IETF 92 AVTCORE

DRAFT-IETF-AVTCORE-SRTP-EKT

JOHN MATTSSON (EDITOR)

ERICSSON RESEARCH

SCOPE OF DRAFT-IETF-AVTCORE-EKT?

 draft-jones-avtcore-private-media-framework proposes to use EKT for the e2e secure conferencing use case.

- The following changes is proposed:
 - Changed position of the EKT field.
 - ROC is transmitted outside of EKT.
 - Extension of EKT to negotiate e2e Protection Profile
 - Extension of EKT in order to send the participant identifier.

Anyone against broadening the scope of EKT?

EKT (ISN) PROBLEMS WITH RTCP

- EKT uses a the ISN field (Initial Sequence Number) to signal the timing for SRTP re-keying.
 - EKT_Plaintext = SRTP_Master_Key || SSRC || ROC || ISN where ISN is the initial SEQ for the new SRTP master key.

```
+---+ ----- SRTP -----> +---+
| S | ----- SRTCP SR ----> | R |
+---+ <---- SRTCP RR ----- +---+
```

- Problem is that SRTCP have 31 bit SRTCP Index instead of SEQ.
 - Problematic for Sender Reports.
 - Even more problematic for Receiver Reports

REPLAY ATTACKS CAUSED BY ISN

Assume a sender sends the following two EKT fields during ROC = 17

```
    EKT_Plaintext = Key = XX || SSRC = 1234 || ROC = 17 || ISN = 0
    EKT_Plaintext = Key = YY || SSRC = 1234 || ROC = 17 || ISN = 1337
```

- An ISN = 0 has a special meaning, an attacker can replay the first EKT
 - EKT Plaintext = Key = XX $\mid \mid$ SSRC = 1234 $\mid \mid$ ROC = 17 $\mid \mid$ ISN = 0
 - The receiver will accept the replayed EKT and set the key to XX
 - As the sender uses Key = YY for SEQ >= 1337, the receiver will discard all SRTP packets until the sender sends a new EKT field.
- One replayed EKT packet causes long term DoS...

REPLAY ATTACKS CAUSED BY ISN

- Original source is using SSRC = 8128 and ROC = 2^31, sends
 - EKT Plaintext = Key = XX $\mid \mid$ SSRC = 8128 $\mid \mid$ ROC = 2^31 $\mid \mid$ ISN = 0
- New source starts using SSRC = 8128 and ROC = 0, sends
 - EKT Plaintext = Key = ZZ || SSRC = 8128 || ROC = 0 || ISN = 0
- The original source detects the collision and moves to a new SSRC
- An attacker can replay EKT from the Original source
 - The receiver will accept the EKT and use Key = XX and ROC = 2^31 for the new source.
 - The receiver will discard all SRTP and EKT packets until the new source reaches ROC = 2^31

One replayed EKT packet causes very long term DoS...

SUGGESTIONS

Do we really need several SRTP Master keys per SSRC and EKT SPI?

- If no, simply remove ISN. Problems solved. EKT_Plaintext would be
 - EKT_Plaintext = SRTP_Master_Key || SSRC || ROC
- If yes, remove ISN and use MKI. Problems solved. EKT_Plaintext would be:
 - EKT Plaintext = SRTP Master Key || SSRC || ROC || MKI
 - The SRTP and SRTCP packets would look like:

```
+----+
| RTP Header | RTP Payload | MKI | TAG | EKT |
+----+
+----+
| RTCP Packet Types | SRTCP INDEX | MKI | TAG | EKT |
```

ANALYSIS: MKI INSTEAED OF ISN

Pros

- Solves the problems with SRTCP and ISN
 - EKT can be used in RTP and and/or RTCP.
 - SRTP and SRTCP may use different keys.
- Solves the problems with replay of Full EKT fields.
 - If the receiver has the key with MKI = X, the replay has no effect.
 - If the receiver does not have the key with MKI = X, the effect is just that the receiver stores the key.
 - In the SSRC collision case the replay attack is only effective if both sources use the same MKI value and the DoS is then only until the sender sends a new EKT field.
 - ROC calculation can continue to be modulo 2³¹

Cons

MKI could by default be one byte. Packets with Short EKT field would then be 1 byte longer.

Could specify that MKI is optional, a source is then limited to one SRTP master key per EKT SPI.