Consistent Modeling of Operational State Data in YANG

OpenConfig network operator working group
I E T F www.openconfig.net

IETF 92

NETMOD WG draft-openconfig-netmod-opstate-00

Rob Shakir (BT), Anees Shaikh, Marcus Hines (Google)

Operational state is critical for management

e network operational state is required for turnup, troubleshooting,
traffic management, network planning, ...

e operational state access is much more frequent than configuration
o think streaming telemetry and pub-sub, not SNMP polling

e state data is generally higher volume than configuration data

Types of operational state data
e derived, negotiated, set by a protocol, etc. (negotiated BGP hold-time)
e operational state data for counters or statistics (interface counters)

e operational state data representing intended configuration (actual vs.
configured)

Limited attention paid to modeling operational state

Clear benefits from using YANG to model both configuration and
operational state in the same data model

but there are limitations ...

e “The primary focus of YANG is configuration data.” [RFC 6244]
o (NETCONF doesn’t help by blurring distinctions in types of state data)

e NETCONF-centric view assumes transactional, synchronous behavior

e no common conventions for structuring operational state data
o further exacerbated when composing models

e most YANG models being developed are not paying attention to state
data

Requirements for modeling operational state data

e intended configuration as part of operational state
o intended and actual configuration values can be different

e support for both transactional, synchronous and distributed, asynchronous
management systems
o configuration changes may not be applied immediately or atomically

e separate and retrieve configuration and operational state data
independently

e retrieve only the state corresponding to derived values and statistics
o avoid duplicate data transactional / synchronous systems

e consistent schema locations for configuration and corresponding

operational state data
o correlating configuration and state data should be simple
o read actual and intended configuration simultaneously to compare

Proposed structure for configuration and state

+--rw example container

+--rw config

| +--rw conf-17

| +--rw conf-27

+-—-ro state

+--10
+--10
+--10
+--ro
+--10

+—-—-ro counter-17?

+-—-ro counter-27?

conf-17?
conf-27?
state-17
state-27

counters

empty

string

empty
string
boolean

string

J\

— configuration data

— derived state data

=

uint32
uinto4d

:|~ counter state data

more complete examples in draft-openconfig-netmod-opstate-00

— intended configuration state data

- tagged operational: true

Some pros and cons

Advantages

e addresses all of the operational requirements for a variety of scenarios
(some cases require more thought)

e not affected by model composition -- location of configuration and
corresponding state in the path are known with no external context needed

e supportable by existing implementations (suboptimally by NETCONF)

Drawbacks

e writing models requires some additional work
e requires modelers to follow a convention
e extra containers in the path required to achieve model symmetry

trade off additional modeling effort for simplified consumption of operational state data

Topics for discussion

e Modeling design patterns —

o basic container groupings, handling lists, selective sharing of
state data, state with no corresponding config

e YANG language implications B ?AZCSfan?d)

o list keys
o rw data in ro containers
o extensions to mark derived state vs. intended config state

—

e Alternative approaches
o use datastores / RPCs to distinguish the data instead of the schema
o ‘flatten’ the schema, requiring only a config or only state container
o http://www.openconfig.net/file-cabinet/Modelling-Operational-State.pdf
alternative approaches considered.

http://www.openconfig.net/file-cabinet/Modelling-Operational-State.pdf

Additional material

Example

+--rw interfaces
+--rw interface* [name]

+--rw name -> ../config/name
+--rw config

| /interfaces/interface[name=ifName] /aggregation/config/. ..

+--ro state
[
| +--ro counters /interfaces/interface[name=ifName] /aggregation/state/. ..
| +--ro discontinuity-time
+--rw aggregation!
+--rw config
| +--rw lag-type? aggregation-type
| +--rw min-links? uintlo
+--ro state

| +--ro lag-type? aggregation-type
| +--ro min-links? uintl6
| +--ro members* ocif:interface-ref
+--rw lacp!
+-—rw config /interfaces/interface[name=ifName] /aggregation/lacp/config/. ..
| +--rw interval? lacp-period-type

+-—-rw members* [interface]

+--rw interface . ocif;interface-ref . .
: . ot /interfaces 1nter%ace[name=1fName]/aggregatlon/lacp/
——YO SsState .
o members [name=ifName] /state/. ..
| +--r0 activity? lacp-activity-type
|

+--ro timeout? lacp-timeout-type

