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Topic #1: 
What's the Problem?
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in the beginning was 
ASCII
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and ASCII was with 
the Internet
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and ASCII was 
[a false] god :)
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problem: ASCII is 
extremely limited
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there are thousands of 
languages and scripts
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can't we force everyone 
to use ASCII?
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sorry, but that's 
incredibly naïve

9

9Saturday, November 2, 13



we need to encode 
more than [A-Z][a-z]
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i.e., we need 
internationalization
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specifically, we need 
Unicode...

[ unicode.org ]
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a set of every* character 
humans care about

[ * sorry, no Klingon, Elvish, or Dwarvish ]
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technically, Unicode is a 
“coded character set” 

(RFC 6365)
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i.e., each character has a 
alphanumeric code 

assigned to it 
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in Unicode, these codes are 
hexadecimal (i.e., base 16 

instead of base 10)
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we use the convention 
U+xxxx

[ RFC 5137 ]

17

17Saturday, November 2, 13



e.g., (ASCII) SPACE is 
the 32nd code point, 

i.e., U+0020
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similarly, SOLIDUS “/” 
is the 47th code point, 

i.e., U+002F
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P = U+0050
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p = U+0070
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π = U+03C0

22

22Saturday, November 2, 13



平 = U+5E73
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and so on up to ∞ 
                                                                                    [U+221e]
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(well, up to 
1,114,111 :)
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each character also has 
various properties
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letter, number, symbol, 
punctuation, etc.
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case: UPPER vs. 
lower vs. Title
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status as a modifier 
(e.g., accent mark)
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width: f u l l , half,
narrow, even zero!
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left-to-right vs. 
right-to-left
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etc.
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each character looks* 
and behaves differently

[ * mostly – we’ll talk about confusable characters... ]
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we handle characters 
based on properties

34

34Saturday, November 2, 13



but there be dragons!
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case folding
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character equivalence
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decomposition and 
recomposition
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normalization
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various encodings
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string comparison
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mappings (e.g., based 
on user locale)
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right-to-left vs.
left-to-right 

scripts and characters
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confusable characters
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enforcement in 
protocols 

(or documentation :)
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registration policies
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versioning
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user interface issues
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reliance on rendering 
engines
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and more!
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plus, many rules have 
exceptions!
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lots of messy 
complexity
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are you scared yet?
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if not, 
you will be soon :)
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Topic #2:
Case
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A � a
[U+0041]   �   [U+0061]

(note: symbols like � are only my personal convention)
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I � i
[U+0049]   �   [U+0069]
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and so on, right?

58

58Saturday, November 2, 13



not so fast!

59

59Saturday, November 2, 13



only a few scripts have 
the notion of "case"
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some characters don't 
map cleanly 
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e.g., German esszett, 
which is only lowercase
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ß ⇏ SS � ss
[U+00DF] ⇏ [U+0053] [U+0053] � [U+0073] [U+0073]

therefore:
FUSSBALL ��fussball, not fußball
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e.g., Greek final sigma
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ς ⇏ Σ � σ
[U+03C2]   ⇏   [U+03A3]   �   [U+03C3]

therefore:
ΠΑΙΔΟΣ ↳ παιδοσ, not παιδος
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even worse, locale & 
context matter...
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e.g., "Turkish dotless i"
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I � ı & i ��İ
[U+0049] � [U+0131]    &    [U+0069] � [U+0130]
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these differences can 
have consequences
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thankfully, not *that* 
many exceptions

[ approximately 2,000 ]
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Topic #3: 
Character Equivalence
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one character can be 
equivalent to another
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Å ≡ Å
  [U+212B]   ≡    [U+00C5]

        (angstrom sign) ≡ (“a” with ring above) 

73

73Saturday, November 2, 13



one character can be 
equivalent to a 

sequence of characters
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Å ≡ A +  ̊
      [U+00C5]  ≡  [U+0041]  +  [U+030A]
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ç ≡ c +  ̧
      [U+00E7]   ≡   [U+0063]  +  [U+0327]
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Ř ≡ R +  ̌
     [U+0158]  ≡  [U+0052]  +  [U+030C]
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Ř is a "composite 
character"
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R +  ̌ is a 
combining sequence

79

79Saturday, November 2, 13



composite characters 
are your friends :-)
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two kinds of 
equivalence...

81

81Saturday, November 2, 13



(a) Canonical 
Equivalence
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κανών = rule, 
standard, measure
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"this character is the 
standard for that one"
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characters look and 
behave the same
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Å ≡ Å
  [U+212B]   ≡    [U+00C5]

        (angstrom sign) ≡ (“a” with ring above) 
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Å ≡ A +  ̊
   [U+00C5]    ≡   [U+0041]  +  [U+030A]
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(2) Compatibility 
Equivalence
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compati = "suffer with"
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"this character suffers 
with that one"
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a.k.a. we suffer with 
compatibility equivalence :-)
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often for the sake of 
backward compatibility
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characters might look 
and behave differently
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Ⅳ ≈ I + V
     [U+2163]      ≈    [U+0049] + [U+0056]

   (roman numeral four ) ≈ (uppercase “i”) + (uppercase “v”)
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fi ≈ f + i
   [U+FB01]  ≈  [U+0066] + [U+0069]

          (ligature “fi”) ≈ (lowercase “f”) (lowercase “i”)
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ſ ≈ s
[U+017F] ≈ [U+0073]

        (“long s”) ≈ (lowercase “s”)
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canonical vs. compatible 
is a key to Unicode!
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many forms of 
compatibility...
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Compatibility

99

• “standard”, denoted by <compat>

• <sub>, e.g., F₂ (U+2082)

• <super>, e.g., 2⁴ (U+2072)

• <circle>, e.g., ⑧ (U+2467)

• <fraction>, e.g., ¾ (U+00BE)

• and more!
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Topic #4:
Decomposition
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two kinds of 
decomposition...
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canonical 
decomposition
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compatibility 
decomposition
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decomposition can take 
more than one step...
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Å ≡ Å ≡ A +  ̊
     [U+212B]  ≡  [U+00C5]   ≡   [U+0041]  +  [U+030A]
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in decomposition, 
order matters!
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ᾧ ≡ ὧ +  ͅ 
 [U+1FA7] ≡ [U+1F67] + [U+0345]
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ὧ ≡ ὡ +  ͂ 
   [U+1F67] ≡ [U+1F61] + [U+0342]
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ὡ ≡ ω +  ̔ 
    [U+1F61] ≡ [U+03C9] + [U+0314]
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ᾧ ≡ ω +  ̔+   ͂ +  ͅ 
         [U+1FA7] ≡ [U+03C9] + [U+0314] + [U+0342] + [U+0345]
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full decomposition can have 
both canonical and 

compatibility steps...
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how “aggressive” 
do we want to be?
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ẛ ≡ ſ +  ̇
[U+1E9B]  ≡  [U+017F] + [U+0307]

(this is canonical equivalence)
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ſ ≈ s
[U+017F] ≈ [U+0073]

(this is compatibility equivalence)
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ẛ ≃ s +  ̇
[U+2163]  ≃  [U+0073] + [U+0307]

(full decomposition leads to a strange result)
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some characters don’t 
decompose as we might 

expect...
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æ ≄ ae
[U+00E6] ≄ [U+0061] [U+0065]

( is this purely an æsthetic issue? ;-)
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Topic #5: 
(Re-)Composition
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after a character is 
decomposed, we can 
put it back together
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recomposition returns a 
composite character 

(well, usually)
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output depends on which 
decomposition we used
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i.e., canonical, compatibility, 
or both?
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how “aggressive” were we 
in decomposition?

123

123Saturday, November 2, 13



Ⅳ => IV
     [U+2163]      =>    [U+0049] + [U+0056]

   (roman numeral four ) => (uppercase “i”) + (uppercase “v”)

e.g., is Henry the Fourth the same as Henry Eye Vee?
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fi => f + i
   [U+FB01]  =>  [U+0066] + [U+0069]

          (ligature “fi”) => (lowercase “f”) (lowercase “i”)
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ẛ => ṡ
[U+1E9B] => [U+1E61]

126

126Saturday, November 2, 13



¾ => 3⁄4
[U+00BE] => [U+0033] [U+2044] [U+0034]

(note: U+2044 is “fraction slash”, not solidus!)
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⑧ => 8
[U+2467] => [U+0038]
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Topic #6: 
Normalization Forms
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process for determining 
equivalence
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there are 4 forms of 
normalization
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Normalization Forms 
D, C, KD, and KC
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a.k.a. NFD, NFC, 
NFKD, NFKC
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2 perform only 
decomposition

(NFD and NFKD)
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2 perform decomposition 
and recomposition
(NFC and NFKC)
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Normalization Forms

136

• NFD = canonical decomposition

• NFKD = canonical and compatibility 
decomposition (“K” is for compatibility!)

• NFC = canonical decomposition, then 
recomposition

• NFKC = canonical and compatibility 
decomposition, then recomposition
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NFD

• Applies canonical equivalence rules only

• Performs decomposition only

• Does not return a composite character 
(usually)

• Can result in faster processing 
(no compatibility, no recomposition)

• The simplest of the normalization forms
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NFKD

• Applies canonical equivalence rules and 
compatibility equivalence rules

• Performs decomposition only

• Does not return a composite character

• Can result in slower processing than NFD 
(compatibility, but still no recomposition)

• More Clever™ than NFD
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NFD vs. NFKD

139

input NFD NFKD

fi fi f + i

ẛ ſ +  ̇ s +  ̇

Ⅳ Ⅳ I + V

¾ ¾ 3 + / + 4

� � 8

 ⁵  ���⁵ 2 + 5

ᾧ ω +  ̔+   ͂ +  ͅ ω +  ̔+   ͂ +  ͅ
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NFC

140

• Applies canonical equivalence rules only 
(first decomposition, then recomposition)

• Compared to NFKC:

• Produces more matches during 
comparison operations

• Requires less time and processing

• Less Clever™ (but smarter than NFD)
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NFKC

• Applies canonical equivalence rules and 
then compatibility equivalence rules (first 
decomposition, then recomposition)

• Compared to NFC:

• Produces more false negatives

• Requires more time and processing

• It's Really Clever™
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NFC vs. NFKC

142

input NFC NFKC

fi fi f i

ẛ ẛ ṡ
Ⅳ Ⅳ I V

¾ ¾ 3 / 4

� � 8

 ⁵  ⁵ 2 5

ᾧ ᾧ ᾧ 
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which normalization 
form is best?
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it depends on what you 
want to accomplish :)
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NFC is generally 
recommended

[ RFC 5198 ]
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think long and hard 
about using something 

other than NFC
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Topic #7: 
Encoding
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Unicode is not an 
Internet technology
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Unicode is not even a 
computing technology
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nothing we’ve talked 
about yet has anything 
to do with computers
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a code point just 
identifies a character
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a character could be 
written, spoken, etc.
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computers need 
characters to be encoded 

as bits and bytes
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e.g., ASCII was originally a 
7-bit system (2⁷ gives us 

128 code points) 
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8-bit ASCII gives us 
2⁸ = 256 code points
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Unicode has many more 
code points, we need 

fancier encodings
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UTF-8, 
UTF-16, 
UTF-32
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UTF-8 (RFC 3629) is the 
IETF-preferred encoding 
(RFC 2277 / RFC 5198)
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each character is encoded 
using 1-4 8-bit “octets”
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for the ASCII range, 
UTF-8 preserves the old 

7-bit assignments
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e.g., P =
 ASCII decimal code 80

(i.e., UTF-8 hex code 50) 
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for characters above 
decimal code 128, 

we need 2+ 8-bit “octets”
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most modern characters are 
encoded with two or three 

octets (up to U+FFFF)
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a.k.a. the 
“Basic Multilingual 

Plane” (BMP)
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higher planes are available 
(a.k.a. the “astral planes”)
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e.g., 𐄳 = U+10133
[i.e., AEGEAN NUMBER NINETY THOUSAND]
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however, these are unlikely 
to be used on the Internet
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although UTF-8 is very 
common, there are 

exceptions...
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especially the internal data 
representation in Java, 

JavaScript, and Windows
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[note: some systems insert 
a “byte order mark” (BOM) 
at the start of UTF-8 data]
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think long and hard before 
using something other than 

UTF-8

171

171Saturday, November 2, 13



Topic #8: 
String Comparison
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some strings are special
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e.g., addresses and 
other identifiers
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many reasons to 
compare strings...
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authentication
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authorization
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registration
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data storage
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and many other 
operations
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first attempt: 
stringprep (~2002)
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designed for domain 
names ("IDNA")
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applied to many other 
identifier types
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addresses, usernames, 
passwords, file paths, 

nicknames, etc....
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each has different uses, 
needs, and structure
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Stringprep Basics (1)

186

• Choose a Unicode version (oops, 3.2 only!)

• Choose a normalization form (NFKC?!)

• Specify how to handle whitespace

• Specify whether to use case folding

• Specify bidirectional handling

• Specify prohibited characters
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Stringprep Basics (2)

• Specify handling via comprehensive tables 
that capture:

• Mappings (e.g., whitespace, case folding)

• Prohibited characters (e.g., controls, 
spaces, symbols)

• Bidirectionality
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Why Not Stringprep?

• Version agility is important (latest = 6.3)

• NFKC can lead to unintuitive results, as 
we’ve seen (e.g., ſ ≈ s)

• Accepting registration of all characters and 
scripts can cause problems (e.g., phishing)

• Big tables are hard to maintain and update

• See RFC 4690 for details
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IDNA2008 (1)

• No more stringprep

• Decisions based on properties of Unicode 
characters

• Algorithms, not huge tables

• Version agility
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IDNA2008 (2)

• Four "buckets" based on properties:

• PROTOCOL-VALID

• CONTEXT RULE REQUIRED

• DISALLOWED

• UNASSIGNED
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IDNA2008 (3)

• Basically, PVALID = "letter-digit-hyphen"

• The "inclusion approach" of IDNA2008 
works because domain names have always 
traditionally been "letter-digit-hyphen", not 
just any random symbols, punctuation, etc.

• Domain names are mnemonics, not random 
strings of characters
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Challenges

• The dividing line between user interface and 
protocol has moved substantially

• Applications need to take more responsibility

• Can't just hand things off to stringprep and 
expect good things to happen

• Mappings are out of scope for IDNA2008
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Stringprep Customers

• IDNA was the main stringprep “customer”

• Other customers: LDAP, SASL, iSCSI, 
XMPP, etc.

• A new approach developed in the PRECIS 
WG ("Preparation and Comparison of 
Internationalized Strings")

193

193Saturday, November 2, 13



PRECIS

• Follow "inclusion approach" like IDNA

• Define two “string classes” (IdentifierClass, 
FreeformClass)

• Enable "profiling" for particular protocols 
(case mapping, normalization, etc.)

• draft-ietf-precis-framework etc.
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Topic #9:
Confusable Characters

195
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many characters look 
alike ("confusables")...
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A ≠ A
[U+0041]   ≠   [U+0410]
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Ꮞ ≠ 4
[U+13CE]   ≠   [U+0034]
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ᏚᎢᎵᏋᎢᏋᏒ ≠ STPETER
[U+13DA] [U+13A2] [U+13B5] [U+13CB] [U+13A2] [U+13CB] [U+13D2] 

≠ 
[U+0053] [U+0054] [U+0050] [U+0045] [U+0054] [U+0045] [U+0052]
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these are *not* 
equivalents
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humans usually can't 
distinguish
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Ꮞ vs. 4 looks like 
a font difference
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no foolproof solutions 
for confusables

203
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prohibiting mixed 
scripts can help
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see RFC 4690/5890 and  
draft-ietf-precis-framework
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Topic #10: Rules 
and Responsibilities
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Who's Your Registrar?

207

• In IDNA, domain registrars have policies

• E.g., Hungarian registrar likely won't accept 
characters from Korean code block

• Do providers of (say) email and IM services 
also need to define such policies?
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Enforcement

• Who enforces the rules? 

• Server? 

• Client? 

• Any network endpoint? 

• Needs to be clear for each protocol!
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Topic #11:
Versioning

209
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Version Changes

210

• New Unicode versions can add new 
characters, deprecate old characters, etc.

• Character properties can change between 
Unicode versions (e.g., from number to 
letter), but this should be rare

• A character could change from PVALID to 
DISALLOWED (etc.)
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Version Mismatches

• Possibility of problems with authentication, 
message delivery, etc.

• In practice, not a concern because most of 
the modern characters we need are 
mapped in a stable way
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Topic #12:
User Interface

212
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Good UI is Hard

• Account for application type, string types, 
locale, scripts, culture, input methods, 
output methods, graphical capabilities, etc.

• Probably not much that protocol geeks can 
say in the matter :)

• We need input from UI experts
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Rendering

• UTF-8 encoded Unicode characters are 
rendered in a UI by a rendering engine

• These have improved dramatically over 
time! (Fewer “renderings” via ☐)

• In general, support for Unicode is 
improving all the time
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Topic #13:
Directionality

215
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LTR and RTL

• Most scripts are rendered left-to-right

• Some scripts are rendered right-to-left 
(e.g., Arabic and Hebrew)

• Each Unicode code point is LTR or RTL

• What if they’re mixed? Hard problem!

216

216Saturday, November 2, 13



BiDi Policies

• If a string contains any LTR character, the 
entire string is left-to-right

• BiDi rule from RFC 5893

• Other rules are possible (but there be 
major dragons here!)
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ᎢᎻᏋ ᏋᏁᎠ

218
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ᏚᎢᎵᏋᎢᏋᏒ @ ᏚᎢᎵᏋᎢᏋᏒ.ᎥᎷ

219
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220

• Unicode 6.3 spec @ unicode.org

• UAX 15: Unicode Normalization Forms

• UTR 17: Unicode Character Encoding 
Model

• UTR 36: Unicode Security Considerations

References: Unicode
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References: General

• RFC 6365: Internationalization terminology

• RFC 2277: IETF policy on characters sets 
and languages

• RFC 3629: UTF-8

• RFC 5137: ASCII escaping for Unicode

• RFC 5198: Unicode format for networks
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References: Stringprep & 
IDNA2003

• RFC 3454: Stringprep

• RFC 3490: IDNA2003

• RFC 3491: Nameprep

• RFC 3492: Punycode

• RFC 4690: IDN review by IAB
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References: IDNA2008

• RFC 5890: Definitions

• RFC 5891: Protocol

• RFC 5892: Unicode and IDNA

• RFC 5893: Right-to-Left Scripts

• RFC 5894: Background
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References: PRECIS

• http://datatracker.ietf.org/wg/precis/

• RFC  6885

• draft-ietf-precis-framework

• draft-ietf-precis-mappings

• PRECIS-related I-Ds on usernames, 
passwords, nicknames, JabberIDs, etc.
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Useful Tools and Websites

• Unicode Checker (Mac OS X)

• unicode-table.com

• Wikipedia pages about Unicode, UTF-8, and 
related topics
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