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OpenNF: Enabling Innovation in 
Network Function Control 



Network functions (NFs) 

• Perform sophisticated stateful  
actions on packets/flows 
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NF trends 

• Network Functions Virtualization (NFV) 

 → dynamically allocate NF instances 
 

• Software-defined Networking 

 → dynamically reroute flows 
 

 Dynamic reallocation  
of packet processing 
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Example: elastic NF scaling 

 

1. Satisfy performance SLAs 

                          

                            

4 



Example: elastic NF scaling 

 

1. Satisfy performance SLAs 

                          

                            

4 

CPU 

Packet loss 



Example: elastic NF scaling 

 

1. Satisfy performance SLAs 

                          

                            

4 

CPU 

Packet loss 



Example: elastic NF scaling 

 

1. Satisfy performance SLAs 

                          

                            

4 

CPU 

Packet loss 



Example: elastic NF scaling 

 

1. Satisfy performance SLAs 

2. Minimize operating costs 

                            

4 

CPU 

Packet loss 



Example: elastic NF scaling 

 

1. Satisfy performance SLAs 

2. Minimize operating costs 

                            

4 

CPU 

Packet loss 



Example: elastic NF scaling 

 

1. Satisfy performance SLAs 

2. Minimize operating costs 
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1. Satisfy performance SLAs 

2. Minimize operating costs 

3. Accurately monitor traffic 
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To simultaneously… 

Problem: NFV+SDN is insufficient 



Why NFV + SDN falls short 
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SLAs + cost + accuracy:  
What do we need? 

• Quickly move, copy, or share internal NF state 
alongside updates to network forwarding state 
 
 

• Guarantees: loss-free, order-preserving, … 
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   … 1 2 3 … 

Also applies to other scenarios 



Outline 

• Motivation and requirements 

• Challenges 

• OpenNF architecture 

– State export/import 

– State operations 

– Guarantees 

• Evaluation 

 

8 



1. Supporting many NFs with minimal changes 
 
 

2. Dealing with race conditions 
 
 

3. Bounding overhead 

 

Challenges 
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State 

Packet Route 
Update 



• Virtual machine replication 

– Cannot combine → limited rebalancing 

 

• Split/Merge [NSDI’13] 

– State allocations and accesses occur via library 

– Addresses a specific problem → limited suitability 

– Packets may be dropped or re-ordered → wrong 
NF behavior 
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Existing approaches 



 

OpenNF overview 
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NF State Manager Flow Manager 
OpenNF 
Controller 

Control Application 

move/copy/share state 

export/import 
State 



State created or updated by an NF applies to 
either a single flow or a collection of flows 

 

NF state taxonomy 
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Connection 

Connection 

TcpAnalyzer 

HttpAnalyzer 

TcpAnalyzer 

HttpAnalyzer 

Per-flow state 

ConnCount 

Multi-flow state 

All-flows state 
Statistics 



NF API: export/import state 

• Functions: get, put, delete 
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No need to expose/change internal state organization!  

Filter 

Per 

Multi 

All 

Scope 

NF 
get 

put 



Control operations: move 
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Control operations: move 
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NF State Manager 

Control Application 

move (port=80, Bro1, Bro2) 

get(per, port=80) 

[Chunk1] put (per, Chunk1) 
del(per, port=80) 

[Chunk2] 
put (per, Chunk2) 

forward(port=80, Bro2) 

Flow Manager 

Bro2 Bro1 

Also provide copy and share 



1. Supporting many NFs with minimal changes 
 
 

2. Dealing with race conditions 
 
 

3. Bounding overhead 

Challenges 
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detect- 
MHR 

• Split/Merge [NSDI ‘13]: pause traffic, buffer packets 

– Packets in-transit when buffering starts are dropped 

 

Lost updates during move 
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B1 
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Missing 

state 

Bro2 Bro1 

move(red,Bro1 ,Bro2 ) 

Missing 
updates 

Loss-free: All state updates should be reflected in the 
transferred state, and all packets should be processed 

R3 



NF API: observe/prevent  
updates using events 
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Only need to change an NF’s receive packet function! 

R1 

NF 



                                 

                     

                             

              

                  
               

         
           

Use events for loss-free move 
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1.  enableEvents(red,drop) on Bro1 
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4.  put on Bro2 
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• False positives from Bro’s weird script  

Re-ordering of packets 
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• False positives from Bro’s weird script  

Re-ordering of packets 
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Order-preserving: All packets should be processed  
in the order they were forwarded by the switch 

Controller Switch Bro2 
5. Flush buffer 

6. Request  
forwarding update 

Bro1 

R2 

R2 
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R3 

R3 

R3 

R2 

R4 

R3 

R3 



                                  

                                    

                                               

                       
                       

                     
              

                 
                           

                                    

Order-preserving move 

20 

Drop R1 

B2 



• Flush packets in events to Inst2 
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• Flush packets in events to Inst2 

•  enableEvents(red,buffer) on Inst2 

• Forwarding update: send to Inst1 & controller 
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• Flush packets in events to Inst2 

•  enableEvents(red,buffer) on Inst2 

• Forwarding update: send to Inst1 & controller 

• Wait for packet from  
switch (remember last) 

• Forwarding update:  
send to Inst2 

• Wait for event  
for last packet from Inst2 

• Release buffer of packets on Inst2 

 

Order-preserving move 
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Drop R1 R1,R2 R1,R2,
R3 

R1,R2,
R3,R4 

Assumes no loss or  
re-ordering on the links 

from switch to NFs 



1. Supporting many NFs with minimal changes 
 
 

2. Dealing with race conditions 
 
 

3. Bounding overhead 

Challenges 
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State 

Packet Route 
Update 



Applications decide (based on NF & objectives): 

1. Granularity of  
operations 
 
 

2. Guarantees 
desired 

 

Bounding overhead 
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Filter 

Per 

Multi 

All 
Scope 

   … 

LF 
LF+OP 

1 2 3 … 

   … 
+ 

None 



1. Dealing with diversity 

 

 

2. Dealing with race conditions 

 

 

3. Bounding overhead 

OpenNF: SLAs + cost + accuracy 
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Export/import state based  
on its association with flows 

Events Lock-step forwarding updates + 

Applications choose granularity and guarantees 



Implementation 

• Controller (3.8K lines of Java) 

• Communication library (2.6K lines of C) 

• Modified NFs (3-8% increase in code) 
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Bro IDS iptables Squid Cache PRADS 



Overall benefits for elastic scaling 

• Bro IDS processing 10K pkts/sec 

– At 180 sec: move HTTP flows (489) to new IDS 

– At 360 sec: move back to old IDS 

• SLAs: 260ms to move (loss-free) 

• Accuracy: same log entries as using one IDS 

– VM replication: incorrect log entries 

• Cost: scale in after state is moved 

– Wait for flows to die: scale in delayed 25+ minutes 
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Evaluation: state export/import 
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Serialization/deserialization  
costs dominate 

Cost grows with  
state complexity 
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• PRADS asset detector processing 5K pkts/sec 

• Move per-flow state for 500 flows 

Evaluation: operations 
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Packets 
dropped! 

686 462 

881 packets 
in events 

Operations are efficient, but  
guarantees come at a cost! 

1120 pkts  
buffered 

838 pkts 
in events 

+ 

      NG         NG PL   LF PL+ER  OP PL+ER 



Future work 

• Reduce buffering 

– Allow packet processing during state transfer,  
then replay input to bring state “up to speed” 

• Improve scalability 

– Peer-to-peer state transfer 

• (Semi) automatically modify NFs 

– Static program analysis 
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• Dynamic reallocation of packet  
processing enables new services 

• Realizing SLAs + cost + accuracy requires  
quick, safe control of internal NF state  

• OpenNF provides flexible and efficient  
control with few NF modification 

Conclusion 
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Learn more and try it! 
http://opennf.cs.wisc.edu 



Backup 

• Copy and share 

• Example app: elastic NF scaling 

• Evaluation: controller scalability 

• Evaluation: importance of guarantees 

• Evaluation: benefits of granular control 
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Copy and share operations 

• Used when multiple instances need some state 

• Copy – no or eventual consistency 

– Once, periodically, based on events, etc. 

• Share – strong or strict consistency 

– Events are raised for all packets 

– Events are released  
one at a time 

– State is copied  
before releasing the next event 
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Copy (multi-flow): 111ms  
Share (strong): 13ms/packet 



Example app: elastic NF scaling 

movePrefix(prefix,oldInst,newInst): 

  copy(oldInst,newInst,{nw_src:prefix},multi) 

  move(oldInst,newInst,{nw_src:prefix},per,LF+OP) 

  while (true): 

    sleep(60) 

    copy(oldInst,newInst,{nw_src:prefix},multi) 

    copy(newInst,oldInst,{nw_src:prefix},multi) 

 

scan.bro 
vulnerable.bro 
weird.bro 
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Evaluation: controller scalability 

 

 

 

 

 

 

Improve scalability with P2P state transfers 
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Evaluation: importance 
of guarantees 

• Bro1 processing malicious trace @ 1K pkts/sec 

• After 14K packets: move active flows to Bro2 

Alert Baseline NG LF LF+OP 

Incorrect file type 26 25 24 26 

MHR Match 31 28 27 31 

MD5 116 111 106 116 

Total 173 164 157 173 



Evaluation: benefits 
of granular control 

• HTTP requests from 2 clients (40 unique URLs) 

• Initially: both go to Squid1 

• 20s later: reassign Client1 to Squid2 

Ignore Copy-client Copy-all 

Hits @ Squid1 117 117 117 

Hits @ Squid2 Crash! 39 50 

State transferred 0 MB 4 MB 54 MB 


