
Aaron Gember-Jacobson, Chaithan Prakash,
Raajay Viswanathan, Robert Grandl,

Junaid Khalid, Sourav Das, Aditya Akella

1

OpenNF: Enabling Innovation in
Network Function Control

Network functions (NFs)

• Perform sophisticated stateful
actions on packets/flows

2

Intrusion
detection

system (IDS)

Caching
proxy

WAN
optimizer

NF trends

• Network Functions Virtualization (NFV)

3

Intrusion
detection

system (IDS)

Caching
proxy

WAN
optimizer

NF trends

• Network Functions Virtualization (NFV)

 → dynamically allocate NF instances

3

Hypervisor

NF trends

• Network Functions Virtualization (NFV)

 → dynamically allocate NF instances

• Software-defined Networking

 → dynamically reroute flows

3

Hypervisor

NF trends

• Network Functions Virtualization (NFV)

 → dynamically allocate NF instances

• Software-defined Networking

 → dynamically reroute flows

 Dynamic reallocation
of packet processing

3

Hypervisor

Example: elastic NF scaling

1. Satisfy performance SLAs

4

Example: elastic NF scaling

1. Satisfy performance SLAs

4

CPU

Packet loss

Example: elastic NF scaling

1. Satisfy performance SLAs

4

CPU

Packet loss

Example: elastic NF scaling

1. Satisfy performance SLAs

4

CPU

Packet loss

Example: elastic NF scaling

1. Satisfy performance SLAs

2. Minimize operating costs

4

CPU

Packet loss

Example: elastic NF scaling

1. Satisfy performance SLAs

2. Minimize operating costs

4

CPU

Packet loss

Example: elastic NF scaling

1. Satisfy performance SLAs

2. Minimize operating costs

3. Accurately monitor traffic

4

CPU

Packet loss

1. Satisfy performance SLAs

2. Minimize operating costs

3. Accurately monitor traffic

5

To simultaneously…

Problem: NFV+SDN is insufficient

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 6

Packet loss

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 6

Packet loss

SLA:
<1%

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 6

?
Packet loss

SLA:
<1%

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 6

?
Packet loss

SLA:
<1%

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 6

?
Packet loss

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 6

?
Packet loss

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 6

?
Packet loss

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 6

?
Packet loss

SLAs + cost + accuracy:
What do we need?

• Quickly move, copy, or share internal NF state
alongside updates to network forwarding state

• Guarantees: loss-free, order-preserving, …

7

   … 1 2 3 …

Also applies to other scenarios

Outline

• Motivation and requirements

• Challenges

• OpenNF architecture

– State export/import

– State operations

– Guarantees

• Evaluation

8

1. Supporting many NFs with minimal changes

2. Dealing with race conditions

3. Bounding overhead

Challenges

9

State

Packet Route
Update

• Virtual machine replication

– Cannot combine → limited rebalancing

• Split/Merge [NSDI’13]

– State allocations and accesses occur via library

– Addresses a specific problem → limited suitability

– Packets may be dropped or re-ordered → wrong
NF behavior

10

Existing approaches

OpenNF overview

11

NF State Manager Flow Manager
OpenNF
Controller

Control Application

move/copy/share state

export/import
State

State created or updated by an NF applies to
either a single flow or a collection of flows

NF state taxonomy

12

Connection

Connection

TcpAnalyzer

HttpAnalyzer

TcpAnalyzer

HttpAnalyzer

Per-flow state

ConnCount

Multi-flow state

All-flows state
Statistics

NF API: export/import state

• Functions: get, put, delete

13

No need to expose/change internal state organization!

Filter

Per

Multi

All

Scope

NF
get

put

Control operations: move

14

NF State Manager

Control Application Flow Manager

Bro2 Bro1

Control operations: move

14

NF State Manager

Control Application

move (port=80, Bro1, Bro2)

Flow Manager

Bro2 Bro1

Control operations: move

14

NF State Manager

Control Application

move (port=80, Bro1, Bro2)

get(per, port=80)

Flow Manager

Bro2 Bro1

Control operations: move

14

NF State Manager

Control Application

move (port=80, Bro1, Bro2)

get(per, port=80)

[Chunk1]

[Chunk2]

Flow Manager

Bro2 Bro1

Control operations: move

14

NF State Manager

Control Application

move (port=80, Bro1, Bro2)

get(per, port=80)

[Chunk1] del(per, port=80)

[Chunk2]

Flow Manager

Bro2 Bro1

Control operations: move

14

NF State Manager

Control Application

move (port=80, Bro1, Bro2)

get(per, port=80)

[Chunk1] put (per, Chunk1)
del(per, port=80)

[Chunk2]
put (per, Chunk2)

Flow Manager

Bro2 Bro1

Control operations: move

14

NF State Manager

Control Application

move (port=80, Bro1, Bro2)

get(per, port=80)

[Chunk1] put (per, Chunk1)
del(per, port=80)

[Chunk2]
put (per, Chunk2)

forward(port=80, Bro2)

Flow Manager

Bro2 Bro1

Control operations: move

14

NF State Manager

Control Application

move (port=80, Bro1, Bro2)

get(per, port=80)

[Chunk1] put (per, Chunk1)
del(per, port=80)

[Chunk2]
put (per, Chunk2)

forward(port=80, Bro2)

Flow Manager

Bro2 Bro1

Also provide copy and share

1. Supporting many NFs with minimal changes

2. Dealing with race conditions

3. Bounding overhead

Challenges

15

State

Packet Route
Update

detect-
MHR

Lost updates during move

16

Bro2 Bro1

detect-
MHR

Lost updates during move

16

B1

R1

Bro2 Bro1

detect-
MHR

Lost updates during move

16

B1

R1

Bro2 Bro1

move(red,Bro1 ,Bro2)

detect-
MHR

Lost updates during move

16

B1

R1

Bro2 Bro1

move(red,Bro1 ,Bro2)

detect-
MHR

Lost updates during move

16

B1

R1

R2

Missing
state

Bro2 Bro1

move(red,Bro1 ,Bro2)

detect-
MHR

Lost updates during move

16

B1

R1 R2
Missing

state

Bro2 Bro1

move(red,Bro1 ,Bro2)

detect-
MHR

Lost updates during move

16

B1

R1 R2
Missing

state

Bro2 Bro1

move(red,Bro1 ,Bro2)

detect-
MHR

Lost updates during move

16

B1

R1 R2
Missing

state

Bro2 Bro1

move(red,Bro1 ,Bro2)

Missing
updates

R3

detect-
MHR

Lost updates during move

16

B1

R1 R2
Missing

state

Bro2 Bro1

move(red,Bro1 ,Bro2)

Missing
updates

R3

detect-
MHR

• Split/Merge [NSDI ‘13]: pause traffic, buffer packets

– Packets in-transit when buffering starts are dropped

Lost updates during move

16

B1

R1 R2
Missing

state

Bro2 Bro1

move(red,Bro1 ,Bro2)

Missing
updates

Loss-free: All state updates should be reflected in the
transferred state, and all packets should be processed

R3

NF API: observe/prevent
updates using events

17

Only need to change an NF’s receive packet function!

R1

NF

Use events for loss-free move

18

Bro2 Bro1

R1

1. enableEvents(red,drop) on Bro1

Use events for loss-free move

18

Bro2 Bro1

Drop R1

1. enableEvents(red,drop) on Bro1

2. get/delete on Bro1

Use events for loss-free move

18

Bro2 Bro1

Drop

R1

1. enableEvents(red,drop) on Bro1

2. get/delete on Bro1

Use events for loss-free move

18

Bro2 Bro1

Drop

R1

R2

1. enableEvents(red,drop) on Bro1

2. get/delete on Bro1

3. Buffer events at controller

Use events for loss-free move

18

Bro2 Bro1

Drop

R1

R2

1. enableEvents(red,drop) on Bro1

2. get/delete on Bro1

3. Buffer events at controller

4. put on Bro2

Use events for loss-free move

18

Bro2 Bro1

Drop R1

R2

1. enableEvents(red,drop) on Bro1

2. get/delete on Bro1

3. Buffer events at controller

4. put on Bro2

5. Flush packets in
events to Bro2

Use events for loss-free move

18

Bro2 Bro1

Drop R1 R1,R2

1. enableEvents(red,drop) on Bro1

2. get/delete on Bro1

3. Buffer events at controller

4. put on Bro2

5. Flush packets in
events to Bro2

6. Update
forwarding

Use events for loss-free move

18

Bro2 Bro1

Drop R1 R1,R2

1. enableEvents(red,drop) on Bro1

2. get/delete on Bro1

3. Buffer events at controller

4. put on Bro2

5. Flush packets in
events to Bro2

6. Update
forwarding

Use events for loss-free move

18

Bro2 Bro1

Drop R1 R1,R2 R1,R2,R3

• False positives from Bro’s weird script

Re-ordering of packets

19

Controller Switch Bro2 Bro1

• False positives from Bro’s weird script

Re-ordering of packets

19

Controller Switch Bro2
5. Flush buffer

Bro1

R2

R2
R2

• False positives from Bro’s weird script

Re-ordering of packets

19

Controller Switch Bro2
5. Flush buffer

6. Request
forwarding update

Bro1

R2

R2
R2

• False positives from Bro’s weird script

Re-ordering of packets

19

Controller Switch Bro2
5. Flush buffer

6. Request
forwarding update

Bro1

R2

R2

R3

R2
R3

• False positives from Bro’s weird script

Re-ordering of packets

19

Controller Switch Bro2
5. Flush buffer

6. Request
forwarding update

Bro1

R2

R2

R3

R3

R3

R2

R3

R3

• False positives from Bro’s weird script

Re-ordering of packets

19

Controller Switch Bro2
5. Flush buffer

6. Request
forwarding update

Bro1

R2

R2

R4
R3

R3

R3

R2

R4

R3

R3

• False positives from Bro’s weird script

Re-ordering of packets

19

Order-preserving: All packets should be processed
in the order they were forwarded by the switch

Controller Switch Bro2
5. Flush buffer

6. Request
forwarding update

Bro1

R2

R2

R4
R3

R3

R3

R2

R4

R3

R3

Order-preserving move

20

Drop R1

B2

• Flush packets in events to Inst2

Order-preserving move

20

Drop R1 R1,R2

• Flush packets in events to Inst2

• enableEvents(red,buffer) on Inst2

Order-preserving move

20

Drop R1 R1,R2
Buf

• Flush packets in events to Inst2

• enableEvents(red,buffer) on Inst2

• Forwarding update: send to Inst1 & controller

Order-preserving move

20

Drop R1 R1,R2
Buf

• Flush packets in events to Inst2

• enableEvents(red,buffer) on Inst2

• Forwarding update: send to Inst1 & controller

• Wait for packet from
switch (remember last)

• Forwarding update:
send to Inst2

Order-preserving move

20

Drop R1 R1,R2
Buf

R3

R3

R4

• Flush packets in events to Inst2

• enableEvents(red,buffer) on Inst2

• Forwarding update: send to Inst1 & controller

• Wait for packet from
switch (remember last)

• Forwarding update:
send to Inst2

• Wait for event
for last packet from Inst2

Order-preserving move

20

Drop R1 R1,R2 R1,R2,
R3

Buf

R3

R3

R4

• Flush packets in events to Inst2

• enableEvents(red,buffer) on Inst2

• Forwarding update: send to Inst1 & controller

• Wait for packet from
switch (remember last)

• Forwarding update:
send to Inst2

• Wait for event
for last packet from Inst2

• Release buffer of packets on Inst2

Order-preserving move

20

Drop R1 R1,R2 R1,R2,
R3

R1,R2,
R3,R4

• Flush packets in events to Inst2

• enableEvents(red,buffer) on Inst2

• Forwarding update: send to Inst1 & controller

• Wait for packet from
switch (remember last)

• Forwarding update:
send to Inst2

• Wait for event
for last packet from Inst2

• Release buffer of packets on Inst2

Order-preserving move

20

Drop R1 R1,R2 R1,R2,
R3

R1,R2,
R3,R4

Assumes no loss or
re-ordering on the links

from switch to NFs

1. Supporting many NFs with minimal changes

2. Dealing with race conditions

3. Bounding overhead

Challenges

21

State

Packet Route
Update

Applications decide (based on NF & objectives):

1. Granularity of
operations

2. Guarantees
desired

Bounding overhead

22

Filter

Per

Multi

All
Scope

   …

LF
LF+OP

1 2 3 …

   …
+

None

1. Dealing with diversity

2. Dealing with race conditions

3. Bounding overhead

OpenNF: SLAs + cost + accuracy

23

Export/import state based
on its association with flows

Events Lock-step forwarding updates +

Applications choose granularity and guarantees

Implementation

• Controller (3.8K lines of Java)

• Communication library (2.6K lines of C)

• Modified NFs (3-8% increase in code)

24

Bro IDS iptables Squid Cache PRADS

Overall benefits for elastic scaling

• Bro IDS processing 10K pkts/sec

– At 180 sec: move HTTP flows (489) to new IDS

– At 360 sec: move back to old IDS

• SLAs: 260ms to move (loss-free)

• Accuracy: same log entries as using one IDS

– VM replication: incorrect log entries

• Cost: scale in after state is moved

– Wait for flows to die: scale in delayed 25+ minutes

25

Evaluation: state export/import

26

Serialization/deserialization
costs dominate

Cost grows with
state complexity

0

50

100

150

200

Average Maximum
P

e
r-

p
ac

ke
t

La
te

n
cy

In

cr
e

as
e

 (
m

s)

0

100

200

300

400

500

NG NG PL LF PL+ER

M
o

ve
 T

im
e

 (
m

s)

• PRADS asset detector processing 5K pkts/sec

• Move per-flow state for 500 flows

Evaluation: operations

27

Packets
dropped!

686 462

881 packets
in events

Operations are efficient, but
guarantees come at a cost!

1120 pkts
buffered

838 pkts
in events

+

 NG NG PL LF PL+ER OP PL+ER

Future work

• Reduce buffering

– Allow packet processing during state transfer,
then replay input to bring state “up to speed”

• Improve scalability

– Peer-to-peer state transfer

• (Semi) automatically modify NFs

– Static program analysis

28

• Dynamic reallocation of packet
processing enables new services

• Realizing SLAs + cost + accuracy requires
quick, safe control of internal NF state

• OpenNF provides flexible and efficient
control with few NF modification

Conclusion

29

Learn more and try it!
http://opennf.cs.wisc.edu

Backup

• Copy and share

• Example app: elastic NF scaling

• Evaluation: controller scalability

• Evaluation: importance of guarantees

• Evaluation: benefits of granular control

30

Copy and share operations

• Used when multiple instances need some state

• Copy – no or eventual consistency

– Once, periodically, based on events, etc.

• Share – strong or strict consistency

– Events are raised for all packets

– Events are released
one at a time

– State is copied
before releasing the next event

31

Copy (multi-flow): 111ms
Share (strong): 13ms/packet

Example app: elastic NF scaling

movePrefix(prefix,oldInst,newInst):

 copy(oldInst,newInst,{nw_src:prefix},multi)

 move(oldInst,newInst,{nw_src:prefix},per,LF+OP)

 while (true):

 sleep(60)

 copy(oldInst,newInst,{nw_src:prefix},multi)

 copy(newInst,oldInst,{nw_src:prefix},multi)

scan.bro
vulnerable.bro
weird.bro

32

Evaluation: controller scalability

Improve scalability with P2P state transfers

33

Evaluation: importance
of guarantees

• Bro1 processing malicious trace @ 1K pkts/sec

• After 14K packets: move active flows to Bro2

Alert Baseline NG LF LF+OP

Incorrect file type 26 25 24 26

MHR Match 31 28 27 31

MD5 116 111 106 116

Total 173 164 157 173

Evaluation: benefits
of granular control

• HTTP requests from 2 clients (40 unique URLs)

• Initially: both go to Squid1

• 20s later: reassign Client1 to Squid2

Ignore Copy-client Copy-all

Hits @ Squid1 117 117 117

Hits @ Squid2 Crash! 39 50

State transferred 0 MB 4 MB 54 MB

