CoAP Simple Congestion Control/Advanced
(CoCoA)

draft-bormann-core-cocoa-02

Carsten Bormann — Universitat Bremen TZI
cabo@tzi.org
August Betzler, Carles Gomez, llker Demirkol

Universitat Politecnica de Catalunya (UPC)/Fundacié i2cat
carlesgo@entel.upc.edu

UPC members have been partly supported by the Spanish
Government through project TEC2012-32531, and FEDER IETF 92 — Dallas, March 2015

Context (I)

e Constrained Application Protocol (CoAP)
— RFC 7252
— Lightweight, efficient protocol

* For constrained node networks

— Over UDP .
| Application l

— Messages e
e

o Conﬁrmable (CON) | Requests/Responses |

. e l

* Non-confirmable (NON) Messages |
e

SR 8

I UDP |

Context (1)

* Default CoAP congestion control for CONs
— RTO chosen from a fixed interval: [2, 3] s
— Binary Exponential Backoff (BEB)

— Outstanding interactions to a destination =1

e CoCoA

— Simple mechanism for advanced congestion
control

e Using RTT measurements for CONs
* Rules for NONs

CoCoA: RTO calculation (I)

e Strong and weak RTTs
— Weak RTTs: retransmissions have been required

* RTO estimator
— Input from weak and strong RTO estimators

— RTO,,,4 IS €volved from the estimator that made
the most recent contribution

RTO

overall

/ RTOWGak < SRTTWeak + 1*RTTVARweak

RTO < SRTT

strong strong

+ 4*RTTVAR .,

(RFC 6298)

CoCoA: RTO calculation (I1)

* Reduced RTO,,,, contribution:

— RTO
— RTO

vera = 0.25%RTO,,., + 0.75*RTO
+0.5*RTO

overall

;= 0.5*RTO

overall strong overall

— Only responses obtained before the 3rd
retransmission update RTO

weak

— RTO, o4 I dithered

overal

CoCoA: Variable Backoff Factor

e Goals

— Avoid too quick retries for low RTO values
e Could contribute to congestion

— Reduce too slow retries for large RTO values
e Could lead to unnecessary delay increase

* Definition
— RTO < 1s - VBF=3

—1<RTO<3s = VBF=2
— RTO >3 s - VBF=15

CoCoA: RTO aging

* High RTO values
— |If RTO > 3 s, and not updated for 4*RTO , then
— RTO =1+ 0.5*RTO

* Converge towards default RTO values

* Low RTO values
— If RTO < 15, and not updated for 16*RTO , then
— RTO = 2*RTO

* Converge towards default RTO values

Running code

e cocoa-02 has been implemented for Californium (Cf)
— CoAP implementation for unconstrained platforms
— Optional CongestionControlLayer

e Californium with CoCoA is publicly available

— https://github.com/eclipse/californium
 cf-cocoa example
» org.eclipse.californium.core.network.stack.congestioncontrol

* CoCoA implementation for Erbium (Er) is underway
— Erbium: official CoAP implementation for Contiki OS

Evaluation: scenarios and results
* Simulation of IEEE 802.15.4 networks

— With/without reliability, Nul
— Various topologies

Real experiments
— GPRS scenario

—I—
GPRSlink 7

Cf CoAP

— 802.15.4 scenario S
Laptop with

CfCoAP
Cloud Service

Ethernet
Router

RDC/ContikiMAC

Note: for details, please refer to
published/upcoming papers or
ask the authors

r/A Internet

. Ethernet !

Cf CoAP

Ethernet)

3\/ \ Er COAP

~—

FlockLab testbed

Considered RTO algorithms

Default CoAP
— Insensitive to RTT

CoCoA

CoCoA-S

— Strong only

Basic RTO

— RTO randomly chosen from [last_RTT, 1.5*last_RTT]

— Also uses weak RTTs

Linux RTO

— Reduces contribution of variance to the RTO when RTT decreases
— Avoids RFC 2988 RTO getting too close to the RTT

Peak-Hopper RTO

— Short history and long history estimator
— Maximum of the two estimators

Successful exchanges per time unit

e GPRS and 802.15.4 scenario
— New CON sent once the previous one is ACKed

Finished Transactions per Second (GPRS)

150%

100%

50 %

0 %

[l 10 GPRs CI. [l 20 GPRS C1.[I] 30 GPRS CI.[[]40 GPRS CI.[_]FlockLab|

L |
|__|

1150%

100%

150 %

Default CoCoA CoCoA-S Basic Linux PH

0 %

Finished Transactions per Second (FlockLab)

11

Initial RTO

* GPRS scenario

— New CON sent once the previous one is ACKed

300

)
un
o

o
o
o

Normal. Avg. Initial RTOs (%)
&

150

100

Default CoCoA CoCoA-S Basic

Linux

PeakHop

M 10 clients
B 20 clients
@ 30 clients
040 clients

12

* GPRS scenario
— New CON sent once the previous

Normalized Retransmission Ratio

200%f
180%F
160% |
140%F
120%F
100%F
80 %
60 %}
40 %F
20 %[

0 %

Retry ratio

1226% 283%

\ o?é is ACKed
278%

T T T 5 T T
| B 0 Clients [20 Clients [30 Clients [_____] 40 Clients |-

Default CoCoA CoCoA-S Basic Linux PH

13

e 802.15.4 scenario

— Fairness index
* RFC5166

— CoCoA does not
degrade fairness

e Variable Backoff
Factor

e Use of weak
RTTs

Fairness

1

0.9r

0.8F

Fairness Index
© o o o o o
N w i =N (6;] ()] ~
1 I 1 I 1

o
—

0 Default CoCoA CoCoA-S Basic Linux PH

Settling time
GPRS scenario
— Time to serve 80% of the requests in a burst

120% F - 10 Burst Cllents |
° [20 Burst Clients

l 130 Burst Clients

100%

80 %

60 %I

Normalized ST

40 o/o B

20 %[

0 %
Default CoCoA CoCoA-S Basic Linux PH

Settling time
802.15.4 scenario

— Time to serve 80% of the requests in a burst

— TCP-oriented RTO algorithms underperform
150% - - T T . .

100%

Settling Time

50 %

%

Default CoCoA CoCoA-S Basic Linux PH

Observations ()

* CoCoA performs similarly to or better than
default CoAP

— Good use of RTT samples

— Throughput increase, settling time decrease
— Fairness not degraded

— Underperformance not observed

* CoCoA-S

— Often good performance in congested scenarios
(vs default CoAP)

e But high number of retries in low congestion scenario!

— A bit less conservative than CoCoA
* No weak RTTs/RTO

Observations (lIl)

* Too simplistic RTT-sensitive approaches
underperform default CoAP

— Basic RTO considers only the last RTT sample
— Not enough safety margin (RTO vs actual RTT)
— Huge amount of (too early) retries

 TCP-oriented RTO algorithms underperform default
CoAP in some aspects/scenarios:

— Weak RTT updates are missed
* A problem when losses take place

— Settling time (802.15.4)
— Fairness (802.15.4)
— Dithering

Not adapted
to loT
scenarios

Memory considerations

* RAM requirements
— Per client role

RAM
(bytes)
Default CoAP 2
CoCoA 29
CoCoA-S 19
Basic RTO 2
Linux RTO 21
Peak-Hopper RTO 43

Checklist (1/2)

e draft-bormann-core-cc-qg-00
— Algorithm for general use?

— Does it protect the network?
 Compared with default CoAP

* Regardless of lower layer mechanisms
— Stable?

* Synchronization avoided by using dithering

e Hint on granularity missing

e RTT history length

* RFC 6298 behavior and modifications analyzed
— Scalable?

* Tested/simulated for networks up to ~ 50 nodes

20

Checklist (2/2)

e draft-bormann-core-cc-qg-00

— Range?
* Higher offered loads needed
* Low RTT / High RTT evaluated
* Single-hop / multihop networks evaluated

— Scope”?
* Possible to consider different destination scopes
* Aggregate congestion behavior

— Good performance?
* Yes (so far...)

— Fairness?
e Self-fair
* Fair with TCP

— Evaluation quality?

— Additional security considerations?
* TBD

21

Call to Action

* Please implement cocoa-02
— Is the draft specification clear?

* Please experiment with cocoa-02
— Performance issues?
— Improvement possibilities?
— Can the checklist be covered?

* Please provide feedback

References

Details can be found in published and upcoming
papers: cocoa-00

— A. Betzler, C. Gomez, |. Demirkol, J. Paradells, "Congestion Control in Reliable CoAP
Communication", MSWIM'13, Barcelona, Spain, Nov. 2013.

— A. Betzler, C. Gomez, |. Demirkol, M. Kovatsch, "Congestion Control for CoAP cloud
services", 8th International Workshop on Service-Oriented Cyber-Physical Systems
in Converging Networked Environments (SOCNE) 2014, Barcelona, Spain, Sept. 2014.

— Two more papers under review

cocoa-02

— Or you may contact the authors!

