
SIDR R. Kisteleki
Internet-Draft RIPE NCC
Intended status: Standards Track B. Haberman
Expires: May 30, 2015 JHU APL
 November 26, 2014

 Securing RPSL Objects with RPKI Signatures
 draft-ietf-sidr-rpsl-sig-06.txt

Abstract

 This document describes a method to allow parties to electronically
 sign RPSL-like objects and validate such electronic signatures. This
 allows relying parties to detect accidental or malicious
 modifications on such objects. It also allows parties who run
 Internet Routing Registries or similar databases, but do not yet have
 RPSS-like authentication of the maintainers of certain objects, to
 verify that the additions or modifications of such database objects
 are done by the legitimate holder(s) of the Internet resources
 mentioned in those objects.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 30, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Kisteleki & Haberman Expires May 30, 2015 [Page 1]

Internet-Draft Securing RPSL November 2014

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Signature Syntax and Semantics 3
 2.1. General Attributes, Meta Information 3
 2.2. Signed Attributes . 5
 2.3. Storage of the Signature Data 5
 2.4. Number Resource Coverage 6
 2.5. Validity Time of the Signature 6
 3. Signature Creation and Validation Steps 6
 3.1. Canonicalization . 6
 3.2. Signature Creation 8
 3.3. Signature Validation 9
 4. Signed Object Types, Set of Signed Attributes 10
 5. Keys and Certificates used for Signature and Verification . . 12
 6. Security Considerations 12
 7. IANA Considerations . 13
 8. Acknowledgements . 13
 9. Normative References . 13
 Authors’ Addresses . 14

1. Introduction

 Objects stored in resource databases, like the RIPE DB, are generally
 protected by an authentication mechanism: anyone creating or
 modifying an object in the database has to have proper authorization
 to do so, and therefore has to go through an authentication procedure
 (provide a password, certificate, e-mail signature, etc.) However,
 for objects transferred between resource databases, the
 authentication is not guaranteed. This means when downloading an
 object stored in this database, one can reasonably safely claim that
 the object is authentic, but for an imported object one cannot.
 Also, once such an object is downloaded from the database, it becomes
 a simple (but still structured) text file with no integrity
 protection. More importantly, the authentication and integrity
 guarantees associated with these objects do not always ensure that
 the entity that generated them is authorized to make the assertions
 implied by the data contained in the objects.

 A potential use for resource certificates [RFC6487] is to use them to
 secure such (both imported and downloaded) database objects, by
 applying a form of digital signature over the object contents. A

Kisteleki & Haberman Expires May 30, 2015 [Page 2]

Internet-Draft Securing RPSL November 2014

 maintainer of such signed database objects MUST possess a relevant
 resource certificate, which shows him/her as the legitimate holder of
 an Internet number resource. This mechanism allows the users of such
 database objects to verify that the contents are in fact produced by
 the legitimate holder(s) of the Internet resources mentioned in those
 objects. It also allows the signatures to cover whole RPSL objects,
 or just selected attributes of them. In other words, a digital
 signature created using the private key associated with a resource
 certificate can offer object security in addition to the channel
 security already present in most of such databases. Object security
 in turn allows such objects to be hosted in different databases and
 still be independently verifiable.

 The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
 "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

2. Signature Syntax and Semantics

 When signing an RPSL object, the input for the signature process is
 transformed into a sequence of strings of (ASCII) data. The approach
 is similar to the one used in DKIM (Domain Key Identified Mail)
 [RFC4871]. In the case of RPSL, the object-to-be-signed closely
 resembles an SMTP header, so it seems reasonable to adapt DKIM’s
 relevant features.

2.1. General Attributes, Meta Information

 The digital signature associated with an RPSL object is itself a new
 attribute named "signature". It consists of mandatory and optional
 fields. These fields are structured in a sequence of name and value
 pairs, separated by a semicolon ";" and a white space. Collectively
 these fields make up the value for the new "signature" attribute.
 The "name" part of such a component is always a single ASCII
 character that serves as an identifier; the value is an ASCII string
 the contents of which depend on the field type. Mandatory fields
 must appear exactly once, whereas optional fields MUST appear at most
 once.

 Mandatory fields of the "signature" attribute:

 1. Version number of the signature (field "v"). This field MUST be
 set to "1".

Kisteleki & Haberman Expires May 30, 2015 [Page 3]

Internet-Draft Securing RPSL November 2014

 2. Reference to the certificate corresponding to the private key
 used to sign this object (field "c"). This is a URL of type
 "rsync" or "http(s)" that points to a specific resource
 certificate in an RPKI repository. The value of this field MUST
 be an "rsync://..." or an "http[s]://..." URL. Any non URL-safe
 characters (including semicolon ";" and plus "+") must be URL
 encoded.

 3. Signature method (field "m"): what hash and signature algorithms
 were used to create the signature. The allowed algorithms which
 can be used for the signature are specified in [RFC6485].

 4. Time of signing (field "t"). The format of the value of this
 field is the number of seconds since Unix EPOCH (00:00:00 on
 January 1, 1970 in the UTC time zone). The value is expressed as
 the decimal representation of an unsigned integer.

 5. The signed attributes (field "a"). This is a list of attribute
 names, separated by an ASCII "+" character (if more than one
 attribute is enumerated). The list must include any attribute at
 most once.

 6. The signature itself (field "b"). This MUST be the last field in
 the list. The signature is the output of the signature algorithm
 using the appropriate private key and the calculated hash value
 of the object as inputs. The value of this field is the digital
 signature in base64 encoding [RFC4648].

 Optional fields of the "signature" attribute:

 1. Signature expiration time (field "x"). The format of the value
 of this field is the number of seconds since Unix EPOCH (00:00:00
 on January 1, 1970 in the UTC time zone). The value is expressed
 as the decimal representation of an unsigned integer.

 2. Reference(s) to other party’s certificate(s) (field "o"). If
 such certificates are mentioned (referred to) in any signature,
 then this signature should be considered valid only in case when
 there are other signatures over this current object, and these
 other signatures refer to, and can be verified with, the
 certificates mentioned in this field. This mechanism allows
 having multiple signatures over an object in such a way that all

Kisteleki & Haberman Expires May 30, 2015 [Page 4]

Internet-Draft Securing RPSL November 2014

 of these signatures have to be present and valid for the whole
 signature to be considered valid. This would allow
 interdependent multi-party signatures over an object. One
 applications for such a mechanism include the case of a route[6]
 object, where both the prefix owner’s and the AS owner’s
 signature is expected (if they are different parties). The value
 of this field MUST be a list of "rsync://..." or "http[s]://..."
 URLs. If there are more such reference URLs, then they must be
 separated with a plus "+" sign. Any non URL-safe characters
 (including semicolon ";" and plus "+") must be URL encoded in all
 such URLs.

2.2. Signed Attributes

 One can look at an RPSL object as an (ordered) set of attributes,
 each having a "key: value" syntax. Understanding this structure can
 help in developing more flexible methods for applying digital
 signatures.

 Some of these attributes are automatically added by the database,
 some are database-dependent, yet others do not carry operationally
 important information. This specification allows the maintainer of
 such an object to define which attributes are signed and which are
 not, from among all the attributes of the object; in other words, we
 define a way of including important attributes while excluding
 irrelevant ones. Allowing the maintainer an object to select the
 attributes that are covered by the digital signature achieves the
 goals established in Section 1.

 The type of the object determines the minimum set of attributes that
 MUST be signed. The signer MAY choose to sign additional attributes,
 in order to provide integrity protection for those attributes too.

 When verifying the signature of an object, the verifier has to check
 whether the signature itself is valid, and whether all the specified
 attributes are referenced in the signature. If not, the verifier
 MUST reject the signature and threat the object as a regular, non-
 signed RPSL object.

2.3. Storage of the Signature Data

 The result of applying the signature mechanism once is exactly one
 new attribute for the object. As an illustration, the structure of a
 signed RPSL object is as follows:

Kisteleki & Haberman Expires May 30, 2015 [Page 5]

Internet-Draft Securing RPSL November 2014

 attribute1: value1
 attribute2: value2
 attribute3: value3
 ...
 signature: v=1; c=rsync://.....; m=sha256WithRSAEncryption;
 t=9999999999;
 a=attribute1+attribute2+attribute3+...;
 b=<base64 data>

2.4. Number Resource Coverage

 Even if the signature(s) over the object are valid according to the
 signature validation rules, they may not be relevant to the object;
 they also need to cover the relevant Internet number resources
 mentioned in the object.

 Therefore the Internet number resources present in [RFC3779]
 extensions of the certificate referred to in the "c" field of the
 signature (or in the union of such extensions in the "c" fields of
 the certificates, in case multiple signatures are present) MUST cover
 the resources in the primary key of the object (e.g., value of the
 "aut-num:" attribute of an aut-num object, value of the "inetnum:"
 attribute of an inetnum object, values of "route:" and "origin:"
 attributes of a route object, etc.).

2.5. Validity Time of the Signature

 The validity time interval of a signature is the intersection of the
 validity time of the certificate used to verify the signature, the
 "not before" time specified by the "t" field of the signature, and
 the optional "not after" time specified by the "x" field of the
 signature.

 When checking multiple signatures, these checks are applied to each
 signature, individually.

3. Signature Creation and Validation Steps

3.1. Canonicalization

 The notion of canonicalization is essential to digital signature
 generation and validation whenever data representations may change
 between a signer and one or more signature verifiers.
 Canonicalization defines how one transforms an a representation of
 data into a series of bits for signature generation and verification.
 The task of canonicalization is to make irrelevant differences in
 representations of the same object, which would otherwise cause
 signature verification to fail. Examples of this could be:

Kisteleki & Haberman Expires May 30, 2015 [Page 6]

Internet-Draft Securing RPSL November 2014

 1. data transformations applied by the databases that host these
 objects (such as notational changes for IPv4/IPv6 prefixes,
 automatic addition/modification of "changed" attributes, etc.)

 2. the difference of line terminators across different systems.

 This means that the destination database might change parts of the
 submitted data after it was signed, which would cause signature
 verification to fail. This document specifies strict
 canonicalization rules to overcome this problem.

 The following steps MUST be applied in order to achieve canonicalized
 representation of an object, before the actual signature
 (verification) process can begin:

 1. Comments (anything beginning with a "#") MUST be omitted.

 2. Any trailing white space MUST be omitted.

 3. A multi-line attribute MUST be converted into its single-line
 equivalent. This is accomplished by:

 * Converting all line endings to a single blank space.

 * Concatenating all lines into a single line.

 * Replacing the trailing blank space with a single new line
 ("\n").

 4. Numerical fields must be converted to canonical representations.
 These include:

 * Date and time fields MUST be converted to 64-bit NTP Timestamp
 Format [RFC5905].

 * AS numbers MUST be converted to ASPLAIN syntax [RFC5396].

Kisteleki & Haberman Expires May 30, 2015 [Page 7]

Internet-Draft Securing RPSL November 2014

 * IPv6 addresses must be canonicalized as defined in [RFC5952].

 * IPv4 addresses MUST be converted to a 32-bit representation
 (e.g., Unix’s inet_aton()).

 * All IP prefixes (IPv4 and IPv6) MUST be represented in CIDR
 notaion [RFC4632].

 5. The name of each attribute MUST be converted into lower case, and
 MUST be kept as part of the attribute line.

 6. Tab characters ("\t") MUST be converted to spaces.

 7. Multiple whitespaces MUST be collapsed into a single space (" ")
 character.

 8. All line endings MUST be converted to a singe new line ("\n")
 character (thus avoiding CR vs. CRLF differences).

3.2. Signature Creation

 Given an RPSL object, in order to create the digital signature, the
 following steps MUST be performed:

 1. For each signature, a new key pair and certificate SHOULD be
 used. Therefore the signer SHOULD create a single-use key pair
 and end-entity resource certificate (see [RFC6487]) to be used
 for signing this object this time.

 2. Create a list of attribute names referring to the attributes that
 will be signed (contents of the "a" field). The minimum set of
 these attributes is determined by the object type; the signer MAY
 select additional attributes.

 3. Arrange the selected attributes according to the selection
 sequence specified in the "a" field as above, omiting all
 attributes that will not be signed.

Kisteleki & Haberman Expires May 30, 2015 [Page 8]

Internet-Draft Securing RPSL November 2014

 4. Construct the new "signature" attribute, with all its fields,
 leaving the value of the "b" field empty.

 5. Apply canonicalization rules to the result (including the
 "signature" attribute).

 6. Create the signature over the results of the canonicalization
 process (according to the signature and hash algorithms specified
 in the "m" field of the signature attribute).

 7. Insert the base64 encoded value of the signature as the value of
 the "b" field.

 8. Append the resulting "signature" attribute to the original
 object.

3.3. Signature Validation

 In order to validate a signature over such an object, the following
 steps MUST be performed:

 1. Verify the syntax of the "signature" attribute (ie. whether it
 contains the mandatory and optional components and the syntax of
 these fields mathces the specification as described in section
 2.1.)

 2. Fetch the certificate referred to in the "c" field of the
 "signature" attribute, and check its validity using the steps
 described in [RFC6487].

 3. Extract the list of attributes that were signed using the signer
 from the "a" field of the "signature" attribute.

 4. Verify that the list of signed attributes matches the miminum set
 of attributes for that object type.

 5. Arrange the selected attributes according to the selection
 sequence provided in the value of the "a" field, omitting all
 non-signed attributes.

Kisteleki & Haberman Expires May 30, 2015 [Page 9]

Internet-Draft Securing RPSL November 2014

 6. Replace the value of the signature field "b" of the "signature"
 attribute with an empty string.

 7. Apply the canonicalization procedure to the selected attributes
 (including the "signature" attribute).

 8. Check the validity of the signature using the signature algorithm
 specified in the "m" field of the signature attribute, the public
 key contained in the certificate mentioned in the "c" field of
 the signature, the signature value specified in the "b" field of
 the signature attribute, and the output of the canonicalization
 process.

4. Signed Object Types, Set of Signed Attributes

 This section describes a list of object types that MAY signed using
 this approach, and the set of attributes that MUST be signed for
 these object types.

 This list generally excludes attributes that are used to maintain
 referential integrity in the databases that carry these objects,
 since these usually make sense only within the context of such a
 database, whereas the scope of the signatures is only one specific
 object. Since the attributes in the referred object (such as mnt-by,
 admin-c, tech-c, ...) can change without any modifications to the
 signed object, signing such attributes could lead to false sense of
 security in terms of the contents of the signed data; therefore
 should only be done in order to provide full integrity protection of
 the object itself.

 The newly constructed "signature" attribute is always included in the
 list.

 as-block:

 * as-block

 * org

 * signature

 aut-num:

 * aut-num

 * as-name

Kisteleki & Haberman Expires May 30, 2015 [Page 10]

Internet-Draft Securing RPSL November 2014

 * member-of

 * import

 * mp-import

 * export

 * mp-export

 * default

 * mp-default

 * signature

 inet[6]num:

 * inet[6]num

 * netname

 * country

 * org

 * status

 * signature

 route[6]:

 * route[6]

 * origin

 * holes

 * org

 * member-of

 * signature

 For each signature, the RFC3779 extension appearing in the
 certificate used to verify the signature SHOULD include a resource
 entry that is equivalent to, or covers ("less specific" than) the

Kisteleki & Haberman Expires May 30, 2015 [Page 11]

Internet-Draft Securing RPSL November 2014

 following resources mentioned in the object the signatrure is
 attached to:

 o For the as-block object type: the resource in the "as-block"
 attribute.

 o For the aut-num object type: the resource in the "aut-num"
 attribute.

 o For the inet[6]num object type: the resource in the "inet[6]num"
 attribute.

 o For the route[6] object type: the resource in the "route[6]" or
 "origin" (or both) attributes.

5. Keys and Certificates used for Signature and Verification

 The certificate that is referred to in the signature (in the "c"
 field):

 o MUST be an end-entity (ie. non-CA) certificate

 o MUST conform to the X.509 PKIX Resource Certificate profile
 [RFC6487]

 o MUST have an [RFC3779] extension that contains or covers at least
 one Internet number resource included in a signed attribute.

 o SHOULD NOT be used to verify more than one signed object (ie.
 should be a "single-use" EE certificate, as defined in [RFC6487]).

6. Security Considerations

 RPSL objects stored in the IRR databases are public, and as such
 there is no need for confidentiality. Each signed RPSL object can
 have its integrity and authenticity verified using the supplied
 digital signature and the referenced certificate.

 Since the RPSL signature approach leverages X.509 extensions, the
 security considerations in [RFC3779] apply here as well.

Kisteleki & Haberman Expires May 30, 2015 [Page 12]

Internet-Draft Securing RPSL November 2014

7. IANA Considerations

 [Note to IANA, to be removed prior to publication: there are no IANA
 considerations stated in this version of the document.]

8. Acknowledgements

 The authors would like to acknowledge the valued contributions from
 Jos Boumans, Steve Kent, and Sean Turner in preparation of this
 document.

9. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
 Addresses and AS Identifiers", RFC 3779, June 2004.

 [RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing
 (CIDR): The Internet Address Assignment and Aggregation
 Plan", BCP 122, RFC 4632, August 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC4871] Allman, E., Callas, J., Delany, M., Libbey, M., Fenton,
 J., and M. Thomas, "DomainKeys Identified Mail (DKIM)
 Signatures", RFC 4871, May 2007.

 [RFC5396] Huston, G. and G. Michaelson, "Textual Representation of
 Autonomous System (AS) Numbers", RFC 5396, December 2008.

 [RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
 Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952, August 2010.

 [RFC6485] Huston, G., "The Profile for Algorithms and Key Sizes for
 Use in the Resource Public Key Infrastructure (RPKI)", RFC
 6485, February 2012.

 [RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for
 X.509 PKIX Resource Certificates", RFC 6487, February
 2012.

Kisteleki & Haberman Expires May 30, 2015 [Page 13]

Internet-Draft Securing RPSL November 2014

Authors’ Addresses

 Robert Kisteleki

 Email: robert@ripe.net
 URI: http://www.ripe.net

 Brian Haberman
 Johns Hopkins University Applied Physics Lab

 Email: brian@innovationslab.net

Kisteleki & Haberman Expires May 30, 2015 [Page 14]

