
IETF-92 03/26/2015 ALTO Incremental Updates 1

ALTO Incremental Updates
draft-alto-incr-update-sse-02

W. Roome
Alcatel-Lucent/Bell Labs (NJ)

R. Yang
X. Shi

Yale

IETF 92
March 26, 2015

IETF-92 03/26/2015 ALTO Incremental Updates 2

Motivation
•  Maps can be very large
•  Small subsets can change frequently
•  Clients want timely & efficient updates:

–  Get updates as soon as possible (e.g., no polling delay)
–  Only get the changes

IETF-92 03/26/2015 ALTO Incremental Updates 3

Overview
•  General framework for updates to any ALTO resource

–  Including Endpoint Cost & Property Services

•  Server defines one or more Update Stream resources
–  Continuous stream of update messages for a resource set
–  Messages are Server-Sent Events (SSEs)
–  Each SSE updates one resource

•  Update data format:
–  Full replacement: ALTO data format
–  Incremental update: JSON Merge-Patch (RFC 7386)
–  Server decides which to use

IETF-92 03/26/2015 ALTO Incremental Updates 4

Changes Since -v00
•  Dropped GET-mode “Full” Update Stream Service; only

define the POST-mode “Filtered” Update Stream Service
•  Draft -v02 is a complete specification, with full examples
•  Changed format of IRD entry
•  Changed format of client’s POST-mode input

IETF-92 03/26/2015 ALTO Incremental Updates 5

Server-Sent Events (SSE)
•  Just like HTTP, except content is stream of events

–  W3C Standard
–  Events are separated by blank lines
–  Each event has a type and data:

	HTTP server->client headers	
	event: first-type	
	data: content of first event	
	event: another-type	
	data: here is a second event with	
	data: longer content than the first	

•  Simple & robust:
–  Firewalls & NAT boxes: No problem!
–  HTTP proxy: Must pass data as server sends it, and must keep

stream open for a long time

	

IETF-92 03/26/2015 ALTO Incremental Updates 6

Our Update Events
•  Each SSE updates one ALTO resource
•  Data is JSON message with the update
•  Type has ID of ALTO resource & media-type of data field

–  Complete replacements use ALTO media-types
–  Incremental updates use JSON Merge-Patch encoding (next slide)

 HTTP server->client headers	
 event: my-routingcost-map,application/alto-costmap+json	
 data: { full cost-map message }	
 event: my-routingcost-map,application/merge-patch+json	
 data: { JSON Merge-Patch with changed costs }

 event: my-routingcost-map,application/merge-patch+json	
 data: { JSON Merge-Patch with changed costs }

IETF-92 03/26/2015 ALTO Incremental Updates 7

JSON Merge-Patch
•  Standard (RFC 7386) for JSON incremental updates

–  Very efficient for data expressed as nested JSON objects

•  Update algorithm:
–  Do depth-first walk of objects in merge-patch message, keeping path to

current value. When encountering a value that is not a JSON object
dictionary (e.g., string, number, array, etc), replace the previous value for
that path with the new value. If there was no value for that path, create
one. If the new value is null, delete the previous value for that path.

•  Example:
–  Change (or add) the costs from PID1=>PID2 to 9, PID3=>PID3 to

1, and delete the cost from PID3=>PID1:
 { "cost-map": "PID1": { "PID2": 9 },	
 "PID3": { "PID1": null, "PID3": 1 } }	

–  Perfect for Cost Map changes
–  Good, but not optimal, for Network Map changes

	

IETF-92 03/26/2015 ALTO Incremental Updates 8

Update Stream Service
•  POST-mode
•  Updates set of resources selected by server
•  Media-type is text/event-stream (registered for SSE)
•  Accepts application/alto−updatestreamparams+json (new)
•  Server sends a stream of SSE update events
•  Client’s input:

–  Resource IDs for which client wants updates
–  Vtags of any resources client has already retrieved
–  Input parameters required for any POST-mode resources
–  Whether client wants incremental updates

IETF-92 03/26/2015 ALTO Incremental Updates 9

IRD Example
 "my-costs-update-stream": {	
 "uri": "http://alto.example.com/updates/costs",	
 "media-type": "text/event-stream",	
 "accepts": "application/alto−updatestreamparams+json",	
 "uses": ["my-network-map",	
 "my-routingcost-map", "my-hopcount-map"],	
 "capabilities": {	
 "incremental−update−media−types": {	
 "my−routingcost−map": "application/merge−patch+json",	
 "my−hopcount−map": "application/merge−patch+json"	
 }	
 }	
 }	
This stream provides updates for a Network Map and two Cost Maps (routingcost
& hopcount). It offers incremental updates for the Cost Maps, but not for the
Network Map.	

IETF-92 03/26/2015 ALTO Incremental Updates 10

Update Stream Semantics
•  A server MAY offer multiple Update Stream resources

–  Server chooses the resources for each stream

•  The updates to a dependent resource and its “parent”
resource SHOULD be available via the same stream
–  Thus a client can get updates for a Cost Map and its Network Map

and throught the same stream

•  If a stream offers updates to a “parent” resource and a
dependent resource, the server MUST send update events
for the parent resource before sending updates for the
dependent resource
–  E.g., the server MUST send Network Map update events before

Cost Map updates

IETF-92 03/26/2015 ALTO Incremental Updates 11

Update Stream Semantics (Part 2)
•  If several streams offer updates to the same resource, the

updates MUST eventually converge to the same data
–  But the server MAY group changes into different merge-patch

update events in different streams
–  E.g., suppose three cost points change within a short interval. On

one stream, server may send three SSEs, with one cost each. On
another stream, the server may send one SSE with all three costs.

•  At start-up, server MUST send a full replacement for every
resource, unless client has current version
–  Exception only applies to vtag’d resources (e.g., Network Maps)
–  Server must send full Cost Maps and Post-mode resources

IETF-92 03/26/2015 ALTO Incremental Updates 12

Update Stream Example 1: Client
POST /updates/costmaps HTTP/1.1	
Host: alto.example.com	
Accept: text/event−stream,application/alto−error+json	
Content−Type: application/alto−updatestreamparams+json	
Content−Length: ###	
	
{ "my−network−map": {	
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"	
 },	
 "my−routingcost−map": {}	
}	
	
The client just wants routingcost updates, not hopcount updates. The
client already has the Network Map, and provides its tag.

IETF-92 03/26/2015 ALTO Incremental Updates 13

Update Stream Example 1: Server
HTTP/1.1 200 OK	
Connection: keep−alive	
Content−Type: text/event−stream	
	
event: my−routingcost−map,application/alto−costmap+json	
data: { ... full routingcost Cost Map message ... }	
	
 (pause; then a cost changes)	
	
event: my−routingcost−map,application/merge−patch+json	
data: {"cost−map": {"PID2" : {"PID3" : 31}}}	
	
 (pause; then Network Map changes)	
	
event: my−network−map,application/alto−networkmap+json	
data: { ... full Network Map message ... }	
	
event: my−routingcost−map,application/alto−costmap+json	
data: { ... full Cost Map message ... }	

IETF-92 03/26/2015 ALTO Incremental Updates 14

Update Stream Example 2: Client
POST /updates/properties HTTP/1.1	
Host: alto.example.com	
Accept: text/event−stream	
Content−Type: application/alto−updatestreamparams+json	
Content−Length: ###	
	
{ "my−properties": {	
 "input": {	
 "properties" :	
 ["priv:ietf−bandwidth"],	
 "endpoints" :	
 ["ipv4:1.0.0.1", "ipv4:1.0.0.2", "ipv4:1.0.0.3"]	
 }	
 }	
}	

IETF-92 03/26/2015 ALTO Incremental Updates 15

Update Stream Example 2: Server
HTTP/1.1 200 OK	
Connection: keep−alive	
Content−Type: text/event−stream	
event: my−properties,application/alto−endpointprops+json	
data: { "endpoint−properties": {	
data: "ipv4:1.0.0.1" : { "priv:ietf−bandwidth": "13" },	
data: "ipv4:1.0.0.2" : { "priv:ietf−bandwidth": "42" },	
data: "ipv4:1.0.0.3" : { "priv:ietf−bandwidth": "27" } } }	
 (pause)	
event: my−properties,application/merge−patch+json	
data: { "endpoint−properties": {	
data: "ipv4:1.0.0.1" : { "priv:ietf−bandwidth": "3" } } }	
 (pause)	
event: my−properties,application/merge−patch+json	
data: { "endpoint−properties": {	
data: "ipv4:1.0.0.3" : { "priv:ietf−bandwidth": "38" } } }	

IETF-92 03/26/2015 ALTO Incremental Updates 16

Controversial Design Decision!
•  At startup, the server MUST send full maps for untagged

resources
–  Cost Maps are not tagged, so server always sends full Cost Maps

•  If a stream drops, when the client reconnects, the server
must resend data the client already has
–  Ugly! Inefficient!!
–  Could add vtags to Cost Maps, but that complicates ALTO

•  But only a problem for large maps and frequent drops
–  Clients who need large maps rarely drop connections
–  Clients who do drop connections don’t need large maps

•  So keep it simple, and accept the occasional inefficiency

IETF-92 03/26/2015 ALTO Incremental Updates 17

Next Steps
Approve the key points of this approach:

1.  Transport: Server-Sent Events (SSE)
2.  Message format: JSON Merge-Patch & Full ALTO messages

•  Allows other incremental update formats

3.  Server sends updates when they are available
4.  Server may offer multiple Update Stream resources
5.  Each stream updates one or more resources
6.  Streams may update any resource
7.  At startup, server sends full maps for untagged resources
8.  Update Streams are NOT required

Assuming “yes,” adopt as working group document
•  Review via mailing list
•  WGLC by summer??? (Charter target was Nov. 2014)

Thank you

IETF-92 03/26/2015 ALTO Incremental Updates 18

