
OAuth Working Group J. Richer, Ed.
Internet-Draft
Intended status: Standards Track J. Bradley
Expires: February 9, 2017 Ping Identity
 H. Tschofenig
 ARM Limited
 August 08, 2016

 A Method for Signing HTTP Requests for OAuth
 draft-ietf-oauth-signed-http-request-03

Abstract

 This document a method for offering data origin authentication and
 integrity protection of HTTP requests. To convey the relevant data
 items in the request a JSON-based encapsulation is used and the JSON
 Web Signature (JWS) technique is re-used. JWS offers integrity
 protection using symmetric as well as asymmetric cryptography.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 9, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Richer, et al. Expires February 9, 2017 [Page 1]

Internet-Draft HTTP Signed Messages August 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Generating a JSON Object from an HTTP Request 3
 3.1. Calculating the query parameter list and hash 4
 3.2. Calculating the header list and hash 5
 4. Sending the signed object 6
 4.1. HTTP Authorization header 6
 4.2. HTTP Form body . 6
 4.3. HTTP Query parameter 7
 5. Validating the request 7
 5.1. Validating the query parameter list and hash 7
 5.2. Validating the header list and hash 8
 6. IANA Considerations . 9
 6.1. The ’pop’ OAuth Access Token Type 9
 6.2. JSON Web Signature and Encryption Type Values
 Registration . 9
 7. Security Considerations 9
 7.1. Offering Confidentiality Protection for Access to
 Protected Resources 9
 7.2. Plaintext Storage of Credentials 10
 7.3. Entropy of Keys . 10
 7.4. Denial of Service . 10
 7.5. Validating the integrity of HTTP message 11
 8. Privacy Considerations 12
 9. Acknowledgements . 12
 10. Normative References . 12
 Authors’ Addresses . 13

1. Introduction

 In order to prove possession of an access token and its associated
 key, an OAuth 2.0 client needs to compute some cryptographic function
 and present the results to the protected resource as a signature.
 The protected resource then needs to verify the signature and compare
 that to the expected keys associated with the access token. This is
 in addition to the normal token protections provided by a bearer
 token [RFC6750] and transport layer security (TLS).

 Furthermore, it is desirable to bind the signature to the HTTP
 request. Ideally, this should be done without replicating the
 information already present in the HTTP request more than required.
 However, many HTTP application frameworks insert extra headers, query

Richer, et al. Expires February 9, 2017 [Page 2]

Internet-Draft HTTP Signed Messages August 2016

 parameters, and otherwise manipulate the HTTP request on its way from
 the web server into the application code itself. It is the goal of
 this draft to have a signature protection mechanism that is
 sufficiently robust against such deployment constraints while still
 providing sufficient security benefits.

 The key required for this signature calculation is distributed via
 mechanisms described in companion documents (see
 [I-D.ietf-oauth-pop-key-distribution] and
 [I-D.ietf-oauth-pop-architecture]). The JSON Web Signature (JWS)
 specification [RFC7515] is used for computing a digital signature
 (which uses asymmetric cryptography) or a keyed message digest (in
 case of symmetric cryptography).

 The mechanism described in this document assumes that a client is in
 possession of an access token and asociated key. That client then
 creates a JSON object including the access token, signs the JSON
 object using JWS, and issues an request to a resource server for
 access to a protected resource using the signed object as its
 authorization. The protected resource validates the JWS signature
 and parses the JSON object to obtain token information.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 Other terms such as "client", "authorization server", "access token",
 and "protected resource" are inherited from OAuth 2.0 [RFC6749].

 We use the term ’sign’ (or ’signature’) to denote both a keyed
 message digest and a digital signature operation.

3. Generating a JSON Object from an HTTP Request

 This specification uses JSON Web Signatures [RFC7515] to protect the
 access token and, optionally, parts of the request.

 This section describes how to generate a JSON [RFC7159] object from
 the HTTP request. Each value below is included as a member of the
 JSON object at the top level.

 at REQUIRED. The access token value. This string is assumed to have
 no particular format or structure and remains opaque to the
 client.

Richer, et al. Expires February 9, 2017 [Page 3]

Internet-Draft HTTP Signed Messages August 2016

 ts RECOMMENDED. The timestamp. This integer provides replay
 protection of the signed JSON object. Its value MUST be a number
 containing an integer value representing number of whole integer
 seconds from midnight, January 1, 1970 GMT.

 m OPTIONAL. The HTTP Method used to make this request. This MUST
 be the uppercase HTTP verb as a JSON string.

 u OPTIONAL. The HTTP URL host component as a JSON string. This MAY
 include the port separated from the host by a colon in host:port
 format.

 p OPTIONAL. The HTTP URL path component of the request as an HTTP
 string.

 q OPTIONAL. The hashed HTTP URL query parameter map of the request
 as a two-part JSON array. The first part of this array is a JSON
 array listing all query parameters that were used in the
 calculation of the hash in the order that they were added to the
 hashed value as described below. The second part of this array is
 a JSON string containing the Base64URL encoded hash itself,
 calculated as described below.

 h OPTIONAL. The hashed HTTP request headers as a two-part JSON
 array. The first part of this array is a JSON array listing all
 headers that were used in the calculation of the hash in the order
 that they were added to the hashed value as described below. The
 second part of this array is a JSON string containing the
 Base64URL encoded hash itself, calculated as described below.

 b OPTIONAL. The base64URL encoded hash of the HTTP Request body,
 calculated as the SHA256 of the byte array of the body

 All hashes SHALL be calculated using the SHA256 algorithm. [[Note to
 WG: do we want crypto agility here? If so how do we signal this]]

 The JSON object is signed using the algorithm appropriate to the
 associated access token key, usually communicated as part of key
 distribution [I-D.ietf-oauth-pop-key-distribution].

3.1. Calculating the query parameter list and hash

 To generate the query parameter list and hash, the client creates two
 data objects: an ordered list of strings to hold the query parameter
 names and a string buffer to hold the data to be hashed.

 The client iterates through all query parameters in whatever order it
 chooses and for each query parameter it does the following:

Richer, et al. Expires February 9, 2017 [Page 4]

Internet-Draft HTTP Signed Messages August 2016

 1. Adds the name of the query parameter to the end of the list.

 2. Percent-encodes the name and value of the parameter as specified
 in [RFC3986]. Note that if the name and value have already been
 percent-encoded for transit, they are not re-encoded for this
 step.

 3. Encodes the name and value of the query parameter as "name=value"
 and appends it to the string buffer separated by the ampersand
 "&" character.

 Repeated parameter names are processed separately with no special
 handling. Parameters MAY be skipped by the client if they are not
 required (or desired) to be covered by the signature.

 The client then calculates the hash over the resulting string buffer.
 The list and the hash result are added to a list as the value of the
 "q" member.

 For example, the query parameter set of "b=bar", "a=foo", "c=duck" is
 concatenated into the string:

 b=bar&a=foo&c=duck

 When added to the JSON structure using this process, the results are:

 "q": [["b", "a", "c"], "u4LgkGUWhP9MsKrEjA4dizIllDXluDku6ZqCeyuR-JY"]

3.2. Calculating the header list and hash

 To generate the header list and hash, the client creates two data
 objects: an ordered list of strings to hold the header names and a
 string buffer to hold the data to be hashed.

 The client iterates through all query parameters in whatever order it
 chooses and for each query parameter it does the following:

 1. Lowercases the header name.

 2. Adds the name of the header to the end of the list.

 3. Encodes the name and value of the header as "name: value" and
 appends it to the string buffer separated by a newline "\n"
 character.

 Repeated header names are processed separately with no special
 handling. Headers MAY be skipped by the client if they are not
 required (or desired) to be covered by the signature.

Richer, et al. Expires February 9, 2017 [Page 5]

Internet-Draft HTTP Signed Messages August 2016

 The client then calculates the hash over the resulting string buffer.
 The list and the hash result are added to a list as the value of the
 "h" member.

 For example, the headers "Content-Type: application/json" and "Etag:
 742-3u8f34-3r2nvv3" are concatenated into the string:

 content-type: application/json
 etag: 742-3u8f34-3r2nvv3

 "h": [["content-type", "etag"],
 "bZA981YJBrPlIzOvplbu3e7ueREXXr38vSkxIBYOaxI"]

4. Sending the signed object

 In order to send the signed object to the protected resource, the
 client includes it in one of the following three places.

4.1. HTTP Authorization header

 The client SHOULD send the signed object to the protected resource in
 the Authorization header. The value of the signed object in JWS
 compact form is appended to the Authorization header as a PoP value.
 This is the preferred method. Note that if this method is used, the
 Authorization header MUST NOT be included in the protected elements
 of the signed object.

 GET /resource/foo
 Authorization: PoP eyJ....omitted for brevity...

4.2. HTTP Form body

 If the client is sending the request as a form-encoded HTTP message
 with parameters in the body, the client MAY send the signed object as
 part of that form body. The value of the signed object in JWS
 compact form is sent as the form parameter pop_access_token. Note
 that if this method is used, the body hash cannot be included in the
 protected elements of the signed object.

 POST /resource
 Content-type: application/www-form-encoded

 pop_access_token=eyJ....omitted for brevity...

Richer, et al. Expires February 9, 2017 [Page 6]

Internet-Draft HTTP Signed Messages August 2016

4.3. HTTP Query parameter

 If neither the Authorization header nor the form-encoded body
 parameter are available to the client, the client MAY send the signed
 object as a query parameter. The value of the signed object in JWS
 compact form is sent as the query parameter pop_access_token. Note
 that if this method is used, the pop_access_token parameter MUST NOT
 be included in the protected elements of the signed object.

 GET /resource?pop_access_token=eyJ....

5. Validating the request

 Just like with a bearer token [RFC6750], while the access token value
 included in the signed object is opaque to the client, it MUST be
 understood by the protected resource in order to fulfill the request.
 Also like a bearer token, the protected resource traditionally has
 several methods at its disposal for understanding the access token.
 It can look up the token locally (such as in a database), it can
 parse a structured token (such as JWT [RFC7519]), or it can use a
 service to look up token information (such as introspection
 [RFC7662]). Whatever method is used to look up token information,
 the protected resource MUST have access to the key associated with
 the access token, as this key is required to validate the signature
 of the incoming request. Validation of the signature is done using
 normal JWS validation for the signature and key type.

 Additionally, in order to trust any of the hashed components of the
 HTTP request, the protected resource MUST re-create and verify a hash
 for each component as described below. This process is a mirror of
 the process used to create the hashes in the first place, with a mind
 toward the fact that order may have changed and that elements may
 have been added or deleted. The protected resource MUST similarly
 compare the replicated values included in various JSON fields with
 the corresponding actual values from the request. Failure to do so
 will allow an attacker to modify the underlying request while at the
 same time having the application layer verify the signature
 correctly.

5.1. Validating the query parameter list and hash

 The client has at its disposal a map that indexes the query parameter
 names to the values given. The client creates a string buffer for
 calculating the hash. The client then iterates through the "list"
 portion of the "p" parameter. For each item in the list (in the
 order of the list) it does the following:

Richer, et al. Expires February 9, 2017 [Page 7]

Internet-Draft HTTP Signed Messages August 2016

 1. Fetch the value of the parameter from the HTTP request query
 parameter map. If a parameter is found in the list of signed
 parameters but not in the map, the validation fails.

 2. Percent-encodes the name and value of the parameter as specified
 in [RFC3986]. Note that if the name and value have already been
 percent-encoded for transit, they are not re-encoded for this
 step.

 3. Encode the parameter as "name=value" and concatenate it to the
 end of the string buffer, separated by an ampersand character.

 The client calculates the hash of the string buffer and base64url
 encodes it. The protected resource compares that string to the
 string passed in as the hash. If the two match, the hash validates,
 and all named parameters and their values are considered covered by
 the signature.

 There MAY be additional query parameters that are not listed in the
 list and are therefore not covered by the signature. The client MUST
 decide whether or not to accept a request with these uncovered
 parameters.

5.2. Validating the header list and hash

 The client has at its disposal a map that indexes the header names to
 the values given. The client creates a string buffer for calculating
 the hash. The client then iterates through the "list" portion of the
 "h" parameter. For each item in the list (in the order of the list)
 it does the following:

 1. Fetch the value of the header from the HTTP request header map.
 If a header is found in the list of signed parameters but not in
 the map, the validation fails.

 2. Encode the parameter as "name: value" and concatenate it to the
 end of the string buffer, separated by a newline character.

 The client calculates the hash of the string buffer and base64url
 encodes it. The protected resource compares that string to the
 string passed in as the hash. If the two match, the hash validates,
 and all named headers and their values are considered covered by the
 signature.

 There MAY be additional headers that are not listed in the list and
 are therefore not covered by the signature. The client MUST decide
 whether or not to accept a request with these uncovered headers.

Richer, et al. Expires February 9, 2017 [Page 8]

Internet-Draft HTTP Signed Messages August 2016

6. IANA Considerations

6.1. The ’pop’ OAuth Access Token Type

 Section 11.1 of [RFC6749] defines the OAuth Access Token Type
 Registry and this document adds another token type to this registry.

 Type name: pop

 Additional Token Endpoint Response Parameters: (none)

 HTTP Authentication Scheme(s): Proof-of-possession access token for
 use with OAuth 2.0

 Change controller: IETF

 Specification document(s): [[this document]]

6.2. JSON Web Signature and Encryption Type Values Registration

 This specification registers the "pop" type value in the IANA JSON
 Web Signature and Encryption Type Values registry [RFC7515]:

 o "typ" Header Parameter Value: "pop"

 o Abbreviation for MIME Type: None

 o Change Controller: IETF

 o Specification Document(s): [[this document]]

7. Security Considerations

7.1. Offering Confidentiality Protection for Access to Protected
 Resources

 This specification can be used with and without Transport Layer
 Security (TLS).

 Without TLS this protocol provides a mechanism for verifying the
 integrity of requests, it provides no confidentiality protection.
 Consequently, eavesdroppers will have full access to communication
 content and any further messages exchanged between the client and the
 resource server. This could be problematic when data is exchanged
 that requires care, such as personal data.

 When TLS is used then confidentiality of the transmission can be
 ensured between endpoints, including both the request and the

Richer, et al. Expires February 9, 2017 [Page 9]

Internet-Draft HTTP Signed Messages August 2016

 response. The use of TLS in combination with the signed HTTP request
 mechanism is highly recommended to ensure the confidentiality of the
 data returned from the protected resource.

7.2. Plaintext Storage of Credentials

 The mechanism described in this document works in a similar way to
 many three-party authentication and key exchange mechanisms. In
 order to compute the signature over the HTTP request, the client must
 have access to a key bound to the access token in plaintext form. If
 an attacker were to gain access to these stored secrets at the client
 or (in case of symmetric keys) at the resource server they would be
 able to perform any action on behalf of any client just as if they
 had stolen a bearer token.

 It is therefore paramount to the security of the protocol that the
 private keys associated with the access tokens are protected from
 unauthorized access.

7.3. Entropy of Keys

 Unless TLS is used between the client and the resource server,
 eavesdroppers will have full access to requests sent by the client.
 They will thus be able to mount off-line brute-force attacks to
 attempt recovery of the session key or private key used to compute
 the keyed message digest or digital signature, respectively.

 This specification assumes that the key used herein has been
 distributed via other mechanisms, such as
 [I-D.ietf-oauth-pop-key-distribution]. Hence, it is the
 responsibility of the authorization server and or the client to be
 careful when generating fresh and unique keys with sufficient entropy
 to resist such attacks for at least the length of time that the
 session keys (and the access tokens) are valid.

 For example, if the key bound to the access token is valid for one
 day, authorization servers must ensure that it is not possible to
 mount a brute force attack that recovers that key in less than one
 day. Of course, servers are urged to err on the side of caution, and
 use the longest key length possible within reason.

7.4. Denial of Service

 This specification includes a number of features which may make
 resource exhaustion attacks against resource servers possible. For
 example, a resource server may need to process the incoming request,
 verify the access token, perform signature verification, and might
 (in certain circumstances) have to consult back-end databases or the

Richer, et al. Expires February 9, 2017 [Page 10]

Internet-Draft HTTP Signed Messages August 2016

 authorization server before granting access to the protected
 resource. Many of these actions are shared with bearer tokens, but
 the additional cryptographic overhead of validating the signed
 request needs to be taken into consideration with deployment of this
 specification.

 An attacker may exploit this to perform a denial of service attack by
 sending a large number of invalid requests to the server. The
 computational overhead of verifying the keyed message digest alone is
 not likely sufficient to mount a denial of service attack. To help
 combat this, it is RECOMMENDED that the protected resource validate
 the access token (contained in the "at" member of the signed
 structure) before performing any cryptographic verification
 calculations.

7.5. Validating the integrity of HTTP message

 This specification provides flexibility for selectively validating
 the integrity of the HTTP request, including header fields, query
 parameters, and message bodies. Since all components of the HTTP
 request are only optionally validated by this method, and even some
 components may be validated only in part (e.g., some headers but not
 others) it is up to protected resource developers to verify that any
 vital parameters in a request are actually covered by the signature.
 Failure to do so could allow an attacker to inject vital parameters
 or headers into the request, ouside of the protection of the
 signature.

 The application verifying this signature MUST NOT assume that any
 particular parameter is appropriately covered by the signature unless
 it is included in the signed structure and the hash is verified. Any
 applications that are sensitive of header or query parameter order
 MUST verify the order of the parameters on their own. The
 application MUST also compare the values in the JSON container with
 the actual parameters received with the HTTP request (using a direct
 comparison or a hash calculation, as appropriate). Failure to make
 this comparison will render the signature mechanism useless for
 protecting these elements.

 The behavior of repeated query parameters or repeated HTTP headers is
 undefined by this specification. If a header or query parameter is
 repeated on either the outgoing request from the client or the
 incoming request to the protected resource, that query parameter or
 header name MUST NOT be covered by the hash and signature.

 This specification records the order in which query parameters and
 headers are hashed, but it does not guarantee that order is preserved
 between the client and protected resource. If the order of

Richer, et al. Expires February 9, 2017 [Page 11]

Internet-Draft HTTP Signed Messages August 2016

 parameters or headers are significant to the underlying application,
 it MUST confirm their order on its own, apart from the signature and
 HTTP message validation.

8. Privacy Considerations

 This specification addresses machine to machine communications and
 raises no privacy considerations beyond existing OAuth transactions.

9. Acknowledgements

 The authors thank the OAuth Working Group for input into this work.

10. Normative References

 [I-D.ietf-oauth-pop-architecture]
 Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-ietf-oauth-pop-architecture-08 (work
 in progress), July 2016.

 [I-D.ietf-oauth-pop-key-distribution]
 Bradley, J., Hunt, P., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Proof-of-Possession: Authorization Server to
 Client Key Distribution", draft-ietf-oauth-pop-key-
 distribution-02 (work in progress), October 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <http://www.rfc-editor.org/info/rfc6750>.

Richer, et al. Expires February 9, 2017 [Page 12]

Internet-Draft HTTP Signed Messages August 2016

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <http://www.rfc-editor.org/info/rfc7662>.

Authors’ Addresses

 Justin Richer (editor)

 Email: ietf@justin.richer.org

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Hannes Tschofenig
 ARM Limited
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Richer, et al. Expires February 9, 2017 [Page 13]

