
IPSecME Working Group Y. Nir
Internet-Draft Check Point
Intended status: Standards Track V. Smyslov
Expires: April 4, 2017 ELVIS-PLUS
 October 1, 2016

 Protecting Internet Key Exchange Protocol version 2 (IKEv2)
 Implementations from Distributed Denial of Service Attacks
 draft-ietf-ipsecme-ddos-protection-10

Abstract

 This document recommends implementation and configuration best
 practices for Internet Key Exchange Protocol version 2 (IKEv2)
 Responders, to allow them to resist Denial of Service and Distributed
 Denial of Service attacks. Additionally, the document introduces a
 new mechanism called "Client Puzzles" that help accomplish this task.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Nir & Smyslov Expires April 4, 2017 [Page 1]

Internet-Draft DDoS Protection for IKEv2 October 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Conventions Used in This Document 3
 3. The Vulnerability . 3
 4. Defense Measures while the IKE SA is being created 6
 4.1. Retention Periods for Half-Open SAs 6
 4.2. Rate Limiting . 6
 4.3. The Stateless Cookie 7
 4.4. Puzzles . 8
 4.5. Session Resumption 10
 4.6. Keeping computed Shared Keys 11
 4.7. Preventing "Hash and URL" Certificate Encoding Attacks . 11
 4.8. IKE Fragmentation . 12
 5. Defense Measures after an IKE SA is created 12
 6. Plan for Defending a Responder 13
 7. Using Puzzles in the Protocol 15
 7.1. Puzzles in IKE_SA_INIT Exchange 15
 7.1.1. Presenting a Puzzle 16
 7.1.2. Solving a Puzzle and Returning the Solution 18
 7.1.3. Computing a Puzzle 19
 7.1.4. Analyzing Repeated Request 20
 7.1.5. Deciding if to Serve the Request 21
 7.2. Puzzles in an IKE_AUTH Exchange 22
 7.2.1. Presenting Puzzle 22
 7.2.2. Solving Puzzle and Returning the Solution 23
 7.2.3. Computing the Puzzle 24
 7.2.4. Receiving the Puzzle Solution 24
 8. Payload Formats . 25
 8.1. PUZZLE Notification 25
 8.2. Puzzle Solution Payload 26
 9. Operational Considerations 26
 10. Security Considerations 27
 11. IANA Considerations . 29
 12. Acknowledgements . 29
 13. References . 29
 13.1. Normative References 29
 13.2. Informative References 30
 Authors’ Addresses . 30

1. Introduction

 Denial of Service (DoS) attacks have always been considered a serious
 threat. These attacks are usually difficult to defend against since
 the amount of resources the victim has is always bounded (regardless

Nir & Smyslov Expires April 4, 2017 [Page 2]

Internet-Draft DDoS Protection for IKEv2 October 2016

 of how high it is) and because some resources are required for
 distinguishing a legitimate session from an attack.

 The Internet Key Exchange protocol version 2 (IKEv2) described in
 [RFC7296] includes defense against DoS attacks. In particular, there
 is a cookie mechanism that allows the IKE Responder to defend itself
 against DoS attacks from spoofed IP-addresses. However, botnets have
 become widespread, allowing attackers to perform Distributed Denial
 of Service (DDoS) attacks, which are more difficult to defend
 against. This document presents recommendations to help the
 Responder counter (D)DoS attacks. It also introduces a new mechanism
 -- "puzzles" -- that can help accomplish this task.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

3. The Vulnerability

 The IKE_SA_INIT Exchange described in Section 1.2 of [RFC7296]
 involves the Initiator sending a single message. The Responder
 replies with a single message and also allocates memory for a
 structure called a half-open IKE Security Association (SA). This
 half-open SA is later authenticated in the IKE_AUTH Exchange. If
 that IKE_AUTH request never comes, the half-open SA is kept for an
 unspecified amount of time. Depending on the algorithms used and
 implementation, such a half-open SA will use from around 100 bytes to
 several thousands bytes of memory.

 This creates an easy attack vector against an IKE Responder.
 Generating the IKE_SA_INIT request is cheap. Sending large amounts
 of IKE_SA_INIT requests can cause a Responder to use up all its
 resources. If the Responder tries to defend against this by
 throttling new requests, this will also prevent legitimate Initiators
 from setting up IKE SAs.

 An obvious defense, which is described in Section 4.2, is limiting
 the number of half-open SAs opened by a single peer. However, since
 all that is required is a single packet, an attacker can use multiple
 spoofed source IP addresses.

 If we break down what a Responder has to do during an initial
 exchange, there are three stages:

 1. When the IKE_SA_INIT request arrives, the Responder:

Nir & Smyslov Expires April 4, 2017 [Page 3]

Internet-Draft DDoS Protection for IKEv2 October 2016

 * Generates or re-uses a Diffie-Hellman (D-H) private part.

 * Generates a Responder Security Parameter Index (SPI).

 * Stores the private part and peer public part in a half-open SA
 database.

 2. When the IKE_AUTH request arrives, the Responder:

 * Derives the keys from the half-open SA.

 * Decrypts the request.

 3. If the IKE_AUTH request decrypts properly:

 * Validates the certificate chain (if present) in the IKE_AUTH
 request.

 The fourth stage where the Responder creates the Child SA is not
 reached by attackers who cannot pass the authentication step.

 Stage #1 is pretty light on CPU power, but requires some storage, and
 it’s very light for the Initiator as well. Stage #2 includes
 private-key operations, so it is much heavier CPU-wise. Stage #3 may
 include public key operations if certificates are involved. These
 operations are often more computationly expensive than those
 performed at stage #2.

 To attack such a Responder, an attacker can attempt either to exhaust
 memory or to exhaust CPU. Without any protection, the most efficient
 attack is to send multiple IKE_SA_INIT requests and exhaust memory.
 This is easy because IKE_SA_INIT requests are cheap.

 There are obvious ways for the Responder to protect itself without
 changes to the protocol. It can reduce the time that an entry
 remains in the half-open SA database, and it can limit the amount of
 concurrent half-open SAs from a particular address or prefix. The
 attacker can overcome this by using spoofed source addresses.

 The stateless cookie mechanism from Section 2.6 of [RFC7296] prevents
 an attack with spoofed source addresses. This doesn’t completely
 solve the issue, but it makes the limiting of half-open SAs by
 address or prefix work. Puzzles, introduced in Section 4.4,
 accomplish the same thing only more of it. They make it harder for
 an attacker to reach the goal of getting a half-open SA. Puzzles do
 not have to be so hard that an attacker cannot afford to solve a
 single puzzle; it is enough that puzzles increase the cost of

Nir & Smyslov Expires April 4, 2017 [Page 4]

Internet-Draft DDoS Protection for IKEv2 October 2016

 creating a half-open SAs, so the attacker is limited in the amount
 they can create.

 Reducing the lifetime of an abandoned half-open SA also reduces the
 impact of such attacks. For example, if a half-open SA is kept for 1
 minute and the capacity is 60 thousand half-open SAs, an attacker
 would need to create one thousand half-open SAs per second. If the
 retention time is reduced to 3 seconds, the attacker would need to
 create 20 thousand half-open SAs per second to get the same result.
 By introducing a puzzle, each half-open SA becomes more expensive for
 an attacker, making it more likely to prevent an exhaustion attack
 against Responder memory.

 At this point, filling up the half-open SA database is no longer the
 most efficient DoS attack. The attacker has two alternative attacks
 to do better:

 1. Go back to spoofed addresses and try to overwhelm the CPU that
 deals with generating cookies, or

 2. Take the attack to the next level by also sending an IKE_AUTH
 request.

 If an attacker is so powerfull that it is able to overwhelm the
 Responder’s CPU that deals with generating cookies, then the attack
 cannot be dealt with at the IKE level and must be handled by means of
 the Intrusion Prevention System (IPS) technology.

 On the other hand, the second alternative of sending an IKE_AUTH
 request is very cheap. It requires generating a proper IKE header
 with the correct IKE SPIs and a single Encrypted payload. The
 content of the payload is irrelevant and might be junk. The
 Responder has to perform the relatively expensive key derivation,
 only to find that the MAC on the Encrypted payload on the IKE_AUTH
 request fails the integrity check. If a Responder does not hold on
 to the calculated SKEYSEED and SK_* keys (which it should in case a
 valid IKE_AUTH comes in later) this attack might be repeated on the
 same half-open SA. Puzzles make attacks of such sort more costly for
 an attacker. See Section 7.2 for details.

 Here too, the number of half-open SAs that the attacker can achieve
 is crucial, because each one allows the attacker to waste some CPU
 time. So making it hard to make many half-open SAs is important.

 A strategy against DDoS has to rely on at least 4 components:

 1. Hardening the half-open SA database by reducing retention time.

Nir & Smyslov Expires April 4, 2017 [Page 5]

Internet-Draft DDoS Protection for IKEv2 October 2016

 2. Hardening the half-open SA database by rate-limiting single IPs/
 prefixes.

 3. Guidance on what to do when an IKE_AUTH request fails to decrypt.

 4. Increasing the cost of half-open SAs up to what is tolerable for
 legitimate clients.

 Puzzles are used as a solution for strategy #4.

4. Defense Measures while the IKE SA is being created

4.1. Retention Periods for Half-Open SAs

 As a UDP-based protocol, IKEv2 has to deal with packet loss through
 retransmissions. Section 2.4 of [RFC7296] recommends "that messages
 be retransmitted at least a dozen times over a period of at least
 several minutes before giving up". Many retransmission policies in
 practice wait one or two seconds before retransmitting for the first
 time.

 Because of this, setting the timeout on a half-open SA too low will
 cause it to expire whenever even one IKE_AUTH request packet is lost.
 When not under attack, the half-open SA timeout SHOULD be set high
 enough that the Initiator will have enough time to send multiple
 retransmissions, minimizing the chance of transient network
 congestion causing an IKE failure.

 When the system is under attack, as measured by the amount of half-
 open SAs, it makes sense to reduce this lifetime. The Responder
 should still allow enough time for the round-trip, enough time for
 the Initiator to derive the D-H shared value, and enough time to
 derive the IKE SA keys and the create the IKE_AUTH request. Two
 seconds is probably as low a value as can realistically be used.

 It could make sense to assign a shorter value to half-open SAs
 originating from IP addresses or prefixes that are considered suspect
 because of multiple concurrent half-open SAs.

4.2. Rate Limiting

 Even with DDoS, the attacker has only a limited amount of nodes
 participating in the attack. By limiting the amount of half-open SAs
 that are allowed to exist concurrently with each such node, the total
 amount of half-open SAs is capped, as is the total amount of key
 derivations that the Responder is forced to complete.

Nir & Smyslov Expires April 4, 2017 [Page 6]

Internet-Draft DDoS Protection for IKEv2 October 2016

 In IPv4 it makes sense to limit the number of half-open SAs based on
 IP address. Most IPv4 nodes are either directly attached to the
 Internet using a routable address or are hidden behind a NAT device
 with a single IPv4 external address. For IPv6, ISPs assign between a
 /48 and a /64, so it does not make sense for rate-limiting to work on
 single IPv6 IPs. Instead, ratelimits should be done based on either
 the /48 or /64 of the misbehaving IPv6 address observed.

 The number of half-open SAs is easy to measure, but it is also
 worthwhile to measure the number of failed IKE_AUTH exchanges. If
 possible, both factors should be taken into account when deciding
 which IP address or prefix is considered suspicious.

 There are two ways to rate-limit a peer address or prefix:

 1. Hard Limit - where the number of half-open SAs is capped, and any
 further IKE_SA_INIT requests are rejected.

 2. Soft Limit - where if a set number of half-open SAs exist for a
 particular address or prefix, any IKE_SA_INIT request will be
 required to solve a puzzle.

 The advantage of the hard limit method is that it provides a hard cap
 on the amount of half-open SAs that the attacker is able to create.
 The disadvantage is that it allows the attacker to block IKE
 initiation from small parts of the Internet. For example, if an
 network service provider or some establishment offers Internet
 connectivity to its customers or employees through an IPv4 NAT
 device, a single malicious customer can create enough half-open SAs
 to fill the quota for the NAT device external IP address. Legitimate
 Initiators on the same network will not be able to initiate IKE.

 The advantage of a soft limit is that legitimate clients can always
 connect. The disadvantage is that an adversary with sufficient CPU
 resources can still effectively DoS the Responder.

 Regardless of the type of rate-limiting used, legitimate initiators
 that are not on the same network segments as the attackers will not
 be affected. This is very important as it reduces the adverse impact
 caused by the measures used to counteract the attack, and allows most
 initiators to keep working even if they do not support puzzles.

4.3. The Stateless Cookie

 Section 2.6 of [RFC7296] offers a mechanism to mitigate DoS attacks:
 the stateless cookie. When the server is under load, the Responder
 responds to the IKE_SA_INIT request with a calculated "stateless
 cookie" - a value that can be re-calculated based on values in the

Nir & Smyslov Expires April 4, 2017 [Page 7]

Internet-Draft DDoS Protection for IKEv2 October 2016

 IKE_SA_INIT request without storing Responder-side state. The
 Initiator is expected to repeat the IKE_SA_INIT request, this time
 including the stateless cookie. This mechanism prevents DoS attacks
 from spoofed IP addresses, since an attacker needs to have a routable
 IP address to return the cookie.

 Attackers that have multiple source IP addresses with return
 routability, such as in the case of botnets, can fill up a half-open
 SA table anyway. The cookie mechanism limits the amount of allocated
 state to the number of attackers, multiplied by the number of half-
 open SAs allowed per peer address, multiplied by the amount of state
 allocated for each half-open SA. With typical values this can easily
 reach hundreds of megabytes.

4.4. Puzzles

 The puzzle introduced here extends the cookie mechanism of [RFC7296].
 It is loosely based on the proof-of-work technique used in Bitcoins
 [bitcoins]. Puzzles set an upper bound, determined by the attacker’s
 CPU, to the number of negotiations the attacker can initiate in a
 unit of time.

 A puzzle is sent to the Initiator in two cases:

 o The Responder is so overloaded that no half-open SAs may be
 created without solving a puzzle, or

 o The Responder is not too loaded, but the rate-limiting method
 described in Section 4.2 prevents half-open SAs from being created
 with this particular peer address or prefix without first solving
 a puzzle.

 When the Responder decides to send the challenge to solve a puzzle in
 response to a IKE_SA_INIT request, the message includes at least
 three components:

 1. Cookie - this is calculated the same as in [RFC7296], i.e. the
 process of generating the cookie is not specified.

 2. Algorithm, this is the identifier of a Pseudo-Random Function
 (PRF) algorithm, one of those proposed by the Initiator in the SA
 payload.

 3. Zero Bit Count (ZBC). This is a number between 8 and 255 (or a
 special value - 0, see Section 7.1.1.1) that represents the
 length of the zero-bit run at the end of the output of the PRF
 function calculated over the cookie that the Initiator is to
 send. The values 1-8 are explicitly excluded, because they

Nir & Smyslov Expires April 4, 2017 [Page 8]

Internet-Draft DDoS Protection for IKEv2 October 2016

 create a puzzle that is too easy to solve. Since the mechanism
 is supposed to be stateless for the Responder, either the same
 ZBC is used for all Initiators, or the ZBC is somehow encoded in
 the cookie. If it is global then it means that this value is the
 same for all the Initiators who are receiving puzzles at any
 given point of time. The Responder, however, may change this
 value over time depending on its load.

 Upon receiving this challenge, the Initiator attempts to calculate
 the PRF output using different keys. When enough keys are found such
 that the resulting PRF output calculated using each of them has a
 sufficient number of trailing zero bits, that result is sent to the
 Responder.

 The reason for using several keys in the results, rather than just
 one key, is to reduce the variance in the time it takes the initiator
 to solve the puzzle. We have chosen the number of keys to be four
 (4) as a compromise between the conflicting goals of reducing
 variance and reducing the work the Responder needs to perform to
 verify the puzzle solution.

 When receiving a request with a solved puzzle, the Responder verifies
 two things:

 o That the cookie is indeed valid.

 o That the results of PRF of the transmitted cookie calculated with
 the transmitted keys has a sufficient number of trailing zero
 bits.

 Example 1: Suppose the calculated cookie is
 739ae7492d8a810cf5e8dc0f9626c9dda773c5a3 (20 octets), the algorithm
 is PRF-HMAC-SHA256, and the required number of zero bits is 18.
 After successively trying a bunch of keys, the Initiator finds the
 following four 3-octet keys that work:

 +--------+----------------------------------+----------+
 | Key | Last 32 Hex PRF Digits | # 0-bits |
 +--------+----------------------------------+----------+
 | 061840 | e4f957b859d7fb1343b7b94a816c0000 | 18 |
 | 073324 | 0d4233d6278c96e3369227a075800000 | 23 |
 | 0c8a2a | 952a35d39d5ba06709da43af40700000 | 20 |
 | 0d94c8 | 5a0452b21571e401a3d00803679c0000 | 18 |
 +--------+----------------------------------+----------+

 Table 1: Four solutions for the 18-bit puzzle

Nir & Smyslov Expires April 4, 2017 [Page 9]

Internet-Draft DDoS Protection for IKEv2 October 2016

 Example 2: Same cookie, but modify the required number of zero bits
 to 22. The first 4-octet keys that work to satisfy that requirement
 are 005d9e57, 010d8959, 0110778d, and 01187e37. Finding these
 requires 18,382,392 invocations of the PRF.

 +----------+-------------------------------+
 | # 0-bits | Time to Find 4 keys (seconds) |
 +----------+-------------------------------+
 | 8 | 0.0025 |
 | 10 | 0.0078 |
 | 12 | 0.0530 |
 | 14 | 0.2521 |
 | 16 | 0.8504 |
 | 17 | 1.5938 |
 | 18 | 3.3842 |
 | 19 | 3.8592 |
 | 20 | 10.8876 |
 +----------+-------------------------------+

 Table 2: The time needed to solve a puzzle of various difficulty for
 the cookie = 739ae7492d8a810cf5e8dc0f9626c9dda773c5a3

 The figures above were obtained on a 2.4 GHz single core i5. Run
 times can be halved or quartered with multi-core code, but would be
 longer on mobile phone processors, even if those are multi-core as
 well. With these figures 18 bits is believed to be a reasonable
 choice for puzzle level difficulty for all Initiators, and 20 bits is
 acceptable for specific hosts/prefixes.

 Using puzzles mechanism in the IKE_SA_INIT exchange is described in
 Section 7.1.

4.5. Session Resumption

 When the Responder is under attack, it SHOULD prefer previously
 authenticated peers who present a Session Resumption ticket
 [RFC5723]. However, the Responder SHOULD NOT serve resumed
 Initiators exclusively because dropping all IKE_SA_INIT requests
 would lock out legitimate Initiators that have no resumption ticket.
 When under attack the Responder SHOULD require Initiators presenting
 Session Resumption Tickets to pass a return routability check by
 including the COOKIE notification in the IKE_SESSION_RESUME response
 message, as described in Section 4.3.2. of [RFC5723]. Note that the
 Responder SHOULD cache tickets for a short time to reject reused
 tickets (Section 4.3.1), and therefore there should be no issue of
 half-open SAs resulting from replayed IKE_SESSION_RESUME messages.

Nir & Smyslov Expires April 4, 2017 [Page 10]

Internet-Draft DDoS Protection for IKEv2 October 2016

 Several kinds of DoS attacks are possible on servers supported IKE
 Session Resumption. See Section 9.3 of [RFC5723] for details.

4.6. Keeping computed Shared Keys

 Once the IKE_SA_INIT exchange is finished, the Responder is waiting
 for the first message of the IKE_AUTH exchange from the Initiator.
 At this point the Initiator is not yet authenticated, and this fact
 allows an attacker to perform an attack, described in Section 3.
 Instead of sending properly formed and encrypted IKE_AUTH message the
 attacker can just send arbitrary data, forcing the Responder to
 perform costly CPU operations to compute SK_* keys.

 If the received IKE_AUTH message failed to decrypt correctly (or
 failed to pass ICV check), then the Responder SHOULD still keep the
 computed SK_* keys, so that if it happened to be an attack, then an
 attacker cannot get advantage of repeating the attack multiple times
 on a single IKE SA. The responder can also use puzzles in the
 IKE_AUTH exchange as decribed in Section 7.2.

4.7. Preventing "Hash and URL" Certificate Encoding Attacks

 In IKEv2 each side may use the "Hash and URL" Certificate Encoding to
 instruct the peer to retrieve certificates from the specified
 location (see Section 3.6 of [RFC7296] for details). Malicious
 initiators can use this feature to mount a DoS attack on the
 responder by providing an URL pointing to a large file possibly
 containing meaningless bits. While downloading the file the
 responder consumes CPU, memory and network bandwidth.

 To prevent this kind of attack, the responder should not blindly
 download the whole file. Instead, it SHOULD first read the initial
 few bytes, decode the length of the ASN.1 structure from these bytes,
 and then download no more than the decoded number of bytes. Note,
 that it is always possible to determine the length of ASN.1
 structures used in IKEv2, if they are DER-encoded, by analyzing the
 first few bytes. However, since the content of the file being
 downloaded can be under the attacker’s control, implementations
 should not blindly trust the decoded length and SHOULD check whether
 it makes sense before continuing to download the file.
 Implementations SHOULD also apply a configurable hard limit to the
 number of pulled bytes and SHOULD provide an ability for an
 administrator to either completely disable this feature or to limit
 its use to a configurable list of trusted URLs.

Nir & Smyslov Expires April 4, 2017 [Page 11]

Internet-Draft DDoS Protection for IKEv2 October 2016

4.8. IKE Fragmentation

 IKE Fragmentation described in [RFC7383] allows IKE peers to avoid IP
 fragmentation of large IKE messages. Attackers can mount several
 kinds of DoS attacks using IKE Fragmentation. See Section 5 of
 [RFC7383] for details on how to mitigate these attacks.

5. Defense Measures after an IKE SA is created

 Once an IKE SA is created there usually are only a limited amount of
 IKE messages exchanged. This IKE traffic consists of exchanges aimed
 to create additional Child SAs, IKE rekeys, IKE deletions and IKE
 liveness tests. Some of these exchanges require relatively little
 resources (like liveness check), while others may be resource
 consuming (like creating or rekeying Child SA with D-H exchange).

 Since any endpoint can initiate a new exchange, there is a
 possibility that a peer would initiate too many exchanges that could
 exhaust host resources. For example, the peer can perform endless
 continuous Child SA rekeying or create an overwhelming number of
 Child SAs with the same Traffic Selectors etc. Such behavior can be
 caused by broken implementations, misconfiguration, or as an
 intentional attack. The latter becomes more of a real threat if the
 peer uses NULL Authentication, as described in [RFC7619]. In this
 case the peer remains anonymous, allowing it to escape any
 responsibility for its behaviour. See Section 3 of [RFC7619] for
 details on how to mitigate attacks when using NULL Authentication.

 The following recommendations apply especially for NULL Authenticated
 IKE sessions, but also apply to authenticated IKE sessions, with the
 difference that in the latter case, the identified peer can be locked
 out.

 o If the IKEv2 window size is greater than one, peers are able to
 initiate multiple simultaneous exchanges that increase host
 resource consumption. Since there is no way in IKEv2 to decrease
 window size once it has been increased (see Section 2.3 of
 [RFC7296]), the window size cannot be dynamically adjusted
 depending on the load. It is NOT RECOMMENDED to allow an IKEv2
 window size greater than one when NULL Authentication has been
 used.

 o If a peer initiates an abusive amount of CREATE_CHILD_SA exchanges
 to rekey IKE SAs or Child SAs, the Responder SHOULD reply with
 TEMPORARY_FAILURE notifications indicating the peer must slow down
 their requests.

Nir & Smyslov Expires April 4, 2017 [Page 12]

Internet-Draft DDoS Protection for IKEv2 October 2016

 o If a peer creates many Child SA with the same or overlapping
 Traffic Selectors, implementations MAY respond with the
 NO_ADDITIONAL_SAS notification.

 o If a peer initiates many exchanges of any kind, the Responder MAY
 introduce an artificial delay before responding to each request
 message. This delay would decrease the rate the Responder needs
 to process requests from any particular peer, and frees up
 resources on the Responder that can be used for answering
 legitimate clients. If the Responder receives retransmissions of
 the request message during the delay period, the retransmitted
 messages MUST be silently discarded. The delay must be short
 enough to avoid legitimate peers deleting the IKE SA due to a
 timeout. It is believed that a few seconds is enough. Note
 however, that even a few seconds may be too long when settings
 rely on an immediate response to the request message, e.g. for the
 purposes of quick detection of a dead peer.

 o If these counter-measures are inefficient, implementations MAY
 delete the IKE SA with an offending peer by sending Delete
 Payload.

 In IKE, a client can request various configuration attributes from
 server. Most often these attributes include internal IP addresses.
 Malicious clients can try to exhaust a server’s IP address pool by
 continuously requesting a large number of internal addresses. Server
 implementations SHOULD limit the number of IP addresses allocated to
 any particular client. Note, this is not possible with clients using
 NULL Authentication, since their identity cannot be verified.

6. Plan for Defending a Responder

 This section outlines a plan for defending a Responder from a DDoS
 attack based on the techniques described earlier. The numbers given
 here are not normative, and their purpose is to illustrate the
 configurable parameters needed for surviving DDoS attacks.

 Implementations are deployed in different environments, so it is
 RECOMMENDED that the parameters be settable. For example, most
 commercial products are required to undergo benchmarking where the
 IKE SA establishment rate is measured. Benchmarking is
 indistinguishable from a DoS attack and the defenses described in
 this document may defeat the benchmark by causing exchanges to fail
 or take a long time to complete. Parameters SHOULD be tunable to
 allow for benchmarking (if only by turning DDoS protection off).

 Since all countermeasures may cause delays and additional work for
 the Initiators, they SHOULD NOT be deployed unless an attack is

Nir & Smyslov Expires April 4, 2017 [Page 13]

Internet-Draft DDoS Protection for IKEv2 October 2016

 likely to be in progress. To minimize the burden imposed on
 Initiators, the Responder should monitor incoming IKE requests, for
 two scenarios:

 1. A general DDoS attack. Such an attack is indicated by a high
 number of concurrent half-open SAs, a high rate of failed
 IKE_AUTH exchanges, or a combination of both. For example,
 consider a Responder that has 10,000 distinct peers of which at
 peak 7,500 concurrently have VPN tunnels. At the start of peak
 time, 600 peers might establish tunnels within any given minute,
 and tunnel establishment (both IKE_SA_INIT and IKE_AUTH) takes
 anywhere from 0.5 to 2 seconds. For this Responder, we expect
 there to be less than 20 concurrent half-open SAs, so having 100
 concurrent half-open SAs can be interpreted as an indication of
 an attack. Similarly, IKE_AUTH request decryption failures
 should never happen. Supposing that the tunnels are established
 using EAP (see Section 2.16 of [RFC7296]), users may be expected
 to enter a wrong password about 20% of the time. So we’d expect
 125 wrong password failures a minute. If we get IKE_AUTH
 decryption failures from multiple sources more than once per
 second, or EAP failures more than 300 times per minute, this can
 also be an indication of a DDoS attack.

 2. An attack from a particular IP address or prefix. Such an attack
 is indicated by an inordinate amount of half-open SAs from a
 specific IP address or prefix, or an inordinate amount of
 IKE_AUTH failures. A DDoS attack may be viewed as multiple such
 attacks. If these are mitigated successfully, there will not be
 a need to enact countermeasures on all Initiators. For example,
 measures might be 5 concurrent half-open SAs, 1 decrypt failure,
 or 10 EAP failures within a minute.

 Note that using counter-measures against an attack from a particular
 IP address may be enough to avoid the overload on the half-open SA
 database. In this case the number of failed IKE_AUTH exchanges will
 never exceed the threshold of attack detection.

 When there is no general DDoS attack, it is suggested that no cookie
 or puzzles be used. At this point the only defensive measure is to
 monitor the number of half-open SAs, and set a soft limit per peer IP
 or prefix. The soft limit can be set to 3-5. If the puzzles are
 used, the puzzle difficulty SHOULD be set to such a level (number of
 zero-bits) that all legitimate clients can handle it without degraded
 user experience.

 As soon as any kind of attack is detected, either a lot of
 initiations from multiple sources or a lot of initiations from a few
 sources, it is best to begin by requiring stateless cookies from all

Nir & Smyslov Expires April 4, 2017 [Page 14]

Internet-Draft DDoS Protection for IKEv2 October 2016

 Initiators. This will mitigate attacks based on IP address spoofing,
 and help avoid the need to impose a greater burden in the form of
 puzzles on the general population of Initiators. This makes the per-
 node or per-prefix soft limit more effective.

 When cookies are activated for all requests and the attacker is still
 managing to consume too many resources, the Responder MAY start to
 use puzzles for these requests or increase the difficulty of puzzles
 imposed on IKE_SA_INIT requests coming from suspicious nodes/
 prefixes. This should still be doable by all legitimate peers, but
 the use of puzzles at a higher difficulty may degrade the user
 experience, for example by taking up to 10 seconds to solve the
 puzzle.

 If the load on the Responder is still too great, and there are many
 nodes causing multiple half-open SAs or IKE_AUTH failures, the
 Responder MAY impose hard limits on those nodes.

 If it turns out that the attack is very widespread and the hard caps
 are not solving the issue, a puzzle MAY be imposed on all Initiators.
 Note that this is the last step, and the Responder should avoid this
 if possible.

7. Using Puzzles in the Protocol

 This section describes how the puzzle mechanism is used in IKEv2. It
 is organized as follows. The Section 7.1 describes using puzzles in
 the IKE_SA_INIT exchange and the Section 7.2 describes using puzzles
 in the IKE_AUTH exchange. Both sections are divided into subsections
 describing how puzzles should be presented, solved and processed by
 the Initiator and the Responder.

7.1. Puzzles in IKE_SA_INIT Exchange

 IKE Initiator indicates the desire to create a new IKE SA by sending
 an IKE_SA_INIT request message. The message may optionally contain a
 COOKIE notification if this is a repeated request performed after the
 Responder’s demand to return a cookie.

 HDR, [N(COOKIE),] SA, KE, Ni, [V+][N+] -->

 According to the plan, described in Section 6, the IKE Responder
 monitors incoming requests to detect whether it is under attack. If
 the Responder learns that a (D)DoS attack is likely to be in
 progress, then its actions depend on the volume of the attack. If
 the volume is moderate, then the Responder requests the Initiator to
 return a cookie. If the volume is high to such an extent that

Nir & Smyslov Expires April 4, 2017 [Page 15]

Internet-Draft DDoS Protection for IKEv2 October 2016

 puzzles need to be used for defense, then the Responder requests the
 Initiator to solve a puzzle.

 The Responder MAY choose to process some fraction of IKE_SA_INIT
 requests without presenting a puzzle while being under attack to
 allow legacy clients, that don’t support puzzles, to have a chance to
 be served. The decision whether to process any particular request
 must be probabilistic, with the probability depending on the
 Responder’s load (i.e. on the volume of attack). The requests that
 don’t contain the COOKIE notification MUST NOT participate in this
 lottery. In other words, the Responder must first perform a return
 routability check before allowing any legacy client to be served if
 it is under attack. See Section 7.1.4 for details.

7.1.1. Presenting a Puzzle

 If the Responder makes a decision to use puzzles, then it includes
 two notifications in its response message - the COOKIE notification
 and the PUZZLE notification. Note that the PUZZLE notification MUST
 always be accompanied with the COOKIE notification, since the content
 of the COOKIE notification is used as an input data when solving
 puzzle. The format of the PUZZLE notification is described in
 Section 8.1.

 <-- HDR, N(COOKIE), N(PUZZLE), [V+][N+]

 The presence of these notifications in an IKE_SA_INIT response
 message indicates to the Initiator that it should solve the puzzle to
 have a better chance to be served.

7.1.1.1. Selecting the Puzzle Difficulty Level

 The PUZZLE notification contains the difficulty level of the puzzle -
 the minimum number of trailing zero bits that the result of PRF must
 contain. In diverse environments it is nearly impossible for the
 Responder to set any specific difficulty level that will result in
 roughly the same amount of work for all Initiators, because
 computation power of different Initiators may vary by an order of
 magnitude, or even more. The Responder may set the difficulty level
 to 0, meaning that the Initiator is requested to spend as much power
 to solve a puzzle as it can afford. In this case no specific value
 of ZBC is required from the Initiator, however the larger the ZBC
 that Initiator is able to get, the better the chance is that it will
 be served by the Responder. In diverse environments it is
 RECOMMENDED that the Initiator set the difficulty level to 0, unless
 the attack volume is very high.

Nir & Smyslov Expires April 4, 2017 [Page 16]

Internet-Draft DDoS Protection for IKEv2 October 2016

 If the Responder sets a non-zero difficulty level, then the level
 SHOULD be determined by analyzing the volume of the attack. The
 Responder MAY set different difficulty levels to different requests
 depending on the IP address the request has come from.

7.1.1.2. Selecting the Puzzle Algorithm

 The PUZZLE notification also contains an identifier of the algorithm,
 that is used by Initiator to compute puzzle.

 Cryptographic algorithm agility is considered an important feature
 for modern protocols [RFC7696]. Algorithm agility ensures that a
 protocol doesn’t rely on a single built-in set of cryptographic
 algorithms, but has a means to replace one set with another and
 negotiate new algorithms with the peer. IKEv2 fully supports
 cryptographic algorithm agility for its core operations.

 To support crypto agility in case of puzzles, the algorithm that is
 used to compute a puzzle needs to be negotiated during the
 IKE_SA_INIT exchange. The negotiation is performed as follows. The
 initial request message from the Initiator contains an SA payload
 containing a list of transforms of different types. Thereby the
 Initiator asserts that it supports all transforms from this list and
 can use any of them in the IKE SA being established. The Responder
 parses the received SA payload and finds a mutually supported of type
 PRF. The Responder selects the preferred PRF from the list of
 mutually supported ones and includes it into the PUZZLE notification.
 There is no requirement that the PRF selected for puzzles be the same
 as the PRF that is negotiated later for use in core IKE SA crypto
 operations. If there are no mutually supported PRFs, then IKE SA
 negotiation will fail anyway and there is no reason to return a
 puzzle. In this case the Responder returns a NO_PROPOSAL_CHOSEN
 notification. Note that PRF is a mandatory transform type for IKE SA
 (see Sections 3.3.2 and 3.3.3 of [RFC7296]) and at least one
 transform of this type is always present in the SA payload in an
 IKE_SA_INIT request message.

7.1.1.3. Generating a Cookie

 If the Responder supports puzzles then a cookie should be computed in
 such a manner that the Responder is able to learn some important
 information from the sole cookie, when it is later returned back by
 Initiator. In particular - the Responder SHOULD be able to learn the
 following information:

 o Whether the puzzle was given to the Initiator or only the cookie
 was requested.

Nir & Smyslov Expires April 4, 2017 [Page 17]

Internet-Draft DDoS Protection for IKEv2 October 2016

 o The difficulty level of the puzzle given to the Initiator.

 o The number of consecutive puzzles given to the Initiator.

 o The amount of time the Initiator spent to solve the puzzles. This
 can be calculated if the cookie is timestamped.

 This information helps the Responder to make a decision whether to
 serve this request or demand more work from the Initiator.

 One possible approach to get this information is to encode it in the
 cookie. The format of such encoding is an implementation detail of
 Responder, as the cookie would remain an opaque block of data to the
 Initiator. If this information is encoded in the cookie, then the
 Responder MUST make it integrity protected, so that any intended or
 accidental alteration of this information in the returned cookie is
 detectable. So, the cookie would be generated as:

 Cookie = <VersionIDofSecret> | <AdditionalInfo> |
 Hash(Ni | IPi | SPIi | <AdditionalInfo> | <secret>)

 Note, that according to the Section 2.6 of [RFC7296], the size of the
 cookie cannot exceed 64 bytes.

 Alternatively, the Responder may generate a cookie as suggested in
 Section 2.6 of [RFC7296], but associate the additional information,
 using local storage identified with the particular version of the
 secret. In this case the Responder should have different secrets for
 every combination of difficulty level and number of consecutive
 puzzles, and should change the secrets periodically, keeping a few
 previous versions, to be able to calculate how long ago a cookie was
 generated.

 The Responder may also combine these approaches. This document
 doesn’t mandate how the Responder learns this information from a
 cookie.

 When selecting cookie generation algorithm implementations MUST
 ensure that an attacker gains no or insignificant benefit from re-
 using puzzle solutions in several requests. See Section 10 for
 details.

7.1.2. Solving a Puzzle and Returning the Solution

 If the Initiator receives a puzzle but it doesn’t support puzzles,
 then it will ignore the PUZZLE notification as an unrecognized status
 notification (in accordance to Section 3.10.1 of [RFC7296]). The
 Initiator MAY ignore the PUZZLE notification if it is not willing to

Nir & Smyslov Expires April 4, 2017 [Page 18]

Internet-Draft DDoS Protection for IKEv2 October 2016

 spend resources to solve the puzzle of the requested difficulty, even
 if it supports puzzles. In both cases the Initiator acts as
 described in Section 2.6 of [RFC7296] - it restarts the request and
 includes the received COOKIE notification into it. The Responder
 should be able to distinguish the situation when it just requested a
 cookie from the situation where the puzzle was given to the
 Initiator, but the Initiator for some reason ignored it.

 If the received message contains a PUZZLE notification and doesn’t
 contain a COOKIE notification, then this message is malformed because
 it requests to solve the puzzle, but doesn’t provide enough
 information to allow the puzzle to be solved. In this case the
 Initiator MUST ignore the received message and continue to wait until
 either a valid PUZZLE notification is received or the retransmission
 timer fires. If it fails to receive a valid message after several
 retransmissions of IKE_SA_INIT requests, then it means that something
 is wrong and the IKE SA cannot be established.

 If the Initiator supports puzzles and is ready to solve them, then it
 tries to solve the given puzzle. After the puzzle is solved the
 Initiator restarts the request and returns back to the Responder the
 puzzle solution in a new payload called a Puzzle Solution payload
 (denoted as PS, see Section 8.2) along with the received COOKIE
 notification.

 HDR, N(COOKIE), [PS,] SA, KE, Ni, [V+][N+] -->

7.1.3. Computing a Puzzle

 General principles of constructing puzzles in IKEv2 are described in
 Section 4.4. They can be summarized as follows: given unpredictable
 string S and pseudo-random function PRF find N different keys Ki
 (where i=[1..N]) for that PRF so that the result of PRF(Ki,S) has at
 least the specified number of trailing zero bits. This specification
 requires that the puzzle solution contains 4 different keys (i.e.,
 N=4).

 In the IKE_SA_INIT exchange it is the cookie that plays the role of
 unpredictable string S. In other words, in the IKE_SA_INIT the task
 for the IKE Initiator is to find the four different, equal-sized keys
 Ki for the agreed upon PRF such that each result of PRF(Ki,cookie)
 where i = [1..4] has a sufficient number of trailing zero bits. Only
 the content of the COOKIE notification is used in puzzle calculation,
 i.e., the header of the Notify payload is not included.

 Note, that puzzles in the IKE_AUTH exchange are computed differently
 than in the IKE_SA_INIT_EXCHANGE. See Section 7.2.3 for details.

Nir & Smyslov Expires April 4, 2017 [Page 19]

Internet-Draft DDoS Protection for IKEv2 October 2016

7.1.4. Analyzing Repeated Request

 The received request must at least contain a COOKIE notification.
 Otherwise it is an initial request and in this case it MUST be
 processed according to Section 7.1. First, the cookie MUST be
 checked for validity. If the cookie is invalid, then the request is
 treated as initial and is processed according to Section 7.1. It is
 RECOMMENDED that a new cookie is requested in this case.

 If the cookie is valid, then some important information is learned
 from it, or from local state based on identifier of the cookie’s
 secret (see Section 7.1.1.3 for details). This information helps the
 Responder to sort out incoming requests, giving more priority to
 those which were created by spending more of the Initiator’s
 resources.

 First, the Responder determines if it requested only a cookie, or
 presented a puzzle to the Initiator. If no puzzle was given, this
 means that at the time the Responder requested a cookie it didn’t
 detect the (D)DoS attack or the attack volume was low. In this case
 the received request message must not contain the PS payload, and
 this payload MUST be ignored if the message contains a PS payload for
 any reason. Since no puzzle was given, the Responder marks the
 request with the lowest priority since the Initiator spent little
 resources creating it.

 If the Responder learns from the cookie that the puzzle was given to
 the Initiator, then it looks for the PS payload to determine whether
 its request to solve the puzzle was honored or not. If the incoming
 message doesn’t contain a PS payload, this means that the Initiator
 either doesn’t support puzzles or doesn’t want to deal with them. In
 either case the request is marked with the lowest priority since the
 Initiator spent little resources creating it.

 If a PS payload is found in the message, then the Responder MUST
 verify the puzzle solution that it contains. The solution is
 interpreted as four different keys. The result of using each of them
 in the PRF (as described in Section 7.1.3) must contain at least the
 requested number of trailing zero bits. The Responder MUST check all
 of the four returned keys.

 If any checked result contains fewer bits than were requested, this
 means that the Initiator spent less resources than expected by the
 Responder. This request is marked with the lowest priority.

 If the Initiator provided the solution to the puzzle satisfying the
 requested difficulty level, or if the Responder didn’t indicate any
 particular difficulty level (by setting ZBC to zero) and the

Nir & Smyslov Expires April 4, 2017 [Page 20]

Internet-Draft DDoS Protection for IKEv2 October 2016

 Initiator was free to select any difficulty level it can afford, then
 the priority of the request is calculated based on the following
 considerations:

 o The Responder MUST take the smallest number of trailing zero bits
 among the checked results and count it as the number of zero bits
 the Initiator solved for.

 o The higher number of zero bits the Initiator provides, the higher
 priority its request should receive.

 o The more consecutive puzzles the Initiator solved, the higher
 priority it should receive.

 o The more time the Initiator spent solving the puzzles, the higher
 priority it should receive.

 After the priority of the request is determined the final decision
 whether to serve it or not is made.

7.1.5. Deciding if to Serve the Request

 The Responder decides what to do with the request based on the
 request’s priority and the Responder’s current load. There are three
 possible actions:

 o Accept request.

 o Reject request.

 o Demand more work from the Initiator by giving it a new puzzle.

 The Responder SHOULD accept an incoming request if its priority is
 high - this means that the Initiator spent quite a lot of resources.
 The Responder MAY also accept some low-priority requests where the
 Initiators don’t support puzzles. The percentage of accepted legacy
 requests depends on the Responder’s current load.

 If the Initiator solved the puzzle, but didn’t spend much resources
 for it (the selected puzzle difficulty level appeared to be low and
 the Initiator solved it quickly), then the Responder SHOULD give it
 another puzzle. The more puzzles the Initiator solves the higher its
 chances are to be served.

 The details of how the Responder makes a decision for any particular
 request are implementation dependent. The Responder can collect all
 of the incoming requests for some short period of time, sort them out
 based on their priority, calculate the number of available memory

Nir & Smyslov Expires April 4, 2017 [Page 21]

Internet-Draft DDoS Protection for IKEv2 October 2016

 slots for half-open IKE SAs and then serve that number of requests
 from the head of the sorted list. The remainder of requests can be
 either discarded or responded to with new puzzle requests.

 Alternatively, the Responder may decide whether to accept every
 incoming request with some kind of lottery, taking into account its
 priority and the available resources.

7.2. Puzzles in an IKE_AUTH Exchange

 Once the IKE_SA_INIT exchange is completed, the Responder has created
 a state and is waiting for the first message of the IKE_AUTH exchange
 from the Initiator. At this point the Initiator has already passed
 the return routability check and has proved that it has performed
 some work to complete IKE_SA_INIT exchange. However, the Initiator
 is not yet authenticated and this allows a malicious Initiator to
 perform an attack, described in Section 3. Unlike a DoS attack in
 the IKE_SA_INIT exchange, which is targeted on the Responder’s memory
 resources, the goal of this attack is to exhaust a Responder’s CPU
 power. The attack is performed by sending the first IKE_AUTH message
 containing arbitrary data. This costs nothing to the Initiator, but
 the Responder has to perform relatively costly operations when
 computing the D-H shared secret and deriving SK_* keys to be able to
 verify authenticity of the message. If the Responder doesn’t keep
 the computed keys after an unsuccessful verification of the IKE_AUTH
 message, then the attack can be repeated several times on the same
 IKE SA.

 The Responder can use puzzles to make this attack more costly for the
 Initiator. The idea is that the Responder includes a puzzle in the
 IKE_SA_INIT response message and the Initiator includes a puzzle
 solution in the first IKE_AUTH request message outside the Encrypted
 payload, so that the Responder is able to verify puzzle solution
 before computing the D-H shared secret.

 The Responder constantly monitors the amount of the half-open IKE SA
 states that receive IKE_AUTH messages that cannot be decrypted due to
 integrity check failures. If the percentage of such states is high
 and it takes an essential fraction of Responder’s computing power to
 calculate keys for them, then the Responder may assume that it is
 under attack and SHOULD use puzzles to make it harder for attackers.

7.2.1. Presenting Puzzle

 The Responder requests the Initiator to solve a puzzle by including
 the PUZZLE notification in the IKE_SA_INIT response message. The
 Responder MUST NOT use puzzles in the IKE_AUTH exchange unless a

Nir & Smyslov Expires April 4, 2017 [Page 22]

Internet-Draft DDoS Protection for IKEv2 October 2016

 puzzle has been previously presented and solved in the preceding
 IKE_SA_INIT exchange.

 <-- HDR, SA, KE, Nr, N(PUZZLE), [V+][N+]

7.2.1.1. Selecting Puzzle Difficulty Level

 The difficulty level of the puzzle in the IKE_AUTH exchange should be
 chosen so that the Initiator would spend more time to solve the
 puzzle than the Responder to compute the D-H shared secret and the
 keys needed to decrypt and verify the IKE_AUTH request message. On
 the other hand, the difficulty level should not be too high,
 otherwise legitimate clients will experience an additional delay
 while establishing the IKE SA.

 Note, that since puzzles in the IKE_AUTH exchange are only allowed to
 be used if they were used in the preceding IKE_SA_INIT exchange, the
 Responder would be able to roughly estimate the computational power
 of the Initiator and select the difficulty level accordingly. Unlike
 puzzles in the IKE_SA_INIT, the requested difficulty level for
 IKE_AUTH puzzles MUST NOT be zero. In other words, the Responder
 must always set a specific difficulty level and must not let the
 Initiator to choose it on its own.

7.2.1.2. Selecting the Puzzle Algorithm

 The algorithm for the puzzle is selected as described in
 Section 7.1.1.2. There is no requirement that the algorithm for the
 puzzle in the IKE_SA INIT exchange be the same as the algorithm for
 the puzzle in IKE_AUTH exchange; however, it is expected that in most
 cases they will be the same.

7.2.2. Solving Puzzle and Returning the Solution

 If the IKE_SA_INIT regular response message (i.e. the message
 containing SA, KE, NONCE payloads) contains the PUZZLE notification
 and the Initiator supports puzzles, it MUST solve the puzzle. Note,
 that puzzle construction in the IKE_AUTH exchange differs from the
 puzzle construction in the IKE_SA_INIT exchange and is described in
 Section 7.2.3. Once the puzzle is solved the Initiator sends the
 IKE_AUTH request message containing the Puzzle Solution payload.

 HDR, PS, SK {IDi, [CERT,] [CERTREQ,]
 [IDr,] AUTH, SA, TSi, TSr} -->

 The Puzzle Solution (PS) payload MUST be placed outside the Encrypted
 payload, so that the Responder is able to verify the puzzle before
 calculating the D-H shared secret and the SK_* keys.

Nir & Smyslov Expires April 4, 2017 [Page 23]

Internet-Draft DDoS Protection for IKEv2 October 2016

 If IKE Fragmentation [RFC7383] is used in IKE_AUTH exchange, then the
 PS payload MUST be present only in the first IKE Fragment message, in
 accordance with the Section 2.5.3 of [RFC7383]. Note, that
 calculation of the puzzle in the IKE_AUTH exchange doesn’t depend on
 the content of the IKE_AUTH message (see Section 7.2.3). Thus the
 Initiator has to solve the puzzle only once and the solution is valid
 for both unfragmented and fragmented IKE messages.

7.2.3. Computing the Puzzle

 A puzzle in the IKE_AUTH exchange is computed differently than in the
 IKE_SA_INIT exchange (see Section 7.1.3). The general principle is
 the same; the difference is in the construction of the string S.
 Unlike the IKE_SA_INIT exchange, where S is the cookie, in the
 IKE_AUTH exchange S is a concatenation of Nr and SPIr. In other
 words, the task for IKE Initiator is to find the four different keys
 Ki for the agreed upon PRF such that each result of PRF(Ki,Nr | SPIr)
 where i=[1..4] has a sufficient number of trailing zero bits. Nr is
 a nonce used by the Responder in the IKE_SA_INIT exchange, stripped
 of any headers. SPIr is the IKE Responder’s SPI from the IKE header
 of the SA being established.

7.2.4. Receiving the Puzzle Solution

 If the Responder requested the Initiator to solve a puzzle in the
 IKE_AUTH exchange, then it MUST silently discard all the IKE_AUTH
 request messages without the Puzzle Solution payload.

 Once the message containing a solution to the puzzle is received, the
 Responder MUST verify the solution before performing computationlly
 intensive operations i.e., computing the D-H shared secret and the
 SK_* keys. The Responder MUST verify all four of the returned keys.

 The Responder MUST silently discard the received message if any
 checked verification result is not correct (contains insufficient
 number of trailing zero bits). If the Responder successfully
 verifies the puzzle and calculates the SK_* key, but the message
 authenticity check fails, then it SHOULD save the calculated keys in
 the IKE SA state while waiting for the retransmissions from the
 Initiator. In this case the Responder may skip verification of the
 puzzle solution and ignore the Puzzle Solution payload in the
 retransmitted messages.

 If the Initiator uses IKE Fragmentation, then it sends all fragments
 of a message simultaneously. Due to packets loss and/or reordering
 it is possible that the Responder receives subsequent fragments
 before receiving the first one, that contains the PS payload. In
 this case the Responder MAY choose to keep the received fragments

Nir & Smyslov Expires April 4, 2017 [Page 24]

Internet-Draft DDoS Protection for IKEv2 October 2016

 until the first fragment containing the solution to the puzzle is
 received. In this case the Responder SHOULD NOT try to verify
 authenticity of the kept fragments until the first fragment with the
 PS payload is received and the solution to the puzzle is verified.
 After successful verification of the puzzle, the Responder can then
 calculate the SK_* key and verify authenticity of the collected
 fragments.

8. Payload Formats

8.1. PUZZLE Notification

 The PUZZLE notification is used by the IKE Responder to inform the
 Initiator about the need to solve the puzzle. It contains the
 difficulty level of the puzzle and the PRF the Initiator should use.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 |Protocol ID(=0)| SPI Size (=0) | Notify Message Type |
 +-+
 | PRF | Difficulty |
 +-+

 o Protocol ID (1 octet) -- MUST be 0.

 o SPI Size (1 octet) - MUST be 0, meaning no Security Parameter
 Index (SPI) is present.

 o Notify Message Type (2 octets) -- MUST be <TBA by IANA>, the value
 assigned for the PUZZLE notification.

 o PRF (2 octets) -- Transform ID of the PRF algorithm that MUST be
 used to solve the puzzle. Readers should refer to the section
 "Transform Type 2 - Pseudo-Random Function Transform IDs" in
 [IKEV2-IANA] for the list of possible values.

 o Difficulty (1 octet) -- Difficulty Level of the puzzle. Specifies
 the minimum number of trailing zero bits (ZBC), that each of the
 results of PRF must contain. Value 0 means that the Responder
 doesn’t request any specific difficulty level and the Initiator is
 free to select an appropriate difficulty level on its own (see
 Section 7.1.1.1 for details).

 This notification contains no data.

Nir & Smyslov Expires April 4, 2017 [Page 25]

Internet-Draft DDoS Protection for IKEv2 October 2016

8.2. Puzzle Solution Payload

 The solution to the puzzle is returned back to the Responder in a
 dedicated payload, called the Puzzle Solution payload and denoted as
 PS in this document.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | |
 ˜ Puzzle Solution Data ˜
 | |
 +-+

 o Puzzle Solution Data (variable length) -- Contains the solution to
 the puzzle - four different keys for the selected PRF. This field
 MUST NOT be empty. All of the keys MUST have the same size,
 therefore the size of this field is always a mutiple of 4 bytes.
 If the selected PRF accepts only fixed-size keys, then the size of
 each key MUST be of that fixed size. If the agreed upon PRF
 accepts keys of any size, then then the size of each key MUST be
 between 1 octet and the preferred key length of the PRF
 (inclusive). It is expected that in most cases the keys will be 4
 (or even less) octets in length, however it depends on puzzle
 difficulty and on the Initiator’s strategy to find solutions, and
 thus the size is not mandated by this specification. The
 Responder determines the size of each key by dividing the size of
 the Puzzle Solution Data by 4 (the number of keys). Note that the
 size of Puzzle Solution Data is the size of Payload (as indicated
 in Payload Length field) minus 4 - the size of Payload Header.

 The payload type for the Puzzle Solution payload is <TBA by IANA>.

9. Operational Considerations

 The puzzle difficulty level should be set by balancing the
 requirement to minimize the latency for legitimate Initiators with
 making things difficult for attackers. A good rule of thumb is for
 taking about 1 second to solve the puzzle. A typical Initiator or
 botnet member at the time this document is written can perform
 slightly less than a million hashes per second per core, so setting
 the number of zero bits to 20 is a good compromise. It should be
 noted that mobile Initiators, especially phones are considerably
 weaker than that. Implementations should allow administrators to set
 the difficulty level, and/or be able to set the difficulty level
 dynamically in response to load.

Nir & Smyslov Expires April 4, 2017 [Page 26]

Internet-Draft DDoS Protection for IKEv2 October 2016

 Initiators SHOULD set a maximum difficulty level beyond which they
 won’t try to solve the puzzle and log or display a failure message to
 the administrator or user.

 Until the widespread adoption of puzzles happens, most Initiators
 will ignore them, as will all attackers. For puzzles to become a
 really powerfull defense measure against DDoS attacks they must be
 supported by the majority of legitimate clients.

10. Security Considerations

 Care must be taken when selecting parameters for the puzzles, in
 particular the puzzle difficulty. If the puzzles are too easy for
 the majority of attacker, then the puzzle mechanism wouldn’t be able
 to prevent (D)DoS attacks and would only impose an additional burden
 on legitimate Initiators. On the other hand, if the puzzles are too
 hard for the majority of Initiators, then many legitimate users would
 experience unacceptable delays in IKE SA setup (and unacceptable
 power consumption on mobile devices), that might cause them to cancel
 the connection attempt. In this case the resources of the Responder
 are preserved, however the DoS attack can be considered successful.
 Thus a sensible balance should be kept by the Responder while
 choosing the puzzle difficulty - to defend itself and to not over-
 defend itself. It is RECOMMENDED that the puzzle difficulty be
 chosen so, that the Responder’s load remains close to the maximum it
 can tolerate. It is also RECOMMENDED to dynamically adjust the
 puzzle difficulty in accordance to the current Responder’s load.

 If the cookie is generated as suggested in Section 2.6 of [RFC7296],
 then an attacker can use the same SPIi and the same Ni for several
 requests from the same IPi. This will result in generating the same
 cookies for these requests until the Responder changes the value of
 its cookie generation secret. Since the cookies are used as an input
 data for puzzles in the IKE_SA_INIT exchange, generating same cookies
 allows the attacker to re-use puzzle solution, thus bypassing proof
 of work requirement. Note, that the attacker can get only limited
 benefit from this situation - once the half-open SA is created by the
 Responder all the subsequent initial requests with the same IPi and
 SPIi will be treated as retransmissions and discarded by the
 Responder. However, once this half-open SA is expired and deleted,
 the attacker can create a new one for free if the Responder haven’t
 changed its cookie generation secret yet.

 The Responder can use various countermeasures to completely eliminate
 or mitigate this scenatio. First, the Responder can change its
 cookie generation secret frequently especially if under attack, as
 recommended in the Section 2.6 of [RFC7296]. For example, if the
 Responder keeps two values of the secret (current and previous) and

Nir & Smyslov Expires April 4, 2017 [Page 27]

Internet-Draft DDoS Protection for IKEv2 October 2016

 the secret lifetime is no more than a half of the current half-open
 SA retention time (see Section 4.1), then the attacker cannot get
 benefit from re-using puzzle solution. However, short cookie
 generation secret lifetime could have negative consequence on weak
 legitimate Initiators, since it could take too long for them to solve
 puzzles and their solutons would be discarded if the cookie
 generation secret has been already changed few times.

 Another approach for the Responder is to modify cookie generation
 algorithm in such a way, that the generated cookies are always
 different or are repeated only within short time period. If the
 Responder includes timestamp in the <AdditionalInfo> as suggested in
 Section 7.1.1.3, then the cookies will repeat only within short time
 interval equal to timestamp resolution. Another approach for the
 Responder is to maintain a global counter that is incremented every
 time a cookie is generated and include this counter in the
 <AdditionalInfo>. This will make every cookies unique.

 Implementations MUST use one of the above (or some other)
 countermeasures to completely eliminate or make insignificant the
 possible benefit an attacker can get from re-using puzzle solutions.
 Note, this issue doesn’t exist in IKE_AUTH puzzles (Section 7.2)
 since the puzzles in IKE_AUTH are always unique if the Responder
 generates SPIr and Nr randomly in accordance with [RFC7296].

 Solving puzzles requires a lot of CPU power that increases power
 consumption. This additional power consumption can negatively affect
 battery-powered Initiators, e.g. mobile phones or some IoT devices.
 If puzzles are too hard, then the required additional power
 consumption may appear to be unacceptable for some Initiators. The
 Responder SHOULD take this possibility into consideration while
 choosing the puzzle difficulty, and while selecting which percentage
 of Initiators are allowed to reject solving puzzles. See
 Section 7.1.4 for details.

 If the Initiator uses NULL Authentication [RFC7619] then its identity
 is never verified. This condition may be used by attackers to
 perform a DoS attack after the IKE SA is established. Responders
 that allow unauthenticated Initiators to connect must be prepared to
 deal with various kinds of DoS attacks even after the IKE SA is
 created. See Section 5 for details.

 To prevent amplification attacks implementations must strictly follow
 the retransmission rules described in Section 2.1 of [RFC7296].

Nir & Smyslov Expires April 4, 2017 [Page 28]

Internet-Draft DDoS Protection for IKEv2 October 2016

11. IANA Considerations

 This document defines a new payload in the "IKEv2 Payload Types"
 registry:

 <TBA> Puzzle Solution PS

 This document also defines a new Notify Message Type in the "IKEv2
 Notify Message Types - Status Types" registry:

 <TBA> PUZZLE

12. Acknowledgements

 The authors thank Tero Kivinen, Yaron Sheffer, and Scott Fluhrer for
 their contributions to the design of the protocol. In particular,
 Tero Kivinen suggested the kind of puzzle where the task is to find a
 solution with a requested number of zero trailing bits. Yaron
 Sheffer and Scott Fluhrer suggested a way to make puzzle difficulty
 less erratic by solving several weaker puzles. The authors also
 thank David Waltermire and Paul Wouters for their careful reviews of
 the document, Graham Bartlett for pointing out to the possibility of
 the "Hash & URL" related attack, Stephen Farrell for catching the
 repeated cookie issue, and all others who commented the document.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5723] Sheffer, Y. and H. Tschofenig, "Internet Key Exchange
 Protocol Version 2 (IKEv2) Session Resumption", RFC 5723,
 DOI 10.17487/RFC5723, January 2010,
 <http://www.rfc-editor.org/info/rfc5723>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <http://www.rfc-editor.org/info/rfc7296>.

 [RFC7383] Smyslov, V., "Internet Key Exchange Protocol Version 2
 (IKEv2) Message Fragmentation", RFC 7383,
 DOI 10.17487/RFC7383, November 2014,
 <http://www.rfc-editor.org/info/rfc7383>.

Nir & Smyslov Expires April 4, 2017 [Page 29]

Internet-Draft DDoS Protection for IKEv2 October 2016

 [IKEV2-IANA]
 "Internet Key Exchange Version 2 (IKEv2) Parameters",
 <http://www.iana.org/assignments/ikev2-parameters>.

13.2. Informative References

 [bitcoins]
 Nakamoto, S., "Bitcoin: A Peer-to-Peer Electronic Cash
 System", October 2008, <https://bitcoin.org/bitcoin.pdf>.

 [RFC7619] Smyslov, V. and P. Wouters, "The NULL Authentication
 Method in the Internet Key Exchange Protocol Version 2
 (IKEv2)", RFC 7619, DOI 10.17487/RFC7619, August 2015,
 <http://www.rfc-editor.org/info/rfc7619>.

 [RFC7696] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",
 BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <http://www.rfc-editor.org/info/rfc7696>.

Authors’ Addresses

 Yoav Nir
 Check Point Software Technologies Ltd.
 5 Hasolelim st.
 Tel Aviv 6789735
 Israel

 EMail: ynir.ietf@gmail.com

 Valery Smyslov
 ELVIS-PLUS
 PO Box 81
 Moscow (Zelenograd) 124460
 Russian Federation

 Phone: +7 495 276 0211
 EMail: svan@elvis.ru

Nir & Smyslov Expires April 4, 2017 [Page 30]

