Impact of Virtualization and SDN on Emerging Network Coding

https://datatracker.ietf.org/doc/draft-khasnabish-nwcrg-impact-of-vir-and-sdn/

(Current Version: draft-khasnabish-nwcrg-impact-of-vir-and-sdn-03.txt)

Bhumip Khasnabish, Senthil Sivakumar, Evangelos Haleplidis, and Cedric Adjih (draft-khasnabish-nwcrg-impact-of-vir-and-sdn@tools.ietf.org)

IETF 92 NWC RG Mtg., Royal Suite 9 - 11:30 AM CDT, Friday, 27 March 2015

Outline

- Updates since IETF 91 (Nov. 2014)
- Plan for next version (ver.-04) of the draft
- Request for further Comments, Thoughts,
 Suggestions, Guidance, Volunteers, etc.
- Q & A, and THANKS!

Plan for version 04

- In version 03:
 - We added what was presented last time related to:
 - Where to use SDN and NC?
 - Why use SDN and NC?
 - First steps of "<u>How</u> to implement SDN and NC?"
- Planned in version 04:
 - Further work on "<u>How</u> to implement SDN and NC?"
 - Consider the 5 use cases of "Network Coding Architecture – use cases protocols, and building blocks" in SDN context and consider "How to implement?"
 - E.g. NC shim through different layers of SDN architecture, etc.

Where to use SDN and NC?

- In version 03: some examples
 - SDN typical use in datacenters or in RAN (implies: subsets of use cases of NC)

- Virtualization overlay, inter-data-center connectivity

 Original payload (packets) at the edges are encapsulated in other IP packets w/ header

Taken from: D. Black presentation at NVO3 BOF, IETF-83 http://www.ietf.org/proceedings/83/slides/slides-83-nvo3-1.pdf

- sent on an overlay
- (several) propositions of 60 GHz wireless data-centers
 - Incl.: Xia Z. et al, "Mirror Mirror on the Ceiling: Flexible Wireless Links for Data Centers", SIGCOMM, 2012

Source: http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p443.pdf

Example:

in architectures such as NVO3, on inter-datacenter overlays

Example:

In (specific) scenarios loosely related to RAN: wireless in datacenter (60 GHz)

Why use SDN and NC?

- In version 03:
 - Benefits from NC:
 - Reliability (multipath, inter-datacenters)
 - Performance in case of multicast (butterflies...)
 - SDN benefits for NC:
 - Central knowledge (controller)
 - Possible implementation without apps/stack modification
 - Open question: feasible/useful to use the reliability of network coding to improve latency (treat late packets as lost packets)
 - Open question: possibility of "cross-domain" routing e.g., mixing NC in storage and NC in the network.

How to implement NC?

In order to support network coding, <u>one entity</u> has to code/decode somewhere, but who? (needs further investigations)

(Academic) proofs of concept of modification of SDN switches for NC

Németh et al. "Towards SmartFlow: Case Studies on Enhanced Programmable Forwarding in OpenFlow Switches", demo SIGCOMM 2012

BF video stream:
greedy traffic
only for initial configuration
stream 1 92 mixed
000002200000 22000003

Source: http://gosip.tmit.bme.hu/~gulyas/personal_page/openflow_demo.pdf

Sicheng Liu, Bei Hua, "NCoS: A framework for realizing network coding over software-defined network", IEEE LCN2014, Sep 2014.

Can the coding/decoding function be implemented using a Virtual Network Function (NFV)?

(what are the impacts on overall performance?)

Any other approaches?

(what are the pros and cons?)

How to implement NC?

In order to support network coding, <u>multiple entities can co-operatively perform encoding/decoding</u> in different layers of SDN using virtualized components (needs further investigations)

Aaron Gember-Jacobson et al,

OpenNF: Enabling Innovation in Network Function Control.

Proc. ACM SIGCOMM, Chicago, IL, USA, August 2014.

http://opennf.cs.wisc.edu/overview

What's Next?

- Comments
- Thoughts
- Suggestions
- Guidance
- Volunteers / Contributors / Reviewers,
- Anything else ?!

Q&A, and Discussion

THANKS!

Background Materials

Virtualization

- Computing Resources Virtualization (Software-defined Computing resources)
 - DMTF and Open Compute/Cloud/Stack Specs may be useful
- Network Function Virtualization (Software-defined Network functions)
 - ETSI/ISG NFV started developing the Requirements and gaps in the Industry and Standards
- Storage Virtualization (Software-defined Storage resources)
 - SNIA specs may be useful
- Service Function Virtualization (Software-defined Service function)
 - ETSI/ISG NFV started developing the Requirements and gaps in the Industry and Standards

Virtualization of Network-Level Resources

- Network Node virtualization
 - This refers to developing Templates for Deploying (Allocating, Managing, and Releasing the Functions that Reside in Network Nodes; the Functions may include Addressing, Forwarding, Monitoring, Management, etc.)
- Router virtualization
 - This refers to developing Templates for Deploying (Allocating, Managing, and Releasing the Functions that Reside in Routers; the Functions may include Route creation and management for packets/flows, etc.)
- Network Topology virtualization
 - This refers to developing Templates for physical (and virtual) interconnection among the network nodes (routers and others) and utilizing them for networked services
- RIB/TIB (Routing /Topology information base) virtualization
 - These refer to virtualizing (developing the templates and utilizing the instances) the databases that store Topology and Routing information
- Network service (policy, security, quality, load-balancer, etc.) virtualization
 - This refers to developing Templates for advanced network services and utilizing instances of those templates in general COTS servers for services

Virtualization of Network Coding

- Network Coding support of virtualization
 - Network codes that can utilize both physical and virtual Transport, Routing, Forwarding, etc. entities

- Virtualization Support in Network Coding
 - Virtualization of Network codes for any combination of Transport, Routing, Forwarding, etc. entities

Network Coding Controller (NCC)

- Logically Centralized Physically Distributed
 - Clustered or Hierarchically organized NCCs (physical and/or virtual)
- Physical NCC
 - A Physical device/host that contains the NCC functions
- Virtual NCC
 - A virtual machine that hosts/contains an instance of the NCC function

APIs

- North-Bound APIs (NBIs)
 - Interfaces to/from Applications and Services
- South-Bound APIs (SBIs)
 - Interfaces to/from {Transport, Network, Forwarding,
 Physical Devices/Links, Location, etc.}
- East-Bound APIs (EBIs)
 - Interfaces to/from Management and Orchestration
- West-Bound APIs (WBIs)
 - Interfaces to/from Access-Network (Consumer Device)
- Other APIs
 - North-East
 - Surveillance Interface
 - North-West
 - In progress ... Alien intelligence service
 - South-East
 - Counter Surveillance Interface
 - South-West
 - In progress ... Native Intelligence Service

Transport Plane API(s)

Network/Routing Plane API(s)

Forwarding Plane API(s)

Next Steps

Initiate a draft, and Invite others to Contribute/Participate

http://datatracker.ietf.org/doc/draft-khasnabish-nwcrg-impact-of-vir-and-sdn/

Comments/Suggestions

Q & A,

THANKS.