
Internationalization: A
Guide for the Perplexed

by
Peter Saint-André

for
RFC Editor Team, November 2013

1

1Saturday, November 2, 13

Topic #1:
What's the Problem?

2

2Saturday, November 2, 13

in the beginning was
ASCII

3

3Saturday, November 2, 13

and ASCII was with
the Internet

4

4Saturday, November 2, 13

and ASCII was
[a false] god :)

5

5Saturday, November 2, 13

problem: ASCII is
extremely limited

6

6Saturday, November 2, 13

there are thousands of
languages and scripts

7

7Saturday, November 2, 13

can't we force everyone
to use ASCII?

8

8Saturday, November 2, 13

sorry, but that's
incredibly naïve

9

9Saturday, November 2, 13

we need to encode
more than [A-Z][a-z]

10

10Saturday, November 2, 13

i.e., we need
internationalization

11

11Saturday, November 2, 13

specifically, we need
Unicode...

[unicode.org]

12

12Saturday, November 2, 13

a set of every* character
humans care about

[* sorry, no Klingon, Elvish, or Dwarvish]

13

13Saturday, November 2, 13

technically, Unicode is a
“coded character set”

(RFC 6365)

14

14Saturday, November 2, 13

i.e., each character has a
alphanumeric code

assigned to it

15

15Saturday, November 2, 13

in Unicode, these codes are
hexadecimal (i.e., base 16

instead of base 10)

16

16Saturday, November 2, 13

we use the convention
U+xxxx

[RFC 5137]

17

17Saturday, November 2, 13

e.g., (ASCII) SPACE is
the 32nd code point,

i.e., U+0020

18

18Saturday, November 2, 13

similarly, SOLIDUS “/”
is the 47th code point,

i.e., U+002F

19

19Saturday, November 2, 13

P = U+0050

20

20Saturday, November 2, 13

p = U+0070

21

21Saturday, November 2, 13

π = U+03C0

22

22Saturday, November 2, 13

平 = U+5E73

23

23Saturday, November 2, 13

and so on up to ∞
 [U+221e]

24

24Saturday, November 2, 13

(well, up to
1,114,111 :)

25

25Saturday, November 2, 13

each character also has
various properties

26

26Saturday, November 2, 13

letter, number, symbol,
punctuation, etc.

27

27Saturday, November 2, 13

case: UPPER vs.
lower vs. Title

28

28Saturday, November 2, 13

status as a modifier
(e.g., accent mark)

29

29Saturday, November 2, 13

width: f u l l , half,
narrow, even zero!

30

30Saturday, November 2, 13

left-to-right vs.
right-to-left

31

31Saturday, November 2, 13

etc.

32

32Saturday, November 2, 13

each character looks*
and behaves differently

[* mostly – we’ll talk about confusable characters...]

33

33Saturday, November 2, 13

we handle characters
based on properties

34

34Saturday, November 2, 13

but there be dragons!

35

35Saturday, November 2, 13

case folding

36

36Saturday, November 2, 13

character equivalence

37

37Saturday, November 2, 13

decomposition and
recomposition

38

38Saturday, November 2, 13

normalization

39

39Saturday, November 2, 13

various encodings

40

40Saturday, November 2, 13

string comparison

41

41Saturday, November 2, 13

mappings (e.g., based
on user locale)

42

42Saturday, November 2, 13

right-to-left vs.
left-to-right

scripts and characters

43

43Saturday, November 2, 13

confusable characters

44

44Saturday, November 2, 13

enforcement in
protocols

(or documentation :)

45

45Saturday, November 2, 13

registration policies

46

46Saturday, November 2, 13

versioning

47

47Saturday, November 2, 13

user interface issues

48

48Saturday, November 2, 13

reliance on rendering
engines

49

49Saturday, November 2, 13

and more!

50

50Saturday, November 2, 13

plus, many rules have
exceptions!

51

51Saturday, November 2, 13

lots of messy
complexity

52

52Saturday, November 2, 13

are you scared yet?

53

53Saturday, November 2, 13

if not,
you will be soon :)

54

54Saturday, November 2, 13

Topic #2:
Case

55

55Saturday, November 2, 13

A � a
[U+0041] � [U+0061]

(note: symbols like � are only my personal convention)

56

56Saturday, November 2, 13

I � i
[U+0049] � [U+0069]

57

57Saturday, November 2, 13

and so on, right?

58

58Saturday, November 2, 13

not so fast!

59

59Saturday, November 2, 13

only a few scripts have
the notion of "case"

60

60Saturday, November 2, 13

some characters don't
map cleanly

61

61Saturday, November 2, 13

e.g., German esszett,
which is only lowercase

62

62Saturday, November 2, 13

ß ⇏ SS � ss
[U+00DF] ⇏ [U+0053] [U+0053] � [U+0073] [U+0073]

therefore:
FUSSBALL ��fussball, not fußball

63

63Saturday, November 2, 13

e.g., Greek final sigma

64

64Saturday, November 2, 13

ς ⇏ Σ � σ
[U+03C2] ⇏ [U+03A3] � [U+03C3]

therefore:
ΠΑΙΔΟΣ ↳ παιδοσ, not παιδος

65

65Saturday, November 2, 13

even worse, locale &
context matter...

66

66Saturday, November 2, 13

e.g., "Turkish dotless i"

67

67Saturday, November 2, 13

I � ı & i ��İ
[U+0049] � [U+0131] & [U+0069] � [U+0130]

68

68Saturday, November 2, 13

these differences can
have consequences

69

69Saturday, November 2, 13

thankfully, not *that*
many exceptions

[approximately 2,000]

70

70Saturday, November 2, 13

Topic #3:
Character Equivalence

71

71Saturday, November 2, 13

one character can be
equivalent to another

72

72Saturday, November 2, 13

Å ≡ Å
 [U+212B] ≡ [U+00C5]

 (angstrom sign) ≡ (“a” with ring above)

73

73Saturday, November 2, 13

one character can be
equivalent to a

sequence of characters

74

74Saturday, November 2, 13

Å ≡ A + ̊
 [U+00C5] ≡ [U+0041] + [U+030A]

75

75Saturday, November 2, 13

ç ≡ c + ̧
 [U+00E7] ≡ [U+0063] + [U+0327]

76

76Saturday, November 2, 13

Ř ≡ R + ̌
 [U+0158] ≡ [U+0052] + [U+030C]

77

77Saturday, November 2, 13

Ř is a "composite
character"

78

78Saturday, November 2, 13

R + ̌ is a
combining sequence

79

79Saturday, November 2, 13

composite characters
are your friends :-)

80

80Saturday, November 2, 13

two kinds of
equivalence...

81

81Saturday, November 2, 13

(a) Canonical
Equivalence

82

82Saturday, November 2, 13

κανών = rule,
standard, measure

83

83Saturday, November 2, 13

"this character is the
standard for that one"

84

84Saturday, November 2, 13

characters look and
behave the same

85

85Saturday, November 2, 13

Å ≡ Å
 [U+212B] ≡ [U+00C5]

 (angstrom sign) ≡ (“a” with ring above)

86

86Saturday, November 2, 13

Å ≡ A + ̊
 [U+00C5] ≡ [U+0041] + [U+030A]

87

87Saturday, November 2, 13

(2) Compatibility
Equivalence

88

88Saturday, November 2, 13

compati = "suffer with"

89

89Saturday, November 2, 13

"this character suffers
with that one"

90

90Saturday, November 2, 13

a.k.a. we suffer with
compatibility equivalence :-)

91

91Saturday, November 2, 13

often for the sake of
backward compatibility

92

92Saturday, November 2, 13

characters might look
and behave differently

93

93Saturday, November 2, 13

Ⅳ ≈ I + V
 [U+2163] ≈ [U+0049] + [U+0056]

 (roman numeral four) ≈ (uppercase “i”) + (uppercase “v”)

94

94Saturday, November 2, 13

fi ≈ f + i
 [U+FB01] ≈ [U+0066] + [U+0069]

 (ligature “fi”) ≈ (lowercase “f”) (lowercase “i”)

95

95Saturday, November 2, 13

ſ ≈ s
[U+017F] ≈ [U+0073]

 (“long s”) ≈ (lowercase “s”)

96

96Saturday, November 2, 13

canonical vs. compatible
is a key to Unicode!

97

97Saturday, November 2, 13

many forms of
compatibility...

98

98Saturday, November 2, 13

Compatibility

99

• “standard”, denoted by <compat>

• <sub>, e.g., F₂ (U+2082)

• <super>, e.g., 2⁴ (U+2072)

• <circle>, e.g., ⑧ (U+2467)

• <fraction>, e.g., ¾ (U+00BE)

• and more!

99Saturday, November 2, 13

Topic #4:
Decomposition

100

100Saturday, November 2, 13

two kinds of
decomposition...

101

101Saturday, November 2, 13

canonical
decomposition

102

102Saturday, November 2, 13

compatibility
decomposition

103

103Saturday, November 2, 13

decomposition can take
more than one step...

104

104Saturday, November 2, 13

Å ≡ Å ≡ A + ̊
 [U+212B] ≡ [U+00C5] ≡ [U+0041] + [U+030A]

105

105Saturday, November 2, 13

in decomposition,
order matters!

106

106Saturday, November 2, 13

ᾧ ≡ ὧ + ͅ
 [U+1FA7] ≡ [U+1F67] + [U+0345]

107

107Saturday, November 2, 13

ὧ ≡ ὡ + ͂
 [U+1F67] ≡ [U+1F61] + [U+0342]

108

108Saturday, November 2, 13

ὡ ≡ ω + ̔
 [U+1F61] ≡ [U+03C9] + [U+0314]

109

109Saturday, November 2, 13

ᾧ ≡ ω + ̔+ ͂ + ͅ
 [U+1FA7] ≡ [U+03C9] + [U+0314] + [U+0342] + [U+0345]

110

110Saturday, November 2, 13

full decomposition can have
both canonical and

compatibility steps...

111

111Saturday, November 2, 13

how “aggressive”
do we want to be?

112

112Saturday, November 2, 13

ẛ ≡ ſ + ̇
[U+1E9B] ≡ [U+017F] + [U+0307]

(this is canonical equivalence)

113

113Saturday, November 2, 13

ſ ≈ s
[U+017F] ≈ [U+0073]

(this is compatibility equivalence)

114

114Saturday, November 2, 13

ẛ ≃ s + ̇
[U+2163] ≃ [U+0073] + [U+0307]

(full decomposition leads to a strange result)

115

115Saturday, November 2, 13

some characters don’t
decompose as we might

expect...

116

116Saturday, November 2, 13

æ ≄ ae
[U+00E6] ≄ [U+0061] [U+0065]

(is this purely an æsthetic issue? ;-)

117

117Saturday, November 2, 13

Topic #5:
(Re-)Composition

118

118Saturday, November 2, 13

after a character is
decomposed, we can
put it back together

119

119Saturday, November 2, 13

recomposition returns a
composite character

(well, usually)

120

120Saturday, November 2, 13

output depends on which
decomposition we used

121

121Saturday, November 2, 13

i.e., canonical, compatibility,
or both?

122

122Saturday, November 2, 13

how “aggressive” were we
in decomposition?

123

123Saturday, November 2, 13

Ⅳ => IV
 [U+2163] => [U+0049] + [U+0056]

 (roman numeral four) => (uppercase “i”) + (uppercase “v”)

e.g., is Henry the Fourth the same as Henry Eye Vee?

124

124Saturday, November 2, 13

fi => f + i
 [U+FB01] => [U+0066] + [U+0069]

 (ligature “fi”) => (lowercase “f”) (lowercase “i”)

125

125Saturday, November 2, 13

ẛ => ṡ
[U+1E9B] => [U+1E61]

126

126Saturday, November 2, 13

¾ => 3⁄4
[U+00BE] => [U+0033] [U+2044] [U+0034]

(note: U+2044 is “fraction slash”, not solidus!)

127

127Saturday, November 2, 13

⑧ => 8
[U+2467] => [U+0038]

128

128Saturday, November 2, 13

Topic #6:
Normalization Forms

129

129Saturday, November 2, 13

process for determining
equivalence

130

130Saturday, November 2, 13

there are 4 forms of
normalization

131

131Saturday, November 2, 13

Normalization Forms
D, C, KD, and KC

132

132Saturday, November 2, 13

a.k.a. NFD, NFC,
NFKD, NFKC

133

133Saturday, November 2, 13

2 perform only
decomposition

(NFD and NFKD)

134

134Saturday, November 2, 13

2 perform decomposition
and recomposition
(NFC and NFKC)

135

135Saturday, November 2, 13

Normalization Forms

136

• NFD = canonical decomposition

• NFKD = canonical and compatibility
decomposition (“K” is for compatibility!)

• NFC = canonical decomposition, then
recomposition

• NFKC = canonical and compatibility
decomposition, then recomposition

136Saturday, November 2, 13

NFD

• Applies canonical equivalence rules only

• Performs decomposition only

• Does not return a composite character
(usually)

• Can result in faster processing
(no compatibility, no recomposition)

• The simplest of the normalization forms

137

137Saturday, November 2, 13

NFKD

• Applies canonical equivalence rules and
compatibility equivalence rules

• Performs decomposition only

• Does not return a composite character

• Can result in slower processing than NFD
(compatibility, but still no recomposition)

• More Clever™ than NFD

138

138Saturday, November 2, 13

NFD vs. NFKD

139

input NFD NFKD

fi fi f + i

ẛ ſ + ̇ s + ̇

Ⅳ Ⅳ I + V

¾ ¾ 3 + / + 4

� � 8

 ⁵ ���⁵ 2 + 5

ᾧ ω + ̔+ ͂ + ͅ ω + ̔+ ͂ + ͅ

139Saturday, November 2, 13

NFC

140

• Applies canonical equivalence rules only
(first decomposition, then recomposition)

• Compared to NFKC:

• Produces more matches during
comparison operations

• Requires less time and processing

• Less Clever™ (but smarter than NFD)

140Saturday, November 2, 13

NFKC

• Applies canonical equivalence rules and
then compatibility equivalence rules (first
decomposition, then recomposition)

• Compared to NFC:

• Produces more false negatives

• Requires more time and processing

• It's Really Clever™

141

141Saturday, November 2, 13

NFC vs. NFKC

142

input NFC NFKC

fi fi f i

ẛ ẛ ṡ
Ⅳ Ⅳ I V

¾ ¾ 3 / 4

� � 8

 ⁵ ⁵ 2 5

ᾧ ᾧ ᾧ

142Saturday, November 2, 13

which normalization
form is best?

143

143Saturday, November 2, 13

it depends on what you
want to accomplish :)

144

144Saturday, November 2, 13

NFC is generally
recommended

[RFC 5198]

145

145Saturday, November 2, 13

think long and hard
about using something

other than NFC

146

146Saturday, November 2, 13

Topic #7:
Encoding

147

147Saturday, November 2, 13

Unicode is not an
Internet technology

148

148Saturday, November 2, 13

Unicode is not even a
computing technology

149

149Saturday, November 2, 13

nothing we’ve talked
about yet has anything
to do with computers

150

150Saturday, November 2, 13

a code point just
identifies a character

151

151Saturday, November 2, 13

a character could be
written, spoken, etc.

152

152Saturday, November 2, 13

computers need
characters to be encoded

as bits and bytes

153

153Saturday, November 2, 13

e.g., ASCII was originally a
7-bit system (2⁷ gives us

128 code points)

154

154Saturday, November 2, 13

8-bit ASCII gives us
2⁸ = 256 code points

155

155Saturday, November 2, 13

Unicode has many more
code points, we need

fancier encodings

156

156Saturday, November 2, 13

UTF-8,
UTF-16,
UTF-32

157

157Saturday, November 2, 13

UTF-8 (RFC 3629) is the
IETF-preferred encoding
(RFC 2277 / RFC 5198)

158

158Saturday, November 2, 13

each character is encoded
using 1-4 8-bit “octets”

159

159Saturday, November 2, 13

for the ASCII range,
UTF-8 preserves the old

7-bit assignments

160

160Saturday, November 2, 13

e.g., P =
 ASCII decimal code 80

(i.e., UTF-8 hex code 50)

161

161Saturday, November 2, 13

for characters above
decimal code 128,

we need 2+ 8-bit “octets”

162

162Saturday, November 2, 13

most modern characters are
encoded with two or three

octets (up to U+FFFF)

163

163Saturday, November 2, 13

a.k.a. the
“Basic Multilingual

Plane” (BMP)

164

164Saturday, November 2, 13

higher planes are available
(a.k.a. the “astral planes”)

165

165Saturday, November 2, 13

e.g., 𐄳 = U+10133
[i.e., AEGEAN NUMBER NINETY THOUSAND]

166

166Saturday, November 2, 13

however, these are unlikely
to be used on the Internet

167

167Saturday, November 2, 13

although UTF-8 is very
common, there are

exceptions...

168

168Saturday, November 2, 13

especially the internal data
representation in Java,

JavaScript, and Windows

169

169Saturday, November 2, 13

[note: some systems insert
a “byte order mark” (BOM)
at the start of UTF-8 data]

170

170Saturday, November 2, 13

think long and hard before
using something other than

UTF-8

171

171Saturday, November 2, 13

Topic #8:
String Comparison

172

172Saturday, November 2, 13

some strings are special

173

173Saturday, November 2, 13

e.g., addresses and
other identifiers

174

174Saturday, November 2, 13

many reasons to
compare strings...

175

175Saturday, November 2, 13

authentication

176

176Saturday, November 2, 13

authorization

177

177Saturday, November 2, 13

registration

178

178Saturday, November 2, 13

data storage

179

179Saturday, November 2, 13

and many other
operations

180

180Saturday, November 2, 13

first attempt:
stringprep (~2002)

181

181Saturday, November 2, 13

designed for domain
names ("IDNA")

182

182Saturday, November 2, 13

applied to many other
identifier types

183

183Saturday, November 2, 13

addresses, usernames,
passwords, file paths,

nicknames, etc....

184

184Saturday, November 2, 13

each has different uses,
needs, and structure

185

185Saturday, November 2, 13

Stringprep Basics (1)

186

• Choose a Unicode version (oops, 3.2 only!)

• Choose a normalization form (NFKC?!)

• Specify how to handle whitespace

• Specify whether to use case folding

• Specify bidirectional handling

• Specify prohibited characters

186Saturday, November 2, 13

Stringprep Basics (2)

• Specify handling via comprehensive tables
that capture:

• Mappings (e.g., whitespace, case folding)

• Prohibited characters (e.g., controls,
spaces, symbols)

• Bidirectionality

187

187Saturday, November 2, 13

Why Not Stringprep?

• Version agility is important (latest = 6.3)

• NFKC can lead to unintuitive results, as
we’ve seen (e.g., ſ ≈ s)

• Accepting registration of all characters and
scripts can cause problems (e.g., phishing)

• Big tables are hard to maintain and update

• See RFC 4690 for details

188

188Saturday, November 2, 13

IDNA2008 (1)

• No more stringprep

• Decisions based on properties of Unicode
characters

• Algorithms, not huge tables

• Version agility

189

189Saturday, November 2, 13

IDNA2008 (2)

• Four "buckets" based on properties:

• PROTOCOL-VALID

• CONTEXT RULE REQUIRED

• DISALLOWED

• UNASSIGNED

190

190Saturday, November 2, 13

IDNA2008 (3)

• Basically, PVALID = "letter-digit-hyphen"

• The "inclusion approach" of IDNA2008
works because domain names have always
traditionally been "letter-digit-hyphen", not
just any random symbols, punctuation, etc.

• Domain names are mnemonics, not random
strings of characters

191

191Saturday, November 2, 13

Challenges

• The dividing line between user interface and
protocol has moved substantially

• Applications need to take more responsibility

• Can't just hand things off to stringprep and
expect good things to happen

• Mappings are out of scope for IDNA2008

192

192Saturday, November 2, 13

Stringprep Customers

• IDNA was the main stringprep “customer”

• Other customers: LDAP, SASL, iSCSI,
XMPP, etc.

• A new approach developed in the PRECIS
WG ("Preparation and Comparison of
Internationalized Strings")

193

193Saturday, November 2, 13

PRECIS

• Follow "inclusion approach" like IDNA

• Define two “string classes” (IdentifierClass,
FreeformClass)

• Enable "profiling" for particular protocols
(case mapping, normalization, etc.)

• draft-ietf-precis-framework etc.

194

194Saturday, November 2, 13

Topic #9:
Confusable Characters

195

195Saturday, November 2, 13

many characters look
alike ("confusables")...

196

196Saturday, November 2, 13

A ≠ A
[U+0041] ≠ [U+0410]

197

197Saturday, November 2, 13

Ꮞ ≠ 4
[U+13CE] ≠ [U+0034]

198

198Saturday, November 2, 13

ᏚᎢᎵᏋᎢᏋᏒ ≠ STPETER
[U+13DA] [U+13A2] [U+13B5] [U+13CB] [U+13A2] [U+13CB] [U+13D2]

≠
[U+0053] [U+0054] [U+0050] [U+0045] [U+0054] [U+0045] [U+0052]

199

199Saturday, November 2, 13

these are *not*
equivalents

200

200Saturday, November 2, 13

humans usually can't
distinguish

201

201Saturday, November 2, 13

Ꮞ vs. 4 looks like
a font difference

202

202Saturday, November 2, 13

no foolproof solutions
for confusables

203

203Saturday, November 2, 13

prohibiting mixed
scripts can help

204

204Saturday, November 2, 13

see RFC 4690/5890 and
draft-ietf-precis-framework

205

205Saturday, November 2, 13

Topic #10: Rules
and Responsibilities

206

206Saturday, November 2, 13

Who's Your Registrar?

207

• In IDNA, domain registrars have policies

• E.g., Hungarian registrar likely won't accept
characters from Korean code block

• Do providers of (say) email and IM services
also need to define such policies?

207Saturday, November 2, 13

Enforcement

• Who enforces the rules?

• Server?

• Client?

• Any network endpoint?

• Needs to be clear for each protocol!

208

208Saturday, November 2, 13

Topic #11:
Versioning

209

209Saturday, November 2, 13

Version Changes

210

• New Unicode versions can add new
characters, deprecate old characters, etc.

• Character properties can change between
Unicode versions (e.g., from number to
letter), but this should be rare

• A character could change from PVALID to
DISALLOWED (etc.)

210Saturday, November 2, 13

Version Mismatches

• Possibility of problems with authentication,
message delivery, etc.

• In practice, not a concern because most of
the modern characters we need are
mapped in a stable way

211

211Saturday, November 2, 13

Topic #12:
User Interface

212

212Saturday, November 2, 13

Good UI is Hard

• Account for application type, string types,
locale, scripts, culture, input methods,
output methods, graphical capabilities, etc.

• Probably not much that protocol geeks can
say in the matter :)

• We need input from UI experts

213

213Saturday, November 2, 13

Rendering

• UTF-8 encoded Unicode characters are
rendered in a UI by a rendering engine

• These have improved dramatically over
time! (Fewer “renderings” via ☐)

• In general, support for Unicode is
improving all the time

214

214Saturday, November 2, 13

Topic #13:
Directionality

215

215Saturday, November 2, 13

LTR and RTL

• Most scripts are rendered left-to-right

• Some scripts are rendered right-to-left
(e.g., Arabic and Hebrew)

• Each Unicode code point is LTR or RTL

• What if they’re mixed? Hard problem!

216

216Saturday, November 2, 13

BiDi Policies

• If a string contains any LTR character, the
entire string is left-to-right

• BiDi rule from RFC 5893

• Other rules are possible (but there be
major dragons here!)

217

217Saturday, November 2, 13

ᎢᎻᏋ ᏋᏁᎠ

218

218Saturday, November 2, 13

ᏚᎢᎵᏋᎢᏋᏒ @ ᏚᎢᎵᏋᎢᏋᏒ.ᎥᎷ

219

219Saturday, November 2, 13

220

• Unicode 6.3 spec @ unicode.org

• UAX 15: Unicode Normalization Forms

• UTR 17: Unicode Character Encoding
Model

• UTR 36: Unicode Security Considerations

References: Unicode

220Saturday, November 2, 13

References: General

• RFC 6365: Internationalization terminology

• RFC 2277: IETF policy on characters sets
and languages

• RFC 3629: UTF-8

• RFC 5137: ASCII escaping for Unicode

• RFC 5198: Unicode format for networks

221

221Saturday, November 2, 13

References: Stringprep &
IDNA2003

• RFC 3454: Stringprep

• RFC 3490: IDNA2003

• RFC 3491: Nameprep

• RFC 3492: Punycode

• RFC 4690: IDN review by IAB

222

222Saturday, November 2, 13

References: IDNA2008

• RFC 5890: Definitions

• RFC 5891: Protocol

• RFC 5892: Unicode and IDNA

• RFC 5893: Right-to-Left Scripts

• RFC 5894: Background

223

223Saturday, November 2, 13

References: PRECIS

• http://datatracker.ietf.org/wg/precis/

• RFC 6885

• draft-ietf-precis-framework

• draft-ietf-precis-mappings

• PRECIS-related I-Ds on usernames,
passwords, nicknames, JabberIDs, etc.

224

224Saturday, November 2, 13

Useful Tools and Websites

• Unicode Checker (Mac OS X)

• unicode-table.com

• Wikipedia pages about Unicode, UTF-8, and
related topics

225

225Saturday, November 2, 13

Acknowledgements

• Martin Dürst

• Joe Hildebrand

• John Klensin

• PRECIS WG

• XMPP community

226

226Saturday, November 2, 13

