
Consistent Modeling of Operational State Data in YANG
OpenConfig network operator working group
www.openconfig.net

IETF 92
NETMOD WG

draft-openconfig-netmod-opstate-00

Rob Shakir (BT), Anees Shaikh, Marcus Hines (Google)

Operational state is critical for management

● network operational state is required for turnup, troubleshooting,
traffic management, network planning, ...

● operational state access is much more frequent than configuration
○ think streaming telemetry and pub-sub, not SNMP polling

● state data is generally higher volume than configuration data

Types of operational state data
● derived, negotiated, set by a protocol, etc. (negotiated BGP hold-time)
● operational state data for counters or statistics (interface counters)
● operational state data representing intended configuration (actual vs.

configured)

2

Limited attention paid to modeling operational state
Clear benefits from using YANG to model both configuration and
operational state in the same data model

but there are limitations ...

● “The primary focus of YANG is configuration data.” [RFC 6244]
○ (NETCONF doesn’t help by blurring distinctions in types of state data)

● NETCONF-centric view assumes transactional, synchronous behavior
● no common conventions for structuring operational state data

○ further exacerbated when composing models

● most YANG models being developed are not paying attention to state
data

3

Requirements for modeling operational state data

● intended configuration as part of operational state
○ intended and actual configuration values can be different

● support for both transactional, synchronous and distributed, asynchronous
management systems
○ configuration changes may not be applied immediately or atomically

● separate and retrieve configuration and operational state data
independently

● retrieve only the state corresponding to derived values and statistics
○ avoid duplicate data transactional / synchronous systems

● consistent schema locations for configuration and corresponding
operational state data
○ correlating configuration and state data should be simple
○ read actual and intended configuration simultaneously to compare

4

Proposed structure for configuration and state

+--rw example container
 +--rw config
 | +--rw conf-1? empty
 | +--rw conf-2? string
 +--ro state
 +--ro conf-1? empty
 +--ro conf-2? string
 +--ro state-1? boolean
 +--ro state-2? string
 +--ro counters
 +--ro counter-1? uint32
 +--ro counter-2? uint64

5

configuration data

intended configuration state data

derived state data

counter state data

more complete examples in draft-openconfig-netmod-opstate-00

tagged operational: true

Some pros and cons

Advantages

● addresses all of the operational requirements for a variety of scenarios
(some cases require more thought)

● not affected by model composition -- location of configuration and
corresponding state in the path are known with no external context needed

● supportable by existing implementations (suboptimally by NETCONF)

Drawbacks
● writing models requires some additional work
● requires modelers to follow a convention
● extra containers in the path required to achieve model symmetry

6

trade off additional modeling effort for simplified consumption of operational state data

Topics for discussion

● Modeling design patterns
○ basic container groupings, handling lists, selective sharing of

state data, state with no corresponding config

● YANG language implications
○ list keys
○ rw data in ro containers
○ extensions to mark derived state vs. intended config state

● Alternative approaches
○ use datastores / RPCs to distinguish the data instead of the schema
○ ‘flatten’ the schema, requiring only a config or only state container
○ http://www.openconfig.net/file-cabinet/Modelling-Operational-State.pdf

alternative approaches considered.

7

discussed in
the draft

http://www.openconfig.net/file-cabinet/Modelling-Operational-State.pdf

Additional material

8

Example
+--rw interfaces
 +--rw interface* [name]
 +--rw name -> ../config/name
 +--rw config
 | ...
 +--ro state
 | | ...
 | +--ro counters
 | +--ro discontinuity-time
 +--rw aggregation!
 +--rw config
 | +--rw lag-type? aggregation-type
 | +--rw min-links? uint16
 +--ro state
 | +--ro lag-type? aggregation-type
 | +--ro min-links? uint16
 | +--ro members* ocif:interface-ref
 +--rw lacp!
 +--rw config
 | +--rw interval? lacp-period-type
 +--rw members* [interface]
 | +--rw interface ocif:interface-ref
 | +--ro state
 | +--ro activity? lacp-activity-type
 | +--ro timeout? lacp-timeout-type 9

/interfaces/interface[name=ifName]/aggregation/config/...

/interfaces/interface[name=ifName]/aggregation/state/...

/interfaces/interface[name=ifName]/aggregation/lacp/config/...

/interfaces/interface[name=ifName]/aggregation/lacp/
 members[name=ifName]/state/...

