
RETURN-05
for IETF 92, 2015 March 23-27

Ben Schwartz
Justin Uberti

Changes since last time

● New figures and visual overview
● Broadened motivation section to include

more reasons for TURN
● Clarified rationale for nomenclature
● Added discussion of multi-tenant (cloud)

TURN servers
Thanks to Alan Johnston and John Yoakum!

Background: TURN in WebRTC

● TURN server is configured by the page:
○ new RTCPeerConnection([{urls:"turn:turn.example.org", username:

"user", credential:"myPassword"}])

● Produces a candidate like
○ candidate:2157334355 1 udp 33562367 180.6.6.6 54278 typ relay raddr

46.2.2.2 rport 38135 generation 0

● Used for connectivity, QoS, routing through
fast private networks, monitoring, recording,
troubleshooting, and IP privacy.

Classic TURN in WebRTC
Browser

NAT/FW

TURN server
(in the cloud)

host

srflx

relay

Candidate Network edge Non-encapsulated TURN encapsulated

Now: Enterprise relays (required!)
RFC 7478, Section 2.3.5.1:

An enterprise ... deploy[s] a TURN server that straddles the
boundary between the internal and the external network. …
The WebRTC functionality will need to utilize both network
specific STUN and TURN resources and STUN and TURN
servers provisioned by the web application.

Border TURN server (enterprise)
Browser NAT/FW

Border
TURN
server

Candidate Network edge Non-encapsulated TURN encapsulated

host
srflx

(border)

Border TURN server and UDP block
Browser NAT/FW

Border
TURN
server

Candidate Network edge Non-encapsulated TURN encapsulated

host
srflx

(border)

TURN server
(in the cloud)

relay

What about this (border) candidate?
● Client doesn’t know what kind of candidate

to generate.
○ There is not yet any specification for how WebRTC

should interact with a Border TURN server that was
not provided by the application.

● RETURN answers this: the port allocated on
the Border TURN server should be treated
as a virtual network interface.

Border TURN proxy with RETURN
Browser NAT/FW

Border
TURN
proxy

Candidate Network edge Non-encapsulated TURN encapsulated

host
srflx

TURN server
(in the cloud)

relay

host2
srflx2

relay2

Double TURN

Why do we call it a proxy?

● It’s analogous to an HTTP CONNECT or
SOCKS proxy.
○ It performs a similar function and can be configured

in a similar fashion.
● It will be the destination of traffic generated

by the client.
○ NOT like a “transparent”, “intercepting”,

“inline”, or “forced” proxy.

Comparison to an HTTP proxy
Browser NAT/FW

RETURN
proxy

Candidate Network edge TURN encapsulated

Web Traffic

WebRTC Media

HTTP(S) web traffic

HTTP(S)
CONNECT
proxy

HTTP proxy port

What if it’s actually the same server?

● e.g. the enterprise/proxy-provider and the
application both contract with the same
multi-tenant (cloud) TURN server operator.

● New clarification: in this case the client
MUST transit the server twice!
○ Otherwise authorization and origin labeling will not

work, and metadata may leak to the wrong party.
○ Can always revisit if we find a safe optimization.

Same server twice

Candidate Non-encapsulated TURN encapsulated

TURN server
(in the cloud)

Double TURN

relay

In conclusion, RETURN

● still
○ specifies precise browser behavior to help us meet

our enterprise configuration requirements.
○ doesn’t introduce any new API or protocol.

● but now includes
○ better figures and a visual overview/introduction
○ clearer explanations of motivation and corner cases
○ feedback from a wider range of implementers

