDNRG and NFVRG

IETF Drafts:
e draft-xia-sdnrg-service-description-language-01

e draft-xia-sdnrg-nemo-language-01

All Project documentation
e Technical Reference

e 5 page summary

e Status of Code

e Presentations

Demo

-
——————,
HUAWEI Configuration

Virtual sites

191.4.56.9:6635 191.4.56.10:6635 191.4.56.8:6635

191.4.57.100 191.4.57.101 191.4.57.102

- 4 @9= 2=

—

= = —
’-‘ y S " . Three controllers

OPENNH

Mininet on Vbox

() Linkt [Link2 Name

L
HUAWEI Physical-Virtual Mapping | Virtual Network View = Return

—

Apps V-Net [N
A BN

- -
- — lE
vswil\chd
191.4.56.8:6635 \ roma office
OpenNH berlin office
191.4.57.101

Overlay to

A Mininet

Loc

Example of Service Programming by
NEMO

App use NEMO language to programming
their service:

Flow sitea2siteb Match srcip:10.0.0.1
dstip:10.0.1.1;

Policy day applyto flow sitea2siteb
condition 0800<time<2000 action
gothrough {R1,R2,R4};

Policy night applyto flow sitea2siteb
condition 2000<time<0800 action
gothrough {R1,R3,R4};

Path daytime

\) site b

Path at night

OF1.X/For
y N " \ warding
Compiler resolver NEMO code to | etW(?r Instruction
southbound instruction and 3\ Hypervisor
maintain a state machine for each
app.

At daytime go through pathi;

HUAWEI | Virtual Network

Flows in Apps Virtual
Network

oo

London @
=3

Router-01

G Router-04

] Subnet Prefix Config] All Paths

Convergence Time: 5ms

Guest Controller

e

@ Berlin

Router-02

Source Address: 172.20.2.0
Destion Address: 172.20.4.0
Bandwidth: 1Gbps

Delay: 20ns

Q&A

