ALTO Topology Extension

draft-yang-alto-path-vector-00
draft-yang-alto-topology-06

Presenter: Y. Richard Yang

March 26, 2015 @ IETF 92

Overview of Document Change

e Splitdraft-vang-alto-topology intotwo
— draft-yang-alto-path-vector-00

e focuses on path vector, as an abstraction to convey
abstract network routing topology constraints

— draft-yang-alto-topology-06
e focuses on general ALTO node-link graphs

* Add a non-normative section on how path-vector

allows general application-layer traffic scheduling
optimization (to be complete)

Choose paths/vol Application-Layer Multi-flow Traffic

considered both : T :
e Scheduling Optimization: Example Setting

compute/storage

Client Client "))
resources
Center 2 \ B3
2 Client :
S Client
< Al \ o000 BN
S | client \
.9 en
P Mo Dat
Client ata
& a3 } / Center 3
Client / > Client

i \\\\i ey

Data = | “Region C”
Center 1

Client
CN o000
Source: <draft-bernstein-alto-large-bandwidth-cases-01>

Application-Layer Multi-flow Traffic Scheduling
Optimization: Toy Example

* App computes traffic volumes for two flows:
— PID1 (eh1) -> PID3 (eh3); PID2 (eh2) -> PID4 (eh4)

Application-Layer Multi-flow Traffic Scheduling
Optimization (ALMPO): Framework

* App has a set of K flows {si -> di}

e Path pi for si->di is computed by network

* App computes traffic volume xi on path pi (si -> di)
— X = [Xy, Xy, eey X¢]
— App traffic volume optimization framework:

min/satisfy obj(x)
S.1.
X satisfies app constraints

X satisfies network constraints

App/Net Interaction

Application
N

©sredst ||][minimal,
pairs abstract
{si->di} net info

ALTO Server

Two Types of Network Constraints/Parameters

* Individual path, e.g., e Coupled paths, e.g.,
— obj =x, * routingcost(s, -> d,)
+ X, * routingcost(s, -> d,)
— 100 < x1 < bw(s, ->d,)

— any link e:
sum(x;: (s, ->d.) uses link e)
< bw,

Insight: Example
Each core link: 100 Mbps; edge 1G 1inké d1

linkl

0.

<
PID1 245 | y0¥ PID3
%0)
PID2 § ink12 PID4
-link7 \;“/
d2
s2 x1l x2 var <= cap

linkl 1 0 x1 1G

1ink?2 1 0 x2 100M

1ink3 1 1 100M

Link4 1 1 100M

1ink5 1 0 100M

1ink6 1 0 1G

1linkM

Insight: Example

Each core link: 100 Mbps; edge 1G

ST 1kt
\/{
PID1 04 | ya¥
®
PID2 &
link7 oy
eh2 | ;
s2

s, > d;: {ane,(<100M) }
s, ->d,: {ane,(<100M) }

1linko

d1

PID3

ink12 PID4

d2

Insight: Example

Each core link: 100 Mbps;

s1 linkl edge 1G except link7=50M 1inké d1
& 13 PID3
PID1 45 a0k 1njy
®
PID2 & ink12 PID4
-link7 Y
s2 d2

s, ->d,: { ane,(<100M) }
s, ->d,: {ane,(<100M), ane,(<50M) }

Summary

e Path-vectors of abstract network elements
provides simplified, abstract routing topology
information to applications to convey coupled
constraints, such as shared bottlenecks, shared
reliability risk.

— The path vectors may not even form a graph, but
conveys the coupling info

* The amount of simplification depends on
network computation level

1

Path Vector: Example

HTTP/1.1 200 OK
Content-Length: TDB
Content-Type:
application/alto-costmap+json

{ "meta" : {
"dependent-vtags" : |
{ "resource-id": "my-default-network-map”,
"tag": "3ee2cb7e8d63d9fab71b9b34cbf764436315542¢e” },
{"resource-id": "my-topology-map",
"tag": "4xee2cb7e8d63d9fab71b9b34cbf76443631554de"

}

],
"cost-type" : {"cost-metric”: “bw”, "cost-mode" : "path-vector” },
"cost-map"” : {
"PID1": {"PID1":[], "PID2":["ne56", "ne67"], "PID3":[], "PID4":['"ne57"]
}

"i3lD2": {"PID1":["'"ne73"], "PID2"[], "PID3":["ne75"], "PID4":[]

L
}

12

Next Step

* Adopt the path vector approach as one key
component of ALTO topology extension

* Missing piece: how to convey ANE properties?

13

Node-Link Graph Status Update: Key Issue

e Two approaches
— Unified PID and network node
— Separate network node from PID

* Mailing list discussion favors a separation design
* |Implication of a separation design

— There are two types of links: between two network nodes vs between a
network node and a PID

— Indicate by link type
"links" : {
“e1” : {"type™: “pid-attach”,
“src” : “PID17, “dst”: “sw1”,
“costs”: ..

}

7 ”.

27 : {"type”: “transit’,

“src” : “sw1”, “dst”: “sw2”,
“costs”: ..

1)

Next Step

* How to proceed with the node-link graph
effort?

15

Backup Slides

Bigger Context: Link Type as Property Graph

* The “separation design” is a type of property graph
— A graph consists of a set of element objects, where each
object can have any number of key/value pairs associated
with it (i.e., properties)
e Vertex: an object with a unique identifier.
— each vertex has a set of outgoing edges.

— each vertex has a set of incoming edges.

— [each vertex has a collection of properties defined by a map from key
to value]

e Edge: also an object with a unique identifier
— each edge has an outgoing tail vertex.
— each edge has an incoming head vertex.

— each edge has a label that denotes the type of relationship between
its two vertices.

— [each edge has a collection of properties defined by a map from key to
value.]

17

Design Choice: General Flow

e Handle the case of multi-path routing such as ECMP

object {
JSONNumber w; // flow weight
JSONString ne; // network element
} FlowElement;

object {
cost-map.DstCosts.JSONValue -> FlowElement<0,*>;
meta.cost-mode = "flow”;

} InfoResourcePVCostMap : InfoResourceCostMap;

Each core link: 100 Mbps

18

Multi-flow Scheduling
Each core link: 100 Mbps

PID1 PID3

PID2

e ECMP for ehl -> eh3, single path through sw6 for eh2 -> eh4
— PID1 ->PID3: [{“ne”: “sw5-6", “w”: 0.5},
“ne”: “swb- 8” “w”: 0. 5}
“ne”: “sw5-7”, “w”: 0.5},
{“ne”: “sw7-8", “w”: 0.5}]
— PID2 -> PID4: : [{“ne”: “sw5-6", “w”: 1},
“ne”: “sw6-8”, “w”: 1}]

P1D4

Discussion: Design Choices

Both path vector and flow

Extend the path vector mode (no flow mode):
PIDi -> PIDj: an object of two arrays

"cost-map” : {
"PID1"; { "PID1": { “pv”: [I, “W’: 1 },
"PID2": { “pv”: ['ne56", "ne67"], “w”: [1, 1]},
}

Extend the flow mode (no path vector mode):
PIDi -> PIDj: an array of objects each with two elements

"cost-map" : {
"PID1": { "PID1": [{"pVv”: [I, “W": [] },
"PID2": { “pv”: [{*'ne”: "ned6", “‘w”: 1},
{"ne”: “ne67”, “‘w’: 1}

20

ISP

App-Path-Selection Work Flow

flow table entries

A

ALTO
Server

coarse
abstract

topology

ALTO
Client

routes in
abstract
topology

>

Controller

21

App-Path-Selection Work Flow

Network
control
A
NG network compute/
Server con_trol storage
guide guide

simplifi

abstract Global

topology - Orchestration

compute/

storage/
policy

22

YANG Model

module: alto-service-topology
+--ro resources
+--ro topology-maps*
+--ro topology-map [resource-id]

+--ro resource-id alto:resource-id
+--ro tag alto:tag-string
+--ro nodes* [node-id]
+--ro node-id node-1id
+--ro node-properties* [property-name]
+--ro property-name string
+--ro property-value? string

+--ro links* [link-id]

+--ro link-id link-id
+--ro src union
+--ro dst union
+--ro type string
+--ro cost* [cost-metric]
+--ro cost-metric alto:cost-metric

+--ro value

23

