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Plan for today
• As little background as I can get away with 

• Why previous attempts didn’t work 

• What PRECIS does & why 

• How this can and should be used by other protocols 

• Some special cases 

• Discuss

2



Why might you care?

• Any time you have any protocol element that is 
exposed to humans, there is a usability issue. 

• Humans, alas, use languages and writing.
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Background

• RFC 2277 requires “internationalization 
considerations” 

• Also suggests “just use UTF-8” 

• The first was widely ignored.  The second is wrong. 

• We spell internationalization “i18n”
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ASCII for everyone!

Seems at least naïve
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So, Unicode

• Coded character set (RFC 6365) 

• It aspires to have every character 

• That humans care about 

• That have been added
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Versions!

• New characters get added, and then you have a 
new version of Unicode 

• Characters don’t go away (“stability guarantees”) 

• Also means that changing one’s mind is hard
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Not developed for 
comparison

• Heritage is print and display of characters 

• More than one way to print?  Not a problem! 

• Still displays the same
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Jargon

• Each coded character has a number (hex) 

• We mostly use U+xxxx convention (RFC 5137) 

• Each coded character has many properties (e.g. 
letter vs number vs symbol, script, directionality)
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Abstract character

• The thing you as ordinary writing-system user might 
think of when you think of “character” 

• Might have more than one representation 

• ́ + e or é 

• Å or Å
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Cases
• Easy, right?  i/I, a/A, and so on 

• Not so fast.  Not all writing systems have case 

• Case isn’t stable for everyone (even in one script) 

• e.g. Turkic writing folds i to İ, and I to ı 

• might have round-trip issues (ß to SS to ss, é to E 
to e)
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Comparing in Unicode

• Two kinds of equivalence 

• Canonical 

• Compatibility (“Kompatibility”)
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Comparing (2)
• Canonical equivalence means they’re really at bottom the 

same character 

• Compatibility equivalence is usually to increase the 
probability of matches 

• Backward compatibility often important here 

• Lots of false-positive matches 

• Interactions with CaseFold 

• Often loses information in round trips
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Normalization
• We need to normalize strings before comparing 

them so that they are arranged the same way 

• Decomposition  

• take things apart 

•  decomposition and reComposition 

• take them apart and put them back together
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Normalization (2)
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Canonical Kompatible

Decompose NFD NFKD

reCompose NFC NFKC



Normalization (2)
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Canonical Kompatible

Decompose NFD NFKD

reCompose NFC NFKC



Encoding
• These are just spaces in code tables 

• Need a way to represent it to computers 

• It’s like Perl! More than one way! 

• Generally UTF-8 on the wire for IETF protocols 

• You remember RFC 2277, right?
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Stuff we tried

• Use UTF-8 (RFC 2277, RFC 3629) 

• Other things ok, but you need to negotiate 

• Ok, in NFC (RFC 5198) 

• Stringprep (RFC 3454)
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Stringprep

• Take your string 

• Run it through this fancy procedure 

• Now you’re golden

19



The Stringprep Way
• Choose a Unicode version (oops, 3.2 only!) 

• Choose a normalization form (NFKC or nothing?!) 

• Specify how to handle whitespace 

• Specify whether to use case folding (someone loses?) 

• Specify bidirectional handling  

• Specify prohibited characters 
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Stringprep facilities
• Tables! 

• Mappings 

• whitespace, folding 

• Prohibited characters 

• Bidirectionality 

• Each protocol does it for itself 

• For every version of Stringprep (or Unicode)
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Stringprep issues
• Version agility is important 

• NFKC yields some surprises 

• Enormous repertoire very hard to comprehend 
(false positives and negatives) 

• Big maintenance headache 

• See RFC 4690 for more details
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Try again

• IDNA2003 used Stringprep, so try again 

• IDNA2008 uses algorithms based on Unicode 
properties 

• Default is “not included”, rather than “included” 

• Should be Unicode version agnostic
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Four buckets

• PROTOCOL-VALID (“PVALID”) 

• DISALLOWED (“default” state before properties) 

• Context rule required (CONTEXTO and CONTEXTJ) 

• UNASSIGNED
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Mostly works
• Goal is to internationalize old letter, digit, hyphen 

rule, not write literature 

• Domain names not words 

• Domain names have a registration authority 

• One per zone 

• Maybe a useful pattern for other protocols
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Some challenges
• We’re encroaching on user-interface space 

• No mappings require some tricks in protocol 
deployment 

• Depends on registration authority to do the right 
thing 

• Depends on user agent to do the right thing (and 
know what that is in the locale)
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Protocols want help

• “Can’t I just hand this to an expert subsystem and 
know what to do?” 

• That was the idea behind PRECIS
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PRECIS
• Takes approximately the same strategy as 

IDNA2008 

• Generalized 

• Gives two classes: IdentifierClass and 
FreeformClass 

• Generate profiles for particular protocols
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How to use it 
• Figure out which of your protocol elements are user-facing.  

Those are the only ones you should internationalize. 

• Figure out which of those elements are identifiers 

• Hint: if you need to match them ever, then they probably 
are 

• Use IdentifierClass 

• Otherwise, use FreeformClass 

• There are some profiles, because the Classes are too big
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Profiling

• Easy way: take an existing profile, and use that 

• Hard way: take a profile, and try to modify it to 
accommodate your use case 

• Hardest way: start with FreeformClass and start 
whittling away
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Use the easy way
• These are really pretty comprehensive 

• Yes, there’ll be some favourite character someone has 
that they really really want 

• Is the case so compelling that it really makes things 
impossible to use, or is this a nice to have? 

• Your WG can spend a million years in nice-to-have-land 

• Safest to pick the smallest class you can get away with, 
not the largest set of characters anyone wants
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If you must make it harder
• You really have to understand the particular characters, the 

cases in which they’re used, and so on 

• Much safer if you have a protocol with registration authority that 
can make decisions 

• Much safer if you’re absolutely sure no protocol element will 
leak off the LAN (on the grounds that a LAN is usually confined 
to a well-defined user population 

• You need an extensive bit of documentation in your 
Internationalization Considerations 

• If you’re different than other protocols, users may be surprised
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Windmill-tilting (rolling 
your own)

• If you really think the right thing to do is start with Freeform and 
whittle it down, try hard to think again 

• You will need to understand all of Unicode. 

• This is the step you were trying to avoid, remember? 

• There are nasty corner cases we’re just learning about (more in a 
moment) 

• Your goal is to ship a working protocol before heat death of the 
universe, not write long Internationalization Considerations 

• If you’re really different than other protocols, users will think your 
protocol is awful
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Late-breaking challenges

• Unicode 7.0.0 introduced a character called 
ARABIC LETTER BEH WITH HAMZA ABOVE (U
+08A1) 

• Earlier versions had ARABIC LETTER BEH and 
ARABIC HAMZA ABOVE 

• This led us to do some digging
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Looks like this
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So?
• Not canonically equivalent 

• Surprising to some of us 

• Turns out this is not completely strange 

• Some similar cases have been around since at 
least Unicode 3.2 

• Basic issue has nothing to do with Arabic script
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More things for WGs
• You probably want guidance to operators 

• IDNA2008 says, “If you’re going to register a character, 
you better understand it.”  That is, “Make policies, and 
don’t do it blindly.” 

• Other Internationalization Considerations or Security 
Considerations sections should probably say 
something similar 

• There might be (a) new property(ies) coming, so the 
protocol could still change

37



What to read on PRECIS

• RFC 6885 (problem statement) 

• draft-ietf-precis-framework 

• draft-ietf-precis-saslprepbis 

• draft-ietf-precis-nickname
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Other things to see

• LUCID BoF (up next!) 

• draft-sullivan-lucid-prob-stmt 

• draft-klensin-idna-5892upd-unicode70
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