Increasing TCP's CWND based on Throughput

draft-you-iccrg-throughput-based-cwnd-increasing-00

Jianjie You (youjianjie@huawei.com)

Motivation

- Extend TCP to support higher throughput and lower response time services such as 4K video.
- Allow TCP to be configurable by applications, through which application could customize TCP congestion control algorithm and parameters according to the requirements.

- Extend socket APIs
 - Allow application to convey information
 - Improved congestion control algorithm
 - Applicable for 4K video transmission

Background

Network Environment

Target throughput = 50Mbps, RTT = 60ms, then target window size = 259MSS. Initial window = 10MSS. Assume packet loss occurs when cwnd = 130MSS.

Reno

TCP Reno needs 194 RTTs (about 11.64s) to reach the target throughput.

Cubic

TCP Reno needs 29 RTTs (about 1.74s) to reach the target throughput.

Transmitting 4K video poses a great challenge to current TCP.

Increasing CWND based on Throughput 1/3

- Step 1: APP calculates the target throughput. Take 4K VBR as an example, TARGET THROUGHPUT=e×BR, where e>1, is a multiplication factor.
- Step 2: Extend TCP socket option: setsockopt(); add a new parameter: TARGET THROUGHPUT, which will be transferred to TCP protocol stack.
- Step 3: Calculate the increase factor alpha: alpha = TARGET THROUGHPUT X RTT - cwnd

Increasing CWND based on Throughput 2/3

The increase factor for cwnd is calculated according to RTT and TARGET THROUGHPUT.

The cwnd is adjusted for every RTT.

Increasing CWND based on Throughput 3/3

Window Growth Function: Alpha

TARGET_cwnd = TARGET_THROUGHPUT X BaseRTT
When cwnd reaches to TARGET_cwnd, Alpha is zero where RTT = BaseRTT

Implementation 1/3

Network Environment

Target throughput = 50Mbps, RTT = 60ms, then target window size = 259MSS. Initial window = 10MSS. If packet loss occurs, cwnd = $\frac{1}{2}$ cwnd.

Proposed Method

Only one RTT is needed to reach to the target throughput during both slow start phase and congestion avoidance phase.

Figure 5: Window Curve with Packet Loss using Proposed Method IETF92 Dallas

Implementation 2/3

fluctuates a little, but it can be stabilized by the proposed method.

Figure 6: Window Curve with Packet Loss using Proposed Method

Implementation 3/3

Target throughput = 50Mbps, RTT = 60ms, then target window size = 259MSS. Initial window = 10MSS. If packet loss occurs, cwnd = $\frac{1}{2}$ cwnd.

Proposed Method

The beginning thirty MSSs are used to estimate the BaseRTT. The cwnd is balanced around the target cwnd.

Figure 7: Window Curve with no Packet Loss using Proposed Method

Next Step

Thank You!