
Internet Draft T. Herbert
<draft-herbert-gue-03.txt> Google
Category: Standard track L. Yong
Expires September 2015 Huawei USA
 O. Zia
 Microsoft
 March 6, 2015

 Generic UDP Encapsulation
 <draft-herbert-gue-03.txt>

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on September 7, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Herbert, Yong, Zia Expires September 2015 [Page 1]

Internet Draft herbert-gue.txt March 6, 2015

Abstract

 This specification describes Generic UDP Encapsulation (GUE), which
 is a scheme for using UDP to encapsulate packets of arbitrary IP
 protocols for transport across layer 3 networks. By encapsulating
 packets in UDP, specialized capabilities in networking hardware for
 efficient handling of UDP packets can be leveraged. GUE specifies
 basic encapsulation methods upon which higher level constructs, such
 tunnels and overlay networks for network virtualization, can be
 constructed. GUE is extensible by allowing optional data fields as
 part of the encapsulation, and is generic in that it can encapsulate
 packets of various IP protocols.

Table of Contents

 1. Introduction . 3
 2. Packet formats . 4
 2.1. GUE header preamble . 4
 2.2. GUE header . 5
 2.3. Flags and optional fields 6
 2.4 Private data . 7
 3. Message types . 7
 3.1. Control messages . 7
 3.2. Data messages . 8
 4. Operation . 8
 4.1. Network tunnel encapsulation 9
 4.2. Transport layer encapsulation 9
 4.3. Encapsulator operation 9
 4.4. Decapsulator operation 9
 4.5. Router and switch operation 10
 4.6. Middlebox interactions 10
 4.7. NAT . 10
 4.8. Checksum Handling . 11
 4.8.1. Checksum requirements 11
 4.8.2. GUE header checksum 11
 4.8.3. UDP Checksum with IPv4 11
 4.8.4. UDP Checksum with IPv6 12
 4.9. MTU and fragmentation issues 13
 4.10 Congestion control . 13
 5. Inner flow identifier properties 13
 5.1. Flow classification . 13
 5.2. Inner flow identifier properties 14
 6. Motivation for GUE . 15
 7. Security Considerations . 16
 7.1. GUE security fields . 17
 7.2. GUE and IPsec . 17
 8. IANA Consideration . 17
 9. Acknowledgements . 18

Herbert, Yong, Zia Expires September 2015 [Page 2]

Internet Draft herbert-gue.txt March 6, 2015

 10. References . 18
 10.1. Normative References 18
 10.2. Informative References 18
 Appendix A: NIC processing for GUE 19
 A.1. Receive multi-queue . 20
 A.2. Checksum offload . 20
 A.2.1. Transmit checksum offload 20
 A.2.2. Receive checksum offload 21
 A.3. Transmit Segmentation Offload 22
 A.4. Large Receive Offload 22
 Appendix B: Privileged ports 23
 Appendix C: Inner flow identifier as a route selector 23
 Appendix D: Hardware protocol implementation considerations . . . 23
 Authors’ Addresses . 24

1. Introduction

 This specification describes Generic UDP Encapsulation (GUE) which is
 a general method for encapsulating packets of arbitrary IP protocols
 within User Datagram Protocol (UDP) [RFC0768] packets. Encapsulating
 packets in UDP facilitates efficient transport across networks.
 Networking devices widely provide protocol specific processing and
 optimizations for UDP (as well as TCP) packets. Packets for atypical
 IP protocols (those not usually parsed by networking hardware) can be
 encapsulated in UDP packets to maximize deliverability and to
 leverage flow specific mechanisms for routing and packet steering.

 GUE provides an extensible header format for including optional data
 in the encapsulation header. This data potentially covers items such
 as virtual networking identifier, security data for validating or
 authenticating the GUE header, congestion control data, etc. GUE also
 allows private optional data in the encapsulation header. This
 feature can be used by a site or implementation to define local
 custom optional data, and allows experimentation of options that may
 eventually become standard.

Herbert, Yong, Zia Expires September 2015 [Page 3]

Internet Draft herbert-gue.txt March 6, 2015

2. Packet formats

 A GUE packet is comprised of a UDP packet whose payload is a GUE
 header followed by a payload which is either an encapsulated packet
 of some IP protocol or a control message (like an OAM message). A GUE
 packet has the general format:

 +-------------------------------+
 | |
 | UDP/IP header |
GUE Header

Encapsulated packet
or control message
 +-------------------------------+

 The GUE header is variable length as determined by the presence of
 optional fields.

2.1. GUE header preamble

 The first byte of the GUE header provides the GUE protocol version
 number, indicator of a control or data message, and header length:

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |Ver|C| Hlen |
 +-+-+-+-+-+-+-+-+

 Contents are:

 o Ver: GUE protocol version. The rest of the fields after the
 preamble are defined based on the version. This field is two
 bits allowing four possible values.

 o Control flag: When set indicates a control message, not set
 indicates a data message.

 o Hlen: Length in 32-bit words of the GUE header, including
 optional fields but not the first four bytes of the header.
 Computed as (header_len - 4) / 4. All GUE headers are a multiple

Herbert, Yong, Zia Expires September 2015 [Page 4]

Internet Draft herbert-gue.txt March 6, 2015

 of four bytes in length. Maximum header length is 132 bytes.

2.2. GUE header

 The header format for version 0x0 of GUE in UDP is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source port | Destination port |
 +-+
 | Length | Checksum |
 +-+
 |0x0|C| Hlen | Proto/ctype | Flags |E|
 +-+
 | |
 ˜ Fields (optional) ˜
 | |
 +-+
 | Extension flags (optional) |
 +-+
 | |
 ˜ Extension fields (optional) ˜
 | |
 +-+
 | |
 ˜ Private data (optional) ˜
 | |
 +-+

 The contents of the UDP header are:

 o Source port (inner flow identifier): This should be set to a
 value that represents the encapsulated flow. The properties of
 the inner flow identifier are described below.

 o Destination port: The GUE assigned port number, 6080.

 o Length: Canonical length of the UDP packet (length of UDP header
 and payload).

 o Checksum: Standard UDP checksum.

 The GUE header consists of:

 o Preamble byte: Version number (0x0), C bit, and header length.

Herbert, Yong, Zia Expires September 2015 [Page 5]

Internet Draft herbert-gue.txt March 6, 2015

 o Proto/ctype: When the C bit is set this field contains a control
 message type for the payload. When C bit is not set, the field
 holds the IP protocol number for the encapsulated packet in the
 payload. The control message or encapsulated packet begins at
 the offset provided by Hlen.

 o Flags. Header flags that may be allocated for various purposes
 and may indicate presence of optional fields. Undefined header
 flag bits must be set to zero on transmission.

 o ’E’ Extension flag. Indicates presence of extension flags option
 in the optional fields.

 o Fields: Optional fields whose presence is indicated by
 corresponding flags.

 o Extension flags: An optional field indicated by the E bit. This
 field provides an additional set of 32 header bit flags for the
 header.

 o Extension fields: Optional fields whose presence is indicated by
 corresponding extension flags.

 o Private data: Optional private data. If private data is present
 it immediately follows that last field present in the header.
 The length of this data is determined by subtracting the
 starting offset from the header length.

2.3. Flags and optional fields

 Flags and associated optional fields are the primary mechanism of
 extensibility in GUE. There are sixteens flag bits in the primary GUE
 header with one being reserved to indicate that an optional extension
 flags field is present. The extension flags field contains an
 additional thirty-two flag bits.

 A flag may indicate presence of optional fields. The size of an
 optional field indicated by a flag must be fixed.

 Flags may be paired together to allow different lengths for an
 optional field. For example, if two flag bits are paired, a field may
 possibly be three different lengths. Regardless of how flag bits may
 be paired, the lengths and offsets of optional fields corresponding
 to a set of flags must be well defined.

 Optional fields are placed in order of the flags. New flags should be
 allocated from high to low order bit contiguously without holes.
 Flags allow random access, for instance to inspect the field

Herbert, Yong, Zia Expires September 2015 [Page 6]

Internet Draft herbert-gue.txt March 6, 2015

 corresponding to the Nth flag bit, an implementation only considers
 the previous N-1 flags to determine the offset. Flags after the Nth
 flag are not pertinent in calculating the offset of the Nth flag.

 Flags (or paired flags) are idempotent such that new flags should not
 cause reinterpretation of old flags. Also, new flags should not alter
 interpretation of other elements in the GUE header nor how the
 message is parsed (for instance, in a data message the proto/ctype
 field always holds an IP protocol number as an invariant).

2.4 Private data

 An implementation may use private data for its own use. The private
 data immediately follows the last field in the GUE header and is not
 a fixed length. This data is considered part of the GUE header and
 must be accounted for in header length (Hlen). The length of the
 private data must be a multiple of four and is determined by
 subtracting the offset of private data in the GUE header from the
 header length. Specifically:

 Private_length = (Hlen * 4) - Length(flags)

 Where "Length(flags)" returns the sum of lengths of all the optional
 fields present in the GUE header. When there is no private data
 present, length of the private data is zero.

 The semantics and interpretation of private data are implementation
 specific. A encapsulator and decapsulator MUST agree on the meaning
 of private data before using it. The private data may be structured
 as necessary, for instance it might contain its own set of flags and
 optional fields.

 If a decapsulator receives a GUE packet with private data, it MUST
 validate the private data appropriately. If a decapsulator does not
 expect private data from an encapsulator the packet MUST be dropped.
 If a decapsulator cannot validate the contents of private data per
 the provided semantics the packet MUST also be dropped. An
 implementation may place security data in GUE private data which must
 be verified for packet acceptance.

3. Message types

3.1. Control messages

 Control messages are indicated in the GUE header when the C bit is
 set. The payload is interpreted as a control message with type
 specified in the proto/ctype field. The format and contents of the
 control message are indicated by the type and can be variable length.

Herbert, Yong, Zia Expires September 2015 [Page 7]

Internet Draft herbert-gue.txt March 6, 2015

 Other than interpreting the proto/ctype field as a control message
 type, the meaning and semantics of the rest of the elements in the
 GUE header are the same as that of data messages. Forwarding and
 routing of control messages should be the same as that of a data
 message with the same outer IP and UDP header and GUE flags-- this
 ensures that a control message can be created which follows the same
 path as a data message.

 Control messages can be defined for OAM type messages. For instance,
 an echo request and corresponding echo reply message may be defined
 to test for liveness.

3.2. Data messages

 Data messages are indicated in GUE header with C bit not set. The
 payload of a data message is interpreted as an encapsulated packet of
 an IP protocol indicated in the proto/ctype field. The packet
 immediately follows the GUE header.

 Data messages are a primary means of encapsulation and can be used to
 create tunnels for overlay networks.

4. Operation

 The figure below illustrates the use of GUE encapsulation between two
 servers. Sever 1 is sending packets to server 2. An encapsulator
 performs encapsulation of packets from server 1. These encapsulated
 packets traverse the network as UDP packets. At the decapsulator,
 packets are decapsulated and sent on to server 2. Packet flow in the
 reverse direction need not be symmetric; GUE encapsulation is not
 required in the reverse path.

 +---------------+ +---------------+
 | | | |
 | Server 1 | | Server 2 |
 | | | |
 +---------------+ +---------------+
 | ^
 V |
 +---------------+ +---------------+ +---------------+
 | | | | | |
 | Encapsulator |-->| Layer 3 |-->| Decapsulator |
 | | | Network | | |
 +---------------+ +---------------+ +---------------+

 The encapsulator and decapsulator may be co-resident with the
 corresponding servers, or may be on separate nodes in the network.

Herbert, Yong, Zia Expires September 2015 [Page 8]

Internet Draft herbert-gue.txt March 6, 2015

4.1. Network tunnel encapsulation

 Network tunneling can be achieved by encapsulating layer 2 or layer 3
 packets. In this case the encapsulator and decapsulator nodes are the
 tunnel endpoints. These could be routers that provide network tunnels
 on behalf of communicating servers.

4.2. Transport layer encapsulation

 When encapsulating layer 4 packets, the encapsulator and decapsulator
 should be co-resident with the servers. In this case, the
 encapsulation headers are inserted between the IP header and the
 transport packet. The addresses in the IP header refer to both the
 endpoints of the encapsulation and the endpoints for terminating the
 the transport protocol.

4.3. Encapsulator operation

 Encapsulators create GUE data messages, set the source port to the
 inner flow identifier, set flags and optional fields in the GUE
 header, and forward packets to a decapsulator.

 An encapsulator may be an end host originating the packets of a flow,
 or may be a network device performing encapsulation on behalf of
 servers (routers implementing tunnels for instance). In either case,
 the intended target (decapsulator) is indicated by the outer
 destination IP address.

 If an encapsulator is tunneling packets, that is encapsulating
 packets of layer 2 or layer 3 protocols (e.g. EtherIP, IPIP, ESP
 tunnel mode), it should follow standard conventions for tunneling of
 one IP protocol over another. Diffserv interaction with tunnels is
 described in [RFC2983], ECN propagation for tunnels is described in
 [RFC6040].

4.4. Decapsulator operation

 A decapsulator performs decapsulation of GUE packets. A decapsulator
 is addressed by the outer destination IP address of a GUE packet.
 The decapsulator validates packets, including fields of the GUE
 header. If a packet is acceptable, the UDP and GUE headers are
 removed and the packet is resubmitted for IP protocol processing or
 control message processing if it is a control message.

 If a decapsulator receives a GUE packet with an unsupported version,
 unknown flag, bad header length (too small for included optional
 fields), unknown control message type, or an otherwise malformed
 header, it must drop the packet and may log the event. No error

Herbert, Yong, Zia Expires September 2015 [Page 9]

Internet Draft herbert-gue.txt March 6, 2015

 message is returned back to the encapsulator. Note that set flags in
 GUE that are unknown to a decapsulator MUST NOT be ignored. If a GUE
 packet is received by a decapsulator with unknown flags, the packet
 MUST be dropped.

4.5. Router and switch operation

 Routers and switches should forward GUE packets as standard UDP/IP
 packets. The outer five-tuple should contain sufficient information
 to perform flow classification corresponding to the flow of the inner
 packet. A switch should not normally need to parse a GUE header, and
 none of the flags or optional fields in the GUE header should affect
 routing.

 A router should not modify a GUE header when forwarding a packet. It
 may encapsulate a GUE packet in another GUE packet, for instance to
 implement a network tunnel. In this case the router takes the role of
 an encapsulator, and the corresponding decapsulator is the logical
 endpoint of the tunnel.

4.6. Middlebox interactions

 A middle box may interpret some flags and optional fields of the GUE
 header for classification purposes, but is not required to understand
 all flags and fields in GUE packets. A middle box should not drop a
 GUE packet because there are flags unknown to it. The header length
 in the GUE header allows a middlebox to inspect the payload packet
 without needing to parse the flags or optional fields.

 A middlebox may infer bidirectional connection semantics to a UDP
 flow. For instance a stateful firewall may create a five-tuple rule
 to match flows on egress, and a corresponding five-tuple rule for
 matching ingress packets where the roles of source and destination
 are reversed for the IP addresses and UDP port numbers. To operate in
 this environment, a GUE tunnel must assume connected semantics
 defined by the UDP five tuple and the use of GUE encapsulation must
 be symmetric between both endpoints. The source port set in the UDP
 header must be the destination port the peer would set for replies.

4.7. NAT

 IP address and port translation can be performed on the UDP/IP
 headers adhering to the requirements for NAT with UDP [RFC478]. In
 the case of stateful NAT, connection semantics must be applied to a
 GUE tunnel as described above.

 When using transport mode encapsulation and traversing a NAT, the IP
 addresses may be changed such that the pseudo header checksum used

Herbert, Yong, Zia Expires September 2015 [Page 10]

Internet Draft herbert-gue.txt March 6, 2015

 for checksum calculation is modified and the checksum will be found
 invalid at the receiver. To compensate for this, A GUE option can be
 added which contains the checksum over the source and destination
 addresses when the packet is transmitted. Upon receiving this option,
 the delta of the pseudo header checksum is computed by subtracting
 the checksum over the source and and destination addresses from the
 checksum value in the option. The resultant value is then added into
 checksum calculation when validating the inner transport checksum.

4.8. Checksum Handling

 This section describes the requirements around the UDP checksum and
 GUE header checksum. Checksums are an important consideration in that
 that they can provide end to end validation and protect against
 packet mis-delivery. The latter is allowed by the inclusion of a
 pseudo header that covers the IP addresses and UDP ports of the
 encapsulating headers.

4.8.1. Checksum requirements

 The potential for mis-delivery of packets due to corruption of IP,
 UDP, or GUE headers must be considered. One of the following
 requirements must be met:

 o UDP checksums are enabled (for IPv4 or IPv6).

 o The GUE header checksum is used.

 o Zero UDP checksums are used in accordance with applicable
 requirements in [GREUDP], [RFC6935], and [RFC6936].

4.8.2. GUE header checksum

 The GUE header checksum provides a UDP-lite [RFC3828] type of
 checksum capability as an optional field of the GUE header. The GUE
 header checksum minimally covers the GUE header and a GUE pseudo
 header. The GUE pseudo header includes the corresponding IP
 addresses as well as the UDP ports of the encapsulating headers.
 This checksum should provide adequate protection against address
 corruption in IPv6 when the UDP checksum is zero. Additionally, the
 GUE checksum provides protection of the GUE header when the UDP
 checksum is set to zero with either IPv4 or IPv6. The GUE header
 checksum is defined in [GUECSUM].

4.8.3. UDP Checksum with IPv4

 For UDP in IPv4, the UDP checksum MUST be processed as specified in
 [RFC768] and [RFC1122] for both transmit and receive. An

Herbert, Yong, Zia Expires September 2015 [Page 11]

Internet Draft herbert-gue.txt March 6, 2015

 encapsulator MAY set the UDP checksum to zero for performance or
 implementation considerations. The IPv4 header includes a checksum
 which protects against mis-delivery of the packet due to corruption
 of IP addresses. The UDP checksum potentially provides protection
 against corruption of the UDP header, GUE header, and GUE payload.
 Enabling or disabling the use of checksums is a deployment
 consideration that should take into account the risk and effects of
 packet corruption, and whether the packets in the network are
 already adequately protected by other, possibly stronger mechanisms
 such as the Ethernet CRC. If an encapsulator sets a zero UDP
 checksum for IPv4 it SHOULD use the GUE header checksum as described
 in section 4.8.2.

 When a decapsulator receives a packet, the UDP checksum field MUST
 be processed. If the UDP checksum is non-zero, the decapsulator MUST
 verify the checksum before accepting the packet. By default a
 decapsulator SHOULD accept UDP packets with a zero checksum. A node
 MAY be configured to disallow zero checksums per [RFC1122]; this may
 be done selectively, for instance disallowing zero checksums from
 certain hosts that are known to be sending over paths subject to
 packet corruption. If verification of a non-zero checksum fails, a
 decapsulator lacks the capability to verify a non-zero checksum, or
 a packet with a zero-checksum was received and the decapsulator is
 configured to disallow, the packet MUST be dropped and an event MAY
 be logged.

4.8.4. UDP Checksum with IPv6

 For UDP in IPv6, the UDP checksum MUST be processed as specified in
 [RFC768] and [RFC2460] for both transmit and receive. Unlike IPv4,
 there is no header checksum in IPv6 that protects against mis-
 delivery due to address corruption. Therefore, when GUE is used over
 IPv6, either the UDP checksum must be enabled or the GUE header
 checksum must be used. An encapsulator MAY set a zero UDP checksum
 for performance or implementation reasons, in which case the GUE
 header checksum MUST be used or applicable requirements for using
 zero UDP checksums in [GREUDP] MUST be met. If the UDP checksum is
 enabled, then the GUE header checksum should not be used since it is
 mostly redundant.

 When a decapsulator receives a packet, the UDP checksum field MUST
 be processed. If the UDP checksum is non-zero, the decapsulator MUST
 verify the checksum before accepting the packet. By default a
 decapsulator MUST only accept UDP packets with a zero checksum if
 the GUE header checksum is used and is verified. If verification of
 a non-zero checksum fails, a decapsulator lacks the capability to
 verify a non-zero checksum, or a packet with a zero-checksum and no
 GUE header checksum was received, the packet MUST be dropped and an

Herbert, Yong, Zia Expires September 2015 [Page 12]

Internet Draft herbert-gue.txt March 6, 2015

 event MAY be logged.

4.9. MTU and fragmentation issues

 Standard conventions for handling of MTU (Maximum Transmission Unit)
 and fragmentation in conjunction with networking tunnels
 (encapsulation of layer 2 or layer 3 packets) should be followed.
 Details are described in MTU and Fragmentation Issues with In-the-
 Network Tunneling [RFC4459]

 If a packet is fragmented before encapsulation in GUE, all the
 related fragments must be encapsulated using the same source port
 (inner flow identifier). An operator may set MTU to account for
 encapsulation overhead and reduce the likelihood of fragmentation.

4.10 Congestion control

 Per requirements of [RFC5405], if the IP traffic encapsulated with
 GUE implements proper congestion control no additional mechanisms
 should be required.

 In the case that the encapsulated traffic does not implement any or
 sufficient control, or it is not known rather a transmitter will
 consistently implement proper congestion control, then congestion
 control at the encapsulation layer must be provided. Note this case
 applies to a significant use case in network virtualization in which
 guests run third party networking stacks that cannot be implicitly
 trusted to implement conformant congestion control.

 Out of band mechanisms such as rate limiting, Managed Circuit
 Breaker, or traffic isolation may used to provide rudimentary
 congestion control. For finer grained congestion control that allow
 alternate congestion control algorithms, reaction time within an
 RTT, and interaction with ECN, in band mechanisms may warranted.

 DCCP may be used to provide congestion control for encapsulated
 flows. In this case, the protocol stack for an IP tunnel may be IP-
 GUE-DCCP-IP. Alternatively, GUE can be extended to include
 congestion control (related data carried in GUE optional fields).
 Congestion control mechanisms for GUE will be elaborated in other
 specifications.

5. Inner flow identifier properties

5.1. Flow classification

 A major objective of using GUE is that a network device can perform
 flow classification corresponding to the flow of the inner

Herbert, Yong, Zia Expires September 2015 [Page 13]

Internet Draft herbert-gue.txt March 6, 2015

 encapsulated packet based on the contents in the outer headers.

 Hardware devices commonly perform hash computations on packet
 headers to classify packets into flows or flow buckets. Flow
 classification is done to support load balancing (statistical
 multiplexing) of flows across a set of networking resources.
 Examples of such load balancing techniques are Equal Cost Multipath
 routing (ECMP), port selection in Link Aggregation, and NIC device
 Receive Side Scaling (RSS). Hashes are usually either a three-tuple
 hash of IP protocol, source address, and destination address; or a
 five-tuple hash consisting of IP protocol, source address,
 destination address, source port, and destination port. Typically,
 networking hardware will compute five-tuple hashes for TCP and UDP,
 but only three-tuple hashes for other IP protocols. Since the five-
 tuple hash provides more granularity, load balancing can be finer
 grained with better distribution. When a packet is encapsulated with
 GUE, the source port in the outer UDP packet is set to reflect the
 flow of the inner packet. When a device computes a five-tuple hash
 on the outer UDP/IP header of a GUE packet, the resultant value
 classifies the packet per its inner flow.

 To support flow classification, the source port of the UDP header in
 GUE is set to a value that maps to the inner flow. This is referred
 to as the inner flow identifier. The inner flow identifier is set by
 the encapsulator; it can be computed on the fly based on packet
 contents or retrieved from a state maintained for the inner flow.

 Examples of deriving an inner flow identifier are:

 o If the encapsulated packet is a layer 4 packet, TCP/IPv4 for
 instance, the inner flow identifier could be based on the
 canonical five-tuple hash of the inner packet.

 o If the encapsulated packet is an AH transport mode packet with
 TCP as next header, the inner flow identifier could be a hash
 over a three-tuple: TCP protocol and TCP ports of the
 encapsulated packet.

 o If a node is encrypting a packet using ESP tunnel mode and GUE
 encapsulation, the inner flow identifier could be based on the
 contents of clear-text packet. For instance, a canonical five-
 tuple hash for a TCP/IP packet could be used.

5.2. Inner flow identifier properties

 The inner flow identifier is the value set in the UDP source
 port of a GUE packet. The inner flow identifier should adhere to
 the following properties:

Herbert, Yong, Zia Expires September 2015 [Page 14]

Internet Draft herbert-gue.txt March 6, 2015

 o The value set in the source port should be within the ephemeral
 port range. IANA suggests this range to be 49152 to 65535, where
 the high order two bits of the port are set to one. This
 provides fourteen bits of entropy for the inner flow identifier.

 o The inner flow identifier should have a uniform distribution
 across encapsulated flows.

 o An encapsulator may occasionally change the inner flow
 identifier used for an inner flow per its discretion (for
 security, route selection, etc). Changing the value should
 happen no more than once every thirty seconds.

 o Decapsulators, or any networking devices, should not attempt any
 interpretation of the inner flow identifier, nor should they
 attempt to reproduce any hash calculation. They may use the
 value to match further receive packets for steering decisions,
 but cannot assume that the hash uniquely or permanently
 identifies a flow.

 o Input to the inner flow identifier is not restricted to ports
 and addresses; input could include flow label from an IPv6
 packet, SPI from an ESP packet, or other flow related state in
 the encapsulator that is not necessarily conveyed in the packet.

 o The assignment function for inner flow identifiers should be
 randomly seeded to mitigate denial of service attacks. The seed
 may be changed periodically.

6. Motivation for GUE

 This section presents the motivation for GUE with respect to other
 encapsulation methods.

 A number of different encapsulation techniques have been proposed for
 the encapsulation of one protocol over another. EtherIP [RFC3378]
 provides layer 2 tunneling of Ethernet frames over IP. GRE [RFC2784],
 MPLS [RFC4023], and L2TP [RFC2661] provide methods for tunneling
 layer 2 and layer 3 packets over IP. NVGRE [NVGRE] and VXLAN
 [RFC7348] are proposals for encapsulation of layer 2 packets for
 network virtualization. IPIP [RFC2003] and Generic packet tunneling
 in IPv6 [RFC2473] provide methods for tunneling IP packets over IP.

 Several proposals exist for encapsulating packets over UDP including
 ESP over UDP [RFC3948], TCP directly over UDP [TCPUDP], VXLAN, LISP
 [RFC6830] which encapsulates layer 3 packets, and Generic UDP
 Encapsulation for IP Tunneling (GRE over UDP)[GREUDP]. Generic UDP
 tunneling [GUT] is a proposal similar to GUE in that it aims to

Herbert, Yong, Zia Expires September 2015 [Page 15]

Internet Draft herbert-gue.txt March 6, 2015

 tunnel packets of IP protocols over UDP.

 GUE has the following discriminating features:

 o UDP encapsulation leverages specialized network device
 processing for efficient transport. The semantics for using the
 UDP source port as an identifier for an inner flow are defined.

 o GUE permits encapsulation of arbitrary IP protocols, which
 includes layer 2 3, and 4 protocols. This potentially allows
 nearly all traffic within a data center to be normalized to be
 either TCP or UDP on the wire.

 o Multiple protocols can be multiplexed over a single UDP port
 number. This is in contrast to techniques to encapsulate
 protocols over UDP using a protocol specific port number (such
 as ESP/UDP, GRE/UDP, SCTP/UDP). GUE provides a uniform and
 extensible mechanism for encapsulating all IP protocols in UDP
 with minimal overhead (four bytes of additional header).

 o GUE is extensible. New flags and optional fields can be defined.

 o The GUE header includes a header length field. This allows a
 network node to inspect an encapsulated packet without needing
 to parse the full encapsulation header.

 o Private data in the encapsulation header allows local
 customization and experimentation while being compatible with
 processing in network nodes (routers and middleboxes).

 o GUE includes both data messages (encapsulation of packets) and
 control messages (such as OAM).

7. Security Considerations

 Encapsulation of IP protocols within GUE should not increase
 security risk, nor provide additional security in itself. As
 suggested in section 5 the source port for of UDP packets in GUE
 should be randomly seeded to mitigate some possible denial
 service attacks.

 GUE is most useful when it is in the outermost header of a
 packet which allows for flow hash calculation as well as making
 GUE header data (such as virtual network identifier) visible to
 switches and middleboxes. GUE must be amenable to encapsulating
 (and being encapsulated within) IPsec. Also, we allow provisions
 to secure the GUE header itself without external protocol.

Herbert, Yong, Zia Expires September 2015 [Page 16]

Internet Draft herbert-gue.txt March 6, 2015

 Security for Generic UDP Encapsulation is described in more
 detail in [GUESEC].

7.1. GUE security fields

 Security fields should be used to provide integrity and
 authentication of the GUE header. Security negotiation
 (algorithms, interpretation of security field, key management,
 etc.) is expected to be done out of band between hosts.

7.2. GUE and IPsec

 GUE may be used to encapsulate IPsec packets. This allows the
 benefits of deriving a flow hash for the inner, potentially
 encrypted, packet. In this case the protocol stack may be:

 +-------------------------------+
 | |
 | UDP/IP header |
 | |
 |-------------------------------|
 | |
 | GUE Header |
 | |
 |-------------------------------|
 | |
 | ESP/AH/private security |
 | |
 |-------------------------------|
 | |
 | Encapsulated packet |
 | |
 +-------------------------------+

 Note that IPsec would not cover the GUE header in this case
 (does not authenticate it for instance). GUE security optional
 fields may be used to provide authentication or integrity of the
 GUE header.

8. IANA Consideration

 A user UDP port number assignment for GUE has been assigned:

 Service Name: gue
 Transport Protocol(s): UDP
 Assignee: Tom Herbert <therbert@google.com>
 Contact: Tom Herbert <therbert@google.com>
 Description: Generic UDP Encapsulation

Herbert, Yong, Zia Expires September 2015 [Page 17]

Internet Draft herbert-gue.txt March 6, 2015

 Reference: draft-herbert-gue
 Port Number: 6080
 Service Code: N/A
 Known Unauthorized Uses: N/A
 Assignment Notes: N/A

9. Acknowledgements

 The authors would like to thank David Liu for valuable input on
 this draft.

10. References

10.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434, October 1998.

 [RFC2983] Black, D., "Differentiated Services and Tunnels", RFC 2983,
 October 2000.

 [RFC6040] Briscoe, B., "Tunnelling of Explicit Congestion
 Notification", RFC 6040, November 2010.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums", RFC 6936,
 April 2013.

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, April 2006.

10.2. Informative References

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

 [RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
 Stenberg, "UDP Encapsulation of IPsec ESP Packets", RFC 3948, January
 2005.

 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The
 Locator/ID Separation Protocol (LISP)", RFC 6830, January 2013.

Herbert, Yong, Zia Expires September 2015 [Page 18]

Internet Draft herbert-gue.txt March 6, 2015

 [RFC3378] Housley, R. and S. Hollenbeck, "EtherIP: Tunneling Ethernet
 Frames in IP Datagrams", RFC 3378, September 2002.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina,
 Generic Routing Encapsulation (GRE)", RFC 2784, March 2000.

 [RFC4023] Worster, T., Rekhter, Y., and E. Rosen, Ed., "Encapsulating
 MPLS in IP or Generic Routing Encapsulation (GRE)", RFC 4023, March
 2005.

 [RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G.,
 and B. Palter, "Layer Two Tunneling Protocol "L2TP"", RFC 2661,
 August 1999.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, June 2010.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., Ed.,
 and G. Fairhurst, Ed., "The Lightweight User Datagram Protocol (UDP-
 Lite)", RFC 3828, July 2004, <http://www.rfc-
 editor.org/info/rfc3828>.

 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual eXtensible
 Local Area Network (VXLAN): A Framework for Overlaying Virtualized
 Layer 2 Networks over Layer 3 Networks", RFC 7348, August 2014,
 <http://www.rfc-editor.org/info/rfc7348>.

 [NVGRE] NVGRE: Network Virtualization using Generic Routing
 Encapsulation draft-sridharan-virtualization-nvgre-03

 [TCPUDP] Encapsulation of TCP and other Transport Protocols over UDP
 draft-cheshire-tcp-over-udp-00

 [GREUDP] Generic UDP Encapsulation for IP Tunneling draft-yong-tsvwg-
 gre-in-udp-encap-02

 [GUESEC] Yong, L., Herbert, T., "Generic UDP Encapsulation (GUE) for
 Secure Transport", draft-hy-gue-4-secure-transport-00, work in
 progress.

 [GUT] Generic UDP Tunnelling (GUT) draft-manner-tsvwg-gut-02.txt

 [REMCSUM] Remote Checksum Offload draft-herbert-remotecsumoffload-00

Appendix A: NIC processing for GUE

 This appendix provides some guidelines for Network Interface Cards

Herbert, Yong, Zia Expires September 2015 [Page 19]

Internet Draft herbert-gue.txt March 6, 2015

 (NICs) to implement common offloads and accelerations to support GUE.
 Note that most of this discussion is generally applicable to other
 methods of UDP based encapsulation.

A.1. Receive multi-queue

 Contemporary NICs support multiple receive descriptor queues (multi-
 queue). Multi-queue enables load balancing of network processing for
 a NIC across multiple CPUs. On packet reception, a NIC must select
 the appropriate queue for host processing. Receive Side Scaling is a
 common method which uses the flow hash for a packet to index an
 indirection table where each entry stores a queue number. Flow
 Director and Accelerated Receive Flow Steering (aRFS) allow a host to
 program the queue that is used for a given flow which is identified
 either by an explicit five-tuple or by the flow’s hash.

 GUE encapsulation should be compatible with multi-queue NICs that
 support five-tuple hash calculation for UDP/IP packets as input to
 RSS. The inner flow identifier (source port) ensures classification
 of the encapsulated flow even in the case that the outer source and
 destination addresses are the same for all flows (e.g. all flows are
 going over a single tunnel).

 By default, UDP RSS support is often disabled in NICs to avoid out of
 order reception that can occur when UDP packets are fragmented. As
 discussed above, fragmentation of GUE packets should be mitigated by
 fragmenting packets before entering a tunnel, path MTU discovery in
 higher layer protocols, or operator adjusting MTUs. Other UDP traffic
 may not implement such procedures to avoid fragmentation, so enabling
 UDP RSS support in the NIC should be a considered tradeoff during
 configuration.

A.2. Checksum offload

 Many NICs provide capabilities to calculate standard ones complement
 payload checksum for packets in transmit or receive. When using GUE
 encapsulation there are at least two checksums that may be of
 interest: the encapsulated packet’s transport checksum, and the UDP
 checksum in the outer header.

A.2.1. Transmit checksum offload

 NICs may provide a protocol agnostic method to offload transmit
 checksum (NETIF_F_HW_CSUM in Linux parlance) that can be used with
 GUE. In this method the host provides checksum related parameters in
 a transmit descriptor for a packet. These parameters include the
 starting offset of data to checksum, the length of data to checksum,
 and the offset in the packet where the computed checksum is to be

Herbert, Yong, Zia Expires September 2015 [Page 20]

Internet Draft herbert-gue.txt March 6, 2015

 written. The host initializes the checksum field to pseudo header
 checksum.

 In the case of GUE, the checksum for an encapsulated transport layer
 packet, a TCP packet for instance, can be offloaded by setting the
 appropriate checksum parameters.

 NICs typically can offload only one transmit checksum per packet, so
 simultaneously offloading both an inner transport packet’s checksum
 and the outer UDP checksum is likely not possible. In this case
 setting UDP checksum to zero (per above discussion) and offloading
 the inner transport packet checksum might be acceptable.

 If an encapsulator is co-resident with a host, then checksum offload
 may be performed using remote checksum offload [REMCSUM]. Remote
 checksum offload relies on NIC offload of the simple UDP/IP checksum
 which is commonly supported even in legacy devices. In remote
 checksum offload the outer UDP checksum is set and the GUE header
 includes an option indicating the start and offset of the inner
 "offloaded" checksum. The inner checksum is initialized to the pseudo
 header checksum. When a decapsulator receives a GUE packet with the
 remote checksum offload option, it completes the offload operation by
 determining the packet checksum from the indicated start point to the
 end of the packet, and then adds this into the checksum field at the
 offset given in the option. Computing the checksum from the start to
 end of packet is efficient if checksum-complete is provided on the
 receiver.

A.2.2. Receive checksum offload

 GUE is compatible with NICs that perform a protocol agnostic receive
 checksum (CHECKSUM_COMPLETE in Linux parlance). In this technique, a
 NIC computes a ones complement checksum over all (or some predefined
 portion) of a packet. The computed value is provided to the host
 stack in the packet’s receive descriptor. The host driver can use
 this checksum to "patch up" and validate any inner packet transport
 checksum, as well as the outer UDP checksum if it is non-zero.

 Many legacy NICs don’t provide checksum-complete but instead provide
 an indication that a checksum has been verified (CHECKSUM_UNNECESSARY
 in Linux). Usually, such validation is only done for simple TCP/IP or
 UDP/IP packets. If a NIC indicates that a UDP checksum is valid, the
 checksum-complete value for the UDP packet is the "not" of the pseudo
 header checksum. In this way, checksum-unnecessary can be converted
 to checksum-complete. So if the NIC provides checksum-unnecessary for
 the outer UDP header in an encapsulation, checksum conversion can be
 done so that the checksum-complete value is derived and can be used
 by the stack to validate an checksums in the encapsulated packet.

Herbert, Yong, Zia Expires September 2015 [Page 21]

Internet Draft herbert-gue.txt March 6, 2015

A.3. Transmit Segmentation Offload

 Transmit Segmentation Offload (TSO) is a NIC feature where a host
 provides a large (>MTU size) TCP packet to the NIC, which in turn
 splits the packet into separate segments and transmits each one. This
 is useful to reduce CPU load on the host.

 The process of TSO can be generalized as:

 - Split the TCP payload into segments which allow packets with
 size less than or equal to MTU.

 - For each created segment:

 1. Replicate the TCP header and all preceding headers of the
 original packet.

 2. Set payload length fields in any headers to reflect the
 length of the segment.

 3. Set TCP sequence number to correctly reflect the offset of
 the TCP data in the stream.

 4. Recompute and set any checksums that either cover the payload
 of the packet or cover header which was changed by setting a
 payload length.

 Following this general process, TSO can be extended to support TCP
 encapsulation in GUE. For each segment the Ethernet, outer IP, UDP
 header, GUE header, inner IP header if tunneling, and TCP headers are
 replicated. Any packet length header fields need to be set properly
 (including the length in the outer UDP header), and checksums need to
 be set correctly (including the outer UDP checksum if being used).

 To facilitate TSO with GUE it is recommended that optional fields
 should not contain values that must be updated on a per segment
 basis-- for example the GUE fields should not include checksums,
 lengths, or sequence numbers that refer to the payload. If the GUE
 header does not contain such fields then the TSO engine only needs to
 copy the bits in the GUE header when creating each segment and does
 not need to parse the GUE header.

A.4. Large Receive Offload

 Large Receive Offload (LRO) is a NIC feature where packets of a TCP
 connection are reassembled, or coalesced, in the NIC and delivered to
 the host as one large packet. This feature can reduce CPU utilization
 in the host.

Herbert, Yong, Zia Expires September 2015 [Page 22]

Internet Draft herbert-gue.txt March 6, 2015

 LRO requires significant protocol awareness to be implemented
 correctly and is difficult to generalize. Packets in the same flow
 need to be unambiguously identified. In the presence of tunnels or
 network virtualization, this may require more than a five-tuple match
 (for instance packets for flows in two different virtual networks may
 have identical five-tuples). Additionally, a NIC needs to perform
 validation over packets that are being coalesced, and needs to
 fabricate a single meaningful header from all the coalesced packets.

 The conservative approach to supporting LRO for GUE would be to
 assign packets to the same flow only if they have identical five-
 tuple and were encapsulated the same way. That is the outer IP
 addresses, the outer UDP ports, GUE protocol, GUE flags and fields,
 and inner five tuple are all identical.

Appendix B: Privileged ports

 Using the source port to contain an inner flow identifier value
 disallows the security method of a receiver enforcing that the source
 port be a privileged port. Privileged ports are defined by some
 operating systems to restrict source port binding. Unix, for
 instance, considered port number less than 1024 to be privileged.

 Enforcing that packets are sent from a privileged port is widely
 considered an inadequate security mechanism and has been mostly
 deprecated. To approximate this behavior, an implementation could
 restrict a user from sending a packet destined to the GUE port
 without proper credentials.

Appendix C: Inner flow identifier as a route selector

 An encapsulator generating an inner flow identifier may modulate the
 value to perform a type of multipath source routing. Assuming that
 networking switches perform ECMP based on the flow hash, a sender can
 affect the path by altering the inner flow identifier. For instance,
 a host may store a flow hash in its PCB for an inner flow, and may
 alter the value upon detecting that packets are traversing a lossy
 path. Changing the inner flow identifier for a flow should be subject
 to hysteresis (at most once every thirty seconds) to limit the number
 of out of order packets.

Appendix D: Hardware protocol implementation considerations

 A low level protocol, such is GUE, is likely interesting to being
 supported by high speed network devices. Variable length header (VLH)
 protocols like GUE are often considered difficult to efficiently
 implement in hardware. In order to retain the important
 characteristics of an extensible and robust protocol, hardware

Herbert, Yong, Zia Expires September 2015 [Page 23]

Internet Draft herbert-gue.txt March 6, 2015

 vendors may practice "constrained flexibility". In this model, only
 certain combinations or protocol header parameterizations are
 implemented in hardware fast path. Each such parameterization is
 fixed length so that the particular instance can be optimized as a
 fixed length protocol. In the case of GUE this constitutes specific
 combinations of GUE flags, fields, and next protocol. The selected
 combinations would naturally be the most common cases which form the
 "fast path", and other combinations are assumed to take the "slow
 path".

 In time, needs and requirements of the protocol may change which may
 manifest themselves as new parameterizations to be supported in the
 fast path. To allow allow this extensibility, a device practicing
 constrained flexibility should allow the fast path parameterizations
 to be programmable.

Authors’ Addresses

 Tom Herbert
 Google
 1600 Amphitheatre Parkway
 Mountain View, CA
 US

 EMail: tom@herbertland.com

 Lucy Yong
 Huawei USA
 5340 Legacy Dr.
 Plano, TX 75024
 US

 Osama Zia
 Microsoft
 osamaz@microsoft.com

Herbert, Yong, Zia Expires September 2015 [Page 24]

