
Aaron Gember-Jacobson, Chaithan Prakash,
Raajay Viswanathan, Robert Grandl,

Junaid Khalid, Sourav Das, Aditya Akella

1

OpenNF: Enabling Innovation in
Network Function Control

Network functions (NFs)

• Perform sophisticated stateful
actions on packets/flows

• Important goals:

1. Satisfy SLAs

2. Minimize costs

3. Act correctly

2

NF trends

• Network Functions Virtualization (NFV)

3

Intrusion
detection

system (IDS)

Caching
proxy

WAN
optimizer

NF trends

• Network Functions Virtualization (NFV)

 → dynamically allocate NF instances

3

Hypervisor

NF trends

• Network Functions Virtualization (NFV)

 → dynamically allocate NF instances

• Software-defined Networking

 → dynamically reroute flows

3

Hypervisor

NF trends

• Network Functions Virtualization (NFV)

 → dynamically allocate NF instances

• Software-defined Networking

 → dynamically reroute flows

 Dynamic reallocation
of packet processing
e.g., elastic NF scaling

 3

Hypervisor

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 4

Packet loss

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 4

Packet loss

SLA:
<1%

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 4

?
Packet loss

SLA:
<1%

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 4

?
Packet loss

SLA:
<1%

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 4

?
Packet loss

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 4

?
Packet loss

Why NFV + SDN falls short

1. SLAs 2. Cost 3. Accuracy

Reroute new flows

Reroute existing flows

Wait for flows to die
 4

?
Packet loss

SLAs + cost + accuracy:
What do we need?

• Quickly move, copy, or share internal NF state
alongside updates to network forwarding state

• Guarantees: loss-free, order-preserving, …

5

   … 1 2 3 …

Also applies to other scenarios

Outline

• Motivation and requirements

• Challenges

• OpenNF architecture

• Evaluation

6

1. Supporting many NFs with minimal changes

2. Dealing with race conditions

3. Bounding overhead

Challenges

7

State

Packet Route
Update

OpenNF overview

8

NF State Manager Flow Manager
OpenNF
Controller

Control Application

move/copy/share state

export/import
State

State created or updated by an NF applies to
either a single flow or a collection of flows

NF state taxonomy

9

Connection

Connection

TcpAnalyzer

HttpAnalyzer

TcpAnalyzer

HttpAnalyzer

Per-flow state

ConnCount

Multi-flow state

All-flows state
Statistics

NF API: export/import state

• Functions: get, put, delete

10

No need to expose/change internal state organization!

Filter

Per

Multi

All

Scope

NF
get

put

Control operations: move

11

NF State Manager

Control Application

move (port=80, IDS1, IDS2)

Flow Manager

IDS2 IDS1

Control operations: move

11

NF State Manager

Control Application

move (port=80, IDS1, IDS2)

get(per, port=80)

[Chunk1]

[Chunk2]

Flow Manager

IDS2 IDS1

Control operations: move

11

NF State Manager

Control Application

move (port=80, IDS1, IDS2)

get(per, port=80)

[Chunk1] del(per, port=80)

[Chunk2]

Flow Manager

IDS2 IDS1

Control operations: move

11

NF State Manager

Control Application

move (port=80, IDS1, IDS2)

get(per, port=80)

[Chunk1] put (per, Chunk1)
del(per, port=80)

[Chunk2]
put (per, Chunk2)

Flow Manager

IDS2 IDS1

Control operations: move

11

NF State Manager

Control Application

move (port=80, IDS1, IDS2)

get(per, port=80)

[Chunk1] put (per, Chunk1)
del(per, port=80)

[Chunk2]
put (per, Chunk2)

forward(port=80, IDS2)

Flow Manager

IDS2 IDS1

Also provide copy and share

Malware
hash
check

Lost updates during move

12

B1

R1

IDS2 IDS1

move(red,Bro1 ,Bro2)

Malware
hash
check

Lost updates during move

12

B1

R1

IDS2 IDS1

move(red,Bro1 ,Bro2)

Malware
hash
check

Lost updates during move

12

B1

R1

R2

Missing
state

IDS2 IDS1

move(red,Bro1 ,Bro2)

Malware
hash
check

Lost updates during move

12

B1

R1 R2
Missing

state

IDS2 IDS1

move(red,Bro1 ,Bro2)

Malware
hash
check

Lost updates during move

12

B1

R1 R2
Missing

state

IDS2 IDS1

move(red,Bro1 ,Bro2)

Malware
hash
check

Lost updates during move

12

B1

R1 R2
Missing

state

IDS2 IDS1

move(red,Bro1 ,Bro2)

Missing
updates

R3

Malware
hash
check

Lost updates during move

12

B1

R1 R2
Missing

state

IDS2 IDS1

move(red,Bro1 ,Bro2)

Missing
updates

Loss-free: All state updates should be reflected in the
transferred state, and all packets should be processed

R3

NF API: observe/prevent
updates using events

13

Only need to change an NF’s receive packet function!

R1

NF

Use events for loss-free move

14

IDS2 IDS1

R1

1. enableEvents(red,noproc) on IDS1

Use events for loss-free move

14

IDS2 IDS1

NoProc R1

1. enableEvents(red,noproc) on IDS1

2. get/delete on IDS1

Use events for loss-free move

14

IDS2 IDS1

NoProc

R1

1. enableEvents(red,noproc) on IDS1

2. get/delete on IDS1

Use events for loss-free move

14

IDS2 IDS1

NoProc

R1

R2

1. enableEvents(red,noproc) on IDS1

2. get/delete on IDS1

3. Buffer events at controller

Use events for loss-free move

14

IDS2 IDS1

NoProc

R1

R2

1. enableEvents(red,noproc) on IDS1

2. get/delete on IDS1

3. Buffer events at controller

4. put on IDS2

Use events for loss-free move

14

IDS2 IDS1

NoProc R1

R2

1. enableEvents(red,noproc) on IDS1

2. get/delete on IDS1

3. Buffer events at controller

4. put on IDS2

5. Flush packets in
events to IDS2

Use events for loss-free move

14

IDS2 IDS1

NoProc R1 R1,R2

1. enableEvents(red,noproc) on IDS1

2. get/delete on IDS1

3. Buffer events at controller

4. put on IDS2

5. Flush packets in
events to IDS2

6. Update
forwarding

Use events for loss-free move

14

IDS2 IDS1

NoProc R1 R1,R2

1. enableEvents(red,noproc) on IDS1

2. get/delete on IDS1

3. Buffer events at controller

4. put on IDS2

5. Flush packets in
events to IDS2

6. Update
forwarding

Use events for loss-free move

14

IDS2 IDS1

NoProc R1 R1,R2 R1,R2,R3

Implementation

• Controller (3.8K lines of Java)

• Communication library (2.6K lines of C)

• Modified NFs (3-8% increase in code)

15

Bro IDS iptables Squid Cache PRADS

Evaluation: benefits for elastic scaling

• Bro IDS processing 10K pkts/sec

– At 180 sec: move HTTP flows (489) to new IDS

– At 360 sec: move back to old IDS

• SLAs: 260ms to move (loss-free)

• Accuracy: same log entries as using one IDS

– VM replication: incorrect log entries

• Cost: scale in after state is moved

– Wait for flows to die: scale in delayed 25+ minutes

16

• Realizing SLAs + cost + accuracy
requires quick, safe control of
internal network function state

• OpenNF provides flexible and efficient
control with few modifications to NFs

Conclusion

17

Learn more and try it!
http://opennf.cs.wisc.edu

