draft-peterson-modern-problems draft-peterson-terq

MODERN BoF IETF 92 (Texas)

Telephones and the Internet

- Our long-term goal: migrate telephone routing and directory services to the Internet
 - Subject of much work over the past 20 years
- Telephone numbers have never gone away
 - Mobility now sustains their relevance
 - Non-linguistic, international, opaque
- But they have eluded the Internet's grasp
 - Still anchored in the PSTN

What if...

- ... we treated numbers like Internet identifiers
 - What if you could get numbers the way you get domain names?
 - Or what if you could get numbers like you get IP addresses?
- This was the subject of an FCC workshop last year
 - Informed by accelerating PSTN transition plans
- In short, there's not just one way to get Internet IDs
 - You can buy individual domain names from registrars
 - You can get names bundled with a product or service
 - You can buy IP address blocks, or get dynamic allocations

Not just what if

[&]quot;Search for a Google Voice number in our database by area code or zip code!"

Sensitivity training

- MODERN absolutely will not set TN policy
 - The IETF does not control TN policy anywhere
 - And we're not looking to change that
- Numbering policy is a sensitive topic
 - Numbering inventory is a scarce asset, not like the DNS
- It's a *polarizing* topic
 - Some feel their architectures are threatened if number allocation is opened up to new parties
 - Others feel their architectures are threatened by current restrictions on number allocation
- Not our decision today is not a referendum on that
 - Even if policies stay the same, these tools will have value

Moving Parts

- Acquisition mechanism
 - How do I request and receive numbers?
- Provisioning mechanism
 - How do I provision a number with a CSP?
- Query mechanism
 - How do I get information about a number?

Not new protocol design: just data models

Taxonomy

Number Authorities

- Includes delegates, receiving and distributing blocks
- Includes root authorities (never acquire blocks)
 - No "golden" root, all is relative

Number Users

- Includes enterprises, some resellers
 - May themselves act as number authorities for others
- Operate clients, black phones, etc.

CSPs

- Provide communications services
- May also act as authorities or users, or may not

Government entities

Delegation & Authority

 Today, a common chain of delegation looks like this

- Number blocks trickle down from a root of authority through CSPs
 - Eventually single allocations to users

Acquisition

Manages number inventory, tracks who gets assigned what, assigns credentials (STIR)

Acquiring a number

- The acquisition tool could let a new phone get a number from its enterprise
 - Phone gives some information, gets a number and a credential
- Similar use case for Google, or Skype, or whatever

Acquiring a range

- Possible to request whole blocks of numbers
 - STIR certs indicate a range, or you might get multiple certs

 Enterprise turns up a new PBX, needs to activate 100 new seats

Customer to CSP

- The acquisition tool could let a new phone get a number from a CSP
 - Get a new number and a single certificate
- You just bought a new phone at the Apple store, and want to replace an existing account

Acquisition mechanism scope

- We propose a tool that would *enable* allocation to anyone
 - Not setting any policy!
- Allocation is just the first step
 - How a client connects to a CSP is provisioning

Provisioning

Associates numbers with CSPs, manages related user data

Provisioning today

CSPs take care of everything

- Mostly CSP internal provisioning to itself
- A small amount of user info

Provisioning

- New acquisition models create new provisioning flows
 - "I own TNs, please manage them for me!"
- Enterprise acquires numbers for a new PBX itself, provisions these at the CSP
 - Proves ownership with STIR credential

Provisioning

- ... or, end user buys a number and then provisions a CSP
- Like SIP phone registration
 - Now proves number with credential
 - Maybe it's as simple as registering a new Contact
- Much like the domain name model today

Querying

"ENUM Bashing?"
Okay, just a re-run of IETF 85,
Already DISPATCHed

The TeRQ Architecture

About the Data Models

- Again, not much protocol design proposed here
- TeRQ info model split into two parts
 - Routing Information
 - Registered endpoints and their disposition
 - Mostly would be used by the MODERN provisioning protocol
 - Administrative Information
 - Contacts, billing addresses, compliance information
- Beg, borrow and steal for other components
 - WEIRDS, DRINKS, SIP, STIR, others
- MODERN will deliver an architecture

Somebody special

- Government entities will want to ask questions about numbers
 - Very similar to situation of DNS names
- We plan to follow the WEIRDS lead
 - weirds-rdap-sec-12
 - "Full access may be granted to a special group of authenticated clients."
 - Or whatever they go with

Direction for modern-problems

Ready for WGLC? (heh)

Hopefully helped focus discussion

thanks!

BACK UP

TeRQ

- Method: Establish a data model first, then worry about underlying transports and encoding
- Query Elements:
 - Source (Query Source, Query Intermediary, Route Source)
 - Subject (Telephone Number, SPID)
 - Attributes (constrains query: e.g., "voip" if only looking for VoIP)
- Response Elements:
 - Response Code
 - Subject (Optional)
 - Records
 - Authority (Source of the data)
 - Attributes (Name/Value pairs)
 - Priority
 - Expiration

Transporting TeRQ

- Once we agree on semantics, work on bindings
 - A binding is defined as an encoding and a transport
 - We want to allow for multiple bindings for different environments
 - Could build on JSON/HTTP, could build on ASN.1/UDP
 - Bindings need to detail how the elements of the data model are mapped to the encoding
 - Other low-level details like chunking, representation of cryptographic security, etc.
 - Also must be possible to transcode between bindings without losing data (at an Intermediary)
- Aim for maximum applicability
 - Not just a telco protocol, a web protocol
 - Something to work for both Verizon and Google

Element Types

- Data model current specifies:
 - Telephone Number (RFC3966 but should we revisit?)
 - Ranges need some work here
 - Domain Name
 - URI
 - IP Address
 - IPv4/IPv6
 - SPID
 - Currently specified as four-digits, other SPID types possible
 - GSPID, ITAD, etc.
 - Trunk Group
 - · Currently points to the Gurbani/Jennings RFC
 - Display Name
 - · Support for CNAM as well as a SIP "From" header field
 - Expiry
 - Absolute time
 - Priority
 - Value from 0 to 1
 - Extension
 - Reserved for further use