QAut h Wor ki ng G oup J. Richer, HEd.
I nternet-Draft

I ntended status: Standards Track J. Bradl ey
Expi res: February 9, 2017 Ping Identity
H. Tschof eni g

ARM Li nited

August 08, 2016

A Method for Signing HTTP Requests for QAuth
draft-ietf-oauth-signed-http-request-03

Abst ract

This docunment a nethod for offering data origin authentication and
integrity protection of HTTP requests. To convey the relevant data
itenms in the request a JSON-based encapsul ation is used and the JSON
Web Signature (JW5) technique is re-used. JW5 offers integrity
protection using synmetric as well as asymetric cryptography.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (1ETF). Note that other groups may also distribute

wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on February 9, 2017.
Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Legal
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust

Ri cher, et al. Expi res February 9, 2017 [Page 1]

Internet-Draft HTTP Si gned Messages August 2016

include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction 2
2. Term nology . . 3
3. Cenerating a JSCN iject fron1an HTTP Request 3
3.1. Calculating the query paraneter |ist and hash . 4
3.2. Calculating the header list and hash 5
4. Sending the signed object . . e 6
4.1. HITP Authorization header 6
4.2. HITP Form body . 6
4.3. HITP Query paraneter 7
5. Validating the request 7
5.1. Validating the query paraneter Ilst and hash 7
5.2. Validating the header list and hash . 8
6. | ANA Cbn5|derat|ons A . 9
6.1. The 'pop’ QAuth Access Token Type . . 9
6.2. JSON Web Signature and Encryptlon Type values
Regi stration . 9
7. Security Considerations . . 9
7.1. O fering Confidentiality Protectlon for Access to
Prot ect ed Resources . . Ce e e 9
7.2. Plaintext Storage of Credentlals e K¢
7.3. Entropy of Keys .. 10
7.4. Denial of Service . . T
7.5. Validating the |ntegr|ty of FWTP nessage e
8. Privacy Considerationso e 74
9. Acknow edgenentso .o 12
10. Normative References 12
Authors’ Addresses .. 13
1. Introduction

In order to prove possession of an access token and its associated
key, an QAuth 2.0 client needs to conpute sone cryptographic function
and present the results to the protected resource as a signature.

The protected resource then needs to verify the signature and conpare
that to the expected keys associated with the access token. This is
in addition to the normal token protections provided by a bearer
token [RFC6750] and transport |ayer security (TLS)

Furthernmore, it is desirable to bind the signature to the HITP
request. ldeally, this should be done w thout replicating the

i nformati on already present in the HTTP request nore than required.
However, many HTTP application franeworks insert extra headers, query

Ri cher, et al. Expi res February 9, 2017 [Page 2]

Internet-Draft HTTP Si gned Messages August 2016

paraneters, and otherw se mani pul ate the HITP request on its way from
the web server into the application code itself. It is the goal of
this draft to have a signature protection nechanismthat is
sufficiently robust agai nst such depl oynent constraints while stil
providing sufficient security benefits.

The key required for this signature calculation is distributed via
mechani sms descri bed i n compani on docunents (see
[1-D.ietf-oauth-pop-key-distribution] and
[I-D.ietf-oauth-pop-architecture]). The JSON Wb Si gnature (JWB)
specification [RFC7515] is used for conputing a digital signature
(whi ch uses asynmetric cryptography) or a keyed nessage digest (in
case of synmetric cryptography).

The mechani sm described in this docunent assunes that a client is in
possessi on of an access token and asoci ated key. That client then
creates a JSON object including the access token, signs the JSON

obj ect using JW5, and issues an request to a resource server for
access to a protected resource using the signed object as its

aut hori zation. The protected resource validates the JW5 signature
and parses the JSON object to obtain token information

2. Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in RFC
2119 [RFC2119].

O her terns such as "client", "authorization server", "access token"
and "protected resource" are inherited from QAuth 2.0 [RFC6749].

We use the term’sign’ (or ’'signature’) to denote both a keyed
message digest and a digital signature operation

3. Generating a JSON Object froman HTTP Request

This specification uses JSON Wb Signatures [RFC7515] to protect the
access token and, optionally, parts of the request.

This section describes howto generate a JSON [RFC7159] object from
the HTTP request. Each value belowis included as a nenber of the
JSON obj ect at the top |evel

at REQUI RED. The access token value. This string is assuned to have

no particular format or structure and renmi ns opaque to the
client.

Ri cher, et al. Expi res February 9, 2017 [Page 3]

Internet-Draft HTTP Si gned Messages August 2016

ts RECOMMENDED. The tinmestanp. This integer provides replay
protection of the signed JSON object. Its value MJST be a nunber
containing an integer val ue representing nunber of whol e integer
seconds from m dnight, January 1, 1970 GMI

m OPTIONAL. The HTTP Method used to nake this request. This MJST
be the uppercase HTTP verb as a JSON string.

u OPTIONAL. The HITP URL host component as a JSON string. This NMAY
i nclude the port separated fromthe host by a colon in host:port
format.

p OPTIONAL. The HTTP URL path conmponent of the request as an HTTP
string.

g OPTIONAL. The hashed HTTP URL query paraneter map of the request
as a two-part JSON array. The first part of this array is a JSON
array listing all query parameters that were used in the
calculation of the hash in the order that they were added to the
hashed val ue as described bel ow. The second part of this array is
a JSON string containing the Base64URL encoded hash itself,
cal cul ated as descri bed bel ow.

h OPTIONAL. The hashed HTTP request headers as a two-part JSON
array. The first part of this array is a JSON array listing all
headers that were used in the calculation of the hash in the order
that they were added to the hashed val ue as described bel ow. The
second part of this array is a JSON string containing the
Base64URL encoded hash itself, calculated as described bel ow.

b OPTIONAL. The base64URL encoded hash of the HTTP Request body,
cal cul ated as the SHA256 of the byte array of the body

Al'l hashes SHALL be cal cul ated using the SHA256 algorithm [[Note to
WG do we want crypto agility here? If so how do we signal this]]

The JSON object is signed using the algorithmappropriate to the
associ at ed access token key, usually comunicated as part of key
distribution [I-D.ietf-oauth-pop-key-distribution].

3.1. Calculating the query paraneter |ist and hash
To generate the query paraneter |ist and hash, the client creates two
data objects: an ordered list of strings to hold the query paraneter
nanes and a string buffer to hold the data to be hashed.

The client iterates through all query paraneters in whatever order it
chooses and for each query paraneter it does the foll ow ng:

Ri cher, et al. Expi res February 9, 2017 [Page 4]

Internet-Draft HTTP Si gned Messages August 2016

1. Adds the nane of the query paraneter to the end of the list.

2. Percent-encodes the name and val ue of the paraneter as specified
in [RFC3986]. Note that if the name and val ue have al ready been
percent-encoded for transit, they are not re-encoded for this
st ep.

3. Encodes the name and val ue of the query paraneter as "name=val ue"
and appends it to the string buffer separated by the ampersand
"&" character.

Repeat ed paraneter nanes are processed separately with no specia
handl i ng. Paraneters MAY be skipped by the client if they are not
required (or desired) to be covered by the signature.

The client then cal culates the hash over the resulting string buffer
The list and the hash result are added to a list as the value of the
"q" menber.

For exanple, the query paranmeter set of "b=bar", "a=foo", "c=duck" is
concatenated into the string:

b=bar & =f oo&c=duck
When added to the JSON structure using this process, the results are:
"g's [["b", "a", "c"], "u4LgkGUWAPOMsKr Ej Addi zI | | DXI uDku6ZqCeyuR- JY"]
3.2. Calculating the header list and hash
To generate the header list and hash, the client creates two data
objects: an ordered list of strings to hold the header nanes and a

string buffer to hold the data to be hashed.

The client iterates through all query paraneters in whatever order it
chooses and for each query paranmeter it does the foll ow ng:

1. Lowercases the header nane.

2. Adds the nane of the header to the end of the |ist.

3. Encodes the nane and val ue of the header as "nane: val ue" and
appends it to the string buffer separated by a newine "\n"
character.

Repeat ed header nanes are processed separately with no specia

handl i ng. Headers MAY be skipped by the client if they are not
required (or desired) to be covered by the signature.

Ri cher, et al. Expi res February 9, 2017 [Page 5]

Internet-Draft HTTP Si gned Messages August 2016

4.

4.

4.

The client then cal cul ates the hash over the resulting string buffer
The list and the hash result are added to a |ist as the value of the
"h" nenber.

For exanple, the headers "Content-Type: application/json" and "Etag:
742- 3u8f 34- 3r2nvv3" are concatenated into the string:

content-type: application/json
etag: 742-3u8f 34-3r2nvv3

"h": [["content-type", "etag"],
"bZA981YJBr Pl | zOvpl bu3e7ueREXXr 38vSkx| BYCax| "]

Sendi ng the signed object

In order to send the signed object to the protected resource, the
client includes it in one of the followi ng three places.

1. HTTP Aut horizati on header

The client SHOULD send the signed object to the protected resource in
the Authorization header. The value of the signed object in JWs
conpact formis appended to the Authorization header as a PoP val ue.
This is the preferred method. Note that if this nethod is used, the
Aut hori zation header MUST NOT be included in the protected el ements
of the signed object.

GET /resource/foo
Aut hori zation: PoP eyJ....onitted for brevity..

2. HITP Form body

If the client is sending the request as a formencoded HITP nessage
with paraneters in the body, the client MAY send the signed object as
part of that form body. The value of the signed object in JWS
compact formis sent as the form paraneter pop_access_token. Note
that if this method is used, the body hash cannot be included in the
protected el ements of the signed object.

POST /resource
Content-type: application/ ww-form encoded

pop_access_token=eyJ....ontted for brevity..

Ri cher, et al. Expi res February 9, 2017 [Page 6]

Internet-Draft HTTP Si gned Messages August 2016

4.3. HITP Query paraneter

If neither the Authorization header nor the form encoded body
paraneter are available to the client, the client MAY send the signed
obj ect as a query paraneter. The value of the signed object in JWS
compact formis sent as the query paraneter pop_access_token. Note
that if this method is used, the pop_access_t oken parameter MJST NOT
be included in the protected el ements of the signed object.

GET /resource?pop_access_t oken=eylJ. ...
5. Validating the request

Just like with a bearer token [RFC6750], while the access token val ue
included in the signed object is opaque to the client, it MJST be
under stood by the protected resource in order to fulfill the request.
Also like a bearer token, the protected resource traditionally has
several nethods at its disposal for understanding the access token

It can l ook up the token locally (such as in a database), it can
parse a structured token (such as JW [RFC7519]), or it can use a
service to |l ook up token information (such as introspection

[RFC7662]). Whatever nmethod is used to | ook up token information
the protected resource MJST have access to the key associated with
the access token, as this key is required to validate the signature
of the inconming request. Validation of the signature is done using
normal JWS validation for the signature and key type.

Additionally, in order to trust any of the hashed conponents of the
HTTP request, the protected resource MIST re-create and verify a hash
for each conponent as described below. This process is a mrror of
the process used to create the hashes in the first place, with a mnd
toward the fact that order may have changed and that el enments may
have been added or deleted. The protected resource MIST simlarly
conpare the replicated values included in various JSON fields with
the correspondi ng actual values fromthe request. Failure to do so
will allow an attacker to nodify the underlying request while at the
sane time having the application |ayer verify the signature
correctly.

5.1. Validating the query paraneter |list and hash

The client has at its disposal a map that indexes the query paraneter
names to the values given. The client creates a string buffer for
calculating the hash. The client then iterates through the "list"
portion of the "p" paraneter. For each itemin the list (in the
order of the list) it does the follow ng:

Ri cher, et al. Expi res February 9, 2017 [Page 7]

Internet-Draft HTTP Si gned Messages August 2016

1. Fetch the value of the paraneter fromthe HTTP request query
paraneter map. |If a paraneter is found in the list of signed
paraneters but not in the map, the validation fails.

2. Percent-encodes the name and val ue of the paraneter as specified
in [RFC3986]. Note that if the name and val ue have already been
percent -encoded for transit, they are not re-encoded for this
st ep.

3. Encode the paraneter as "nane=val ue" and concatenate it to the
end of the string buffer, separated by an anpersand character

The client calculates the hash of the string buffer and base64url
encodes it. The protected resource conpares that string to the
string passed in as the hash. |If the two match, the hash vali dates,
and all naned paraneters and their values are considered covered by
t he signature.

There MAY be additional query paraneters that are not listed in the
list and are therefore not covered by the signature. The client MJST
deci de whether or not to accept a request with these uncovered
paraneters

5.2. Validating the header list and hash

The client has at its disposal a map that indexes the header nanes to
the values given. The client creates a string buffer for calcul ating
the hash. The client then iterates through the "list" portion of the
"h" paraneter. For each itemin the list (in the order of the list)
it does the follow ng:

1. Fetch the value of the header fromthe HTTP request header nmap.
If a header is found in the list of signed paraneters but not in
the map, the validation fails.

2. Encode the paraneter as "nane: value" and concatenate it to the
end of the string buffer, separated by a newl ine character

The client calculates the hash of the string buffer and base64url
encodes it. The protected resource conpares that string to the

string passed in as the hash. |f the two match, the hash vali dates,
and all named headers and their values are considered covered by the
si gnature.

There MAY be additional headers that are not listed in the list and
are therefore not covered by the signature. The client MJST decide
whet her or not to accept a request with these uncovered headers.

Ri cher, et al. Expi res February 9, 2017 [Page 8]

Internet-Draft HTTP Si gned Messages August 2016

6. | ANA Consi derations
6.1. The ’'pop’ QAuth Access Token Type

Section 11.1 of [RFC6749] defines the QAuth Access Token Type
Regi stry and this docunent adds another token type to this registry.

Type nane: pop
Addi tional Token Endpoi nt Response Paraneters: (none)

HTTP Aut hentication Scheme(s): Proof-of-possession access token for
use with QAuth 2.0

Change controller: |ETF
Speci fication docunent(s): [[this docunent]]
6.2. JSON Wb Signature and Encryption Type Val ues Regi stration

This specification registers the "pop" type value in the | ANA JSON
Web Signature and Encryption Type Val ues registry [RFC7515]:

o "typ" Header Paraneter Value: "pop"

0 Abbreviation for MME Type: None

0 Change Controller: |IETF

o0 Specification Docunment(s): [[this docunment]]
7. Security Considerations

7.1. Ofering Confidentiality Protection for Access to Protected
Resour ces

This specification can be used with and without Transport Layer
Security (TLS)

Wthout TLS this protocol provides a nechanismfor verifying the
integrity of requests, it provides no confidentiality protection
Consequently, eavesdroppers will have full access to comunication
content and any further nessages exchanged between the client and the
resource server. This could be problematic when data is exchanged
that requires care, such as personal data.

When TLS is used then confidentiality of the transnission can be
ensured between endpoints, including both the request and the

Ri cher, et al. Expi res February 9, 2017 [Page 9]

Internet-Draft HTTP Si gned Messages August 2016

response. The use of TLS in conbination with the signed HTTP request
mechani smis highly recoormended to ensure the confidentiality of the
data returned fromthe protected resource.

7.2. Plaintext Storage of Credentials

The mechani sm described in this document works in a sinmlar way to
many three-party authentication and key exchange nechanisns. In
order to conpute the signature over the HITP request, the client nust
have access to a key bound to the access token in plaintext form |If
an attacker were to gain access to these stored secrets at the client
or (in case of synmetric keys) at the resource server they would be
able to performany action on behalf of any client just as if they
had stol en a bearer token

It is therefore parambunt to the security of the protocol that the
private keys associated with the access tokens are protected from
unaut hori zed access.

7.3. Entropy of Keys

Unl ess TLS is used between the client and the resource server,
eavesdroppers will have full access to requests sent by the client.
They will thus be able to nmount off-line brute-force attacks to
attenpt recovery of the session key or private key used to conpute
the keyed nessage digest or digital signature, respectively.

This specification assunes that the key used herein has been

di stributed via other nechanisns, such as
[I-D.ietf-oauth-pop-key-distribution]. Hence, it is the
responsibility of the authorization server and or the client to be
careful when generating fresh and uni que keys with sufficient entropy
to resist such attacks for at least the length of tinme that the
session keys (and the access tokens) are valid.

For exanple, if the key bound to the access token is valid for one
day, authorization servers nust ensure that it is not possible to
mount a brute force attack that recovers that key in |less than one
day. O course, servers are urged to err on the side of caution, and
use the | ongest key | ength possible within reason

7.4. Denial of Service

This specification includes a nunber of features which may make
resource exhaustion attacks agai nst resource servers possible. For
exanpl e, a resource server nmay need to process the incom ng request,
verify the access token, performsignature verification, and night
(in certain circunstances) have to consult back-end databases or the

Ri cher, et al. Expi res February 9, 2017 [Page 10]

Internet-Draft HTTP Si gned Messages August 2016

aut hori zati on server before granting access to the protected
resource. Many of these actions are shared with bearer tokens, but
the additional cryptographic overhead of validating the signed
request needs to be taken into consideration with deploynment of this
speci fication.

An attacker may exploit this to performa denial of service attack by
sending a |l arge nunber of invalid requests to the server. The
comput ati onal overhead of verifying the keyed nessage digest alone is
not likely sufficient to nount a denial of service attack. To help
conbat this, it is RECOMENDED that the protected resource validate
the access token (contained in the "at" menber of the signed
structure) before perforning any cryptographic verification

cal cul ati ons.

7.5. Validating the integrity of HITP nessage

This specification provides flexibility for selectively validating
the integrity of the HTTP request, including header fields, query
paraneters, and message bodies. Since all conponents of the HITP
request are only optionally validated by this nethod, and even some
conponents may be validated only in part (e.g., sone headers but not
others) it is up to protected resource developers to verify that any
vital paraneters in a request are actually covered by the signature.
Failure to do so could allow an attacker to inject vital parameters
or headers into the request, ouside of the protection of the

si gnature.

The application verifying this signature MJST NOT assune that any
particul ar paraneter is appropriately covered by the signature unless
it is included in the signed structure and the hash is verified. Any
applications that are sensitive of header or query paraneter order
MUST verify the order of the paraneters on their own. The
application MIST al so conpare the values in the JSON container with
the actual paraneters received with the HTTP request (using a direct
comparison or a hash calculation, as appropriate). Failure to nake
this conparison will render the signature nechani sm usel ess for
protecting these el enents.

The behavi or of repeated query paranmeters or repeated HTTP headers is
undefined by this specification. |f a header or query paraneter is
repeated on either the outgoing request fromthe client or the

i ncom ng request to the protected resource, that query paraneter or
header name MUST NOT be covered by the hash and signature

This specification records the order in which query paraneters and

headers are hashed, but it does not guarantee that order is preserved
between the client and protected resource. |If the order of

Ri cher, et al. Expi res February 9, 2017 [Page 11]

Internet-Draft HTTP Si gned Messages August 2016

10.

paranmeters or headers are significant to the underlying application,
it MUST confirmtheir order on its own, apart fromthe signature and
HTTP nessage validati on.

Privacy Consi derations

Thi s specification addresses nachine to machi ne communi cati ons and
rai ses no privacy considerations beyond existing QAuth transactions.

Acknowl edgenent s
The aut hors thank the QAuth Working Group for input into this work.
Nor mati ve References

[1-D.ietf-oauth-pop-architecture]
Hunt, P., Richer, J., MIls, W, Mshra, P., and H
Tschof enig, "QAuth 2.0 Proof-of-Possession (PoP) Security
Architecture", draft-ietf-oauth-pop-architecture-08 (work
in progress), July 2016.

[1-D.ietf-oauth-pop-key-distribution]
Bradl ey, J., Hunt, P., Jones, M, and H Tschofenig,
"QAuth 2.0 Proof-of-Possession: Authorization Server to
Client Key Distribution", draft-ietf-oauth-pop-key-
di stribution-02 (work in progress), Cctober 2015.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997,
<http://wwv rfc-editor.org/info/rfc2119>.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,
RFC 3986, DO 10.17487/ RFC3986, January 2005,
<http://wwmv rfc-editor.org/info/rfc3986>.

[RFC6749] Hardt, D., Ed., "The QAuth 2.0 Authorization Franework",
RFC 6749, DO 10.17487/ RFC6749, Cctober 2012,
<http://ww.rfc-editor.org/info/rfc6749>.

[RFC6750] Jones, M and D. Hardt, "The QAuth 2.0 Authori zation
Framewor k: Bearer Token Usage", RFC 6750,
DO 10.17487/ RFC6750, Cctober 2012,
<http://ww. rfc-editor.org/info/rfc6750>.

Ri cher, et al. Expi res February 9, 2017 [Page 12]

Internet-Draft HTTP Si gned Messages

August 2016

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, DO 10.17487/ RFC7159, March

2014, <http://www.rfc-editor.org/info/rfc7159>.

[RFC7515] Jones, M, Bradley, J., and N. Saki nura,

"JSON Wb

Signature (JW5)", RFC 7515, DO 10.17487/ RFC7515, My

2015, <http://ww. rfc-editor.org/info/rfc7515>.

[RFC7519] Jones, M, Bradley, J., and N. Saki nura,

"JSON Wb Token

(JWNn ", RFC 7519, DO 10.17487/RFC7519, My 2015,

<http://ww.rfc-editor.org/info/rfc7519>.

[RFC7662] Richer, J., Ed., "QAuth 2.0 Token Introspection",

RFC 7662, DO 10. 17487/ RFC7662, Cctober 2015,

<http://ww. rfc-editor.org/info/rfc7662>.
Aut hors’ Addresses
Justin Richer (editor)
Email: ietf@ustin.richer.org
John Bradl ey
Ping ldentity
Emai |l : ve7jtb@e7jtb.com

URI : http://ww.t hread-safe.com

Hannes Tschof enig
ARM Li m ted
Austria

Enmai | : Hannes. Tschof eni g@nx. net
URI : http://ww.tschofenig.priv.at

Ri cher, et al. Expi res February 9, 2017

[Page 13]

