Certificate Transparency Version 2.0
draft-ietf-trans-rfc6962-bis-42

Abstract

This document describes version 2.0 of the Certificate Transparency
(CT) protocol for publicly logging the existence of Transport Layer
Security (TLS) server certificates as they are issued or observed, in
a manner that allows anyone to audit certification authority (CA)
activity and notice the issuance of suspect certificates as well as
to audit the certificate logs themselves. The intent is that
eventually clients would refuse to honor certificates that do not
appear in a log, effectively forcing CAs to add all issued
certificates to the logs.

This document obsoletes RFC 6962. It also specifies a new TLS
extension that is used to send various CT log artifacts.

Logs are network services that implement the protocol operations for
submissions and queries that are defined in this document.

[RFC Editor: please update ‘RFCXXXX’ to refer to this document, once
its RFC number is known, through the document. Also, the OID
assigned below must also appear in the appendix as indicated.]

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 March 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 4
 1.1. Requirements Language .. 5
 1.2. Data Structures .. 5
 1.3. Major Differences from CT 1.0 6

2. Cryptographic Components .. 7
 2.1. Merkle Hash Trees .. 7
 2.1.1. Definition of the Merkle Tree 7
 2.1.2. Verifying a Tree Head Given Entries 8
 2.1.3. Merkle Inclusion Proofs 9
 2.1.4. Merkle Consistency Proofs 11
 2.1.5. Example .. 13
 2.2. Signatures ... 14

3. Submitters .. 15
 3.1. Certificates ... 15
 3.2. Precertificates ... 15
 3.2.1. Binding Intent to Issue 17

4. Log Format and Operation .. 17
 4.1. Log Parameters .. 18
 4.2. Evaluating Submissions .. 19
 4.2.1. Minimum Acceptance Criteria 19
 4.2.2. Discretionary Acceptance Criteria 20
 4.3. Log Entries ... 20
 4.4. Log ID .. 21
 4.5. TransItem Structure .. 21
 4.6. Log Artifact Extensions 22
4.7. Merkle Tree Leaves 23
4.8. Signed Certificate Timestamp (SCT) 24
4.9. Merkle Tree Head ... 25
4.10. Signed Tree Head (STH) 26
4.11. Merkle Consistency Proofs 26
4.12. Merkle Inclusion Proofs 27
4.13. Shutting down a log 28
5. Log Client Messages ... 28
 5.1. Submit Entry to Log 30
 5.2. Retrieve Latest STH 32
 5.3. Retrieve Merkle Consistency Proof between Two STHs 32
 5.4. Retrieve Merkle Inclusion Proof from Log by Leaf Hash ... 33
 5.5. Retrieve Merkle Inclusion Proof, STH and Consistency Proof by Leaf Hash 34
 5.6. Retrieve Entries and STH from Log 35
 5.7. Retrieve Accepted Trust Anchors 37
6. TLS Servers .. 38
 6.1. TLS Client Authentication 38
 6.2. Multiple SCTs .. 39
 6.3. TransItemList Structure 39
 6.4. Presenting SCTs, inclusions proofs and STHs 40
 6.5. transparency_info TLS Extension 40
7. Certification Authorities 41
 7.1. Transparency Information X.509v3 Extension 41
 7.1.1. OCSP Response Extension 41
 7.1.2. Certificate Extension 41
 7.2. TLS Feature X.509v3 Extension 41
8. Clients .. 41
 8.1. TLS Client .. 42
 8.1.1. Receiving SCTs and inclusion proofs 42
 8.1.2. Reconstructing the TBSCertificate 42
 8.1.3. Validating SCTs 42
 8.1.4. Fetching inclusion proofs 43
 8.1.5. Validating inclusion proofs 43
 8.1.6. Evaluating compliance 44
 8.2. Monitor .. 44
 8.3. Auditing .. 45
9. Algorithm Agility ... 46
10. IANA Considerations .. 47
 10.1. Additions to existing registries 47
 10.1.1. New Entry to the TLS ExtensionType Registry 47
 10.1.2. URN Sub-namepace for TRANS
 (urn:ietf:params:trans) 47
 10.2. New CT-Related registries 47
 10.2.1. Hash Algorithms 48
 10.2.2. Signature Algorithms 48
 10.2.3. VersionedTransTypes 49
 10.2.4. Log Artifact Extension Registry 50
1. Introduction

Certificate Transparency aims to mitigate the problem of misissued certificates by providing append-only logs of issued certificates. The logs do not themselves prevent misissuance, but they ensure that interested parties (particularly those named in certificates) can detect such misissuance. Note that this is a general mechanism that could be used for transparently logging any form of binary data, subject to some kind of inclusion criteria. In this document, we only describe its use for public TLS server certificates (i.e., where the inclusion criteria is a valid certificate issued by a public certification authority (CA)). A typical definition of "public" can be found in [CABBR].

Each log contains certificate chains, which can be submitted by anyone. It is expected that public CAs will contribute all their newly issued certificates to one or more logs; however, certificate holders can also contribute their own certificate chains, as can third parties. In order to avoid logs being rendered useless by the submission of large numbers of spurious certificates, it is required that each chain ends with a trust anchor that is accepted by the log. A log may also limit the length of the chain it is willing to accept; such chains must also end with an acceptable trust anchor. When a chain is accepted by a log, a signed timestamp is returned, which can later be used to provide evidence to TLS clients that the chain has been submitted. TLS clients can thus require that all certificates they accept as valid are accompanied by signed timestamps.

Those who are concerned about misissuance can monitor the logs, asking them regularly for all new entries, and can thus check whether domains for which they are responsible have had certificates issued.
that they did not expect. What they do with this information, particularly when they find that a misissuance has happened, is beyond the scope of this document. However, broadly speaking, they can invoke existing business mechanisms for dealing with misissued certificates, such as working with the CA to get the certificate revoked, or with maintainers of trust anchor lists to get the CA removed. Of course, anyone who wants can monitor the logs and, if they believe a certificate is incorrectly issued, take action as they see fit.

Similarly, those who have seen signed timestamps from a particular log can later demand a proof of inclusion from that log. If the log is unable to provide this (or, indeed, if the corresponding certificate is absent from monitors’ copies of that log), that is evidence of the incorrect operation of the log. The checking operation is asynchronous to allow clients to proceed without delay, despite possible issues such as network connectivity and the vagaries of firewalls.

The append-only property of each log is achieved using Merkle Trees, which can be used to efficiently prove that any particular instance of the log is a superset of any particular previous instance and to efficiently detect various misbehaviors of the log (e.g., issuing a signed timestamp for a certificate that is not subsequently logged).

It is necessary to treat each log as a trusted third party, because the log auditing mechanisms described in this document can be circumvented by a misbehaving log that shows different, inconsistent views of itself to different clients. While mechanisms are being developed to address these shortcomings and thereby avoid the need to blindly trust logs, such mechanisms are outside the scope of this document.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

1.2. Data Structures

Data structures are defined and encoded according to the conventions laid out in Section 3 of [RFC8446].
This document uses object identifiers (OIDs) to identify Log IDs (see Section 4.4), the precertificate CMS "eContentType" (see Section 3.2), and X.509v3 extensions in certificates (see Section 7.1.2) and OCSP responses (see Section 7.1.1). The OIDs are defined in an arc that was selected due to its short encoding.

1.3. Major Differences from CT 1.0

This document revises and obsoletes the CT 1.0 [RFC6962] protocol, drawing on insights gained from CT 1.0 deployments and on feedback from the community. The major changes are:

* Hash and signature algorithm agility: permitted algorithms are now specified in IANA registries.

* Precertificate format: precertificates are now CMS objects rather than X.509 certificates, which avoids violating the certificate serial number uniqueness requirement in Section 4.1.2.2 of [RFC5280].

* Removed precertificate signing certificates and the precertificate poison extension: the change of precertificate format means that these are no longer needed.

* Logs IDs: each log is now identified by an OID rather than by the hash of its public key. OID allocations are managed by an IANA registry.

* "TransItem" structure: this new data structure is used to encapsulate most types of CT data. A "TransItemList", consisting of one or more "TransItem" structures, can be used anywhere that "SignedCertificateTimestampList" was used in [RFC6962].

* Merkle tree leaves: the "MerkleTreeLeaf" structure has been replaced by the "TransItem" structure, which eases extensibility and simplifies the leaf structure by removing one layer of abstraction.

* Unified leaf format: the structure for both certificate and precertificate entries now includes only the TBSCertificate (whereas certificate entries in [RFC6962] included the entire certificate).

* Log Artifact Extensions: these are now typed and managed by an IANA registry, and they can now appear not only in SCTs but also in STHs.
* API outputs: complete "TransItem" structures are returned, rather than the constituent parts of each structure.

* get-all-by-hash: new client API for obtaining an inclusion proof and the corresponding consistency proof at the same time.

* submit-entry: new client API, replacing add-chain and add-prev-chain.

* Presenting SCTs with proofs: TLS servers may present SCTs together with the corresponding inclusion proofs using any of the mechanisms that [RFC6962] defined for presenting SCTs only. (Presenting SCTs only is still supported).

* CT TLS extension: the "signed_certificate_timestamp" TLS extension has been replaced by the "transparency_info" TLS extension.

* Verification algorithms: added detailed algorithms for verifying inclusion proofs, for verifying consistency between two STHs, and for verifying a root hash given a complete list of the relevant leaf input entries.

* Extensive clarifications and editorial work.

2. Cryptographic Components

2.1. Merkle Hash Trees

A full description of Merkle Hash Tree is beyond the scope of this document. Briefly, it is a binary tree where each non-leaf node is a hash of its children. For CT, the number of children is at most two. Additional information can be found in the Introduction and Reference section of [RFC8391].

2.1.1. Definition of the Merkle Tree

The log uses a binary Merkle Hash Tree for efficient auditing. The hash algorithm used is one of the log’s parameters (see Section 4.1). This document establishes a registry of acceptable hash algorithms (see Section 10.2.1). Throughout this document, the hash algorithm in use is referred to as HASH and the size of its output in bytes as HASH_SIZE. The input to the Merkle Tree Hash is a list of data entries; these entries will be hashed to form the leaves of the Merkle Hash Tree. The output is a single HASH_SIZE Merkle Tree Hash. Given an ordered list of n inputs, D_n = {d[0], d[1], ..., d[n-1]}, the Merkle Tree Hash (MTH) is thus defined as follows:

The hash of an empty list is the hash of an empty string:
MTH({}) = HASH().

The hash of a list with one entry (also known as a leaf hash) is:
MTH({d[0]}) = HASH(0x00 || d[0]).

For n > 1, let k be the largest power of two smaller than n (i.e., k < n <= 2k). The Merkle Tree Hash of an n-element list D_n is then defined recursively as
MTH(D_n) = HASH(0x01 || MTH(D[0:k]) || MTH(D[k:n])),

where:
* || denotes concatenation
* : denotes concatenation of lists
* D[k1:k2] = D'_(k2-k1) denotes the list {d'[0] = d[k1], d'[1] = d[k1+1], ..., d'[k2-k1-1] = d[k2-1]} of length (k2 - k1).

Note that the hash calculations for leaves and nodes differ; this domain separation is required to give second preimage resistance.

Note that we do not require the length of the input list to be a power of two. The resulting Merkle Tree may thus not be balanced; however, its shape is uniquely determined by the number of leaves.
(Note: This Merkle Tree is essentially the same as the history tree [CrosbyWallach] proposal, except our definition handles non-full trees differently).

2.1.2. Verifying a Tree Head Given Entries

When a client has a complete list of "entries" from "0" up to "tree_size - 1" and wishes to verify this list against a tree head "root_hash" returned by the log for the same "tree_size", the following algorithm may be used:

1. Set "stack" to an empty stack.
2. For each "i" from "0" up to "tree_size - 1":
 1. Push "HASH(0x00 || entries[i])" to "stack".
2. Set "merge_count" to the lowest value ("0" included) such that "LSB(i >> merge_count)" is not set, where "LSB" means the least significant bit. In other words, set "merge_count" to the number of consecutive "1"s found starting at the least significant bit of "i".

3. Repeat "merge_count" times:
 1. Pop "right" from "stack".
 2. Pop "left" from "stack".
 3. Push "HASH(0x01 || left || right)" to "stack".

3. If there is more than one element in the "stack", repeat the same merge procedure (the sub-items of Step 2.3 above) until only a single element remains.

4. The remaining element in "stack" is the Merkle Tree hash for the given "tree_size" and should be compared by equality against the supplied "root_hash".

2.1.3. Merkle Inclusion Proofs

A Merkle inclusion proof for a leaf in a Merkle Hash Tree is the shortest list of additional nodes in the Merkle Tree required to compute the Merkle Tree Hash for that tree. Each node in the tree is either a leaf node or is computed from the two nodes immediately below it (i.e., towards the leaves). At each step up the tree (towards the root), a node from the inclusion proof is combined with the node computed so far. In other words, the inclusion proof consists of the list of missing nodes required to compute the nodes leading from a leaf to the root of the tree. If the root computed from the inclusion proof matches the true root, then the inclusion proof proves that the leaf exists in the tree.

2.1.3.1. Generating an Inclusion Proof

Given an ordered list of n inputs to the tree, D_n = {d[0], d[1], ..., d[n-1]}, the Merkle inclusion proof PATH(m, D_n) for the (m+1)th input d[m], 0 <= m < n, is defined as follows:

The proof for the single leaf in a tree with a one-element input list D[1] = {d[0]} is empty:

PATH(0, (d[0])) = {}
For \(n > 1 \), let \(k \) be the largest power of two smaller than \(n \). The proof for the \((m+1)\)th element \(d[m] \) in a list of \(n > m \) elements is then defined recursively as

\[
\text{PATH}(m, D_n) = \text{PATH}(m, D[0:k]) : \text{MTH}(D[k:n]) \quad \text{for } m < k; \quad \text{and}
\]

\[
\text{PATH}(m, D_n) = \text{PATH}(m - k, D[k:n]) : \text{MTH}(D[0:k]) \quad \text{for } m \geq k,
\]

The \(: \) operator and \(D[k1:k2] \) are defined the same as in Section 2.1.1.

2.1.3.2. Verifying an Inclusion Proof

When a client has received an inclusion proof (e.g., in a "TransItem" of type "inclusion_proof_v2") and wishes to verify inclusion of an input "hash" for a given "tree_size" and "root_hash", the following algorithm may be used to prove the "hash" was included in the "root_hash":

1. Compare "leaf_index" from the "inclusion_proof_v2" structure against "tree_size". If "leaf_index" is greater than or equal to "tree_size" then fail the proof verification.

2. Set "fn" to "leaf_index" and "sn" to "tree_size - 1".

3. Set "r" to "hash".

4. For each value "p" in the "inclusion_path" array:
 - If "sn" is 0, stop the iteration and fail the proof verification.
 - If "LSB(fn)" is set, or if "fn" is equal to "sn", then:
 1. Set "r" to "HASH(0x01 || p || r)"
 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn" equally until either "LSB(fn)" is set or "fn" is "0".

 Otherwise:
 1. Set "r" to "HASH(0x01 || r || p)"

Finally, right-shift both "fn" and "sn" one time.

5. Compare "sn" to 0. Compare "r" against the "root_hash". If "sn" is equal to 0, and "r" and the "root_hash" are equal, then the log has proven the inclusion of "hash". Otherwise, fail the proof verification.
2.1.4. Merkle Consistency Proofs

Merkle consistency proofs prove the append-only property of the tree. A Merkle consistency proof for a Merkle Tree Hash MTH(D_n) and a previously advertised hash MTH(D[0:m]) of the first m leaves, m <= n, is the list of nodes in the Merkle Tree required to verify that the first m inputs D[0:m] are equal in both trees. Thus, a consistency proof must contain a set of intermediate nodes (i.e., commitments to inputs) sufficient to verify MTH(D_n), such that (a subset of) the same nodes can be used to verify MTH(D[0:m]). We define an algorithm that outputs the (unique) minimal consistency proof.

2.1.4.1. Generating a Consistency Proof

Given an ordered list of n inputs to the tree, D_n = {d[0], d[1], ..., d[n-1]}, the Merkle consistency proof PROOF(m, D_n) for a previous Merkle Tree Hash MTH(D[0:m]), 0 < m < n, is defined as:

PROOF(m, D_n) = SUBPROOF(m, D_n, true)

In SUBPROOF, the boolean value represents whether the subtree created from D[0:m] is a complete subtree of the Merkle Tree created from D_n, and, consequently, whether the subtree Merkle Tree Hash MTH(D[0:m]) is known. The initial call to SUBPROOF sets this to be true, and SUBPROOF is then defined as follows:

The subproof for m = n is empty if m is the value for which PROOF was originally requested (meaning that the subtree created from D[0:m] is a complete subtree of the Merkle Tree created from the original D_n for which PROOF was requested, and the subtree Merkle Tree Hash MTH(D[0:m]) is known):

SUBPROOF(m, D_m, true) = {}

Otherwise, the subproof for m = n is the Merkle Tree Hash committing inputs D[0:m]:

SUBPROOF(m, D_m, false) = {MTH(D_m)}

For m < n, let k be the largest power of two smaller than n. The subproof is then defined recursively, using the appropriate step below:

If m <= k, the right subtree entries D[k:n] only exist in the current tree. We prove that the left subtree entries D[0:k] are consistent and add a commitment to D[k:n]:

SUBPROOF(m, D_n, b) = SUBPROOF(m, D[0:k], b) : MTH(D[k:n])
If \(m > k \), the left subtree entries \(D[0:k] \) are identical in both
trees. We prove that the right subtree entries \(D[k:n] \) are consistent
and add a commitment to \(D[0:k] \).

\[
\text{SUBPROOF}(m, D_n, b) = \text{SUBPROOF}(m - k, D[k:n], \text{false}) : \text{MTH}(D[0:k])
\]

The number of nodes in the resulting proof is bounded above by
\(\text{ceil}(\log_2(n)) + 1 \).

The : operator and \(D[k1:k2] \) are defined the same as in Section 2.1.1.

2.1.4.2. Verifying Consistency between Two Tree Heads

When a client has a tree head "first_hash" for tree size "first", a
tree head "second_hash" for tree size "second" where "0 < first <
second", and has received a consistency proof between the two (e.g.,
in a "TransItem" of type "consistency_proof_v2"), the following
algorithm may be used to verify the consistency proof:

1. If "consistency_path" is an empty array, stop and fail the proof
 verification.
2. If "first" is an exact power of 2, then prepend "first_hash" to
 the "consistency_path" array.
3. Set "fn" to "first - 1" and "sn" to "second - 1".
4. If "LSB(fn)" is set, then right-shift both "fn" and "sn" equally
 until "LSB(fn)" is not set.
5. Set both "fr" and "sr" to the first value in the
 "consistency_path" array.
6. For each subsequent value "c" in the "consistency_path" array:
 - If "sn" is 0, stop the iteration and fail the proof verification.
 - If "LSB(fn)" is set, or if "fn" is equal to "sn", then:
 1. Set "fr" to \(\text{HASH}(0x01 || c || \text{fr}) \)
 Set "sr" to \(\text{HASH}(0x01 || c || \text{sr}) \)
 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
 equally until either "LSB(fn)" is set or "fn" is "0".

Otherwise:
1. Set "sr" to "HASH(0x01 || sr || c)"

Finally, right-shift both "fn" and "sn" one time.

7. After completing iterating through the "consistency_path" array as described above, verify that the "fr" calculated is equal to the "first_hash" supplied, that the "sr" calculated is equal to the "second_hash" supplied and that "sn" is 0.

2.1.5. Example

The binary Merkle Tree with 7 leaves:

```
hash
 /  \
/   \
/     \
/       \
/         \
/           \
/             \
/                 \
/                   \
/                     \
/                       \
/                             \
/                               \
/                                 \
/                                   \
/                                     \
/                                         \
/                                             \
/                                               \
/                                                 \
/                                                   \
/                                                     \
/                                                         \
/                                                           \
/                                                               \
/                                                                     \
/                                                                       \
/                                                                         \
/                                                                             \
/                                                                               \
/                                                                                     \
/                                                                                         \
/                                                                                               \
/                                                                                                                   \
/                                                                                                               \
/                                                                                                                     \
/                                                                                                                   \
/                                                                                                               \
/                                                                                         k    l
/   \
/     \
/       \
g    h    i    j
/   \
/     \
a  b  c  d  e  f  d6
/ | \
| d0 d1 d2 d3 d4 d5
```

The inclusion proof for d0 is [b, h, l].
The inclusion proof for d3 is [c, g, l].
The inclusion proof for d4 is [f, j, k].
The inclusion proof for d6 is [i, k].
The same tree, built incrementally in four steps:
The consistency proof between hash0 and hash is \text{PROOF}(3, D[7]) = [c, d, g, l]. c, g are used to verify hash0, and d, l are additionally used to show hash is consistent with hash0.

The consistency proof between hash1 and hash is \text{PROOF}(4, D[7]) = [l]. hash can be verified using hash1=k and l.

The consistency proof between hash2 and hash is \text{PROOF}(6, D[7]) = [i, j, k]. k, i are used to verify hash2, and j is additionally used to show hash is consistent with hash2.

2.2. Signatures

When signing data structures, a log MUST use one of the signature algorithms from the IANA CT Signature Algorithms registry, described in Section 10.2.2.
3. Submitters

Submitters submit certificates or preannouncements of certificates prior to issuance (precertificates) to logs for public auditing, as described below. In order to enable attribution of each logged certificate or precertificate to its issuer, each submission MUST be accompanied by all additional certificates required to verify the chain up to an accepted trust anchor (Section 5.7). The trust anchor (a root or intermediate CA certificate) MAY be omitted from the submission.

If a log accepts a submission, it will return a Signed Certificate Timestamp (SCT) (see Section 4.8). The submitter SHOULD validate the returned SCT as described in Section 8.1 if they understand its format and they intend to use it directly in a TLS handshake or to construct a certificate. If the submitter does not need the SCT (for example, the certificate is being submitted simply to make it available in the log), it MAY validate the SCT.

3.1. Certificates

Any entity can submit a certificate (Section 5.1) to a log. Since it is anticipated that TLS clients will reject certificates that are not logged, it is expected that certificate issuers and subjects will be strongly motivated to submit them.

3.2. Precertificates

CAs may preannounce a certificate prior to issuance by submitting a precertificate (Section 5.1) that the log can use to create an entry that will be valid against the issued certificate. The CA MAY incorporate the returned SCT in the issued certificate. One example of where the returned SCT is not incorporated in the issued certificate is when a CA sends the precertificate to multiple logs, but only incorporates the SCTs that are returned first.

A precertificate is a CMS [RFC5652] "signed-data" object that conforms to the following profile:

* It MUST be DER encoded as described in [X690].
* "SignedData.version" MUST be v3(3).
* "SignedData.digestAlgorithms" MUST be the same as the "SignerInfo.digestAlgorithm" OID value (see below).
* "SignedData.encapContentInfo":

[Page 15]
- "eContentType" MUST be the OID 1.3.101.78.

- "eContent" MUST contain a TBSCertificate [RFC5280] that will be identical to the TBSCertificate in the issued certificate, except that the Transparency Information (Section 7.1) extension MUST be omitted.

* "SignedData.certificates" MUST be omitted.

* "SignedData.crls" MUST be omitted.

* "SignedData.signerInfos" MUST contain one "SignerInfo":

 - "version" MUST be v3(3).

 - "sid" MUST use the "subjectKeyIdentifier" option.

 - "digestAlgorithm" MUST be one of the hash algorithm OIDs listed in the IANA CT Hash Algorithms Registry, described in Section 10.2.1.

 - "signedAttrs" MUST be present and MUST contain two attributes:

 - A content-type attribute whose value is the same as "SignedData.encapContentInfo.eContentType".

 - A message-digest attribute whose value is the message digest of "SignedData.encapContentInfo.eContent".

 - "signatureAlgorithm" MUST be the same OID as "TBSCertificate.signature".

 - "signature" MUST be from the same (root or intermediate) CA that intends to issue the corresponding certificate (see Section 3.2.1).

 - "unsignedAttrs" MUST be omitted.

"SignerInfo.signedAttrs" is included in the message digest calculation process (see Section 5.4 of [RFC5652]), which ensures that the "SignerInfo.signature" value will not be a valid X.509v3 signature that could be used in conjunction with the TBSCertificate (from "SignedData.encapContentInfo.eContent") to construct a valid certificate.
3.2.1. Binding Intent to Issue

Under normal circumstances, there will be a short delay between precertificate submission and issuance of the corresponding certificate. Longer delays are to be expected occasionally (e.g., due to log server downtime), and in some cases the CA might not actually issue the corresponding certificate. Nevertheless, a precertificate’s "signature" indicates the CA’s binding intent to issue the corresponding certificate, which means that:

* Misissuance of a precertificate is considered equivalent to misissuance of the corresponding certificate. The CA should expect to be held to account, even if the corresponding certificate has not actually been issued.

* Upon observing a precertificate, a client can reasonably presume that the corresponding certificate has been issued. A client may wish to obtain status information (e.g., by using the Online Certificate Status Protocol [RFC6960] or by checking a Certificate Revocation List [RFC5280]) about a certificate that is presumed to exist, especially if there is evidence or suspicion that the corresponding precertificate was misissued.

* TLS clients may have policies that require CAs to be able to revoke, and to provide certificate status services for, each certificate that is presumed to exist based on the existence of a corresponding precertificate.

4. Log Format and Operation

A log is a single, append-only Merkle Tree of submitted certificate and precertificate entries.

When it receives and accepts a valid submission, the log MUST return an SCT that corresponds to the submitted certificate or precertificate. If the log has previously seen this valid submission, it SHOULD return the same SCT as it returned before, as discussed in Section 11.3. If different SCTs are produced for the same submission, multiple log entries will have to be created, one for each SCT (as the timestamp is a part of the leaf structure). Note that if a certificate was previously logged as a precertificate, then the precertificate’s SCT of type "precert_sct_v2" would not be appropriate; instead, a fresh SCT of type "x509_sct_v2" should be generated.
An SCT is the log’s promise to append to its Merkle Tree an entry for the accepted submission. Upon producing an SCT, the log MUST fulfill this promise by performing the following actions within a fixed amount of time known as the Maximum Merge Delay (MMD), which is one of the log’s parameters (see Section 4.1):

* Allocate a tree index to the entry representing the accepted submission.
* Calculate the root of the tree.
* Sign the root of the tree (see Section 4.10).

The log may append multiple entries before signing the root of the tree.

Log operators SHOULD NOT impose any conditions on retrieving or sharing data from the log.

4.1. Log Parameters

A log is defined by a collection of immutable parameters, which are used by clients to communicate with the log and to verify log artifacts. Except for the Final Signed Tree Head (STH), each of these parameters MUST be established before the log operator begins to operate the log.

Base URL: The prefix used to construct URLs ([RFC3986]) for client messages (see Section 5). The base URL MUST be an "https" URL, MAY contain a port, MAY contain a path with any number of path segments, but MUST NOT contain a query string, fragment, or trailing "/". Example: https://ct.example.org/blue

Hash Algorithm: The hash algorithm used for the Merkle Tree (see Section 10.2.1).

Signature Algorithm: The signature algorithm used (see Section 2.2).

Public Key: The public key used to verify signatures generated by the log. A log MUST NOT use the same keypair as any other log.

Log ID: The OID that uniquely identifies the log.

Maximum Merge Delay: The MMD the log has committed to. This document deliberately does not specify any limits on the value, to allow for experimentation.

Version: The version of the protocol supported by the log (currently
Maximum Chain Length: The longest certificate chain submission the log is willing to accept, if the log imposes any limit.

STH Frequency Count: The maximum number of STHs the log may produce in any period equal to the "Maximum Merge Delay" (see Section 4.10).

Final STH: If a log has been closed down (i.e., no longer accepts new entries), existing entries may still be valid. In this case, the client should know the final valid STH in the log to ensure no new entries can be added without detection. This value MUST be provided in the form of a TransItem of type "signed_tree_head_v2". If a log is still accepting entries, this value should not be provided.

[JSON.Metadata] is an example of a metadata format which includes the above elements.

4.2. Evaluating Submissions

A log determines whether to accept or reject a submission by evaluating it against the minimum acceptance criteria (see Section 4.2.1) and against the log’s discretionary acceptance criteria (see Section 4.2.2).

If the acceptance criteria are met, the log SHOULD accept the submission. (A log may decide, for example, to temporarily reject acceptable submissions to protect itself against denial-of-service attacks).

The log SHALL allow retrieval of its list of accepted trust anchors (see Section 5.7), each of which is a root or intermediate CA certificate. This list might usefully be the union of root certificates trusted by major browser vendors.

4.2.1. Minimum Acceptance Criteria

To ensure that logged certificates and precertificates are attributable to an accepted trust anchor, to set clear expectations for what monitors would find in the log, and to avoid being overloaded by invalid submissions, the log MUST reject a submission if any of the following conditions are not met:
* The "submission", "type" and "chain" inputs MUST be set as described in Section 5.1. The log MUST NOT accommodate misordered CA certificates or use any other source of intermediate CA certificates to attempt certification path construction.

* Each of the zero or more intermediate CA certificates in the chain MUST have one or both of the following features:
 - The Basic Constraints extension with the CA boolean asserted.
 - The Key Usage extension with the keyCertSign bit asserted.

* Each certificate in the chain MUST fall within the limits imposed by the zero or more Basic Constraints pathLenConstraint values found higher up the chain.

* Precertificate submissions MUST conform to all of the requirements in Section 3.2.

4.2.2. Discretionary Acceptance Criteria

If the minimum acceptance criteria are met but the submission is not fully valid according to [RFC5280] verification rules (e.g., the certificate or precertificate has expired, is not yet valid, has been revoked, exhibits ASN.1 DER encoding errors but the log can still parse it, etc), then the acceptability of the submission is left to the log's discretion. It is useful for logs to accept such submissions in order to accommodate quirks of CA certificate-issuing software and to facilitate monitoring of CA compliance with applicable policies and technical standards. However, it is impractical for this document to enumerate, and for logs to consider, all of the ways that a submission might fail to comply with [RFC5280].

Logs SHOULD limit the length of chain they will accept. The maximum chain length is one of the log's parameters (see Section 4.1).

4.3. Log Entries

If a submission is accepted and an SCT issued, the accepting log MUST store the entire chain used for verification. This chain MUST include the certificate or precertificate itself, the zero or more intermediate CA certificates provided by the submitter, and the trust anchor used to verify the chain (even if it was omitted from the submission). The log MUST provide this chain for auditing upon request (see Section 5.6) so that the CA cannot avoid blame by logging a partial or empty chain. Each log entry is a "TransItem" structure of type "x509_entry_v2" or "precert_entry_v2". However, a
log may store its entries in any format. If a log does not store this "TransItem" in full, it must store the "timestamp" and "sct_extensions" of the corresponding "TimestampedCertificateEntryDataV2" structure. The "TransItem" can be reconstructed from these fields and the entire chain that the log used to verify the submission.

4.4. Log ID

Each log is identified by an OID, which is one of the log’s parameters (see Section 4.1) and which MUST NOT be used to identify any other log. A log’s operator MUST either allocate the OID themselves or request an OID from the Log ID registry (see Section 10.2.5). One way to get an OID arc, from which OIDs can be allocated, is to request a Private Enterprise Number from IANA, by completing the registration form (https://pen.iana.org/pen/PenApplication.page). The only advantage of the registry is that the DER encoding can be small. (Recall that OID allocations do not require a central registration, although logs will most likely want to make themselves known to potential clients through out of band means.) Various data structures include the DER encoding of this OID, excluding the ASN.1 tag and length bytes, in an opaque vector:

 opaque LogID<2..127>;

Note that the ASN.1 length and the opaque vector length are identical in size (1 byte) and value, so the full DER encoding (including the tag and length) of the OID can be reproduced simply by prepending an OBJECT IDENTIFIER tag (0x06) to the opaque vector length and contents.

The OID used to identify a log is limited such that the DER encoding of its value, excluding the tag and length, MUST be no longer than 127 octets.

4.5. TransItem Structure

Various data structures are encapsulated in the "TransItem" structure to ensure that the type and version of each one is identified in a common fashion:
enum {
 x509_entry_v2(0x0100), precert_entry_v2(0x0101),
 x509_sct_v2(0x0102), precert_sct_v2(0x0103),
 signed_tree_head_v2(0x0104), consistency_proof_v2(0x0105),
 inclusion_proof_v2(0x0106),

 /* Reserved Code Points */
 reserved_rfc6962(0x0000..0x00FF),
 reserved_experimental_use(0xE000..0xEFFF),
 reserved_private_use(0xF000..0xFFFF),
 (0xFFFF)
} VersionedTransType;

struct {
 VersionedTransType versioned_type;
 select (versioned_type) {
 case x509_entry_v2: TimestampedCertificateEntryDataV2;
 case precert_entry_v2: TimestampedCertificateEntryDataV2;
 case x509_sct_v2: SignedCertificateTimestampDataV2;
 case precert_sct_v2: SignedCertificateTimestampDataV2;
 case signed_tree_head_v2: SignedTreeHeadDataV2;
 case consistency_proof_v2: ConsistencyProofDataV2;
 case inclusion_proof_v2: InclusionProofDataV2;
 } data;
} TransItem;

"versioned_type" is a value from the IANA registry in Section 10.2.3 that identifies the type of the encapsulated data structure and the earliest version of this protocol to which it conforms. This document is v2.

"data" is the encapsulated data structure. The various structures named with the "DataV2" suffix are defined in later sections of this document.

Note that "VersionedTransType" combines the v1 [RFC6962] type enumerations "Version", "LogEntryType", "SignatureType" and "MerkleLeafType". Note also that v1 did not define "TransItem", but this document provides guidelines (see Appendix A) on how v2 implementations can co-exist with v1 implementations.

Future versions of this protocol may reuse "VersionedTransType" values defined in this document as long as the corresponding data structures are not modified, and may add new "VersionedTransType" values for new or modified data structures.

4.6. Log Artifact Extensions
enum {
 reserved(65535)
} ExtensionType;

struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
} Extension;

The "Extension" structure provides a generic extensibility for log artifacts, including SCTs (Section 4.8) and STHs (Section 4.10). The interpretation of the "extension_data" field is determined solely by the value of the "extension_type" field.

This document does not define any extensions, but it does establish a registry for future "ExtensionType" values (see Section 10.2.4). Each document that registers a new "ExtensionType" must specify the context in which it may be used (e.g., SCT, STH, or both) and describe how to interpret the corresponding "extension_data".

4.7. Merkle Tree Leaves

The leaves of a log’s Merkle Tree correspond to the log’s entries (see Section 4.3). Each leaf is the leaf hash (Section 2.1) of a "TransItem" structure of type "x509_entry_v2" or "precert_entry_v2", which encapsulates a "TimestampedCertificateEntryDataV2" structure. Note that leaf hashes are calculated as HASH(0x00 || TransItem), where the hash algorithm is one of the log’s parameters.

opaque TBSCertificate<1..2^24-1>;

struct {
 uint64 timestamp;
 opaque issuer_key_hash<32..2^8-1>;
 TBSCertificate tbs_certificate;
 Extension sct_extensions<0..2^16-1>;
} TimestampedCertificateEntryDataV2;

"timestamp" is the date and time at which the certificate or precertificate was accepted by the log, in the form of a 64-bit unsigned number of milliseconds elapsed since the Unix Epoch (1 January 1970 00:00:00 UTC - see [UNIXTIME]), ignoring leap seconds, in network byte order. Note that the leaves of a log’s Merkle Tree are not required to be in strict chronological order.

"issuer_key_hash" is the HASH of the public key of the CA that issued the certificate or precertificate, calculated over the DER encoding of the key represented as SubjectPublicKeyInfo [RFC5280]. This is
needed to bind the CA to the certificate or precertificate, making it impossible for the corresponding SCT to be valid for any other certificate or precertificate whose TBSCertificate matches "tbs_certificate". The length of the "issuer_key_hash" MUST match HASH_SIZE.

"tbs_certificate" is the DER encoded TBSCertificate from the submission. (Note that a precertificate’s TBSCertificate can be reconstructed from the corresponding certificate as described in Section 8.1.2).

"sct_extensions" is byte-for-byte identical to the SCT extensions of the corresponding SCT.

The type of the "TransItem" corresponds to the value of the "type" parameter supplied in the Section 5.1 call.

4.8. Signed Certificate Timestamp (SCT)

An SCT is a "TransItem" structure of type "x509_sct_v2" or "precert_sct_v2", which encapsulates a "SignedCertificateTimestampDataV2" structure:

struct {
 LogID log_id;
 uint64 timestamp;
 Extension sct_extensions<0..2^16-1>;
 opaque signature<1..2^16-1>;
} SignedCertificateTimestampDataV2;

"log_id" is this log’s unique ID, encoded in an opaque vector as described in Section 4.4.

"timestamp" is equal to the timestamp from the corresponding "TimestampedCertificateEntryDataV2" structure.

"sct_extensions" is a vector of 0 or more SCT extensions. This vector MUST NOT include more than one extension with the same "extension_type". The extensions in the vector MUST be ordered by the value of the "extension_type" field, smallest value first. All SCT extensions are similar to non-critical X.509v3 extensions (i.e., the "mustUnderstand" field is not set), and a recipient SHOULD ignore any extension it does not understand. Furthermore, an implementation MAY choose to ignore any extension(s) that it does understand.
"signature" is computed over a "TransItem" structure of type
"x509_entry_v2" or "precert_entry_v2" (see Section 4.7) using the
signature algorithm declared in the log’s parameters (see
Section 4.1).

4.9. Merkle Tree Head

The log stores information about its Merkle Tree in a
"TreeHeadDataV2":

 opaque NodeHash<32..2^8-1>;

 struct {
 uint64 timestamp;
 uint64 tree_size;
 NodeHash root_hash;
 Extension sth_extensions<0..2^16-1>;
 } TreeHeadDataV2;

The length of NodeHash MUST match HASH_SIZE of the log.

"timestamp" is the current date and time, using the format defined in
Section 4.7.

"tree_size" is the number of entries currently in the log’s Merkle
Tree.

"root_hash" is the root of the Merkle Hash Tree.

"sth_extensions" is a vector of 0 or more STH extensions. This
vector MUST NOT include more than one extension with the same
"extension_type". The extensions in the vector MUST be ordered by
the value of the "extension_type" field, smallest value first. If an
implementation sees an extension that it does not understand, it
SHOULD ignore that extension. Furthermore, an implementation MAY
choose to ignore any extension(s) that it does understand.
4.10. Signed Tree Head (STH)

Periodically each log SHOULD sign its current tree head information (see Section 4.9) to produce an STH. When a client requests a log’s latest STH (see Section 5.2), the log MUST return an STH that is no older than the log’s MMD. However, since STHs could be used to mark individual clients (by producing a new STH for each query), a log MUST NOT produce STHs more frequently than its parameters declare (see Section 4.1). In general, there is no need to produce a new STH unless there are new entries in the log; however, in the event that a log does not accept any submissions during an MMD period, the log MUST sign the same Merkle Tree Hash with a fresh timestamp.

An STH is a "TransItem" structure of type "signed_tree_head_v2", which encapsulates a "SignedTreeHeadDataV2" structure:

```c
struct {
    LogID log_id;
    TreeHeadDataV2 tree_head;
    opaque signature<1..2^16-1>;
} SignedTreeHeadDataV2;
```

"log_id" is this log’s unique ID, encoded in an opaque vector as described in Section 4.4.

The "timestamp" in "tree_head" MUST be at least as recent as the most recent SCT timestamp in the tree. Each subsequent timestamp MUST be more recent than the timestamp of the previous update.

"tree_head" contains the latest tree head information (see Section 4.9).

"signature" is computed over the "tree_head" field using the signature algorithm declared in the log’s parameters (see Section 4.1).

4.11. Merkle Consistency Proofs

To prepare a Merkle Consistency Proof for distribution to clients, the log produces a "TransItem" structure of type "consistency_proof_v2", which encapsulates a "ConsistencyProofDataV2" structure:
struct {
 LogID log_id;
 uint64 tree_size_1;
 uint64 tree_size_2;
 NodeHash consistency_path<0..2^16-1>;
} ConsistencyProofDataV2;

"log_id" is this log's unique ID, encoded in an opaque vector as described in Section 4.4.

"tree_size_1" is the size of the older tree.

"tree_size_2" is the size of the newer tree.

"consistency_path" is a vector of Merkle Tree nodes proving the consistency of two STHs as described in Section 2.1.4.

4.12. Merkle Inclusion Proofs

To prepare a Merkle Inclusion Proof for distribution to clients, the log produces a "TransItem" structure of type "inclusion_proof_v2", which encapsulates an "InclusionProofDataV2" structure:

struct {
 LogID log_id;
 uint64 tree_size;
 uint64 leaf_index;
 NodeHash inclusion_path<0..2^16-1>;
} InclusionProofDataV2;

"log_id" is this log's unique ID, encoded in an opaque vector as described in Section 4.4.

"tree_size" is the size of the tree on which this inclusion proof is based.

"leaf_index" is the 0-based index of the log entry corresponding to this inclusion proof.

"inclusion_path" is a vector of Merkle Tree nodes proving the inclusion of the chosen certificate or precertificate as described in Section 2.1.3.
4.13. Shutting down a log

Log operators may decide to shut down a log for various reasons, such as deprecation of the signature algorithm. If there are entries in the log for certificates that have not yet expired, simply making TLS clients stop recognizing that log will have the effect of invalidating SCTs from that log. In order to avoid that, the following actions SHOULD be taken:

* Make it known to clients and monitors that the log will be frozen. This is not part of the API, so it will have to be done via a relevant out-of-band mechanism.

* Stop accepting new submissions (the error code "shutdown" should be returned for such requests).

* Once MMD from the last accepted submission has passed and all pending submissions are incorporated, issue a final STH and publish it as one of the log’s parameters. Having an STH with a timestamp that is after the MMD has passed from the last SCT issuance allows clients to audit this log regularly without special handling for the final STH. At this point the log’s private key is no longer needed and can be destroyed.

* Keep the log running until the certificates in all of its entries have expired or exist in other logs (this can be determined by scanning other logs or connecting to domains mentioned in the certificates and inspecting the SCTs served).

5. Log Client Messages

Messages are sent as HTTPS GET or POST requests. Parameters for POSTs and all responses are encoded as JavaScript Object Notation (JSON) objects [RFC8259]. Parameters for GETs are encoded as order-independent key/value URL parameters, using the "application/x-www-form-urlencoded" format described in the "HTML 4.01 Specification" [HTML401]. Binary data is base64 encoded according to section 4 of [RFC4648] as specified in the individual messages.

Clients are configured with a log’s base URL, which is one of the log’s parameters. Clients construct URLs for requests by appending suffixes to this base URL. This structure places some degree of restriction on how log operators can deploy these services, as noted in [RFC8820]. However, operational experience with version 1 of this protocol has not indicated that these restrictions are a problem in practice.
Note that JSON objects and URL parameters may contain fields not specified here, to allow for experimentation. Any fields that are not understood SHOULD be ignored.

In practice, log servers may include multiple front-end machines. Since it is impractical to keep these machines in perfect sync, errors may occur that are caused by skew between the machines. Where such errors are possible, the front-end will return additional information (as specified below) making it possible for clients to make progress, if progress is possible. Front-ends MUST only serve data that is free of gaps (that is, for example, no front-end will respond with an STH unless it is also able to prove consistency from all log entries logged within that STH).

For example, when a consistency proof between two STHs is requested, the front-end reached may not yet be aware of one or both STHs. In the case where it is unaware of both, it will return the latest STH it is aware of. Where it is aware of the first but not the second, it will return the latest STH it is aware of and a consistency proof from the first STH to the returned STH. The case where it knows the second but not the first should not arise (see the "no gaps" requirement above).

If the log is unable to process a client’s request, it MUST return an HTTP response code of 4xx/5xx (see [RFC7231]), and, in place of the responses outlined in the subsections below, the body SHOULD be a JSON Problem Details Object (see [RFC7807] Section 3), containing:

type: A URN reference identifying the problem. To facilitate automated response to errors, this document defines a set of standard tokens for use in the "type" field, within the URN namespace of: "urn:ietf:params:trans:error:"

detail: A human-readable string describing the error that prevented the log from processing the request, ideally with sufficient detail to enable the error to be rectified.

e.g., In response to a request of "<Base URL>/ct/v2/get-entries?start=100&end=99", the log would return a "400 Bad Request" response code with a body similar to the following:

```json
{
    "type": "urn:ietf:params:trans:error:endBeforeStart",
    "detail": "'start' cannot be greater than 'end'"
}
```
Most error types are specific to the type of request and are defined in the respective subsections below. The one exception is the "malformed" error type, which indicates that the log server could not parse the client's request because it did not comply with this document:

<table>
<thead>
<tr>
<th>type</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>malformed</td>
<td>The request could not be parsed.</td>
</tr>
</tbody>
</table>

Table 1

Clients SHOULD treat "500 Internal Server Error" and "503 Service Unavailable" responses as transient failures and MAY retry the same request without modification at a later date. Note that as per [RFC7231], in the case of a 503 response the log MAY include a "Retry-After:" header field in order to request a minimum time for the client to wait before retrying the request. In the absence of this header field, this document does not specify a minimum.

Clients SHOULD treat any 4xx error as a problem with the request and not attempt to resubmit without some modification to the request. The full status code MAY provide additional details.

This document deliberately does not provide more specific guidance on the use of HTTP status codes.

5.1. Submit Entry to Log

POST <Base URL>/ct/v2/submit-entry

Inputs: submission: The base64 encoded certificate or precertificate.

 type: The "VersionedTransType" integer value that indicates the type of the "submission": 1 for "x509_entry_v2", or 2 for "precert_entry_v2".

 chain: An array of zero or more JSON strings, each of which is a base64 encoded CA certificate. The first element is the certifier of the "submission"; the second certifies the first; etc. The last element of "chain" (or, if "chain" is an empty array, the "submission") is certified by an accepted trust anchor.

Outputs: sct: A base64 encoded "TransItem" of type "x509_sct_v2" or
"precert_sct_v2", signed by this log, that corresponds to the "submission".

If the submitted entry is immediately appended to (or already exists in) this log’s tree, then the log SHOULD also output:

sth: A base64 encoded "TransItem" of type "signed_tree_head_v2", signed by this log.

inclusion: A base64 encoded "TransItem" of type "inclusion_proof_v2" whose "inclusion_path" array of Merkle Tree nodes proves the inclusion of the "submission" in the returned "sth".

Error codes:

<table>
<thead>
<tr>
<th>type</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>badSubmission</td>
<td>"submission" is neither a valid certificate nor a valid precertificate.</td>
</tr>
<tr>
<td>badType</td>
<td>"type" is neither 1 nor 2.</td>
</tr>
<tr>
<td>badChain</td>
<td>The first element of "chain" is not the certifier of the "submission", or the second element does not certify the first, etc.</td>
</tr>
<tr>
<td>badCertificate</td>
<td>One or more certificates in the "chain" are not valid (e.g., not properly encoded).</td>
</tr>
<tr>
<td>unknownAnchor</td>
<td>The last element of "chain" (or, if "chain" is an empty array, the "submission") both is not, and is not certified by, an accepted trust anchor.</td>
</tr>
<tr>
<td>shutdown</td>
<td>The log is no longer accepting submissions.</td>
</tr>
</tbody>
</table>

Table 2

If the version of "sct" is not v2, then a v2 client may be unable to verify the signature. It MUST NOT construe this as an error. This is to avoid forcing an upgrade of compliant v2 clients that do not use the returned SCTs.
If a log detects bad encoding in a chain that otherwise verifies correctly then the log MUST either log the certificate or return the "bad certificate" error. If the certificate is logged, an SCT MUST be issued. Logging the certificate is useful, because monitors (Section 8.2) can then detect these encoding errors, which may be accepted by some TLS clients.

If "submission" is an accepted trust anchor whose certifier is neither an accepted trust anchor nor the first element of "chain", then the log MUST return the "unknown anchor" error. A log is not able to generate an SCT for a submission if it does not have access to the issuer’s public key.

If the returned "sct" is intended to be provided to TLS clients, then "sth" and "inclusion" (if returned) SHOULD also be provided to TLS clients. For example, if "type" was 2 (indicating "precert_sct_v2") then all three "TransItem"s could be embedded in the certificate.

5.2. Retrieve Latest STH

GET <Base URL>/ct/v2/get-sth

No inputs.

Outputs: sth: A base64 encoded "TransItem" of type "signed_tree_head_v2", signed by this log, that is no older than the log’s MMD.

5.3. Retrieve Merkle Consistency Proof between Two STHs

GET <Base URL>/ct/v2/get-sth-consistency

Inputs: first: The tree_size of the older tree, in decimal.

second: The tree_size of the newer tree, in decimal (optional).

Both tree sizes must be from existing v2 STHs. However, because of skew, the receiving front-end may not know one or both of the existing STHs. If both are known, then only the "consistency" output is returned. If the first is known but the second is not (or has been omitted), then the latest known STH is returned, along with a consistency proof between the first STH and the latest. If neither are known, then the latest known STH is returned without a consistency proof.

Outputs: consistency: A base64 encoded "TransItem" of type
"consistency_proof_v2", whose "tree_size_1" MUST match the "first" input. If the "sth" output is omitted, then "tree_size_2" MUST match the "second" input. If "first" and "second" are equal and correspond to a known STH, the returned consistency proof MUST be empty (a "consistency_path" array with zero elements).

sth: A base64 encoded "TransItem" of type "signed_tree_head_v2", signed by this log.

Note that no signature is required for the "consistency" output as it is used to verify the consistency between two STHs, which are signed.

Error codes:

<table>
<thead>
<tr>
<th>type</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>firstUnknown</td>
<td>"first" is before the latest known STH but is not from an existing STH.</td>
</tr>
<tr>
<td>secondUnknown</td>
<td>"second" is before the latest known STH but is not from an existing STH.</td>
</tr>
<tr>
<td>secondBeforeFirst</td>
<td>"second" is smaller than "first".</td>
</tr>
</tbody>
</table>

Table 3

See Section 2.1.4.2 for an outline of how to use the "consistency" output.

5.4. Retrieve Merkle Inclusion Proof from Log by Leaf Hash

GET <Base URL>/ct/v2/get-proof-by-hash

Inputs: hash: A base64 encoded v2 leaf hash.

tree_size: The tree_size of the tree on which to base the proof, in decimal.

The "hash" must be calculated as defined in Section 4.7. A v2 STH must exist for the "tree_size". Because of skew, the front-end may not know the requested tree head. In that case, it will return the latest STH it knows, along with an inclusion proof to that STH. If the front-end knows the requested tree head then only "inclusion" is returned.
Outputs: inclusion: A base64 encoded "TransItem" of type "inclusion_proof_v2" whose "inclusion_path" array of Merkle Tree nodes proves the inclusion of the certificate (as specified by the "hash" parameter) in the selected STH.

sth: A base64 encoded "TransItem" of type "signed_tree_head_v2", signed by this log.

Note that no signature is required for the "inclusion" output as it is used to verify inclusion in the selected STH, which is signed.

Error codes:

<table>
<thead>
<tr>
<th>type</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>hashUnknown</td>
<td>"hash" is not the hash of a known leaf (may be caused by skew or by a known certificate not yet merged).</td>
</tr>
<tr>
<td>treeSizeUnknown</td>
<td>"hash" is before the latest known STH but is not from an existing STH.</td>
</tr>
</tbody>
</table>

See Section 2.1.3.2 for an outline of how to use the "inclusion" output.

5.5. Retrieve Merkle Inclusion Proof, STH and Consistency Proof by Leaf Hash

GET <Base URL>/ct/v2/get-all-by-hash

Inputs: hash: A base64 encoded v2 leaf hash.

tree_size: The tree_size of the tree on which to base the proofs, in decimal.

The "hash" must be calculated as defined in Section 4.7. A v2 STH must exist for the "tree_size".

Because of skew, the front-end may not know the requested tree head or the requested hash, which leads to a number of cases:
<table>
<thead>
<tr>
<th>Case</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>latest STH < requested tree head</td>
<td>Return latest STH</td>
</tr>
<tr>
<td>latest STH > requested tree head</td>
<td>Return latest STH and a consistency proof between it and the requested tree head (see Section 5.3)</td>
</tr>
<tr>
<td>index of requested hash < latest STH</td>
<td>Return "inclusion"</td>
</tr>
</tbody>
</table>

Table 5

Note that more than one case can be true, in which case the returned data is their union. It is also possible for none to be true, in which case the front-end MUST return an empty response.

 Outputs:
inclusion: A base64 encoded "TransItem" of type "inclusion_proof_v2" whose "inclusion_path" array of Merkle Tree nodes proves the inclusion of the certificate (as specified by the "hash" parameter) in the selected STH.

sth: A base64 encoded "TransItem" of type "signed_tree_head_v2", signed by this log.

consistency: A base64 encoded "TransItem" of type "consistency_proof_v2" that proves the consistency of the requested tree head and the returned STH.

Note that no signature is required for the "inclusion" or "consistency" outputs as they are used to verify inclusion in and consistency of STHs, which are signed.

Errors are the same as in Section 5.4.

See Section 2.1.3.2 for an outline of how to use the "inclusion" output, and see Section 2.1.4.2 for an outline of how to use the "consistency" output.

5.6. Retrieve Entries and STH from Log

GET <Base URL>/ct/v2/get-entries

Inputs:
start: 0-based index of first entry to retrieve, in decimal.
end: 0-based index of last entry to retrieve, in decimal.

Outputs: entries: An array of objects, each consisting of

log_entry: The base64 encoded "TransItem" structure of type "x509_entry_v2" or "precert_entry_v2" (see Section 4.3).

submitted_entry: JSON object equivalent to inputs that were submitted to "submit-entry", with the addition of the trust anchor to the "chain" field if the submission did not include it.

sct: The base64 encoded "TransItem" of type "x509_sct_v2" or "precert_sct_v2" corresponding to this log entry.

sth: A base64 encoded "TransItem" of type "signed_tree_head_v2", signed by this log.

Note that this message is not signed -- the "entries" data can be verified by constructing the Merkle Tree Hash corresponding to a retrieved STH. All leaves MUST be v2. However, a compliant v2 client MUST NOT construe an unrecognized TransItem type as an error. This means it may be unable to parse some entries, but note that each client can inspect the entries it does recognize as well as verify the integrity of the data by treating unrecognized leaves as opaque input to the tree.

The "start" and "end" parameters SHOULD be within the range 0 <= x < "tree_size" as returned by "get-sth" in Section 5.2.

The "start" parameter MUST be less than or equal to the "end" parameter.

Each "submitted_entry" output parameter MUST include the trust anchor that the log used to verify the "submission", even if that trust anchor was not provided to "submit-entry" (see Section 5.1). If the "submission" does not certify itself, then the first element of "chain" MUST be present and MUST certify the "submission".

Log servers MUST honor requests where 0 <= "start" < "tree_size" and "end" >= "tree_size" by returning a partial response covering only the valid entries in the specified range. "end" >= "tree_size" could be caused by skew. Note that the following restriction may also apply:

Logs MAY restrict the number of entries that can be retrieved per "get-entries" request. If a client requests more than the permitted number of entries, the log SHALL return the maximum number of entries
permissible. These entries SHALL be sequential beginning with the entry specified by "start". Note that limit on the number of entries is not immutable and therefore the restriction may be changed or lifted at any time and is not listed with the other Log Parameters in Section 4.1.

Because of skew, it is possible the log server will not have any entries between "start" and "end". In this case it MUST return an empty "entries" array.

In any case, the log server MUST return the latest STH it knows about.

See Section 2.1.2 for an outline of how to use a complete list of "log_entry" entries to verify the "root_hash".

Error codes:

<table>
<thead>
<tr>
<th>type</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>startUnknown</td>
<td>"start" is greater than the number of entries in the Merkle tree.</td>
</tr>
<tr>
<td>endBeforeStart</td>
<td>"start" cannot be greater than "end".</td>
</tr>
</tbody>
</table>

Table 6

5.7. Retrieve Accepted Trust Anchors

GET <Base URL>/ct/v2/get-anchors

No inputs.

Outputs: certificates: An array of JSON strings, each of which is a base64 encoded CA certificate that is acceptable to the log.

max_chain_length: If the server has chosen to limit the length of chains it accepts, this is the maximum number of certificates in the chain, in decimal. If there is no limit, this is omitted.

This data is not signed and the protocol depends on the security guarantees of TLS to ensure correctness.
6. TLS Servers

CT-using TLS servers MUST use at least one of the mechanisms described below to present one or more SCTs from one or more logs to each TLS client during full TLS handshakes, when requested by the client, where each SCT corresponds to the server certificate. (Of course, a server can only send a TLS extension if the client has specified it first.) Servers SHOULD also present corresponding inclusion proofs and STHs.

A server can provide SCTs using a TLS 1.3 extension (Section 4.2 of [RFC8446]) with type "transparency_info" (see Section 6.5). This mechanism allows TLS servers to participate in CT without the cooperation of CAs, unlike the other two mechanisms. It also allows SCTs and inclusion proofs to be updated on the fly.

The server may also use an Online Certificate Status Protocol (OCSP) [RFC6960] response extension (see Section 7.1.1), providing the OCSP response as part of the TLS handshake. Providing a response during a TLS handshake is popularly known as "OCSP stapling." For TLS 1.3, the information is encoded as an extension in the "status_request" extension data; see Section 4.4.2.1 of [RFC8446]. For TLS 1.2 ([RFC5246]), the information is encoded in the "CertificateStatus" message; see Section 8 of [RFC6066]. Using stapling also allows SCTs and inclusion proofs to be updated on the fly.

CT information can also be encoded as an extension in the X.509v3 certificate (see Section 7.1.2). This mechanism allows the use of unmodified TLS servers, but the SCTs and inclusion proofs cannot be updated on the fly. Since the logs from which the SCTs and inclusion proofs originated won't necessarily be accepted by TLS clients for the full lifetime of the certificate, there is a risk that TLS clients may subsequently consider the certificate to be non-compliant and in need of re-issuance or the use of one of the other two methods for delivering CT information.

6.1. TLS Client Authentication

This specification includes no description of how a TLS server can use CT for TLS client certificates. While this may be useful, it is not documented here for the following reasons:

* The greater security exposure is for clients to end up interacting with an illegitimate server.

* In general, TLS client certificates are not expected to be submitted to CT logs, particularly those intended for general public use.
A future version could include such information.

6.2. Multiple SCTs

CT-using TLS servers SHOULD send SCTs from multiple logs, because:

* One or more logs may not have become acceptable to all CT-using TLS clients. Note that client discovery, trust, and distrust of logs is expected to be handled out-of-band and is out of scope of this document.

* If a CA and a log collude, it is possible to temporarily hide misissuance from clients. When a TLS client requires SCTs from multiple logs to be provided, it is more difficult to mount this attack.

* If a log misbehaves or suffers a key compromise, a consequence may be that clients cease to trust it. Since the time an SCT may be in use can be considerable (several years is common in current practice when embedded in a certificate), including SCTs from multiple logs reduces the probability of the certificate being rejected by TLS clients.

* TLS clients may have policies related to the above risks requiring TLS servers to present multiple SCTs. For example, at the time of writing, Chromium [Chromium.Log.Policy] requires multiple SCTs to be presented with EV certificates in order for the EV indicator to be shown.

To select the logs from which to obtain SCTs, a TLS server can, for example, examine the set of logs popular TLS clients accept and recognize.

6.3. TransItemList Structure

Multiple SCTs, inclusion proofs, and indeed "TransItem" structures of any type, are combined into a list as follows:

opaque SerializedTransItem<1..2^16-1>;

struct {
 SerializedTransItem trans_item_list<1..2^16-1>;
 } TransItemList;
Here, "SerializedTransItem" is an opaque byte string that contains the serialized "TransItem" structure. This encoding ensures that TLS clients can decode each "TransItem" individually (so, for example, if there is a version upgrade, out-of-date clients can still parse old "TransItem" structures while skipping over new "TransItem" structures whose versions they don't understand).

6.4. Presenting SCTs, inclusions proofs and STHs

In each "TransItemList" that is sent during a TLS handshake, the TLS server MUST include a "TransItem" structure of type "x509_sct_v2" or "precert_sct_v2".

Presenting inclusion proofs and STHs in the TLS handshake helps to protect the client's privacy (see Section 8.1.4) and reduces load on log servers. Therefore, if the TLS server can obtain them, it SHOULD also include "TransItem"s of type "inclusion_proof_v2" and "signed_tree_head_v2" in the "TransItemList".

6.5. transparency_info TLS Extension

Provided that a TLS client includes the "transparency_info" extension type in the ClientHello and the TLS server supports the "transparency_info" extension:

* The TLS server MUST verify that the received "extension_data" is empty.

* The TLS server MUST construct a "TransItemList" of relevant "TransItem"s (see Section 6.4), which SHOULD omit any "TransItem"s that are already embedded in the server certificate or the stapled OCSP response (see Section 7.1). If the constructed "TransItemList" is not empty, then the TLS server MUST include the "transparency_info" extension with the "extension_data" set to this "TransItemList". If the list is empty then the server SHOULD omit the "extension_data" element, but MAY send it with an empty array.

TLS servers MUST only include this extension in the following messages:

* the ServerHello message (for TLS 1.2 or earlier).

* the Certificate or CertificateRequest message (for TLS 1.3).

TLS servers MUST NOT process or include this extension when a TLS session is resumed, since session resumption uses the original session information.
7. Certification Authorities

7.1. Transparency Information X.509v3 Extension

The Transparency Information X.509v3 extension, which has OID 1.3.101.75 and SHOULD be non-critical, contains one or more "TransItem" structures in a "TransItemList". This extension MAY be included in OCSP responses (see Section 7.1.1) and certificates (see Section 7.1.2). Since RFC5280 requires the "extnValue" field (an OCTET STRING) of each X.509v3 extension to include the DER encoding of an ASN.1 value, a "TransItemList" MUST NOT be included directly. Instead, it MUST be wrapped inside an additional OCTET STRING, which is then put into the "extnValue" field:

TransparencyInformationSyntax ::= OCTET STRING

"TransparencyInformationSyntax" contains a "TransItemList".

7.1.1. OCSP Response Extension

A certification authority MAY include a Transparency Information X.509v3 extension in the "singleExtensions" of a "SingleResponse" in an OCSP response. All included SCTs and inclusion proofs MUST be for the certificate identified by the "certID" of that "SingleResponse", or for a precertificate that corresponds to that certificate.

7.1.2. Certificate Extension

A certification authority MAY include a Transparency Information X.509v3 extension in a certificate. All included SCTs and inclusion proofs MUST be for a precertificate that corresponds to this certificate.

7.2. TLS Feature X.509v3 Extension

A certification authority SHOULD NOT issue any certificate that identifies the "transparency_info" TLS extension in a TLS feature extension [RFC7633], because TLS servers are not required to support the "transparency_info" TLS extension in order to participate in CT (see Section 6).

8. Clients

There are various different functions clients of logs might perform. We describe here some typical clients and how they should function. Any inconsistency may be used as evidence that a log has not behaved correctly, and the signatures on the data structures prevent the log from denying that misbehavior.
All clients need various parameters in order to communicate with logs and verify their responses. These parameters are described in Section 4.1, but note that this document does not describe how the parameters are obtained, which is implementation-dependent (see, for example, [Chromium.Policy]).

8.1. TLS Client

8.1.1. Receiving SCTs and inclusion proofs

TLS clients receive SCTs and inclusion proofs alongside or in certificates. CT-using TLS clients MUST implement all of the three mechanisms by which TLS servers may present SCTs (see Section 6).

TLS clients that support the "transparency_info" TLS extension (see Section 6.5) SHOULD include it in ClientHello messages, with empty "extension_data". If a TLS server includes the "transparency_info" TLS extension when resuming a TLS session, the TLS client MUST abort the handshake.

8.1.2. Reconstructing the TBSCertificate

Validation of an SCT for a certificate (where the "type" of the "TransItem" is "x509_sct_v2") uses the unmodified TBSCertificate component of the certificate.

Before an SCT for a precertificate (where the "type" of the "TransItem" is "precert_sct_v2") can be validated, the TBSCertificate component of the precertificate needs to be reconstructed from the TBSCertificate component of the certificate as follows:

* Remove the Transparency Information extension (see Section 7.1).

* Remove embedded v1 SCTs, identified by OID 1.3.6.1.4.1.11129.2.4.2 (see section 3.3 of [RFC6962]). This allows embedded v1 and v2 SCTs to co-exist in a certificate (see Appendix A).

8.1.3. Validating SCTs

In order to make use of a received SCT, the TLS client MUST first validate it as follows:

* Compute the signature input by constructing a "TransItem" of type "x509_entry_v2" or "precert_entry_v2", depending on the SCT’s "TransItem" type. The "TimestampedCertificateEntryDataV2" structure is constructed in the following manner:

 - "timestamp" is copied from the SCT.
- "tbs_certificate" is the reconstructed TBSCertificate portion of the server certificate, as described in Section 8.1.2.

- "issuer_key_hash" is computed as described in Section 4.7.

- "sct_extensions" is copied from the SCT.

* Verify the SCT’s "signature" against the computed signature input using the public key of the corresponding log, which is identified by the "log_id". The required signature algorithm is one of the log’s parameters.

If the TLS client does not have the corresponding log’s parameters, it cannot attempt to validate the SCT. When evaluating compliance (see Section 8.1.6), the TLS client will consider only those SCTs that it was able to validate.

Note that SCT validation is not a substitute for the normal validation of the server certificate and its chain.

8.1.4. Fetching inclusion proofs

When a TLS client has validated a received SCT but does not yet possess a corresponding inclusion proof, the TLS client MAY request the inclusion proof directly from a log using "get-proof-by-hash" (Section 5.4) or "get-all-by-hash" (Section 5.5).

Note that fetching inclusion proofs directly from a log will disclose to the log which TLS server the client has been communicating with. This may be regarded as a significant privacy concern, and so it is preferable for the TLS server to send the inclusion proofs (see Section 6.4).

8.1.5. Validating inclusion proofs

When a TLS client has received, or fetched, an inclusion proof (and an STH), it SHOULD proceed to verifying the inclusion proof to the provided STH. The TLS client SHOULD also verify consistency between the provided STH and an STH it knows about.

If the TLS client holds an STH that predates the SCT, it MAY, in the process of auditing, request a new STH from the log (Section 5.2), then verify it by requesting a consistency proof (Section 5.3). Note that if the TLS client uses "get-all-by-hash", then it will already have the new STH.
8.1.6. Evaluating compliance

It is up to a client’s local policy to specify the quantity and form of evidence (SCTs, inclusion proofs or a combination) needed to achieve compliance and how to handle non-compliance.

A TLS client can only evaluate compliance if it has given the TLS server the opportunity to send SCTs and inclusion proofs by any of the three mechanisms that are mandatory to implement for CT-using TLS clients (see Section 8.1.1). Therefore, a TLS client MUST NOT evaluate compliance if it did not include both the "transparency_info" and "status_request" TLS extensions in the ClientHello.

8.2. Monitor

Monitors watch logs to check that they behave correctly, for certificates of interest, or both. For example, a monitor may be configured to report on all certificates that apply to a specific domain name when fetching new entries for consistency validation.

A monitor MUST at least inspect every new entry in every log it watches, and it MAY also choose to keep copies of entire logs.

To inspect all of the existing entries, the monitor SHOULD follow these steps once for each log:

1. Fetch the current STH (Section 5.2).
2. Verify the STH signature.
3. Fetch all the entries in the tree corresponding to the STH (Section 5.6).
4. If applicable, check each entry to see if it’s a certificate of interest.
5. Confirm that the tree made from the fetched entries produces the same hash as that in the STH.

To inspect new entries, the monitor SHOULD follow these steps repeatedly for each log:

1. Fetch the current STH (Section 5.2). Repeat until the STH changes. This document does not specify the polling frequency, to allow for experimentation.
2. Verify the STH signature.
3. Fetch all the new entries in the tree corresponding to the STH (Section 5.6). If they remain unavailable for an extended period, then this should be viewed as misbehavior on the part of the log.

4. If applicable, check each entry to see if it’s a certificate of interest.

5. Either:

 1. Verify that the updated list of all entries generates a tree with the same hash as the new STH.

 Or, if it is not keeping all log entries:

 1. Fetch a consistency proof for the new STH with the previous STH (Section 5.3).

 2. Verify the consistency proof.

 3. Verify that the new entries generate the corresponding elements in the consistency proof.

6. Repeat from step 1.

8.3. Auditing

Auditing ensures that the current published state of a log is reachable from previously published states that are known to be good, and that the promises made by the log in the form of SCTs have been kept. Audits are performed by monitors or TLS clients.

In particular, there are four log behavior properties that should be checked:

* The Maximum Merge Delay (MMD).

* The STH Frequency Count.

* The append-only property.

* The consistency of the log view presented to all query sources.
A benign, conformant log publishes a series of STHs over time, each derived from the previous STH and the submitted entries incorporated into the log since publication of the previous STH. This can be proven through auditing of STHs. SCTs returned to TLS clients can be audited by verifying against the accompanying certificate, and using Merkle Inclusion Proofs, against the log’s Merkle tree.

The action taken by the auditor if an audit fails is not specified, but note that in general if audit fails, the auditor is in possession of signed proof of the log’s misbehavior.

A monitor (Section 8.2) can audit by verifying the consistency of STHs it receives, ensure that each entry can be fetched and that the STH is indeed the result of making a tree from all fetched entries.

A TLS client (Section 8.1) can audit by verifying an SCT against any STH dated after the SCT timestamp + the Maximum Merge Delay by requesting a Merkle inclusion proof (Section 5.4). It can also verify that the SCT corresponds to the server certificate it arrived with (i.e., the log entry is that certificate, or is a precertificate corresponding to that certificate).

Checking of the consistency of the log view presented to all entities is more difficult to perform because it requires a way to share log responses among a set of CT-using entities, and is discussed in Section 11.3.

9. Algorithm Agility

It is not possible for a log to change any of its algorithms part way through its lifetime:

Signature algorithm: SCT signatures must remain valid so signature algorithms can only be added, not removed.

Hash algorithm: A log would have to support the old and new hash algorithms to allow backwards-compatibility with clients that are not aware of a hash algorithm change.

Allowing multiple signature or hash algorithms for a log would require that all data structures support it and would significantly complicate client implementation, which is why it is not supported by this document.
If it should become necessary to deprecate an algorithm used by a live log, then the log MUST be frozen as specified in Section 4.13 and a new log SHOULD be started. Certificates in the frozen log that have not yet expired and require new SCTs SHOULD be submitted to the new log and the SCTs from that log used instead.

10. IANA Considerations

The assignment policy criteria mentioned in this section refer to the policies outlined in [RFC8126].

10.1. Additions to existing registries

This sub-section defines additions to existing registries.

10.1.1. New Entry to the TLS ExtensionType Registry

IANA is asked to add the following entry to the "TLS ExtensionType Values" registry defined in [RFC8446], with an assigned Value:

<table>
<thead>
<tr>
<th>Value</th>
<th>Extension Name</th>
<th>TLS 1.3</th>
<th>Recommended</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>transparency_info</td>
<td>CH, CR, CT</td>
<td>Y</td>
<td>RFCXXXX</td>
</tr>
</tbody>
</table>

Table 7

10.1.2. URN Sub-namespace for TRANS (urn:ietf:params:trans)

IANA is requested to add a new entry in the "IETF URN Sub-namespace for Registered Protocol Parameter Identifiers" registry, following the template in [RFC3553]:

Registry name: trans

Specification: RFCXXXX

Repository: https://www.iana.org/assignments/trans

Index value: No transformation needed.

10.2. New CT-Related registries

IANA is requested to add a new protocol registry, "Public Notary Transparency", to the list that appears at https://www.iana.org/assignments/
The rest of this section defines sub-registries to be created within the new Public Notary Transparency registry.

10.2.1. Hash Algorithms

IANA is asked to establish a registry of hash algorithm values, named "Hash Algorithms", that initially consists of:

<table>
<thead>
<tr>
<th>Value</th>
<th>Hash Algorithm</th>
<th>OID</th>
<th>Reference / Assignment Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>SHA-256</td>
<td>2.16.840.1.101.3.4.2.1</td>
<td>[RFC6234]</td>
</tr>
<tr>
<td>0x01 - 0xDF</td>
<td>Unassigned</td>
<td></td>
<td>Specification Required</td>
</tr>
<tr>
<td>0xEF</td>
<td>Reserved</td>
<td></td>
<td>Experimental Use</td>
</tr>
<tr>
<td>0xF0 - 0xFF</td>
<td>Reserved</td>
<td></td>
<td>Private Use</td>
</tr>
</tbody>
</table>

Table 8

The Designated Expert(s) should ensure that the proposed algorithm has a public specification and is suitable for use as a cryptographic hash algorithm with no known preimage or collision attacks. These attacks can damage the integrity of the log.

10.2.2. Signature Algorithms

IANA is asked to establish a registry of signature algorithm values, named "Signature Algorithms".

The following notes should be added:

* This is a subset of the TLS SignatureScheme Registry, limited to those algorithms that are appropriate for CT. A major advantage of this is leveraging the expertise of the TLS working group and its Designated Expert(s).

* The value "0x0403" appears twice. While this may be confusing, it is okay because the verification process is the same for both algorithms, and the choice of which to use when generating a signature is purely internal to the log server.
The registry should initially consist of:

<table>
<thead>
<tr>
<th>SignatureScheme Value</th>
<th>Signature Algorithm</th>
<th>Reference / Assignment Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 - 0x0402</td>
<td>Unassigned</td>
<td>Specification Required</td>
</tr>
<tr>
<td>ecdsa_secp256r1_sha256(0x0403)</td>
<td>ECDSA (NIST P-256) with SHA-256</td>
<td>[FIPS186-4]</td>
</tr>
<tr>
<td>ecdsa_secp256r1_sha256(0x0403)</td>
<td>Deterministic ECDSA (NIST P-256) with HMAC-SHA256</td>
<td>[RFC6979]</td>
</tr>
<tr>
<td>0x0404 - 0x0806</td>
<td>Unassigned</td>
<td>Specification Required</td>
</tr>
<tr>
<td>ed25519(0x0807)</td>
<td>Ed25519 (PureEdDSA with the edwards25519 curve)</td>
<td>[RFC8032]</td>
</tr>
<tr>
<td>0x0808 - 0xFDFF</td>
<td>Unassigned</td>
<td>Expert Review</td>
</tr>
<tr>
<td>0xFE00 - 0xFEFF</td>
<td>Reserved</td>
<td>Experimental Use</td>
</tr>
<tr>
<td>0xFF00 - 0xFFFF</td>
<td>Reserved</td>
<td>Private Use</td>
</tr>
</tbody>
</table>

Table 9

The Designated Expert(s) should ensure that the proposed algorithm has a public specification, has a value assigned to it in the TLS SignatureScheme Registry (that IANA was asked to establish in [RFC8446]), and is suitable for use as a cryptographic signature algorithm.

10.2.3. VersionedTransTypes

IANA is asked to establish a registry of "VersionedTransType" values, named "VersionedTransTypes".
The following note should be added:

* The range 0x0000..0x00FF is reserved so that v1 SCTs are distinguishable from v2 SCTs and other "TransItem" structures.

The registry should initially consist of:

<table>
<thead>
<tr>
<th>Value</th>
<th>Type and Version</th>
<th>Reference / Assignment Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 - 0x00FF</td>
<td>Reserved</td>
<td>[RFC6962]</td>
</tr>
<tr>
<td>0x0100</td>
<td>x509_entry_v2</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>0x0101</td>
<td>precert_entry_v2</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>0x0102</td>
<td>x509_sct_v2</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>0x0103</td>
<td>precert_sct_v2</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>0x0104</td>
<td>signed_tree_head_v2</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>0x0105</td>
<td>consistency_proof_v2</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>0x0106</td>
<td>inclusion_proof_v2</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>0x0107 - 0xFFFF</td>
<td>Unassigned</td>
<td>Specification Required</td>
</tr>
<tr>
<td>0xE000 - 0xEFFF</td>
<td>Reserved</td>
<td>Experimental Use</td>
</tr>
<tr>
<td>0xF000 - 0xFFFF</td>
<td>Reserved</td>
<td>Private Use</td>
</tr>
</tbody>
</table>

Table 10

The Designated Expert(s) should review the public specification to ensure that it is detailed enough to ensure implementation interoperability.

10.2.4. Log Artifact Extension Registry

IANA is asked to establish a registry of "ExtensionType" values, named "Log Artifact Extensions", that initially consists of:

Laurie, et al. Expires 4 March 2022
Table 11

The "Use" column should contain one or both of the following values:

* "STH", for extensions specified for use in Signed Tree Heads.

The Designated Expert(s) should review the public specification to ensure that it is detailed enough to ensure implementation interoperability. They should also verify that the extension is appropriate to the contexts in which it is specified to be used (SCT, STH, or both).

10.2.5. Log IDs Registry

IANA is asked to establish a registry of Log IDs, named "Log IDs", that initially consists of:

Table 12

<table>
<thead>
<tr>
<th>Log ID</th>
<th>Log Base URL</th>
<th>Log Operator</th>
<th>Reference / Assignment Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.101.8192 - 1.3.101.16383</td>
<td>Unassigned</td>
<td>Unassigned</td>
<td>First Come First Served</td>
</tr>
<tr>
<td>1.3.101.80.0 - 1.3.101.80.*</td>
<td>Unassigned</td>
<td>Unassigned</td>
<td>First Come First Served</td>
</tr>
</tbody>
</table>
All OIDs in the range from 1.3.101.8192 to 1.3.101.16383 have been set aside for Log IDs. This is a limited resource of 8,192 OIDs, each of which has an encoded length of 4 octets.

The 1.3.101.80 arc has also been set aside for Log IDs. This is an unlimited resource, but only the 128 OIDs from 1.3.101.80.0 to 1.3.101.80.127 have an encoded length of only 4 octets.

Each application for the allocation of a Log ID MUST be accompanied by:

* the Log’s Base URL (see Section 4.1).
* the Log Operator’s contact details.

IANA is asked to reject any request to update a Log ID or Log Base URL in this registry, because these fields are immutable (see Section 4.1).

IANA is asked to accept requests from log operators to update their contact details in this registry.

Since log operators can choose to not use this registry (see Section 4.4), it is not expected to be a global directory of all logs.

10.2.6. Error Types Registry

IANA is requested to create a new registry for errors, the "Error Types" registry.

Requirements for this registry are Specification Required.

This registry should have the following three fields:

+---------------+------------+-------------+
| Field Name | Type | Reference |
|---------------+------------+-------------+
identifier	string	RFCXXXX
meaning	string	RFCXXXX
reference	string	RFCXXXX
+---------------+------------+-------------+

Table 13

The initial values are as follows, taken from the text above:
<table>
<thead>
<tr>
<th>Identifier</th>
<th>Meaning</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>malformed</td>
<td>The request could not be parsed.</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>badSubmission</td>
<td>"submission" is neither a valid certificate nor a valid precertificate</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>badType</td>
<td>"type" is neither 1 nor 2</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>badChain</td>
<td>The first element of "chain" is not the certifier of the "submission", or the second element does not certify the first, etc.</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>badCertificate</td>
<td>One or more certificates in the "chain" are not valid (e.g., not properly encoded)</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>unknownAnchor</td>
<td>The last element of "chain" (or, if "chain" is an empty array, the "submission") both is not, and is not certified by, an accepted trust anchor</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>shutdown</td>
<td>The log is no longer accepting submissions</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>firstUnknown</td>
<td>"first" is before the latest known STH but is not from an existing STH.</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>secondUnknown</td>
<td>"second" is before the latest known STH but is not from an existing STH.</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>secondBeforeFirst</td>
<td>"second" is smaller than "first"</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>hashUnknown</td>
<td>"hash" is not the hash of a known leaf (may be caused by skew or by a known certificate not yet merged).</td>
<td>RFCXXXX</td>
</tr>
<tr>
<td>treeSizeUnknown</td>
<td>"hash" is before the latest</td>
<td>RFCXXXX</td>
</tr>
</tbody>
</table>
known STH but is not from an existing STH.

<table>
<thead>
<tr>
<th>startUnknown</th>
<th>"start" is greater than the number of entries in the Merkle tree.</th>
<th>RFCXXXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>endBeforeStart</td>
<td>"start" cannot be greater than "end".</td>
<td>RFCXXXX</td>
</tr>
</tbody>
</table>

Table 14

10.3. OID Assignment

IANA is asked to assign one object identifier from the "SMI Security for PKIX Module Identifier" registry to identify the ASN.1 module in Appendix B of this document with an assigned Decimal value.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>id-mod-public-notary-v2</td>
<td>RFCXXXX</td>
</tr>
</tbody>
</table>

Table 15

11. Security Considerations

With CAs, logs, and servers performing the actions described here, TLS clients can use logs and signed timestamps to reduce the likelihood that they will accept misissued certificates. If a server presents a valid signed timestamp for a certificate, then the client knows that a log has committed to publishing the certificate. From this, the client knows that monitors acting for the subject of the certificate have had some time to notice the misissuance and take some action, such as asking a CA to revoke a misissued certificate. A signed timestamp does not guarantee this though, since appropriate monitors might not have checked the logs or the CA might have refused to revoke the certificate.

In addition, if TLS clients will not accept unlogged certificates, then site owners will have a greater incentive to submit certificates to logs, possibly with the assistance of their CA, increasing the overall transparency of the system.
11.1. Misissued Certificates

Misissued certificates that have not been publicly logged, and thus do not have a valid SCT, are not considered compliant. Misissued certificates that do have an SCT from a log will appear in that public log within the Maximum Merge Delay, assuming the log is operating correctly. Since a log is allowed to serve an STH of any age up to the MMD, the maximum period of time during which a misissued certificate can be used without being available for audit is twice the MMD.

11.2. Detection of Misissue

The logs do not themselves detect misissued certificates; they rely instead on interested parties, such as domain owners, to monitor them and take corrective action when a misissue is detected.

11.3. Misbehaving Logs

A log can misbehave in several ways. Examples include: failing to incorporate a certificate with an SCT in the Merkle Tree within the MMD; presenting different, conflicting views of the Merkle Tree at different times and/or to different parties; issuing STHs too frequently; mutating the signature of a logged certificate; and failing to present a chain containing the certifier of a logged certificate.

Violation of the MMD contract is detected by log clients requesting a Merkle inclusion proof (Section 5.4) for each observed SCT. These checks can be asynchronous and need only be done once per certificate. However, note that there may be privacy concerns (see Section 8.1.4).

Violation of the append-only property or the STH issuance rate limit can be detected by multiple clients comparing their instances of the STHs. This technique, known as "gossip," is an active area of research and not defined here. Proof of misbehavior in such cases would be: a series of STHs that were issued too closely together, proving violation of the STH issuance rate limit; or an STH with a root hash that does not match the one calculated from a copy of the log, proving violation of the append-only property.

Clients that report back SCTs can be tracked or traced if a log produces multiple STHs or SCTs with the same timestamp and data but different signatures. Logs SHOULD mitigate this risk by either:

* Using deterministic signature schemes, or
* Producing no more than one SCT for each distinct submission and no more than one STH for each distinct tree_size. Each of these SCTs and STHs can be stored by the log and served to other clients that submit the same certificate or request the same STH.

11.4. Multiple SCTs

By requiring TLS servers to offer multiple SCTs, each from a different log, TLS clients reduce the effectiveness of an attack where a CA and a log collude (see Section 6.2).

11.5. Leakage of DNS Information

Malicious monitors can use logs to learn about the existence of domain names that might not otherwise be easy to discover. Some subdomain labels may reveal information about the service and software for which the subdomain is used, which in turn might facilitate targeted attacks.

12. Acknowledgements

The authors would like to thank Erwann Abelea, Robin Alden, Andrew Ayer, Richard Barnes, Al Cutter, David Drysdale, Francis Dupont, Adam Eijdenberg, Stephen Farrell, Daniel Kahn Gillmor, Paul Hadfield, Brad Hill, Jeff Hodges, Paul Hoffman, Jeffrey Hutzelman, Kat Joyce, Stephen Kent, SM, Alexey Melnikov, Linus Nordberg, Chris Palmer, Trevor Perrin, Pierre Phaneuf, Eric Rescorla, Rich Salz, Melinda Shore, Ryan Sleevi, Martin Smith, Carl Wallace and Paul Wouters for their valuable contributions.

A big thank you to Symantec for kindly donating the OIDs from the 1.3.101 arc that are used in this document.

13. References

13.1. Normative References

[FIPS186-4]
NIST, "FIPS PUB 186-4", 1 July 2013,

[RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
Galperin, S., and C. Adams, "X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP",
RFC 6960, DOI 10.17487/RFC6960, June 2013,

[RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August

Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
DOI 10.17487/RFC7231, June 2014,

Feature Extension", RFC 7633, DOI 10.17487/RFC7633,

[RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,

Signature Algorithm (EdDSA)", RFC 8032,
DOI 10.17487/RFC8032, January 2017,

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

Interchange Format", STD 90, RFC 8259,
DOI 10.17487/RFC8259, December 2017,

[RFC8391] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., and A.
Mohaisen, "XMSS: eXtended Merkle Signature Scheme",
RFC 8391, DOI 10.17487/RFC8391, May 2018,

Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
13.2. Informative References

Certificate Transparency logs have to be either v1 (conforming to [RFC6962]) or v2 (conforming to this document), as the data structures are incompatible and so a v2 log could not issue a valid v1 SCT.

CT clients, however, can support v1 and v2 SCTs, for the same certificate, simultaneously, as v1 SCTs are delivered in different TLS, X.509 and OCSP extensions than v2 SCTs.

v1 and v2 SCTs for X.509 certificates can be validated independently. For precertificates, v2 SCTs should be embedded in the TBSCertificate before submission of the TBSCertificate (inside a v1 precertificate, as described in Section 3.1. of [RFC6962]) to a v1 log so that TLS clients conforming to [RFC6962] but not this document are oblivious to the embedded v2 SCTs. An issuer can follow these steps to produce an X.509 certificate with embedded v1 and v2 SCTs:

* Create a CMS precertificate as described in Section 3.2 and submit it to v2 logs.
* Embed the obtained v2 SCTs in the TBSCertificate, as described in Section 7.1.2.
* Use that TBSCertificate to create a v1 precertificate, as described in Section 3.1. of [RFC6962] and submit it to v1 logs.
* Embed the v1 SCTs in the TBSCertificate, as described in Section 3.3 of [RFC6962].
* Sign that TBSCertificate (which now contains v1 and v2 SCTs) to issue the final X.509 certificate.

Appendix B. An ASN.1 Module (Informative)

The following ASN.1 module may be useful to implementors.

CertificateTransparencyV2Module-2021
 -- (id-mod-public-notary-v2 from above, in
 iso(1) identified-organization(3) ...
 form)

DEFINITIONS IMPLICIT TAGS ::= BEGIN
IMPORTS
 EXTENSION
 FROM PKIX-CommonTypes-2009 -- RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) }

CONTENT-TYPE
 FROM CryptographicMessageSyntax-2010 -- RFC 6268
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) }

TBSCertificate
 FROM PKIX1Explicit-2009 -- RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-explicit-02(51) }

--
-- Section 3.2. Precertificates
--

cert-tbsCertificate CONTENT-TYPE ::= {
 TYPE TBSCertificate
 IDENTIFIED BY id-ct-tbsCertificate }

id-ct-tbsCertificate OBJECT IDENTIFIER ::= { 1 3 101 78 }

--
-- Section 7.1. Transparency Information X.509v3 Extension
--

ext-transparencyInfo EXTENSION ::= {
 SYNTAX TransparencyInformationSyntax
 IDENTIFIED BY id-ce-transparencyInfo
 CRITICALITY { FALSE } }

id-ce-transparencyInfo OBJECT IDENTIFIER ::= { 1 3 101 75 }

TransparencyInformationSyntax ::= OCTET STRING

--
-- Section 7.1.1. OCSP Response Extension
--
ext-ocsp-transparencyInfo EXTENSION ::= {
 SYNTAX TransparencyInformationSyntax
 IDENTIFIED BY id-pkix-ocsp-transparencyInfo
 CRITICALITY { FALSE } }

id-pkix-ocsp-transparencyInfo OBJECT IDENTIFIER ::=
 id-ce-transparencyInfo

-- -- Section 8.1.2. Reconstructing the TBSCertificate --

ext-embeddedSCT-CTv1 EXTENSION ::= {
 SYNTAX SignedCertificateTimestampList
 IDENTIFIED BY id-ce-embeddedSCT-CTv1
 CRITICALITY { FALSE } }

id-ce-embeddedSCT-CTv1 OBJECT IDENTIFIER ::= {
 1 3 6 1 4 1 11129 2 4 2 }

SignedCertificateTimestampList ::= OCTET STRING

END

Authors’ Addresses

Ben Laurie
Google UK Ltd.

Email: benl@google.com

Adam Langley
Google Inc.

Email: agl@google.com

Emilia Kasper
Google Switzerland GmbH

Email: ekasper@google.com

Eran Messeri
Google UK Ltd.

Email: eranm@google.com

Gossiping in CT
draft-linus-trans-gossip-ct-02

Abstract

This document describes three gossiping mechanisms for Certificate Transparency (CT) [RFC6962]: SCT Feedback, STH Pollination and Trusted Auditor Relationship.

SCT Feedback enables HTTPS clients to share Signed Certificate Timestamps (SCTs) (Section 3.2 of [RFC6962]) with CT auditors in a privacy-preserving manner by sending SCTs to originating HTTPS servers which in turn share them with CT auditors.

In STH Pollination, HTTPS clients use HTTPS servers as pools sharing Signed Tree Heads (STHs) (Section 3.5 of [RFC6962]) with other connecting clients in the hope that STHs will find their way to auditors and monitors.

HTTPS clients in a Trusted Auditor Relationship share SCTs and STHs with trusted auditors or monitors directly, with expectations of privacy sensitive data being handled according to whatever privacy policy is agreed on between client and trusted party.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 8, 2016.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Overview ... 3
3. Terminology and data flow 4
4. Who gossips .. 5
5. What to gossip about and how 6
 5.1. SCT Feedback 6
 5.1.1. HTTPS client to server 6
 5.1.2. HTTPS server to auditors 8
 5.1.3. SCT Feedback data format 9
 5.2. STH pollination 9
 5.2.1. HTTPS client STH Fetching 10
 5.2.2. Auditor and Monitor Action 11
 5.2.3. STH Pollination data format 11
 5.3. Trusted Auditor Stream 12
 5.3.1. Trusted Auditor data format 12
6. Security considerations 12
 6.1. Privacy considerations 12
 6.1.1. Privacy and SCTs 13
 6.1.2. Privacy in SCT Feedback 13
 6.1.3. Privacy for HTTPS clients requesting STHs 13
 6.1.4. Privacy in STH Pollination 14
 6.1.5. Trusted Auditors for HTTPS Clients 14
 6.1.6. HTTPS Clients as Auditors 15
7. IANA considerations 15
8. Contributors ... 15
9. ChangeLog .. 16
 9.1. Changes between -01 and -02 16
 9.2. Changes between -00 and -01 16
10. References .. 16
1. Introduction

The purpose of the protocols in this document is to detect misbehavior by CT logs. In particular, CT logs can misbehave either by rewriting history or by presenting a "split view" of their operations, also known as a partitioning attack [THREAT-ANALYSIS].

CT provides mechanisms for detection of these misbehaviors, but only if the community dependent on the log knows what to do with them. In order for the community to effectively detect log misbehavior, it needs a well-defined way to "gossip" about the activity of the logs that makes use of the available mechanisms.

One of the major challenges of any gossip protocol is limiting damage to user privacy. The goal of CT gossip is to publish and distribute information about the logs and their operations, but not to leak any additional information about the operation of any of the other participants. Privacy of consumers of log information (in particular, of web browsers and other TLS clients) should not be damaged by gossip.

This document presents three different, complementary mechanisms for non-log players in the CT ecosystem to exchange information about logs in a manner that preserves the privacy of the non-log players involved. They should provide protective benefits for the system as a whole even if their adoption is not universal.

2. Overview

Public append-only untrusted logs have to be monitored for consistency, i.e., that they should never rewrite history. Additionally, monitors and other log clients need to exchange information about monitored logs in order to be able to detect a partitioning attack.

A partitioning attack is when a log serves different views of the log to different clients. Each client would be able to verify the append-only nature of the log while in the extreme case being the only client seeing this particular view.

Gossiping about what’s known about logs helps solve the problem of detecting malicious or compromised logs mounting such a partitioning attack. We want some side of the partitioned tree, and ideally both sides, to see the other side.
Disseminating known information about a log poses a potential threat to the privacy of end users. Some data of interest (e.g. SCTs) are linkable to specific log entries and thereby to specific sites, which makes them privacy-sensitive. Gossip about this data has to take privacy considerations into account in order not to leak associations between users of the log (e.g., web browsers) and certificate holders (e.g., web sites). Even sharing STHs (which do not link to specific log entries) can be problematic - user tracking by fingerprinting through rare STHs is one potential attack.

However, there is no loss in privacy if a client sends SCTs for a given site to the site corresponding to the SCT, because the site’s access logs would already indicate that the client is accessing that site. In this way a site can accumulate records of SCTs that have been issued by various logs for that site, providing a consolidated repository of SCTs which can be queried by auditors.

Sharing an STH is considered reasonably safe from a privacy perspective as long as the same STH is shared by a large number of other clients. This "safety in numbers" is achieved by requiring gossip only for STHs of a certain "freshness" and limiting the frequency by which logs can issue STHs.

3. Terminology and data flow

This document relies on terminology and data structures defined in [RFC6962], including STH, SCT, Version, LogID, SCT timestamp, CtExtensions, SCT signature, Merkle Tree Hash.

The following picture shows how certificates, SCTs and STHs flow through a CT system with SCT Feedback and STH Pollination. It does not show what goes in the Trusted Auditor Relationship stream.
4. Who gossips

- HTTPS clients and servers (SCT Feedback and STH Pollination)
- HTTPS servers and CT auditors (SCT Feedback)
- CT auditors and monitors (Trusted Auditor Relationship)

Additionally, some HTTPS clients may engage with an auditor who they trust with their privacy:

- HTTPS clients and CT auditors (Trusted Auditor Relationship)
5. What to gossip about and how

There are three separate gossip streams:

- SCT Feedback, transporting SCTs and certificate chains from HTTPS clients to CT auditors/monitors via HTTPS servers.
- STH Pollination, HTTPS clients and CT auditors/monitors using HTTPS servers as STH pools for exchanging STHs.
- Trusted Auditor Stream, HTTPS clients communicating directly with trusted CT auditors/monitors sharing SCTs, certificate chains and STHs.

5.1. SCT Feedback

The goal of SCT Feedback is for clients to share SCTs and certificate chains with CT auditors and monitors in a privacy-preserving manner.

HTTPS clients store SCTs and certificate chains they see and later send them to the originating HTTPS server by posting them to a .well-known URL. This is described in Section 5.1.1. Note that clients send the same SCTs and chains to servers multiple times with the assumption that a potential man-in-the-middle attack eventually will cease so that an honest server will receive collected malicious SCTs and certificate chains.

HTTPS servers store SCTs and certificate chains received from clients and later share them with CT auditors by either posting them or making them available on a .well-known URL. This is described in Section 5.1.2.

5.1.1. HTTPS client to server

An HTTPS client connects to an HTTPS server for a particular domain. The client receives a set of SCTs as part of the TLS handshake. The client MUST discard SCTs that are not signed by a known log and SHOULD store the remaining SCTs together with the corresponding certificate chain for later use in feedback.

When the client later reconnects to any HTTPS server for the same domain it again receives a set of SCTs. The client MUST add new SCTs from known logs to its store of SCTs for the server. The client MUST send to the server the ones in the store that are for that server and were not received from that server.

Note that the SCT store also contains SCTs received in certificates.
The client MUST NOT send the same set of SCTs to the same server more often than TBD. [benl: "sent to the server" only really counts if the server presented a valid SCT in the handshake and the certificate is known to be unrevoked (which will be hard for a MitM to sustain)] [TODO: expand on rate/resource limiting motivation]

An SCT MUST NOT be sent to any other HTTPS server than one serving the domain that the certificate signed by the SCT refers to. This would lead to two types of privacy leaks. First, the server receiving the SCT would learn about other sites visited by the HTTPS client. Secondly, auditors or monitors receiving SCTs from the HTTPS server would learn information about the other HTTPS servers visited by its clients.

If the HTTPS client has configuration options for not sending cookies to third parties, SCTs MUST be treated as cookies with respect to this setting.

SCTs and corresponding certificates are POSTed to the originating HTTPS server at the well-known URL:

https://<domain>/.well-known/ct/v1/sct-feedback

The data sent in the POST is defined in Section 5.1.3.

HTTPS servers perform a number of sanity checks on SCTs from clients before storing them:

1. if a bit-wise compare of an SCT plus chain matches a pair already in the store, this SCT and chain pair MAY be discarded
2. if the SCT can’t be verified to be a valid SCT for the accompanying leaf cert, issued by a known log, the SCT SHOULD be discarded
3. if the leaf cert is not for a domain that the server is authoritative for, the SCT MUST be discarded

Check number 1 is for detecting duplicates. It’s important to note that the check must be on pairs of SCT and chain in order to catch different chains accompanied by the same SCT. [XXX why is this important?]

Check number 2 is to prevent spamming attacks where an adversary can fill up the store prior to attacking a client, or a denial of service attack on the server’s storage space.
Check number 3 is to help malfunctioning clients from leaking what sites they visit and additionally to prevent spamming attacks.

Note that an HTTPS server MAY perform a certificate chain validation on a submitted certificate chain, and if it matches a trust root configured on the server (but is otherwise unknown to the server), the HTTPS server MAY store the certificate chain and MAY choose to store any submitted SCTs even if they are unable to be verified. The risk of spamming and denial of service can be mitigated by configuring the server with all known acceptable certificates (or certificate hashes).

5.1.2. HTTPS server to auditors

HTTPS servers receiving SCTs from clients SHOULD share SCTs and certificate chains with CT auditors by either providing the well-known URL:

https://<domain>/well-known/ct/v1/collected-sct-feedback

or by HTTPS POSTing them to a number of preconfigured auditors. This allows an HTTPS server to choose between an active push model or a passive pull model.

The data received in a GET of the well-known URL or sent in the POST is defined in Section 5.1.3.

HTTPS servers SHOULD share all SCTs and accompanying certificate chains they see that pass the checks in Section 5.1.1.

HTTPS servers MUST NOT share any other data that they may learn from the submission of SCT Feedback by HTTPS clients.

Auditors SHOULD provide the following URL accepting HTTPS POSTing of SCT feedback data:

https://<auditor>/ct/v1/sct-feedback

Auditors SHOULD regularly poll HTTPS servers at the well-known collected-sct-feedback URL. The frequency of the polling and how to determine which domains to poll is outside the scope of this document. However, the selection MUST NOT be influenced by potential HTTPS clients connecting directly to the auditor, as it would reveal private information provided by the clients.
5.1.3. SCT Feedback data format

The data shared between HTTPS clients and servers as well as between HTTPS servers and CT auditors/monitors is a JSON object [RFC7159] with the following content:

- `sct_feedback`: An array of objects consisting of
 - `x509_chain`: An array of base64-encoded X.509 certificates. The first element is the end-entity certificate, the second chains to the first and so on.
 - `sct_data`: An array of objects consisting of the base64 representation of the binary SCT data as defined in [RFC6962] Section 3.2.

The ‘`x509_chain`’ element MUST contain at the leaf certificate and the full chain to a known root.

5.2. STH pollination

The goal of sharing Signed Tree Heads (STHs) through pollination is to share STHs between HTTPS clients and CT auditors and monitors in a privacy-preserving manner.

HTTPS servers supporting the protocol act as STH pools. HTTPS clients and others in the possession of STHs should pollinate STH pools by sending STHs to them, and retrieving new STHs to send to new servers. CT auditors and monitors should retrieve STHs from pools by downloading STHs from them.

STH Pollination is carried out by sending STHs to HTTPS servers supporting the protocol, and retrieving new STHs. In the case of HTTPS clients, STHs are sent in an already established TLS session. This makes it hard for an attacker to disrupt STH gossiping without also disturbing ordinary secure browsing (https://).

STHs are sent by POSTing them at the .well-known URL:

https://<domain>/well-known/ct/v1/sth-pollination

The data sent in the POST is defined in Section 5.2.3.

The response contains zero or more STHs in the same format, described in Section 5.2.3.

An HTTPS client may acquire STHs by several methods:
o in replies to pollination POSTs;
o asking its supported logs for the current STH directly or indirectly;
o via some other (currently unspecified) mechanism.

HTTPS clients (who have STHs), CT auditors and monitors SHOULD pollinate STH pools with STHs. Which STHs to send and how often pollination should happen is regarded as policy and out of scope for this document with exception of certain privacy concerns.

An HTTPS client could be tracked by giving it a unique or rare STH. To address this concern, we place restrictions on different components of the system to ensure an STH will not be rare.

o Logs cannot issue STHs too frequently. This is restricted to 1 per hour.
o HTTPS clients silently ignore STHs which are not fresh.

An STH is considered fresh iff its timestamp is less than 14 days in the past. Given a maximum STH issuance rate of one per hour, an attacker has 336 unique STHs per log for tracking.

When multiplied by the number of logs that a client accepts STHs for, this number of unique STHs grow and the negative privacy implications grow with it. It’s important that this is taken into account when logs are chosen for default settings in HTTPS clients.

[TBD urge HTTPS clients to store STHs retrieved in responses?]
[TBD share inclusion proofs and consistency proofs too?]

5.2.1. HTTPS client STH Fetching

An HTTPS client retrieves SCTs from an HTTPS server, and must obtain an inclusion proof to an STH in order to verify the promise made by the SCT. This retrieval mechanism reveals the client’s browsing habits when the client requests the proof diretly from the log. To mitigate this risk, an HTTPS client MUST retrieve the proof in a manner that disguises the client from the log.

Additionally, for this inclusion proof to be acceptable to the client, the inclusion proof MUST reference a STH that is within the acceptable freshness interval.
Depending on the client’s DNS provider, DNS may provide an appropriate intermediate layer that obfuscates the linkability between the user of the client and the request for inclusion (while at the same time providing a caching layer for oft-requested inclusion proofs.)

Also Tor.

5.2.2. Auditor and Monitor Action

Auditors and Monitors participate in STH pollination by retrieving STHs from HTTPS servers. They verify that the STH is valid by checking the signature, and requesting a consistency proof from the STH to the most recent STH.

After retrieving the consistency proof to the most recent STH, they SHOULD pollinate this new STH among participating HTTPS Servers. In this way, as STHs "age out" and are no longer fresh, their "lineage" continues to be tracked in the system.

5.2.3. STH Pollination data format

The data sent from HTTPS clients and CT monitors and auditors to HTTPS servers is a JSON object [RFC7159] with the following content:

- sths - an array of 0 or more fresh STH objects [XXX recently collected] from the log associated with log_id. Each of these objects consists of
 * sth_version: Version as defined in [RFC6962] Section 3.2, as a number. The version of the protocol to which the sth_gossip object conforms.
 * tree_size: The size of the tree, in entries, as a number.
 * timestamp: The timestamp of the STH as defined in [RFC6962] Section 3.2, as a number.
 * sha256_root_hash: The Merkle Tree Hash of the tree as defined in [RFC6962] Section 2.1, as a base64 encoded string.
 * tree_head_signature: A TreeHeadSignature as defined in [RFC6962] Section 3.5 for the above data, as a base64 encoded string.
 * log_id: LogID as defined in [RFC6962] Section 3.2, as a base64 encoded string.
5.3. Trusted Auditor Stream

HTTPS clients MAY send SCTs and cert chains, as well as STHs, directly to auditors. Note that there are privacy implications of doing so, outlined in Section 6.1.1 and Section 6.1.5.

The most natural trusted auditor arrangement arguably is a web browser that is "logged in to" a provider of various internet services. Another equivalent arrangement is a trusted party like a corporation which an employer is connected to through a VPN or by other similar means. A third might be individuals or smaller groups of people running their own services. In such a setting, retrieving STHs and inclusion proofs from that third party in order to validate SCTs could be considered reasonable from a privacy perspective. The HTTPS client does its own auditing and might additionally share SCTs and STHs with the trusted party to contribute to herd immunity. Here, the ordinary [RFC6962] protocol is sufficient for the client to do the auditing while SCT Feedback and STH Pollination can be used in whole or in parts for the gossip part.

Another well established trusted party arrangement on the internet today is the relation between internet users and their providers of DNS resolver services. DNS resolvers are typically provided by the internet service provider (ISP) used, which by the nature of name resolving already know a great deal about what sites their users visit. As mentioned in Section XXX, in order for HTTPS clients to be able to retrieve inclusion proofs for certificates in a privacy preserving manner, logs could expose a DNS interface in addition to the ordinary HTTPS interface. An informal writeup of such a protocol can be found at XXX.

5.3.1. Trusted Auditor data format

[TBD specify something here or leave this for others?]

6. Security considerations

6.1. Privacy considerations

The most sensitive relationships in the CT ecosystem are the relationships between HTTPS clients and HTTPS servers. Client-server relationships can be aggregated into a network graph with potentially serious implications for correlative de-anonymisation of clients and relationship-mapping or clustering of servers or of clients.
6.1.1. Privacy and SCTs

An SCT contains information that links it to a particular web site. Because the client-server relationship is sensitive, gossip between clients and servers about unrelated SCTs is risky. Therefore, a client with an SCT for a given server should transmit that information in only two channels: to a server associated with the SCT itself; and to a trusted CT auditor, if one exists.

6.1.2. Privacy in SCT Feedback

SCTs introduce yet another mechanism for HTTPS servers to store state on an HTTPS client, and potentially track users. HTTPS clients which allow users to clear history or cookies associated with an origin MUST clear stored SCTs associated with the origin as well.

Auditors should treat all SCTs as sensitive data. SCTs received directly from an HTTPS client are especially sensitive, because the auditor is a trusted by the client to not reveal their associations with servers. Auditors MUST NOT share such SCTs in any way, including sending them to an external log, without first mixing them with multiple other SCTs learned through submissions from multiple other clients. The details of mixing SCTs are TBD.

There is a possible fingerprinting attack where a log issues a unique SCT for targeted log client(s). A colluding log and HTTPS server operator could therefore be a threat to the privacy of an HTTPS client. Given all the other opportunities for HTTPS servers to fingerprint clients - TLS session tickets, HPKP and HSTS headers, HTTP Cookies, etc. - this is acceptable.

The fingerprinting attack described above could be avoided by requiring that logs i) MUST return the same SCT for a given cert chain ([RFC6962] Section 3) and ii) use a deterministic signature scheme when signing the SCT ([RFC6962] Section 2.1.4).

There is another similar fingerprinting attack where an HTTPS server tracks a client by using a variation of cert chains. The risk for this attack is accepted on the same grounds as the unique SCT attack described above. [XXX any mitigations possible here?]

6.1.3. Privacy for HTTPS clients requesting STHs

An HTTPS client that does not act as an auditor should only request an STH from a CT log that it accepts SCTs from. An HTTPS client should regularly request an STH from all logs it is willing to accept, even if it has seen no SCTs from that log.
6.1.4. Privacy in STH Pollination

An STH linked to an HTTPS client may indicate the following about that client:

- that the client gossips;
- that the client been using CT at least until the time that the timestamp and the tree size indicate;
- that the client is talking, possibly indirectly, to the log indicated by the tree hash;
- which software and software version is being used.

There is a possible fingerprinting attack where a log issues a unique STH for a targeted log auditor or HTTPS client. This is similar to the fingerprinting attack described in Section 6.1.2, but it is mitigated by the following factors:

- the relationship between auditors and logs is not sensitive in the way that the relationship between HTTPS clients and HTTPS servers is;
- because auditors regularly exchange STHs with each other, the reappearance of a targeted STH from some auditor does not imply that the auditor was the original one targeted by the log;
- an HTTPS client’s relationship to a log is not sensitive in the way that its relationship to an HTTPS server is. As long as the client does not query the log for more than individual STHs, the client should not leak anything else to the log itself. However, a log and an HTTPS server which are collaborating could use this technique to fingerprint a targeted HTTPS client.

Note that an HTTPS client in the configuration described in this document doesn’t make direct use of the STH itself. Its fetching of the STH and reporting via STH Pollination provides a benefit to the CT ecosystem as a whole by providing oversight on logs, but the HTTPS client itself will not necessarily derive direct benefit.

6.1.5. Trusted Auditors for HTTPS Clients

Some HTTPS clients may choose to use a trusted auditor. This trust relationship leaks a certain amount of information from the client to the auditor. In particular, it is likely to identify the web sites that the client has visited to the auditor. Some clients may already share this information to a third party, for example, when using a
server to synchronize browser history across devices in a server-
visible way, or when doing DNS lookups through a trusted DNS
resolver. For clients with such a relationship already established,
sending SCT Feedback to the same organization does not appear to leak
any additional information to the trusted third party.

Clients who wish to contact an auditor without associating their
identities with their SCT Feedback may wish to use an anonymizing
network like Tor to submit SCT Feedback to the auditor. Auditors
SHOULD accept SCT Feedback that arrives over such anonymizing
networks.

Clients sending feedback to an auditor may prefer to reduce the
temporal granularity of the history leakage to the auditor by caching
and delaying their SCT Feedback reports. This strategy is only as
effective as the granularity of the timestamps embedded in the SCTs
and STHs.

6.1.6. HTTPS Clients as Auditors

Some HTTPS Clients may choose to act as Auditors themselves. A
Client taking on this role needs to consider the following:

- an Auditing HTTPS Client potentially leaks their history to the
 logs that they query. Querying the log through a cache or a proxy
 with many other users may avoid this leakage, but may leak
 information to the cache or proxy, in the same way that an non-
 Auditing HTTPS Client leaks information to a trusted Auditor.

- an effective Auditor needs a strategy about what to do in the
 event that it discovers misbehavior from a log. Misbehavior from
 a log involves the log being unable to provide either (a) a
 consistency proof between two valid STHs or (b) an inclusion proof
 for a certificate to an STH any time after the log’s MMD has
 elapsed from the issuance of the SCT. The log’s inability to
 provide either proof will not be externally cryptographically-
 verifiable, as it may be indistinguishable from a network error.

7. IANA considerations

TBD

8. Contributors

The authors would like to thank the following contributors for
valuable suggestions: Al Cutter, Ben Laurie, Benjamin Kaduk, Karen
Seo, Magnus Ahltorp, Yan Zhu.
9. ChangeLog

9.1. Changes between -01 and -02

- STH Pollination defined.
- Trusted Auditor Relationship defined.
- Overview section rewritten.
- Data flow picture added.
- Section on privacy considerations expanded.

9.2. Changes between -00 and -01

- Add the SCT feedback mechanism: Clients send SCTs to originating web server which shares them with auditors.
- Stop assuming that clients see STHs.
- Don’t use HTTP headers but instead .well-known URL’s – avoid that battle.
- Stop referring to trans-gossip and trans-gossip-transport-https – too complicated.
- Remove all protocols but HTTPS in order to simplify – let’s come back and add more later.
- Add more reasoning about privacy.
- Do specify data formats.

10. References

10.1. Normative References

10.2. Informative References

[THREAT-ANALYSIS]

Authors’ Addresses

Linus Nordberg
NORDUnet
Email: linus@nordu.net

Daniel Kahn Gillmor
ACLU
Email: dkg@fifthhorseman.net

Tom Ritter
Email: tom@ritter.vg
Abstract

This document proposes a solution extending the Certificate Transparency protocol [I-D.ietf-trans-rfc6962-bis] for transparently logging the software binary codes (BC) or its digest with their signature, to enable anyone to monitor and audit the software provider activity and notice the distribution of suspect software as well as to audit the BC logs themselves. The solution is called "Binary Transparency" in this document.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 7, 2017.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document.

L. Xia, Ed. D. Zhang
Internet-Draft Huawei
Intended status: Standards Track D. Gillmor
Expires: September 7, 2017 CMRG
B. Sarikaya Huawei USA
Huawei USA March 6, 2017
CT for Binary Codes
draft-zhang-trans-ct-binary-codes-04
1. Introduction

Digital signatures have been widely used in software distributions to prove the authenticity of software. Through verifying signature, an end user can ensure that the gotten software is developed by a legal provider (e.g., Microsoft) and is not tampered during the distribution. If an end user does not have a direct trust relationship with the software provider, an certificate chain to a trust anchor that the user trusts should be provided. That is why many signature mechanisms for software distribution are based on public key infrastructure (PKI). However, signature mechanisms cannot prevent software provider from distributing software either with customized backdoors/drawbacks, or they do not own the right to distribute. Besides, it may be hard for a user to detect the differences between the software it got and the software provided to other users.
This draft describes the Binary Transparency mechanism which extends the Certificate Transparency (CT) protocol specified in [I-D.ietf-trans-rfc6962-bis] to support logging binary codes. A software provider can submit its software Binary Codes (BC) (or digests of codes in order to e.g., save space or avoid violating license restrictions) with associated signature to one or more CT logs. Therefore, a user can easily detect the existence of software BC with customized backdoors, by comparing with the according CT log entries. The software provider can monitor the logs all the time to detect whether there are tempered copies of its software in the log, or its software is submitted into the log by other software providers without authority. In summary, the end users should be informed when all the above situations happen, how to achieve it is beyond the scope of this document.

With this mechanism, when a section of binary codes and associated signature has been submitted to a log, if the provided certificate chain ends with a trust anchor that is accepted by the log, the log will accept it and return the Signed Binary Timestamp (SBT) to the software provider as the evidence of its acceptance provided to the users later. Thus, the users should only trust the software accompanied by SBT, even if it is associated with a proper signature. This approach then forces the software providers to submit their binary codes to logs before distributing them.

Binary Transparency is an extension to Certificate Transparency, which comply with most of the specification in [I-D.ietf-trans-rfc6962-bis]. This document only focuses on the extension part of Binary Transparency mechanisms.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2. Cryptographic Components of Binary Transparency

When applying CT for binary codes, a log is a single, ever-growing, append-only binary Merkle Hash Tree of software BC, with associated signature and certificate chain, complying with the Merkle Hash Tree specification in Section 2 of [I-D.ietf-trans-rfc6962-bis].

3. Motivation Scenarios

The documents disclosed by Edward Snowden have raised the concerns of people on the vulnerability of the network devices to the passive attacks performed by NSA or other organizations. Meanwhile, the
network device vendors are also concerned in their foreign markets because their products are suspected to have customized backdoors for adversaries to perform attacks. It is desired for vendors to publish the design details of the products and provide sufficient facilities for clients to check whether certain hardware or software of a device has been improperly modified. There are various techniques that could be used for this purpose. One way is to force a vendor to submit the binary codes of its firmwares to the public CT logs. Therefore, anyone can verify the correctness of each log entry and monitor when new software BCs are added to it. Specially, customers can easily detect whether the vendor is releasing the same firmware to everyone. In addition, under the assistance of the Binary Transparency, customer will have more confidence on the quality of firmware. Since the same codes are used by different customers all over the world, the drawbacks in firmware will be easier to be detected.

There are similar requirements to detect the customized backdoors or misdistribution in the software market. Besides the software itself, a user may also concern whether there are customized backdoors in the patches. The Binary Transparency can help address such concerns in the same way. In addition, this mechanism can also show some advantages in the scenarios where the signer is not aware that their keys have been compromised. If their update system is required to use a CT log, they have the chance to find out about their compromise.

4. Log Format and Operation Extensions

The software provider can submit the software and the associated signature to any preferred CT logs before distributing it. In some cases, the software provider may select only to submit the signed digest of the software because of the license restriction or the space restriction of log entry. In order to verify the attribution of each log entry, a log SHALL publish a set of certificates that it trusts to benefit an software provider to construct an certificate chain connecting a trust anchor and the certificate containing the key used to sign the software.

A log needs to verify the certificate chain provided by the software provider, and MUST refuse to accept the signed software/digest if the chain cannot lead back to a trusted anchor. If the software/digest and the signature are accepted by a log and an SBT is issued, the log MUST store the entire chain and MUST present this chain for auditing upon request.

Complying with the log format definition in [I-D.ietf-trans-rfc6962-bis], some definitions remain the same: "Log ID", "Merkle..."
Tree Head", "Signed Tree Head", "Merkle Consistency Proofs", "Merkle Inclusion Proofs", "Shutting down a log"... The other required log format extension for Binary Transparency are specified in the following sections:

4.1. Log Entries

Each software entry in a log MUST include a "BinaryChainEntryV2" structure as below:

```c
enum { binary(TBD1), binary_digest(TBD2) } BIN_Signed_Type;
opaque BINARY<1..2^24-1>;
opaque ASN.1Cert<1..2^24-1>;
struct {
    BIN_Signed_Type bin_signed_type;
    BINARY signed_software;
    ASN.1Cert certificate_chain<1..2^24-1>;
} BinaryChainEntryV2;
```

"bin_signed_type" indicates whether the signature is generated based on the software or its digest.

"signed_software" consists a ContentInfo structure specified in CMS[RFC5652]. Specifically, this field includes the binary codes/digest, the signature, and any other additional information used to describe the software and the issuer publishing the software. The software SHOULD be encapsulated and signed following the ways specified in CMS[RFC5652]. If signed_type is TBD1, the software binary code is encapsulated in this field. If signed_type is TBD2, the SHA-256 digest of software binary code is encapsulated in this field.

"certificate_chain" includes the certificates constructing a chain from the certificate of software provider to a certificate trusted by the log. The first certificate MUST be the certificate of software provider. Each following certificate MUST directly certify the one preceding it. The final certificate MUST either be, or be issued by, a root certificate accepted by the log. If the certificate chain is provided in the "signed_software" field structure, this field is set to empty.

4.2. TransItem Structure

The extended "TransItem" structure is defined as below:
enum {
 reserved(0),
 x509_entry_v2(1), precert_entry_v2(2),
 x509_sct_v2(3), precert_sct_v2(4),
 signed_tree_head_v2(5), consistency_proof_v2(6),
 inclusion_proof_v2(7), x509_sct_with_proof_v2(8),
 precert_sct_with_proof_v2(9), BIN_entry_v2(TBD3),
 BIN_sbt_v2(TBD4), BIN_sbt_with_proof_v2(TBD5),
 (65535)
} VersionedTransType;

struct {
 VersionedTransType versioned_type;
 select (versioned_type) {
 case x509_entry_v2: TimestampedCertificateEntryDataV2;
 case precert_entry_v2: TimestampedCertificateEntryDataV2;
 case x509_sct_v2: SignedCertificateTimestampDataV2;
 case precert_sct_v2: SignedCertificateTimestampDataV2;
 case signed_tree_head_v2: SignedTreeHeadDataV2;
 case consistency_proof_v2: ConsistencyProofDataV2;
 case inclusion_proof_v2: InclusionProofDataV2;
 case x509_sct_with_proof_v2: SCTWithProofDataV2;
 case precert_sct_with_proof_v2: SCTWithProofDataV2;
 case BIN_entry_v2: TimestampedBinaryEntryDataV2;
 case BIN_sbt_v2: SignedBinaryTimestampDataV2;
 case BIN_sbt_with_proof_v2: SBTWithProofDataV2;
 } data;
} TransItem;

"versioned_type " is the type of the encapsulated data structure of TransItem. Three new values are added to it -- BIN_entry_v2(TBD3), BIN_sbt_v2(TBD4), BIN_sbt_with_proof_v2(TBD5).

For "data" structure, a new type structure of TimestampedBinaryEntryDataV2 is added.

4.3. Merkle Tree Leaves

Each Merkle Tree leaf is defined as the hash value of a "TransItem" structure of according type. Here, a new type ("BIN_entry_v2") of "TransItem" structure is created, which encapsulates a new "TimestampedBinaryEntryDataV2" structure defined as below:
opaque TBSCertificate<1..2^24-1>;
struct {
 uint64 timestamp;
 opaque issuer_key_hash<32..2^8-1>;
 BIN_Signed_Type bin_signed_type;
 TBSSignedSoftware tbs_signed_software;
 SbtExtension sbt_extensions<0..2^16-1>;
} TimestampedBinaryEntryDataV2;

"timestamp" is the NTP Time [RFC5905] at which the software binary code was accepted by the log, measured in milliseconds since the epoch (January 1, 1970, 00:00 UTC), ignoring leap seconds. Note that the leaves of a log’s Merkle Tree are not required to be in strict chronological order.

"issuer_key_hash" is the HASH of the public key of the software provider that signed the software, calculated over the DER encoding of the key represented as SubjectPublicKeyInfo [RFC5280]. This is needed to bind the software provider to the software binary code, making it impossible for the corresponding SBT to be valid for any other software whose TBSSignedSoftware matches "tbs_signed_software". The length of the "issuer_key_hash" MUST match HASH_SIZE.

"bin_signed_type" indicates whether the signature is generated based on the software or its digest.

"tbs_signed_software" is the DER encoded TBSSignedSoftware from the "signed_software" in the case of a "BinaryChainEntryV2".

4.4. Structure of the Signed Binary Timestamp

An SBT is a "TransItem" structure of type "bin_sbt_v2", which encapsulates a "SignedBinaryTimestampDataV2" structure:
enum {
 reserved(65535)
} SbtExtensionType;

struct {
 SbtExtensionType sbt_extension_type;
 opaque sbt_extension_data<0..2^16-1>;
} SbtExtension;

struct {
 LogID log_id;
 uint64 timestamp;
 SbtExtension sbt_extensions<0..2^16-1>;
 digitally-signed struct {
 TransItem timestamped_entry;
 } signature;
} SignedBinaryTimestampDataV2;

"log_id" is this log’s unique ID, encoded in an opaque vector.

"timestamp" is equal to the timestamp from the "TimestampedBinaryEntryDataV2" structure encapsulated in the "timestamped_entry".

"sbt_extension_type" identifies a single extension from the IANA registry in Section 6. At the time of writing, no extensions are specified.

The interpretation of the "sbt_extension_data" field is determined solely by the value of the "sbt_extension_type" field. Each document that registers a new "sbt_extension_type" must describe how to interpret the corresponding "sbt_extension_data".

"sbt_extensions" is a vector of 0 or more SBT extensions. This vector MUST NOT include more than one extension with the same "sbt_extension_type". The extensions in the vector MUST be ordered by the value of the "sbt_extension_type" field, smallest value first. If an implementation sees an extension that it does not understand, it SHOULD ignore that extension. Furthermore, an implementation MAY choose to ignore any extension(s) that it does understand.

The encoding of the digitally-signed element is defined in [RFC5246].

"timestamped_entry" is a "TransItem" structure that MUST be of type "BIN_entry_v2".
5. Log Client Messages

In Section 5 of [I-D.ietf-trans-rfc6962-bis], a set of messages is defined for clients to query and verify the correctness of the log entries they are interested in. In this document, a new message is defined and an existing message is extended for CT to support Binary Transparency.

5.1. Add Binary Code and Certificate Chain to Log

POST https://<log server>/ct/v1/add-Binary-chain

Inputs:

- bin_signed_type: indicates whether the input parameter "software" is constructed by the binary code or its digest.
- software: the binary code (or digest), the signature, and the information used to describe the software and the software provider publishing the software, which are encapsulated following the way specified in CMS[RFC5652]. The submitter desires a SBT for this element.
- chain: An array of base64-encoded certificates. The first element is the certificate used to sign the binary code (or digest); the second certifies the first and so on to the last, which either is, or is certified by, an accepted trust anchor. If the certificate chain information has been included in the "software" field, this field could be empty.

Outputs:

- sbt: A base64 encoded "TransItem" of type "BIN_sbt_v2", signed by this log, that corresponds to the submitted software.

Error codes:
Be identical with the according part in Section 5.1 (Add Chain to Log) of [I-D.ietf-trans-rfc6962-bis].

5.2. Retrieve Entries and STH from Log
GET https://<log server>/ct/v2/get-entries

Inputs:
 start: 0-based index of first entry to retrieve, in decimal.
 end: 0-based index of last entry to retrieve, in decimal.

Outputs:
 entries: An array of objects, each consisting of
 leaf_input: The base64 encoded "TransItem" structure of type
 "x509_entry_v2" or "precert_entry_v2" or "BIN_entry_v2"
 (see Section 4.3).
 log_entry: The base64 encoded log entry (see Section 4.1). In the
 case of an "x509_entry_v2" entry, this is the whole
 "X509ChainEntry"; and in the case of a "precert_entry_v2",
 this is the whole "PrecertChainEntryV2"; and in the case of a
 "BIN_entry_v2", this is the whole "BinaryChainEntryV2".
 sct: The base64 encoded "TransItem" of type "x509_sct_v2" or "precert_sct
 _v2" or "BIN_sbt_v2" corresponding to this log entry.
 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2", signed
 by this log.

More details are identical with Section 5.7 of [I-D.ietf-trans-rfc6962-bis].

5.3. Summary

In summary, the above extensions of Binary Transparency enable the
software providers, the end users, and anyone to monitor and audit
the CT logs to mitigate the possible attacks induced by tampered
software, or software misdistribution.

This section gives a brief introduction to all the other aspects of
Binary Transparency mechanisms for the reason of completeness, since
they comply with the basic CT protocol specification. For more
details please refer to the corresponding sections of [I-D.ietf-
trans-rfc6962-bis].

Software providers act the same as TLS servers in CT protocol. They
present one or more SBTs from one or more logs to each end user while
distributing the software, where each SBT corresponds to the
software. Software providers SHOULD also present corresponding
inclusion proofs and STHs. In which way the software providers
present this information is beyond the scope of this document.

The end users of software acts the same as Clients of logs described
in CT protocol. They can perform various different functions, such as:
get log metadata, exchange STHs they see, receive and validate
SBTs, Validate inclusion proofs.
Binary Transparency also provides monitoring and auditing functions with the same algorithms defined for CT protocol.

Binary Transparency supports the same algorithm agility feature for signature algorithm and hash algorithm as CT protocol.

6. Acknowledgements

7. IANA Considerations

To be added.

8. Security Considerations

To be added.

9. References

9.1. Normative References

9.2. Informative References

Authors’ Addresses

Liang Xia (editor)
Huawei

Email: frank.xiaoliang@huawei.com
Dacheng Zhang
Huawei
Email: dacheng.zhang@huawei.com

Daniel Kahn Gillmor
CMRG
Email: dkg@fifthhorseman.net

Behcet Sarikaya
Huawei USA
5340 Legacy Dr. Building 3
Plano, TX 75024
Email: sarikaya@ieee.org