Encapsulation Considerations

Design team report draft-rtg-dt-encap-01.txt

Design team members

Albert Tian Erik Nordmark Jesse Gross Jon Hudson Larry Kreeger Pankaj Garg Pat Thaler Tom Herbert

Charter http://www.ietf.org/mail-archive/web/rtgwg/current/msg04715.html

Motivation for design team

- IETF doing new encaps NVO3, SFC, BIER
 - And multiple might be used in the same packet
- Each encap has its own information, but also needs to handle common issues
 - Explore more common ways to handle those issues
 - Each proponent/WG doesn't need to reinvent
- Focus is on encaps packet format not on control plane

What this IS

- A look across the three new encapsulations
 - While taking lots of previous work into account
- Focus on encaps that run over IP/UDP
 - Many encaps desire to run at least over IP
 - Avoided diving into control-plane interaction
- Turns out some "transport" independence fell out as a result
 - E.g., MPLS entropy label fits in

What this is NOT

- A design of a new encaps to rule them all
- A design of a new NVO3 encaps
- A selection from existing encapsulations
- An evaluation of existing and proposed encapsulations
- A floor wax and/or dessert topping

Set of common issues

A twelve-step program

- 1. How to provide entropy for ECMP
- 2. Next header indication
- 3. Packet size and fragmentation/reassembly
- 4. OAM what support needed in an encapsulation format?
- 5. Security and privacy
- 6. QoS
- 7. Congestion Considerations
- 8. Header and data protection UDP or header checksums
- 9. Extensibility for OAM, security, and/or congestion control
- 10. Layering of multiple encapsulations
- 11. Service model
- 12. Hardware Friendly

Different encaps - different information

- NVO3 needs to carry at least a VNI-ID
 - Carried edge-to-edge unmodified
 - Optional OAM info like timestamps modified?
- SFC carries service path and meta-data
 - Index modified at each hop for loop prevention
 - Service meta-data may be modified by SF
- BIER carries a bitmap of egress routers
 - Bitmap modified as packet is forwarded

Assumptions

- Underlay MTU is managed and configured
 - Encaps can make packets larger
- TE/traffic management differs from TCP CC
 - The underlay is well-provisioned, policed
 - Due to multi-tenancy, endpoint CC is not trusted
- Implementable in hardware and software

Entropy for ECMP

- UDP source port for hash of inner headers
 - Provides >=14 bits (ephemeral range) plus IP src, dst
 - o IPv6 will provide more IP src, dst bits, flow label
- Q: Allowed to look inside for more entropy?
 - A: Avoid messing up OAM frames and extensions
- Entropy field belongs to "transport" i.e. adjunct to IP header.
 - Fits with using MPLS as another "transport" has its own entropy label

Next header indication

- Each encap want to carry different payloads
 - Use Ethernet types? IP protocol number? Create new numbering space?
- When layering multiple encaps headers?
 - Opening a common approach?
 - Define a common numbering space?
- But also needs to fit with existing schemes
 - UDP uses port numbers; GRE Ethernet types; etc.
 - Used to indicate the (first) encaps header

Packet size and fragmentation

- Deployed overlays assume underlay MTU
 - Reasonable for controlled deployments in datacenter or SP networks
- Useful to detect misconfiguration
 - Set outer don't fragment (DF) flag
 - Report any received ICMP packet too big syslog
 - Possible to generate overlay ICMP PTB for IPv4/6
 - For Ethernet payload use existing LLDP TLV?
- Other encaps could do frag/reassembly

OAM

- Discussed in NVO3 and SFC and LIME
 - Rich architectural discussion
 - We only looked at effect on encaps format
- Need for in-band OAM measurements
 - Add measurement info to data packets
- Out-of-band measurements
 - OAM packets follow same path as data packets
 - Assumes same ECMP, QoS, middlebox/firewall
 - Constraints entropy use in forwarding routers

OAM support

- Avoid sending OAM frames to end stations
 - Use some "discard" next header value, or OAM bit?
- Support in-band OAM measurements
 - Bit for counter sync between ingress and egress
 - Optional timestamps etc in encaps header
- Error Reporting Protocol as part of OAM?
 - How to avoid it being filtered as ICMP often is?
 - Recommend that IETF look into error reporting that is independent of the specific encaps

Security and privacy

- At least three considerations for security
 - Anti-spoofing prevent packet injection
 - Interaction with and use of IPsec
 - Privacy
- Different possible anti-spoofing mechanism
 - Cookie in encaps header against off-path attacks
 - Secure hash of header fields (excluding fields modified in transit)

QoS

- Existing specifications such as RFC 2983 (Diffserv and tunnels) can be applied
- If OAM messages are used to measure latency, need to treat them the same as data payloads

Congestion Considerations

- Explicit Congestion Notification RFC 6040
- Carrying non-congestion controlled traffic
 - "Encapsulating MPLS in UDP" draft-ietf-mpls-in-udp
 - Circuit breakers? draft-ietf-tsvwg-circuit-breaker
- Protect against malicious end stations
 - Congestion control/policing across tunnels
- Ensure fairness with multi-tenancy?
 - o draft-briscoe-conex-data-centre?

Header protection

- RFC 6936 Applicability Statement for the Use of IPv6 UDP Datagrams with Zero Checksums
- Need checksum for the encaps header?
 - Misdelivery if e.g. VNI ID, BIER bitmap is corrupted
 - Using pseudo-header for important IP fields?
- Ties in with higher assurance for security
 - One No need for checksum if secure hash is used?

Extensibility

- Needed semantics
 - New incompatible version
 - Stuff which can be ignored by the egress
 - Error/drop if egress doesn't support
 - Handle on-path parsing (BIER routers, middleboxes)
- Different encodings
 - Use reserved bits/fields
 - TLVs; extension header chains
 - Flag-fields as in GRE
- Use it or lose it?

Layering of multiple encapsulations

- Might see a future with e.g.,
 - BIER+NVO3+SFC+payload
 - NVO3+NVO3+payload

- Q: Would there be multiple UDP headers?
 - A: UDP header goes with IP header
- Implications for devices in the path
 - Can inspect any layer (and drop/forward)
 - Can only modify its own layer (eg SFF, BIER router)
 - Otherwise needs to be visible i.e. decap+encap

Service model

- IP service is lossy and subject to reordering
 - Unordered for different flows unicast vs. multicast
- Some services might desire no reordering, timeliness or drop, rate limiting, FEC, etc
 - If so, layer on top of encaps
 - Possible to reuse PWE3 [RFC3985, RFC5586]
 - Potentially relates to timestamps for OAM
- Tunnels becoming a protocol fixing place?
 - This is a slippery slope

Hardware Friendly

- Not required, but impacts deployment
 - Using existing chips; facilitate design of new chips
- Different hardware concerns for
 - Switch/router chips, vs. NIC offload
- Encap header checksum OK not whole
 - However, NIC offload can do whole pkt checksum
- Put important info at fixed offsets
 - Unconstrained TLVs seem hard
 - Limit number of header combinations

Middlebox Considerations

- As encapsulations get widely deployed middleboxes might do more
 - Not just drop based on UDP port number
 - Gateways stitching could have similar effect
- Example would be to filter VNI IDs for NVO3
 - Better defense in depth
- Should the IETF document what not to do?
 - Avoid accidentally blocking OAM but not payload
 - Avoid interfering with ECMP?

Open Issues

- Common OAM error reporting protocol?
 - Output Description
 Output

Next Steps

- Gather feedback from different groups in the IETF
- RTGWG WG document? Or somewhere else?