Hierarchical SDN to Scale the DC/Cloud to Tens of Millions of Endpoints at Low Cost

Luyuan Fang
lufang@microsoft.com

IETF 91, SDNRG November 10, 2014

This Is the Hyper-Scale Cloud

- The cloud is growing at unprecedented rate
- We need to be able to scale to 10's of millions of underlay network endpoints (servers) and 100's of millions of VMs and virtualized network functions

A scale we have never seen before, and we are just at the beginning...

Example: The Scale and Growth of Microsoft Cloud

Microsoft Azure Numbers

>10,000

New Azure customers a week

1,200,000

SQL databases In Azure >30 Trillion

Storage objects in In Azure

350 Million

Azure Active Directory Users

>18 Billion

Azure Active Directory authentications/week

>2 Million

Developers with Virtual Studio Online

+10%

Growth MoM

Huge Infrastructure Scale

Microsoft Cloud	Quantity
Data Centers	100+
Global Regions	19
Servers	1,000,000+

Azure Cloud Growth

Azure Components	2010	2014
Azure Compute Instances	100K	Millions
Azure Storage	10s of PBs	Exabytes
Azure DC Network Capacity	10s of Tbps	Pbps

Underlay Network Challenges

- Scale at low-cost, use commodity HW
 - Use small FIBs/LFIBs in all network nodes, avoid FIB explosion
- Achieve high resource utilization
 - Efficiently support ECMP and any-to-any, server-to-server TE
- Scale at low operational and computational complexity
 - Locally minimize complexity and network state, with no information loss
- Scale while achieving improved cloud elasticity and service velocity
 - Overcome today's challenges of NFV (e.g. SLB) scalability and VM/NFV mobility

This is a whole new game, no existing solutions for such a scale

Choice of Technologies: MPLS + SDN

MPLS

- Unify forwarding (DC and core), no IP lookup other than at the edge/server
- Flexibility of the label stack, naturally suitable for hierarchical decomposition
- Ease of redirection, can be leveraged to increase elasticity
- Security advantages

SDN

- Allow decoupling of control plane and data plane, make HW fungible
- Take ownership of control plane development (short release cycle for bug-fixes and new features)
- Reduce number of protocols
- Make global optimization possible

Hierarchical SDN (HSDN)

... SDN provides the discipline to extract simplicity... Abstractions are key...

SDN is all in decomposing problems into basic components...

SCOTT SHENKER

 HSDN is an industry-first architectural framework to consistently decompose many complex hyper-scale problems into manageable ones, so we scale in an optimal way

draft-fang-mpls-hsdn-for-hsdc-00

HSDN – One Fundamental Abstraction for Both Forwarding and Control

- Keep number of destinations in all domains small
- Locally, hide destination explosion using hierarchical partitioning

One Consistent Abstraction Paradigm

- Divide and conquer
- · Keep all domains balanced and small
- · Locally minimize network state
- → "Infinite" Horizontal Scaling

- Keep number of paths per domain manageable
- Keep computational complexity per domain small

HSDN Forwarding Plane

- Divide the DC and DCI/WAN in a hierarchically-partitioned structure
- Assign groups of Underlay Partition Border Nodes (UPBNs) in charge of forwarding within each partition
- Construct HSDN MPLS label stacks to identify the end points according to the HSDN structure
- Forward using the HSDN MPLS labels

Typical Clos-Based DC Topology, Spine and Leaf Architecture

HSDN: Hierarchical Underlay Partitioning

HSDN: Assign UPBNs and UPBGs

HSDN Label Stack

- Stack of path labels, plus one VN label
- One path label per level of underlay partition

HSDN Forwarding: Life of a Packet

VN

HSDN Control Plane

- HSDN Controller (HSDN-C) is horizontally scalable
 - Implemented as a set of local partition controllers HSDN-C-UP, following the HSDN hierarchy
 - Each HSDN-C-UP operates largely independently
 - Locally-reduced computational complexity for many functions, including TE
- Network state also distributed according to the HSDN hierarchy
 - Forwarding state is still in the network nodes, and is locally minimized
- HSDN supports both controller-centric SDN approach and traditional distributed routing/label distribution protocol approach
 - Useful during migration from legacy to full SDN (e.g., use BGP-LU for label distribution, RFC 3107)

HSDN Scaling Examples

HSDN scales to tens of millions of underlay network endpoints with small LFIBs

- Assumptions
 - N hyper-scale DCs interconnected through DCI/WAN
 - DC fabrics are S-stage, asymmetrical, fat-Clos-based
- Support any-to-any, server-to-server
 - non-TE traffic with ECMP load balancing
 - TE traffic
- Max LFIB size (the largest LFIB size among all Tiers of switches) is as follows:

Number of Server endpoints	Max LFIB size ECMP only (No TE)	Max LFIB size ECMP and TE Concurrently
3 M	~ 1K	< 14K
10 M	< 2K	< 24K
40 M	< 3K	< 36K

Conclusions

- Hyper-scale cloud growing at rate never seen before, need new solutions to scale
- HSDN is a novel paradigm to scale forwarding and control plane to unprecedented levels, at low cost
 - Scales to tens of millions of servers with very small LFIBs
 - Supports ECMP and any-to-any end-to-end TE concurrently with ease
 - Makes centralized SDN control and optimization practical at scale
 - Minimizes operation complexity, network state, and computation
 - Improves elasticity by simplifying and scaling NFV and overlay network mobility
- For more details, see draft-fang-mpls-hsdn-for-hsdc-00