CoAP Simple Congestion Control/Advanced (CoCoA)

draft-bormann-core-cocoa-02

Carsten Bormann – Universität Bremen TZI cabo@tzi.org

August Betzler, <u>Carles Gomez</u>, Ilker Demirkol Universitat Politècnica de Catalunya (UPC)/Fundació i2cat carlesgo@entel.upc.edu

Context (I)

- Constrained Application Protocol (CoAP)
 - RFC 7252
 - Lightweight, efficient protocol
 - For constrained node networks
 - Over UDP
 - Messages
 - Confirmable (CON)
 - Non-confirmable (NON)

Context (II)

- Default CoAP congestion control for CONs
 - RTO chosen from a fixed interval: [2, 3] s
 - Binary Exponential Backoff (BEB)
 - Outstanding interactions to a destination = 1

CoCoA

- Simple mechanism for advanced congestion control
 - Using RTT measurements for CONs
 - Rules for NONs

CoCoA: RTO calculation (I)

- Strong and weak RTTs
 - Weak RTTs: retransmissions have been required
- RTO estimator
 - Input from weak and strong RTO estimators
 - RTO_{overall} is evolved from the estimator that made the most recent contribution

CoCoA: RTO calculation (II)

• Reduced RTO_{weak} contribution:

- $-RTO_{overall} := 0.25*RTO_{weak} + 0.75*RTO_{overall}$
- $-RTO_{overall} := 0.5*RTO_{strong} + 0.5*RTO_{overall}$

- Only responses obtained before the 3rd retransmission update RTO_{weak}
- RTO_{overall} is dithered

CoCoA: Variable Backoff Factor

Goals

- Avoid too quick retries for low RTO values
 - Could contribute to congestion
- Reduce too slow retries for large RTO values
 - Could lead to unnecessary delay increase

Definition

- -RTO < 1s $\rightarrow VBF = 3$
- $-1 \le RTO \le 3 s \rightarrow VBF = 2$
- -RTO > 3 s \rightarrow VBF = 1.5

CoCoA: RTO aging

- High RTO values
 - If RTO > 3 s, and not updated for 4*RTO , then
 - RTO = 1 + 0.5*RTO
 - Converge towards default RTO values
- Low RTO values
 - If RTO < 1 s, and not updated for 16*RTO , then</p>
 - -RTO = 2*RTO
 - Converge towards default RTO values

Running code

- cocoa-02 has been implemented for Californium (Cf)
 - CoAP implementation for unconstrained platforms
 - Optional CongestionControlLayer
- Californium with CoCoA is publicly available
 - https://github.com/eclipse/californium
 - cf-cocoa example
 - org.eclipse.californium.core.network.stack.congestioncontrol
- CoCoA implementation for Erbium (Er) is underway
 - Erbium: official CoAP implementation for Contiki OS

Evaluation: scenarios and results

- Simulation of IEEE 802.15.4 networks
 - With/without reliability, NullRDC/ContikiMAC
 - Various topologies
- Real experiments

GPRS scenario

Note: for details, please refer to published/upcoming papers or ask the authors

Considered RTO algorithms

- Default CoAP
 - Insensitive to RTT
- CoCoA
- CoCoA-S
 - Strong only
- Basic RTO
 - RTO randomly chosen from [last_RTT, 1.5*last_RTT]
 - Also uses weak RTTs
- Linux RTO
 - Reduces contribution of variance to the RTO when RTT decreases
 - Avoids RFC 2988 RTO getting too close to the RTT
- Peak-Hopper RTO
 - Short history and long history estimator
 - Maximum of the two estimators

Successful exchanges per time unit

- GPRS and 802.15.4 scenario
 - New CON sent once the previous one is ACKed

Initial RTO

- GPRS scenario
 - New CON sent once the previous one is ACKed

Retry ratio

GPRS scenario

1226% _{283%}

New CON sent once the previous one is ACKed

Fairness

- 802.15.4 scenario
 - Fairness index
 - RFC 5166
 - CoCoA does not degrade fairness
 - Variable Backoff Factor
 - Use of weak RTTs

Settling time

- GPRS scenario
 - Time to serve 80% of the requests in a burst

Settling time

- 802.15.4 scenario
 - Time to serve 80% of the requests in a burst
 - TCP-oriented RTO algorithms underperform

Observations (I)

- CoCoA performs similarly to or better than default CoAP
 - Good use of RTT samples
 - Throughput increase, settling time decrease
 - Fairness not degraded
 - Underperformance not observed
- CoCoA-S
 - Often good performance in congested scenarios (vs default CoAP)
 - But high number of retries in low congestion scenario!
 - A bit less conservative than CoCoA
 - No weak RTTs/RTO

Observations (II)

- Too simplistic RTT-sensitive approaches underperform default CoAP
 - Basic RTO considers only the last RTT sample
 - Not enough safety margin (RTO vs actual RTT)
 - Huge amount of (too early) retries
- TCP-oriented RTO algorithms underperform default CoAP in some aspects/scenarios:
 - Weak RTT updates are missed
 - A problem when losses take place
 - Settling time (802.15.4)
 - Fairness (802.15.4)
 - Dithering

Memory considerations

- RAM requirements
 - Per client role

	RAM (bytes)
Default CoAP	2
CoCoA	29
CoCoA-S	19
Basic RTO	2
Linux RTO	21
Peak-Hopper RTO	43

Checklist (1/2)

- draft-bormann-core-cc-qq-00
 - Algorithm for general use?
 - Does it protect the network?
 - Compared with default CoAP
 - Regardless of lower layer mechanisms

– Stable?

- Synchronization avoided by using dithering
- Hint on granularity missing
- RTT history length
- RFC 6298 behavior and modifications analyzed

– Scalable?

Tested/simulated for networks up to ~ 50 nodes

Checklist (2/2)

- draft-bormann-core-cc-qq-00
 - Range?
 - Higher offered loads needed
 - Low RTT / High RTT evaluated
 - Single-hop / multihop networks evaluated
 - Scope?
 - Possible to consider different destination scopes
 - Aggregate congestion behavior
 - Good performance?
 - Yes (so far...)
 - Fairness?
 - Self-fair
 - Fair with TCP
 - Evaluation quality?
 - Additional security considerations?
 - TBD

Call to Action

- Please implement cocoa-02
 - Is the draft specification clear?

- Please experiment with cocoa-02
 - Performance issues?
 - Improvement possibilities?
 - Can the checklist be covered?

Please provide feedback

References

• Details can be found in published and upcoming papers:

- A. Betzler, C. Gomez, I. Demirkol, J. Paradells, "Congestion Control in Reliable CoAP Communication", MSWIM'13, Barcelona, Spain, Nov. 2013.
- A. Betzler, C. Gomez, I. Demirkol, M. Kovatsch, "Congestion Control for CoAP cloud services", 8th International Workshop on Service-Oriented Cyber-Physical Systems in Converging Networked Environments (SOCNE) 2014, Barcelona, Spain, Sept. 2014.
- Two more papers under review cocoa-02

— Or you may contact the authors!