
Web Push  
Background and Overview 

Dan DRUTA 

IETF 91 



A few use cases 

Notification delivered when browser is not 
running 

Alice uses her browser on her laptop to chat with her mom overseas. 
She goes online and marks her status available. Then she closes her 
browser window to work on a presentation due next week. Her mom 
wants to tell her the great news about her cousin's new baby and 
calls her. Alice receives a notification that her mom wants to talk and 
answers.  

WebRTC call 
Bob uses Ringo’s STAR WebRTC service on his mobile device. Bob 
calls Alice at work and leaves a voice mail for her to call him back. 
Alice comes back from her meeting and calls Bob. Bob receives an 
incoming notification. He can clearly identify the caller as Alice and 
answers.  

 
 



Why Web Push 
Most of the web based solutions today work under the premises that 
parties involved are online and connected to the same web application 
at the same time. With the addition of real-time capabilities to the 
web, there has to be a way for servers to send Web App specific 
notifications efficently and reliably. 

 
• Push enabled solutions should have the ability to:  

• Provide unsolicited notifications once the user registered for them  
• Make notifications available to the user irrespective if the app is running, in focus or 

not.  
• Provide notifications irrespective of the browser, device type or network 

environment  

 

• In addition to that, Web Push Enabled solutions should:  
• Reliably deliver notifications  
• Minimize latency 
• Efficiently use network recourses 
• Optimize signaling to maximize battery life on the client device 

 



A brief history  
• Presented the need for push notifications in support of 

WebRTC: http://lists.w3.org/Archives/Public/public-
webrtc/2012Jan/att-0083/WebRTC_PushNotifications.pdf  

• The need was acknowledged and it was recognized that push 
notifications have a broader applicability so the group 
requested  W3C WebApps to take on this work as the API 
must be able to be used for other types of solutions 

• WebApps has been working on this. The scope is limited to 
the API surface and leaves the delivery protocols out: 
http://www.w3.org/TR/push-api/  

 

This is why we’re here! 

http://lists.w3.org/Archives/Public/public-webrtc/2012Jan/att-0083/WebRTC_PushNotifications.pdf
http://lists.w3.org/Archives/Public/public-webrtc/2012Jan/att-0083/WebRTC_PushNotifications.pdf
http://lists.w3.org/Archives/Public/public-webrtc/2012Jan/att-0083/WebRTC_PushNotifications.pdf
http://lists.w3.org/Archives/Public/public-webrtc/2012Jan/att-0083/WebRTC_PushNotifications.pdf
http://lists.w3.org/Archives/Public/public-webrtc/2012Jan/att-0083/WebRTC_PushNotifications.pdf
http://lists.w3.org/Archives/Public/public-webrtc/2012Jan/att-0083/WebRTC_PushNotifications.pdf
http://lists.w3.org/Archives/Public/public-webrtc/2012Jan/att-0083/WebRTC_PushNotifications.pdf
http://www.w3.org/TR/push-api/
http://www.w3.org/TR/push-api/
http://www.w3.org/TR/push-api/
http://www.w3.org/TR/push-api/
http://www.w3.org/TR/push-api/


How it works 
Web Server 

Web Application 

User Agent (i.e. Browser) 

Device 

Push Client 

Push Server 

APIs 

Fulfillment (message delivery): 
1. Webapp server requests delivery of a message via the Push service URL.  
2. Push Server delivers the message to the User Agent 
3. The User Agent delivers the Push message to the specific WebApp associated with the message. 
 
  

Web 
App 

Web app 
HTML, JS 

Registration: 
1. WebApp instance requests permission with the User Agent 
2. User Agent involves the user and registers with the Push Server 
3. Push Server confirms registration 
4. User Agent returns a PushService object with parameters of the 

service instance, including a URL where the app server can send 
messages to the specific WebApp instance. 

5. WebApp notifies the App server of the Push Service URL 
 

1 

2 

3 

1 

2 

3 

4 

5 


