
A Précis of PRECIS:next-
generation internationalization

considerations
Chairs’ lunch session

IETF 92 — Dallas, TX, USA

1

IAB Internationalization Program
Special thanks to Peter Saint-André for use of his slides

Plan for today
• As little background as I can get away with

• Why previous attempts didn’t work

• What PRECIS does & why

• How this can and should be used by other protocols

• Some special cases

• Discuss

2

Why might you care?

• Any time you have any protocol element that is
exposed to humans, there is a usability issue.

• Humans, alas, use languages and writing.

3

Background

• RFC 2277 requires “internationalization
considerations”

• Also suggests “just use UTF-8”

• The first was widely ignored. The second is wrong.

• We spell internationalization “i18n”

4

ASCII for everyone!

Seems at least naïve

5

So, Unicode

• Coded character set (RFC 6365)

• It aspires to have every character

• That humans care about

• That have been added

6

Versions!

• New characters get added, and then you have a
new version of Unicode

• Characters don’t go away (“stability guarantees”)

• Also means that changing one’s mind is hard

7

Not developed for
comparison

• Heritage is print and display of characters

• More than one way to print? Not a problem!

• Still displays the same

8

Jargon

• Each coded character has a number (hex)

• We mostly use U+xxxx convention (RFC 5137)

• Each coded character has many properties (e.g.
letter vs number vs symbol, script, directionality)

9

Abstract character

• The thing you as ordinary writing-system user might
think of when you think of “character”

• Might have more than one representation

• ́ + e or é

• Å or Å

10

Cases
• Easy, right? i/I, a/A, and so on

• Not so fast. Not all writing systems have case

• Case isn’t stable for everyone (even in one script)

• e.g. Turkic writing folds i to İ, and I to ı

• might have round-trip issues (ß to SS to ss, é to E
to e)

11

Comparing in Unicode

• Two kinds of equivalence

• Canonical

• Compatibility (“Kompatibility”)

12

Comparing (2)
• Canonical equivalence means they’re really at bottom the

same character

• Compatibility equivalence is usually to increase the
probability of matches

• Backward compatibility often important here

• Lots of false-positive matches

• Interactions with CaseFold

• Often loses information in round trips

13

Normalization
• We need to normalize strings before comparing

them so that they are arranged the same way

• Decomposition

• take things apart

• decomposition and reComposition

• take them apart and put them back together

14

Normalization (2)

15

Canonical Kompatible

Decompose NFD NFKD

reCompose NFC NFKC

Normalization (2)

16

Canonical Kompatible

Decompose NFD NFKD

reCompose NFC NFKC

Encoding
• These are just spaces in code tables

• Need a way to represent it to computers

• It’s like Perl! More than one way!

• Generally UTF-8 on the wire for IETF protocols

• You remember RFC 2277, right?

17

Stuff we tried

• Use UTF-8 (RFC 2277, RFC 3629)

• Other things ok, but you need to negotiate

• Ok, in NFC (RFC 5198)

• Stringprep (RFC 3454)

18

Stringprep

• Take your string

• Run it through this fancy procedure

• Now you’re golden

19

The Stringprep Way
• Choose a Unicode version (oops, 3.2 only!)

• Choose a normalization form (NFKC or nothing?!)

• Specify how to handle whitespace

• Specify whether to use case folding (someone loses?)

• Specify bidirectional handling

• Specify prohibited characters

20

Stringprep facilities
• Tables!

• Mappings

• whitespace, folding

• Prohibited characters

• Bidirectionality

• Each protocol does it for itself

• For every version of Stringprep (or Unicode)

21

Stringprep issues
• Version agility is important

• NFKC yields some surprises

• Enormous repertoire very hard to comprehend
(false positives and negatives)

• Big maintenance headache

• See RFC 4690 for more details

22

Try again

• IDNA2003 used Stringprep, so try again

• IDNA2008 uses algorithms based on Unicode
properties

• Default is “not included”, rather than “included”

• Should be Unicode version agnostic

23

Four buckets

• PROTOCOL-VALID (“PVALID”)

• DISALLOWED (“default” state before properties)

• Context rule required (CONTEXTO and CONTEXTJ)

• UNASSIGNED

24

Mostly works
• Goal is to internationalize old letter, digit, hyphen

rule, not write literature

• Domain names not words

• Domain names have a registration authority

• One per zone

• Maybe a useful pattern for other protocols

25

Some challenges
• We’re encroaching on user-interface space

• No mappings require some tricks in protocol
deployment

• Depends on registration authority to do the right
thing

• Depends on user agent to do the right thing (and
know what that is in the locale)

26

Protocols want help

• “Can’t I just hand this to an expert subsystem and
know what to do?”

• That was the idea behind PRECIS

27

PRECIS
• Takes approximately the same strategy as

IDNA2008

• Generalized

• Gives two classes: IdentifierClass and
FreeformClass

• Generate profiles for particular protocols

28

How to use it
• Figure out which of your protocol elements are user-facing.

Those are the only ones you should internationalize.

• Figure out which of those elements are identifiers

• Hint: if you need to match them ever, then they probably
are

• Use IdentifierClass

• Otherwise, use FreeformClass

• There are some profiles, because the Classes are too big

29

Profiling

• Easy way: take an existing profile, and use that

• Hard way: take a profile, and try to modify it to
accommodate your use case

• Hardest way: start with FreeformClass and start
whittling away

30

Use the easy way
• These are really pretty comprehensive

• Yes, there’ll be some favourite character someone has
that they really really want

• Is the case so compelling that it really makes things
impossible to use, or is this a nice to have?

• Your WG can spend a million years in nice-to-have-land

• Safest to pick the smallest class you can get away with,
not the largest set of characters anyone wants

31

If you must make it harder
• You really have to understand the particular characters, the

cases in which they’re used, and so on

• Much safer if you have a protocol with registration authority that
can make decisions

• Much safer if you’re absolutely sure no protocol element will
leak off the LAN (on the grounds that a LAN is usually confined
to a well-defined user population

• You need an extensive bit of documentation in your
Internationalization Considerations

• If you’re different than other protocols, users may be surprised

32

Windmill-tilting (rolling
your own)

• If you really think the right thing to do is start with Freeform and
whittle it down, try hard to think again

• You will need to understand all of Unicode.

• This is the step you were trying to avoid, remember?

• There are nasty corner cases we’re just learning about (more in a
moment)

• Your goal is to ship a working protocol before heat death of the
universe, not write long Internationalization Considerations

• If you’re really different than other protocols, users will think your
protocol is awful

33

Late-breaking challenges

• Unicode 7.0.0 introduced a character called
ARABIC LETTER BEH WITH HAMZA ABOVE (U
+08A1)

• Earlier versions had ARABIC LETTER BEH and
ARABIC HAMZA ABOVE

• This led us to do some digging

34

Looks like this

35

So?
• Not canonically equivalent

• Surprising to some of us

• Turns out this is not completely strange

• Some similar cases have been around since at
least Unicode 3.2

• Basic issue has nothing to do with Arabic script

36

More things for WGs
• You probably want guidance to operators

• IDNA2008 says, “If you’re going to register a character,
you better understand it.” That is, “Make policies, and
don’t do it blindly.”

• Other Internationalization Considerations or Security
Considerations sections should probably say
something similar

• There might be (a) new property(ies) coming, so the
protocol could still change

37

What to read on PRECIS

• RFC 6885 (problem statement)

• draft-ietf-precis-framework

• draft-ietf-precis-saslprepbis

• draft-ietf-precis-nickname

38

Other things to see

• LUCID BoF (up next!)

• draft-sullivan-lucid-prob-stmt

• draft-klensin-idna-5892upd-unicode70

39

