Extending Option Space Discussion
Overview and its requirements

Tcpm chairs



Introduction

* 40 bytes option space is becoming serious problems
for TCP

— Without extending option space, TCP cannot enable some
features simultaneously

— Option space limitation affects the design of some features
(e.g. MPTCP, TCPCrypt)

* Current WG item for option space solution
— draft-ietf-tcpm-tcp-edo
» Extend option space for non-SYN packets

What about extending option space in SYN?



Non-SYN option space extension

* Current proposal: EDO (draft-ietf-tcpm-tcp-
edo)

— Use a part of payload as option space
e Override DO (Data Offset) field

— Use new option type for signaling
— Negotiate the feature during SYN exchanges
— No specific mechanism for middlebox issue

* Enable feature only after receiving confirmation
signals from both sides



Difficulty in SYN option space
extension

* Need to use option space extension feature
during SYN exchanges

— Packet with extension will be different from
standard SYN packets

— How to send non-standard packets while
negotiating features?
e Can we send these packets without negotiation?
* Can we negotiate the feature without extra delay?



Middlebox Issues

 Some middleboxes affects non-standard TCP
packets (drop or strip options or modify flags,
etc)

— TCP segments with unknown options, special flags
may look non-standard

 Some middleboxes modify segments

— TCP segments might be coalesced or split or updated

— If we override DO field in TCP segments, this will be
serious problems!

* How much these issues can affect option space
extension design?



Alternative Option Extension Proposals

draft-touch-tcpm-tcp-syn-ext-opt
— Use special packets for the feature
* Send extended packets without negotiation
draft-briscoe-tcpm-inner-space
— Use two connections for the feature

* Send extended packets without negotiation + encoding mechanisms for
middlebox protection

draft-borman-tcpm-tcp4way

— Introduce 4way handshake mechanism
* Modify negotiation mechanism to allow extended packets

draft-leslie-tcpm-checksum-option

— Check if middleboxes modify the packets

* Supplemental feature for option space extension. Can be combined to other
solutions



draft-touch-tcpm-tcp-syn-ext-opt

Client sends SYN with SYN-EOS option

— Indicate to send OOB (Out-Of-Band) packet

Client sends OOB packet after sending SYN

— OOB packet: packet with both SYN and ACK are not set

— Payload in OOB packet can be used to store TCP options as
well as TCP header

Server processes all TCP options in the following places

— TCP header in SYN, TCP header in OOB, TCP payload in
O0OB

Server sends back SYN-EOS option in SYN/ACK for
confirmation



draft-briscoe-tcpm-inner-space

* Client sends two SYN packets (same dest port,
but different source port)

— One SYN has normal format, the other has
upgraded format to store TCP options in payload

* Client resets one of the connection based on
the response from server

— If server correctly respond to upgraded format,
reset normal connection (upgrade)

— If not, reset upgraded connection (fall back)



draft-borman-tcpm-tcp4way

Client sends SYN with an indication (TCP flag
or option) for 4way handshake

If server responses back the indication, client
sends second SYN to perform 4way handshake

EDO option can be negotiated in the first SYN
exchange

The second SYN can use EDO option if both
sides agree in the first SYN exchange



draft-leslie-tcpm-tcp-checksum-option-00

TCP Option to checksum various fields

No handshake (changes nothing about TCP)
Typical use: checksum over all Option bytes
Diagnostic only: Remediation not part of spec

— (details will change: byte-count vs. checksum,
etc.)



How to move forward?

 How radically we want to change TCP for
option space?
— What kinds of changes to be allowed in TCP?

* This will be an important update for TCP
— No need to hurry, but wants many feedbacks!



Criteria for the solution

* What are the requirements for this? How

much extent do we need or allow?
* Robustness against middleboxes
* Latency
* Design complexity
* What others?



Discussion Points

e How to address middlebox issues?

* How we should structure SYN option space
extension mechanism?

 What to do with non-SYN (EDO) solution?



Q1: How to address middlebox issues?

* Which issues should be addressed or ignored (How we
should be robust against middlebox)
— Removing new options
— Modifying flags
— Dropping non-standard segments
— Splitting, Coalescing segments
— Combinations of above

 How to approach the problem?
— In-bound encoding like inner-space proposal
— checksum like mechanism to detect middlebox interventions

* Do we need something for this?
— Experiments? Survey? Publishing docs?



B.

Q2: How we should structure SYN

option space extension mechanism?
A.

Publish one mechanism as single doc

Publish multiple docs as experimental and
encourage experiments

Publish single doc that describes possible
approach

. Something else

Do nothing for now?



Q3: What to do with non-SYN
solution?

e Should we merge non-SYN solution (EDO) and
other solutions?

— Current non-SYN draft is simple and straightforward

— Alternative proposals may use different mechanisms
to extend option space used in non-SYN draft

— Pros
e Can provide single mechanism for option space extension

— Cons

* Will takes more time. More complicated. Should be
experimental.



