
HSTS and HPKP in practice

Joseph Bonneau
(based on research w/Michael Kranch)

IETF 92
March 26 2015

These slides: https://goo.gl/tI6zOf
Research paper

https://goo.gl/tI6zOf
http://www.jbonneau.com/doc/KB15-NDSS-hsts_pinning_survey.pdf
http://www.jbonneau.com/doc/KB15-NDSS-hsts_pinning_survey.pdf

HTTPS: where web-sec meets TLS

HTTP (≈ web browsing)

over

Secure Sockets Layer (SSL)
or

Transport Layer Security

TLS in one slide

Great, here’s a session key for us to use: EncK{k}

Hello! Let’s do TLS 1.2 with AES, SHA256, and RSA
My public key is K

Hello citp.princeton.edu! I’d like a secure channel
I can do TLS 1.2 or lower. I can use AES, RC4, SHA256, RSA, ECDSA...

Enck{GET citp.princeton.edu }

CN: citp.princeton.edu
Issuer: PositiveSSL
SPKI: K

Cryptographic flaws in TLS

● RSA timing leaks
● CBC padding oracle attacks

○ BEAST attack
● Compression leaks

○ CRIME attack
○ Lucky 13 attack

● RC4 statistical leakage
● Downgrade to SSL v3
● Session resumption attacks

See Clark & van Oorschot [IEEE SP '13]

http://users.encs.concordia.ca/~clark/papers/2013_sp.pdf

The goal of HTTPS is a padlock

Image credit:
Will Bradley

HTTPS attacks in practice

● Inconsistent and incomplete deployment
○ stripping attacks

● Failures by Certificate Authorities
○ rogue certificates

● Lack of forward secrecy
○ Subpoena of private keys
○ Compromise of keys

HTTPS-level

TLS-level

This talk will survey HSTS & pinning

● Overview of 2 big problems & solutions
○ HTTPS stripping, strict transport security
○ Rogue certificates, pinning

● Deployment overview
● Bugs!

○ Poorly configured HSTS
○ Mixed-content issues
○ Cookie leaking
○ Insecure links

● Design lessons

Problem 1: HTTPS stripping

HTTPS stripping

GET http://pfj.org

301 moved permanently

 https://pfj.org

HTTPS stripping

GET https://pfj.org

200 ... content

HTTPS stripping

GET http://pfj.org GET https://pfj.org

200 ... content200 ... content

Will users detect HTTPS stripping?

<10% notice [Schechter et al. 2007] and others

http://research.microsoft.com/apps/pubs/default.aspx?id=79176

Solution #1: HSTS
(Strict Transport Security)

● Mandatory HTTPS at "HSTS domains"
○ Also: convert soft errors into hard errors

● preloaded by browsers

● continuity (explicit) via HTTP headers

● introduction via HTTPS links

HSTS Preload
{ "name": "www.paypal.com", "mode": "force-https" },
{ "name": "www.elanex.biz", "mode": "force-https" },
{ "name": "jottit.com", "include_subdomains": true,
"mode": "force-https" },
{ "name": "sunshinepress.org", "include_subdomains":
true, "mode": "force-https" },
{ "name": "www.noisebridge.net", "mode": "force-https" },
...

transport_security_static.json (Chromium project)

Want
more?

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/transport_security_state_static.json
https://code.google.com/p/chromium/codesearch#chromium/src/net/http/transport_security_state_static.json

Continuity: HSTS headers

GET https://pfj.org

200 OK

Strict-Transport-Security: max-age=15768000 ;
includeSubDomains

End-to-end HSTS security

Preloaded
domains

HTTPS

HTTPS

HTTPS

HTTPS HTTP

HTTP

Problem 2: Rogue certificates

Rogue certificates

GET https://pfj.org GET https://pfj.org

CN: pfj.org
Issuer: RomeTrust
SPKI: K'

CN: pfj.org
Issuer: Verisign
SPKI: K

Will users detect a rogue certificate?

Rogue certificates in the wild

● March 2011: Comodo registrar hacked
○ 9 certs: mail.google.com, login.live.com, www.google.com, login.

yahoo.com, login.skype.com, addons.mozilla.org

● July 2011: DigiNotar hacked
○ 531+ certs issued: *.google.com detected first

● ~2011: TürkTrust issues 2 intermediate CAs
○ One returned, one used in 2012 to proxy traffic...

☠

Survey: Niemann, Brendel 2014

https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CDC/Documents/Lehre/SS13/Seminar/CPS/cps2014_submission_8.pdf

Compelled certificates

Soghoian, Stamm 2010

http://www.cs.indiana.edu/ftp/techreports/TR684.pdf
http://www.cs.indiana.edu/ftp/techreports/TR684.pdf

Solution #2: Key pinning

pfj.org
SPKI: A

pfj.org
SPKI: B

Pinset: {A, Y}

pfj.org
SPKI: C

pfj.org
SPKI: A

DigiCert
SPKI: X

Thawte
SPKI: Y

RomeTrust
SPKI: Z ∅

✓ ✓ ✕ ✕

Preloads: HPKP
{
 "pinsets": [
 {
 "name": "tor",
 "static_spki_hashes": [
 "RapidSSL",
 "DigiCertEVRoot",
 "Tor1",
 "Tor2",
 "Tor3"
]

 },
...
{ "name": "torproject.org", "mode": "force-https",
"pins": "tor" },

transport_security_static.json (Chromium project)

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/transport_security_state_static.json
https://code.google.com/p/chromium/codesearch#chromium/src/net/http/transport_security_state_static.json

Continuity (explicit): HPKP headers

GET https://pfj.org

200 OK

Strict-Transport-Security: max-age=15768000 ;
includeSubDomains

Public-Key-Pins: max-age=15768000;
pin-sha1="4n972...baXc="; pin-sha256="LPJN...
LmCQ="

Initial connections in HPKP

GET https://foo.com GET https://foo.com

CN: pfj.org
Issuer: Verisign
SPKI: K

CN: pfj.org
Issuer: RomeTrust
SPKI: K'

Public-Key-Pins: max-
age=15768000;
pin-sha1=H(K); pin-sha256=H(X)

Public-Key-Pins: max-
age=15768000;
pin-sha1=H(K'); pin-sha256=H(X)

Current deployment

HSTS deployment so far

● proposed 2008 [Jackson/Barth W2SP paper]
● RFC 6797 standardized 2012
● support in Chrome, FF, Opera, Safari

○ No support in Internet Explorer ☹

As of November 2014:
● ~12,500 domains setting or trying HSTS
● 80% setting long-term HSTS

http://tcloud.sjtu.edu.cn/wiki/images/9/96/Forcehttps.pdf
http://tools.ietf.org/html/rfc6797
http://tools.ietf.org/html/rfc6797

HPKP (aka PKP, web pinning)

● Evans, Palmer, Sleevi 2011
○ Proposed Standard, IETF Web Security working group

● Remaining issues
○ Domain bricking
○ Report-only mode

● ~20 early adopters!
○ No browser support

http://datatracker.ietf.org/doc/draft-ietf-websec-key-pinning/
http://datatracker.ietf.org/doc/draft-ietf-websec-key-pinning/

Growth of preloads in Chrome

How do I get preloaded?

● 2012 to mid 2014:
-via email, informal

● Now:
hstspreload.appspot.com

http://hstspreload.appspot.com
http://hstspreload.appspot.com

How do I get preloaded?

(not retroactive)

Preloads growing in Chrome

Policies vary considerably

Many low-traffic sites preloaded

Few domains pinned, many big pin sets

List is often stale

● Of 742 non-Google HSTS domains
○ 77 returned 404
○ 23 permanently redirected to HTTP
○ > 10% stale!
○ Lavabit dead, still pinned

● Some stale Google domains too
○ 4 permanent HTTP redirects

Firefox policy

● Must be included in Chrome
● Must respond over HTTPS
● Must set a dynamic HSTS header

○ Must set an age > 18 weeks

Few domains setting HSTS headers

● 1.1% of the top 1M domains (Alexa rank)
○ 5.2% of those have max-age=0

● Many non-HSTS domains redirect to HTTPS
○ 5.8% of the top 1M domains

● 34% of preloaded domains not setting headers
○ 65% of preloaded Google domains

Many domains set HSTS incorrectly

Max-age values vary significantly

Mixed content

Classic mixed content

<script src=”http://content.net/script.js”>

GET https://pfj.org

GET http://content.net

attack.js

Mixed content now (mostly) blocked

● Active content (blocked as of 2012)
○ scripts
○ stylesheets
○ iframes
○ Flash
○ fonts

● Passive content (allowed)
○ images
○ video
○ audio

Mixed pinning content

<script src=”https://content.net/script.js”>

GET https://pfj.org

GET https://content.net
CN: content.net
Issuer: RomeTrust
SPKI: K'

New issue:
no browser protection!

Passive mixed content is common

● Every pinset affected
○ Over 66,000 passive resources
○ 99% images

Active mixed content also common!

● 5/10 pinsets, 24,477 resources
○ Twitter, Dropbox, Cryptocat, Tor, DoubleClick

resource type #

script 15,540

stylesheet 7,195

xmlhttprequest 1,515

subdocument 170

font 49

Causes of mixed content

● Twitter
○ scripts from Akamai, Facebook

● Tor
○ Videos-from www.youtube-nocookie.com

● DoubleClick
○ various advertising scripts

● Unpinned subdomains
○ syndication.twitter.com
○ blog.cryptocat.com
○ forum.dropbox.com

http://www.youtube-nocookie.com

Expanded-pinset mixed content

● Twitter
○ scripts from twitterCDN (intentional)

● Various domains
○ ssl.google-analytics.com

Plain mixed content ☹

● 30,000 observations
○ More than mixed pinning!

● Only one active
○ doubleclick.net

Interaction with cookies

RFC2965: Same-origin policy for cookies

https://www.ietf.org/rfc/rfc2965.txt
https://www.ietf.org/rfc/rfc2965.txt

RFC2965 in plain English

● If you supply a domain=parameter, it’s a wildcard

● If you omit the domain=parameter, it’s exact
○ Except on Internet Explorer, because ?

https://www.ietf.org/rfc/rfc2965.txt
https://www.ietf.org/rfc/rfc2965.txt

Cookie-stealing attack

HSTSSET-COOKIE: name=”auth”; value=”secret”, domain=”pfj.org”

GET https://pfj.org

Cookie: auth=secret;

Preventing cookie-stealing (HSTS)

● Set HSTS with includeSubdomains

● Mark cookies with secure attribute

Cookie-stealing in the wild

● 10,174 cookies at 2,460 domains not covered by
HSTS

● 10,174 (98%) not marked as secure

● Several from large domains
○ PayPal, Lastpass, USAA

● Mostly tracking cookies and IDS
○ No auth tokens identified

Preventing cookie-stealing (Pinning)

● Set pins with includeSubdomains

● Mark cookies with SECURE attribute

No equivalent for pinning!

Cookie-stealing from pinned domains

● Every pinned domain vulnerable!
○ Excluding those setting includeSubdomains
○ 75 total cookies visible

● Several login cookies vulnerable
○ Facebook, Twitter
○ Known vulnerability

Google’s (now fixed) pinning hole

{ "name": "google.com", "include_subdomains": true, "pins": "google" }

// play.google.com doesn't have include_subdomains because of crbug.com/327834.
{ "name": "play.google.com", "mode": "force-https", "pins": "google" }

Insecure links also a problem

● Initial connections to HSTS not protected

Takeaways: web security is hard!

● Users don’t read specs

● Spec writers don’t know about real constraints

Takeaways: standards not holistic

● Different formats for headers, preloads

● Preload format not standardized, changing

● DANE has a different format as well

Better defaults may help

● Pinning, HSTS default should be includeSubdomains

● secure default should extend to cover pinning

● Cookies should require explicit wildcard notation!

Thank you

jbonneau@princeton.edu
mkranch@princeton.edu

mailto:jbonneau@princeton.edu
mailto:jbonneau@princeton.edu
mailto:mkranch@princeton.edu
mailto:mkranch@princeton.edu

We need a coherent design

How do I get to the REAL
People’s Front of Judea?

● Do they support HTTPS?
● Which public keys should I accept?
● What protocol version do they support?

Many ways to learn Transport Sec.Policy

● Preloads (hardcoded)
○ Browser or extensions

● Authorities
○ DNS, CAs, Notaries, crowdsource

● Continuity
○ What they’ve done before (implicit)
○ What they’ve promised to keep doing (explicit)

● Introduction
○ When following a hyperlink

How do I get to the REAL
People’s Front of Judea?

Many proposals to upgrade HTTPS

PreventiveDetective

Server
changes

No server
changesSSL Observatory Convergence

Perspectives
Cert patrol

Cert. Transparency

DANE
HPKP
TACK
Sovereign Keys

HPKP-RO
CAA

Accountable key
infrastructure

Linked web navigation model

users only reach new domains via hyperlinks,
beginning with a set of domains with preloaded
security policies.

Discovering TACK keys

GET https://pfj.org

T
SigT(K) = ...
expiration= ...

T'
SigT'(K) = ...
expiration= ...

CN: pfj.org
Issuer: Verisign
SPKI: K

TACK activation (rollover)

Served

Required

Observed

Max activation
(30 days)

Malicious s-links?

● Can only make security policy stricter
○ Can never undermine ambient policy

● No persistent effects
○ No domain bricking

● UI ≈ 404 (not found)
○ Limit risk or "warning fatigue"

Stale s-links

● Expiry is mandatory
○ In absolute time, to require constant changes

● Links can always go stale
○ Hopefully, existing user model is to blame introducer

S-links and the same origin policy

secure.com pfj.org

foo.com

s-link

cross-frame navigation
script injection
cookie theft

S-links and the same origin policy

secure.com pfj.org

pfj.org

s-link

HPKP

Upgrading security policy

● Need to re-check ALL cached resources
○ HTTP cache
○ HTML5 localStorage/WebCache
○ TLS saved sessions
○ Cookies
○ etc.

● Need to do so atomically

● No issues for non-framed content
○ For example, script libraries

Case study: crawlers and HTTPS

● Redirects

● <link rel="canonical" href="...

● HSTS headers?

Secure introduction

● Already exists for HSTS!
● Effects of an HTTPS link:

○ mandatory
○ ephemeral
○ transparent to users
○ easy to deploy

● IDEA: for web navigation, linking website
can indicate security policy in-band

An early attempt: YURLs

httpsy://*cl7h3f...mayi@pfj.org/

Why HTML?

● Extensible
● Backwards compatible
● Easy to deploy

Challenges:
● Redirects
● Copy/paste

Major design constraint: compatibility

foo.com

bar.org
HSTS
HPKP baz.net

CT
EV

Browsers must know what to expect
prior to the initial connection

Introduction: HTTPS links

GET https://pfj.org

<script src="https:jpf.org/script.js" >

GET https://jpf.org

Where did HSTS go right?

● Effective against HTTPS stripping

● Incrementally deployable
● Relatively easy "off switch"

● Transparent to end users
● High trust agility
● High trust affordance

Security

Usability

Deployability

Clean-slate designs

● QUIC
○ Google

● MinimaLT
○ Petullo, Zhang, Solworth, Bernstein, Lange 2014

HTTPS bugs
static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer
signedParams, uint8_t *signature, UInt16 signatureLen)
{
 OSStatus err;
 ...

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;
 ...

fail:
 SSLFreeBuffer(&signedHashes);
 SSLFreeBuffer(&hashCtx);
 return err;
}

HTTPS bugs

curl_setopt($curlHandle, CURLOPT_SSL_VERIFYHOST, true);

PHP Manual Entry for CURLOPT_SSL_VERIFYHOST:

1 to check the existence of a common name in the SSL
peer certificate. 2 to check the existence of a common
name and also verify that it matches the hostname
provided. In production environments the value of this
option should be kept at 2 (default value).

from Georgiev et al. 2012 “The Most Dangerous Code in the World”

Core problems

● Flexibility at a protocol level
○ Ciphersuites
○ Choice of CA for domains
○ Choice of public key for each domain
○ Protocol version
○ Choice to deploy HTTPS at all!

● Inflexibility of implementations
○ Browsers must support every server
○ Middleware boxes block attempted improvements

Key players

● Certification Authorities (CAs)
○ Incentives vary, but mostly survival dominates

● Browser vendors
○ Security, but with zero false positives

● Webmasters
○ Mostly, low latency and no bricking

Threat model

Malicious government

Control a CA:

RomeTrust

Control an ISP:

RomeCast

Limitations:

● Don't control all servers
● Don't control browser

Transport security policy

How do I get to the REAL
People’s Front of Judea?

● Do they support HTTPS?
● What is their public key?
● What protocol version do they support?

Transport security policy

How do I get to the REAL
People’s Front of Judea?

● Do they support HTTPS?
● Which public keys should I accept?
● What protocol version do they support?

Ways to learn Transport Security Policy

● Preloads (hardcoded)
○ Browser or extensions

● Authorities
○ DNS, CAs, Notaries, crowdsource

● Continuity
○ What they’ve done before (implicit)
○ What they’ve promised to keep doing (explicit)

● Introduction
○ When following a hyperlink

How do I get to the REAL
People’s Front of Judea?

Authority: DNSSEC

● DANE
○ Hoffman, Schlyter 2012
○ Standards track RFC

● CAA
○ Hallam-Baker, Stradling 2013
○ Standards-track RFC

Authority: Network Perspectives
GET https://foo.com

CN: pfj.org
Issuer: RomeTrust
SPKI: K'

Have you seen
this cert for pfj.org
from RomeTrust?

network
notary

Authority: Convergence
GET https://foo.com

CN: pfj.org
Issuer: RomeTrust
SPKI: K'

Have any of you seen
this cert for pfj.org
from RomeTrust?

Why out-of-band Authorities fail

Was this okay
for pfj.org?

CN: pfj.org
Issuer: Verisign
SPKI: K

GET https://pfj.org

∅ Attackers can always
simulate outage!

Continuity (implicit)
GET https://foo.com

CN: pfj.org
Issuer: RomeTrust
SPKI: K'

Have I seen
this cert for pfj.org
from RomeTrust?

Continuity (explicit): TACK

Issuer: DigiCert
pfj.org
SPKI: A
SigX(A) = ...

DigiCert
SPKI: X

... TACK-signing key T
SigT(A) = ...
expiration= ...

TACK activation (simple case)

Served

Required

Observed

Max activation
(30 days)

Blocked

TACK

● Marlinspike, Perring 2012
○ Internet draft, TLS working group

● Compared to HPKP
○ Lower level
○ More flexible
○ More complex
○ Safer against domain bricking

● Rough equivalent: domain-bound CA
○ With HPKP pins

Introduction: S-links

<a link-security="expiry=1357849989;
pin-sha256=YWRm...cnF=;
pin-sha256=LPJN...mCQ=;"
href="https://pfj.org">secure link!

secure link!

http://www.secure-links.org
http://www.secure-links.org

S-links directives

● Key pins
● CT mandatory
● EV mandatory
● Minimum TLS version
● ...

● Expiry

Who might set s-links?

● Search engines
● Social media sites
● Link aggregators

Detective/forensic approaches

Oh my god,
it's full of certs...

USERTRUST
(Comodo)

GTE

DFN
Verein

Certificate Transparency (CT)

● Laurie, Langley, Käsper 2013
○ IETF experimental draft

● Enter every issued cert in a global log
● CT log is weakly trusted

○ Publicly verifiable
○ Append-only

● Relied on for availability, fork consistency
● Certs include "Signed certificate timestamp"

○ This is all clients check!
● Mis-issued certs detectable by scans

Certificate Transparency logging

pfj.org CA

CT log

`

I'd like a cert for key K please

I'm ready to issue the
following certificate:

CN: pfj.org
Issuer: Verisign
SPKI: KSCT

CN: pfj.org
Issuer: Verisign
SPKI: K SCT

Got it, here's my
commitment to log it soon

MITM attacks under CT
GET https://pfj.org GET https://pfj.org

CN: pfj.org
Issuer: Verisign
SPKI: K

CN: pfj.org
Issuer: RomeTrust
SPKI: K' SCT = XSCT = Y

`

Something's
not right..

CT downgrade attacks
GET https://pfj.org GET https://pfj.org

CN: pfj.org
Issuer: Verisign
SPKI: K

CN: pfj.org
Issuer: RomeTrust
SPKI: K' SCT = X

Enhanced Certificate Transparency

● Ryan 2014

● Idea: log maintains a second tree
○ Certs in lexicographic order by domain
○ Order by insertion date

● Can query for most recent cert
● Revocation highly efficient

● Eckersley 2011
● Elements of:

○ Certificate Transparency
○ TACK
○ Tor hidden services

Sovereign Keys

● Kim, Huang, Perrig, Jackson, Gligor, 2011
● Transparency plus a whole lot more

Accountable Key Infrastructure

Proposals to deal with rogue certs

PreventiveDetective

Server
changes

No server
changesSSL Observatory Convergence

Perspectives
Cert patrol

Cert. Transparency
DANE
HPKP
TACK
Sovereign Keys

HPKP-RO
CAA

Accountable keys

5 predictions for the next 5 years
● CAs will not go away

● Multiple security protocols deployed
○ At least HPKP & CT

● Preload/link/continuity paradigm will solidify
○ Policy specifications may merge

● Web hubs will develop into security notaries

● Perfect Forward Secrecy hits mainstream

Big-picture questions

● Whom do we have to trust?

● Can we change who we have to trust?
○ Trust agility

● Can users tell whom they're trusting?
○ Trust affordance

Certificate Transparency questions

● How many logs will be run?
○ Can we kill logs?

● Security with <100% CA adoption?

The end-to-end picture

Preloaded
domains

HPKP

HPKP
HPKP

s-link

s-link

s-link

s-link HTTP

HTTP

