IGP bandwidth based metric

> Santosh Pallagatti Pushpasis Sarkar Hannes Gredler

Problem Statement

- A path with lower cost is always preferred to reach destination.
- R1 can reach D1 via ECMP next-hops L1, L2 and L3.
- If Link L1 and/or L2 goes down L3 will still be best path to reach D1 from R1.
- R1 will use single next-hop (L3 lower bandwidth path) to reach R1 when it could use less congested higher cost ECMP path L4, L5 and L6.
- Bandwidth critical applications needs bandwidth to be satisfied.

Desired behavior

- Assume that link L1 to L6 are 100G each.
- Link L1 goes down and it is ok to use L2 and L3 keep metric 10.
- Link L2 also goes down, path L4, L5 and L6 could be used as that is less congested. Increase metric of link L3 to 50.

BBM - Interface Group

Group	Group Bandwidth	Metric
IG1	200 G	10
	100G	50
	Default	1000
IG2	200G	10
	100G	50
	Default	1000

BBM - Metric derivation

Thank you