# **\$DN**Software Define

# Benchmarking SDN Controller Performance

draft-bhuvan-bmwg-sdn-controller-benchmark-term-00 draft-bhuvan-bmwg-sdn-controller-benchmark-meth-00

92<sup>nd</sup> IETF, Dallas

Bhuvaneswaran Vengainathan, Anton Basil

**Veryx Technologies** 

Mark Tassinari
Hewlett-Packard

Vishwas Manral Ionos Corp

Sarah Banks VSS Monitoring

# **Objective**

- Develop a comprehensive set of tests for benchmarking SDN controllers for
  - ✓ Performance
  - ✓ Scalability
  - ✓ Reliability and
  - ✓ Security

- Define metrics and methodology to assess/evaluate SDN controllers
- Provide a standard mechanism to measure and compare the performance of various controller implementations

## **History**

Revision

Submitted in March 2014 (OpenFlow Specific)
 (draft-bhuvan-bmwg-of-controller-benchmarking-00)

Presented initial version in IETF-90 meeting

00

Revision

Submitted in October 2014 (Protocol Agnostic)
 (draft-bhuvan-bmwg-of-controller-benchmarking-01)

• Presented the revised version in IETF-91 meeting

01

Revision

02

 Submitted in March 2015 (Terminology and Methodology) (<u>draft-bhuvan-bmwg-sdn-controller-benchmark-term-00</u>) (<u>draft-bhuvan-bmwg-sdn-controller-benchmark-meth-00</u>)

## **Revision 02 – Updates**

## Changes Highlight

- Split into two different drafts (Terminology and Methodology)
- Defined an additional metric Control Sessions Capacity
- Provided an example Benchmarking Methodology for OpenFlow Controller
- Addressed review comments from last IETF meeting and on the mailing list

# **Revision 02 – Benchmarking Metrics Revision**

| Categories  | Metrics Rev 01                          | Metrics Rev 02                                             | Change Description                                              |
|-------------|-----------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|
| Performance | Synchronous Message     Processing Time | Asynchronous Message     Processing Time                   | Measure the time to handle messages triggered by network events |
|             | Synchronous Message     Processing Rate | <ol><li>Asynchronous Message<br/>Processing Rate</li></ol> | Measure the time to handle messages triggered by network events |
| Scalability | 1. Flow scalable limit                  | Forwarding Table     Capacity                              | Reworded the metric title                                       |
|             | -                                       | 2. Control Sessions Capacity                               | Maximum number of control sessions the controller can maintain  |

## **Revision 02 – Updates based on Comments**

## **Terminology Section**

#### Provided more clarity in definition of the following terminologies

- Flow
- Path
- Northbound/Southbound Interfaces

#### **Dropped following definitions**

- Synchronous Messages
- Learning Rate

#### Added following new definitions

- SDN Applications
- Traffic Endpoints
- Asynchronous Messages

## Revision 02 - Updates based on Comments (Contd.)

### **Test setup and Test Considerations Sections**

#### **Test Setup**

Updated Test Setups to show the network path more explicitly between the nodes.

#### **Test Considerations**

- Updated Traffic Consideration to recommend default test traffic sizes
- Reworded Measurement Accuracy Measurement Point Specification and Recommendation
- Added Connectivity Recommendation between SDN Nodes and Controller
- Updated Test Reporting to include H/W specifications and Test setup details

## **Benchmarking Tests Sections**

#### **Topology Discovery Time**

- Redefined test procedure
  - Now determines time to discover 'n' nodes rather than finding number of nodes within specified duration.
- Additional measurement suggestion to handle Network Latency during the discovery process.

## Revision 02 - Updates based on Comments (Contd.)

## **Benchmarking Tests**

#### **Asynchronous Message Processing Time**

Redefined the procedure to measure the response time based on asynchronous message Tx/Rx time

#### **Asynchronous Message Processing Rate**

Added note for connectivity requirements between controller and SDN nodes while performing this test.

#### **Exception Handling**

Provided more clarity on generating incorrect frames.

#### **Network Discovery Size**

 Redesigned the tests to determine the controllers maximum discovery capability without having any time limit.

## **Revision 02 – Discussion Points**

#### **Points for Discussion**

- Need for Test Duration
- Some of the tests seem suitable for benchmarking SDN applications rather than SDN controllers.
  - e.g., Network Topology Discovery Time.
     Currently, the methodology assumes SDN networking application and SDN controller together as a black-box. Will this approach be fine?
- Do we need to recommend any specific topology e.g., number of nodes, links and topology type etc.. for benchmarking?

# **Next Steps**

• Adopt the draft as WG item??

 Thanks to Al Morton(AT&T), Sandeep Gangadharan (HP), Ramakrishnan (Brocade), Jay Karthik (Cisco), Andrew McGregor (Google), Scott Bradner (Harvard University), M. Georgescu (NAIST) for sharing valuable comments.

# Thank You!!!

The authors of

draft-bhuvan-bmwg-sdn-controller-benchmark-term-00 draft-bhuvan-bmwg-sdn-controller-benchmark-meth-00