Refresh Interval Independent facility FRR

draft-chandra-mpls-enhanced-frr-bypass-01

Chandrasekar Ramachandran (<u>csekar@juniper.net</u>)

Markus Jork (mjork@juniper.net)

Vishnu Pavan Beeram (vbeeram@juniper.net)

Ina Minei (inaminei@google.com)

Dante Pacella (dante.j.pacella@verizon.com)

Ebben Aries (exa@fb.com)

Refresh independent state maintenance and stale state cleanup

- Reliance on periodic refreshes and refresh timeouts for RSVP-TE state maintenance and stale state cleanup is problematic from the scalability point of view
 - Due to the need to provide fast state synchronization between routers AND
 - Due to the need to limit the amount of stale state that a router has to maintain AND
 - Due to the need to limit the rate of RSVP-TE control plane traffic that a router has to handle
 - See Section 1 of RFC 2961 for more...
- There are existing mechanisms that allow to eliminate reliance on periodic refreshes and refresh timeouts for RSVP-TE state maintenance and stale state cleanup
 - Reliable exchange of *all* RSVP messages using refresh reduction (rfc2961)
 - Coupling state of individual LSPs with the state of RSVP signaling adjacency
- The existing mechanisms do not cover stale state cleanup during facility-based FRR (RFC4090)
- The presentation covers fixes proposed to RFC 4090 to provide refresh independent stale state cleanup during facility-based FRR
 - And also the updates to those fixes after IETF91 (changes from 00 to 01 of the draft)

Fast stale state cleanup during RSVP-TE Fast Reroute — fixing RFC4090

Protecting against B node failure:

- A Point of Local Repair (PLR)
- C Merge Point (MP)

Protecting against C node failure:

- B Point of Local Repair (PLR)
- D Merge Point (MP)

Slide #3

- Link (B, C) goes down
- Router A does not initiate node protection FRR (as B is still up)
- When B detects link failure, B initiates node protection FRR with D as Merge Point
 - As part of FRR, B initiates signaling of the backup LSP
- When C detects link failure, "PathTear and ResvErr messages MUST NOT be sent immediately" (RFC4090)
- Furthermore, C "SHOULD reset the refresh timers ... as if they had just been <u>refreshed</u>" (RFC4090)
 - To give B time "to begin refreshing state via the bypass LSP"
 - To give B time to signal the backup LSP
- C removes the state only "if it has not been refreshed before the <u>refresh</u> <u>timer expires</u>" (RFC4090)
 - When C removes the state, C sends PathTear to D, but hopefully by that time D receives from B signaling for the backup LSP
- Bottom line: RFC4090 relies on refresh timeout for stale state cleanup during RSVP-TE Fast Reroute (FRR), BUT
- Stale state cleanup should not depend on refresh timeout!
 - For the reasons explained in the previous slide

Refresh Independent FRR — MP determination & Conditional PathTear

Protecting against B node failure:

A – Point of Local Repair (PLR)

C – Merge Point (MP)

Protecting against C node failure:

B – Point of Local Repair (PLR)

D – Merge Point (MP)

Slide #4

MP determination:

- Whenever PLR has a backup path available, the PLR sets "Local protection available" flag in RRO carried in PATH
 - If PLR has a node protecting backup path, the PLR also sets "node protection" flag
- PLR initiates NodeID Hello session to MP
- A node concludes it is MP if PLR has set protection flags in PATH RRO and NodeID signaling adjacency with PLR is up.

"Conditional" PathTear:

- Originated when a router deletes the RSVP-TE state associated with a particular primary LSP (similar to "vanilla" PathTear)
- Receiver should retain the state for that LSP on the conditions that (a) the receiver is a node protection Merge Point, and (b) the LSP is currently being protected by the Point of Local Repair associated with this Merge Point
- Otherwise the receiver deletes the state (just like "vanilla" PathTear)

Refresh Independent FRR – Remote PathTear

Protecting against B node failure:

A – Point of Local Repair (PLR)

C – Merge Point (MP)

Protecting against C node failure:

B - Point of Local Repair (PLR)

D – Merge Point (MP)

"Remote" PathTear:

- Originated by a PLR when:
 - PLR deletes the RSVP-TE LSP state before the PLR has completed backup LSP signaling
 - PLR detects change in RRO carried in Resv message indicating NP-MP is no longer in LSP path
- PLR sets its local NodeID address in HOP object
- Receiver should accept PathTear when HOP object contains NodeID address of PLR and delete the state
- How does "Remote" PathTear work in back-back link failures?
- Link C-D & B-C fail in succession (in any order), Routers C and B initiate FRR
- Router B updates RRO in Resv message sent to Router A
 - Router C is no longer present in Resv RRO
- On processing RRO carried in Resv, Router A originates "Remote" PathTear to C
- Router C deletes LSP state

- RSVP-TE capability advertisement to provide seamless
 - RSVP-TE capability advertisement to provide seamless interoperability with the implementations that do not support the

 RSVP-TE Conditions object in "Conditional" num

10bbbbbb (RFC 2205) so that implementations that do no support the new extensions:

• blocess the message as "vanilla" PathTear

• ignore the object, neither forwarding nor sending an error message (RFC 2205) cess the message as "vanilla" PathTear

For more details...

https://tools.ietf.org/html/draft-chandra-mpls-enhanced-frr-bypass-01